Commit d4423531 authored by Bernd Flemisch's avatar Bernd Flemisch
Browse files

material: renaming according to refined naming rules, this time for

local variables.
Reviewed by Christoph.


git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@10774 2fb0f335-1f38-0410-981e-8018bf24f1b0
parent bbcccff3
......@@ -171,10 +171,10 @@ public:
fluidState.setDensity(wPhaseIdx, FluidSystem::density(fluidState, wPhaseIdx));
fluidState.setDensity(nPhaseIdx, FluidSystem::density(fluidState, nPhaseIdx));
Scalar Sw = fluidState.phaseMassFraction(wPhaseIdx) / fluidState.density(wPhaseIdx);
Sw /= (fluidState.phaseMassFraction(wPhaseIdx)/fluidState.density(wPhaseIdx)
Scalar sw = fluidState.phaseMassFraction(wPhaseIdx) / fluidState.density(wPhaseIdx);
sw /= (fluidState.phaseMassFraction(wPhaseIdx)/fluidState.density(wPhaseIdx)
+ fluidState.phaseMassFraction(nPhaseIdx)/fluidState.density(nPhaseIdx));
fluidState.setSaturation(wPhaseIdx, Sw);
fluidState.setSaturation(wPhaseIdx, sw);
};
//! The simplest possible update routine for 1p2c "flash" calculations
......
......@@ -377,12 +377,12 @@ protected:
// update the pressures using the material law (saturations
// and first pressure are already set because it is implicitly
// solved for.)
ComponentVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
ComponentVector pc;
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
for (int phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx)
fluidState.setPressure(phaseIdx,
fluidState.pressure(0)
+ (pC[phaseIdx] - pC[0]));
+ (pc[phaseIdx] - pc[0]));
// update the parameter cache
paramCache.updateAll(fluidState, /*except=*/ParameterCache::Temperature|ParameterCache::Composition);
......@@ -459,12 +459,12 @@ protected:
// update all fluid pressures using the capillary pressure
// law
ComponentVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fs);
ComponentVector pc;
MaterialLaw::capillaryPressures(pc, matParams, fs);
for (int phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx,
fs.pressure(0)
+ (pC[phaseIdx] - pC[0]));
+ (pc[phaseIdx] - pc[0]));
paramCache.updateAllPressures(fs);
// update all densities
......
......@@ -472,12 +472,12 @@ protected:
// update the pressures using the material law (saturations
// and first pressure are already set because it is implicitly
// solved for.)
ComponentVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
ComponentVector pc;
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
for (int phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx)
fluidState.setPressure(phaseIdx,
fluidState.pressure(0)
+ (pC[phaseIdx] - pC[0]));
+ (pc[phaseIdx] - pc[0]));
// update the parameter cache
paramCache.updateAll(fluidState, /*except=*/ParameterCache::Temperature);
......@@ -569,12 +569,12 @@ protected:
// update all fluid pressures using the capillary pressure
// law
ComponentVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fs);
ComponentVector pc;
MaterialLaw::capillaryPressures(pc, matParams, fs);
for (int phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx,
fs.pressure(0)
+ (pC[phaseIdx] - pC[0]));
+ (pc[phaseIdx] - pc[0]));
paramCache.updateAllPressures(fs);
// update all densities and fugacity coefficients
......
......@@ -61,23 +61,23 @@ public:
p_C = p_e\overline{S}_w^{-1/\lambda}
* \f]
*
* \param Swe Effective saturation of the wetting phase \f$\overline{S}_w\f$
* \param swe Effective saturation of the wetting phase \f$\overline{S}_w\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Capillary pressure calculated by Brooks & Corey constitutive relation.
*/
static Scalar pc(const Params &params, Scalar Swe)
static Scalar pc(const Params &params, Scalar swe)
{
assert(0 <= Swe && Swe <= 1);
assert(0 <= swe && swe <= 1);
return params.pe()*pow(Swe, -1.0/params.lambda());
return params.pe()*pow(swe, -1.0/params.lambda());
}
DUNE_DEPRECATED_MSG("use pc() (uncapitalized 'c') instead")
static Scalar pC(const Params &params, Scalar Swe)
static Scalar pC(const Params &params, Scalar swe)
{
return pc(params, Swe);
return pc(params, swe);
}
/*!
......@@ -88,24 +88,24 @@ public:
\overline{S}_w = (\frac{p_C}{p_e})^{-\lambda}
\f]
*
* \param pC Capillary pressure \f$p_C\f$
* \param pc Capillary pressure \f$p_C\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Effective wetting phase saturation calculated as inverse of BrooksCorey constitutive relation.
*/
static Scalar sw(const Params &params, Scalar pC)
static Scalar sw(const Params &params, Scalar pc)
{
assert(pC >= 0);
assert(pc >= 0);
Scalar tmp = pow(pC/params.pe(), -params.lambda());
Scalar tmp = pow(pc/params.pe(), -params.lambda());
return std::min(std::max(tmp, Scalar(0.0)), Scalar(1.0));
}
DUNE_DEPRECATED_MSG("use sw() (uncapitalized 's') instead")
static Scalar Sw(const Params &params, Scalar pC)
static Scalar Sw(const Params &params, Scalar pc)
{
return sw(params, pC);
return sw(params, pc);
}
/*!
......@@ -118,46 +118,46 @@ public:
-\frac{p_e}{\lambda} \overline{S}_w^{-1/\lambda - 1}
\f]
*
* \param Swe Effective saturation of the wetting phase \f$\overline{S}_w\f$
* \param swe Effective saturation of the wetting phase \f$\overline{S}_w\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of \f$p_c\f$ w.r.t. effective saturation according to Brooks & Corey.
*/
static Scalar dpc_dsw(const Params &params, Scalar Swe)
static Scalar dpc_dsw(const Params &params, Scalar swe)
{
assert(0 <= Swe && Swe <= 1);
assert(0 <= swe && swe <= 1);
return - params.pe()/params.lambda() * pow(Swe, -1/params.lambda() - 1);
return - params.pe()/params.lambda() * pow(swe, -1/params.lambda() - 1);
}
DUNE_DEPRECATED_MSG("use dpc_dsw() (uncapitalized 'c', 's') instead")
static Scalar dpC_dSw(const Params &params, Scalar Swe)
static Scalar dpC_dSw(const Params &params, Scalar swe)
{
return dpc_dsw(params, Swe);
return dpc_dsw(params, swe);
}
/*!
* \brief The partial derivative of the effective
* saturation w.r.t. the capillary pressure according to Brooks & Corey.
*
* \param pC Capillary pressure \f$p_C\f$
* \param pc Capillary pressure \f$p_C\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of effective saturation w.r.t. \f$p_c\f$ according to Brooks & Corey.
*/
static Scalar dsw_dpc(const Params &params, Scalar pC)
static Scalar dsw_dpc(const Params &params, Scalar pc)
{
assert(pC >= 0);
assert(pc >= 0);
return -params.lambda()/params.pe() * pow(pC/params.pe(), - params.lambda() - 1);
return -params.lambda()/params.pe() * pow(pc/params.pe(), - params.lambda() - 1);
}
DUNE_DEPRECATED_MSG("use dsw_dpc() (uncapitalized 's', 'c') instead")
static Scalar dSw_dpC(const Params &params, Scalar pC)
static Scalar dSw_dpC(const Params &params, Scalar pc)
{
return dsw_dpc(params, pC);
return dsw_dpc(params, pc);
}
/*!
......@@ -165,17 +165,17 @@ public:
* the medium implied by the Brooks-Corey
* parameterization.
*
* \param Swe The mobile saturation of the wetting phase.
* \param swe The mobile saturation of the wetting phase.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Relative permeability of the wetting phase calculated as implied by Brooks & Corey.
*/
static Scalar krw(const Params &params, Scalar Swe)
static Scalar krw(const Params &params, Scalar swe)
{
assert(0 <= Swe && Swe <= 1);
assert(0 <= swe && swe <= 1);
return pow(Swe, 2.0/params.lambda() + 3);
return pow(swe, 2.0/params.lambda() + 3);
};
/*!
......@@ -183,23 +183,23 @@ public:
* wetting phase with regard to the wetting saturation of the
* medium implied by the Brooks-Corey parameterization.
*
* \param Swe The mobile saturation of the wetting phase.
* \param swe The mobile saturation of the wetting phase.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Derivative of the relative permeability of the wetting phase w.r.t. effective wetting phase saturation calculated as implied by Brooks & Corey.
*/
static Scalar dkrw_dsw(const Params &params, Scalar Swe)
static Scalar dkrw_dsw(const Params &params, Scalar swe)
{
assert(0 <= Swe && Swe <= 1);
assert(0 <= swe && swe <= 1);
return (2.0/params.lambda() + 3)*pow(Swe, 2.0/params.lambda() + 2);
return (2.0/params.lambda() + 3)*pow(swe, 2.0/params.lambda() + 2);
};
DUNE_DEPRECATED_MSG("use dkrw_dsw() (uncapitalized 's') instead")
static Scalar dkrw_dSw(const Params &params, Scalar Swe)
static Scalar dkrw_dSw(const Params &params, Scalar swe)
{
return dkrw_dsw(params, Swe);
return dkrw_dsw(params, swe);
}
/*!
......@@ -207,19 +207,19 @@ public:
* the medium as implied by the Brooks-Corey
* parameterization.
*
* \param Swe The mobile saturation of the wetting phase.
* \param swe The mobile saturation of the wetting phase.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Relative permeability of the non-wetting phase calculated as implied by Brooks & Corey.
*/
static Scalar krn(const Params &params, Scalar Swe)
static Scalar krn(const Params &params, Scalar swe)
{
assert(0 <= Swe && Swe <= 1);
assert(0 <= swe && swe <= 1);
Scalar exponent = 2.0/params.lambda() + 1;
Scalar tmp = 1. - Swe;
return tmp*tmp*(1. - pow(Swe, exponent));
Scalar tmp = 1. - swe;
return tmp*tmp*(1. - pow(swe, exponent));
}
/*!
......@@ -228,30 +228,30 @@ public:
* the medium as implied by the Brooks-Corey
* parameterization.
*
* \param Swe The mobile saturation of the wetting phase.
* \param swe The mobile saturation of the wetting phase.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Derivative of the relative permeability of the non-wetting phase w.r.t. effective wetting phase saturation calculated as implied by Brooks & Corey.
*/
static Scalar dkrn_dsw(const Params &params, Scalar Swe)
static Scalar dkrn_dsw(const Params &params, Scalar swe)
{
assert(0 <= Swe && Swe <= 1);
assert(0 <= swe && swe <= 1);
return
2.0*(Swe - 1)*(
2.0*(swe - 1)*(
1 +
pow(Swe, 2.0/params.lambda())*(
pow(swe, 2.0/params.lambda())*(
1.0/params.lambda() + 1.0/2 -
Swe*(1.0/params.lambda() + 1.0/2)
swe*(1.0/params.lambda() + 1.0/2)
)
);
}
DUNE_DEPRECATED_MSG("use dkrn_dsw() (uncapitalized 's') instead")
static Scalar dkrn_dSw(const Params &params, Scalar Swe)
static Scalar dkrn_dSw(const Params &params, Scalar swe)
{
return dkrn_dsw(params, Swe);
return dkrn_dsw(params, swe);
}
};
......
......@@ -42,7 +42,7 @@ namespace Dumux
* The numeric calculations however are performed with absolute saturations. The EffToAbsLaw class gets
* the "material laws" actually used as well as the corresponding parameter container as template arguments.
*
* Subsequently, the desired function (pc, Sw... ) of the actually used "material laws" are called but with the
* Subsequently, the desired function (pc, sw... ) of the actually used "material laws" are called but with the
* saturations already converted from absolute to effective.
*
* This approach makes sure that in the "material laws" only effective saturations are considered, which makes sense,
......@@ -70,7 +70,7 @@ public:
* \brief The capillary pressure-saturation curve.
*
*
* \param Sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$. It is converted to effective saturation
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$. It is converted to effective saturation
* and then handed over to the material law actually used for calculation.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
......@@ -78,21 +78,21 @@ public:
* \return Capillary pressure calculated by specific constitutive relation (EffLaw e.g. Brooks & Corey, van Genuchten, linear...)
*
*/
static Scalar pc(const Params &params, Scalar Sw)
static Scalar pc(const Params &params, Scalar sw)
{
return EffLaw::pc(params, swToSwe(params, Sw));
return EffLaw::pc(params, swToSwe(params, sw));
}
DUNE_DEPRECATED_MSG("use pc() (uncapitalized 'c') instead")
static Scalar pC(const Params &params, Scalar Sw)
static Scalar pC(const Params &params, Scalar sw)
{
return pc(params, Sw);
return pc(params, sw);
}
/*!
* \brief The saturation-capillary pressure curve.
*
* \param pC Capillary pressure \f$p_C\f$:
* \param pc Capillary pressure \f$p_C\f$:
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
......@@ -100,15 +100,15 @@ public:
*
* \return The absolute saturation of the wetting phase \f$S_w\f$
*/
static Scalar sw(const Params &params, Scalar pC)
static Scalar sw(const Params &params, Scalar pc)
{
return sweToSw_(params, EffLaw::sw(params, pC));
return sweToSw_(params, EffLaw::sw(params, pc));
}
DUNE_DEPRECATED_MSG("use sw() (uncapitalized 's') instead")
static Scalar Sw(const Params &params, Scalar pC)
static Scalar Sw(const Params &params, Scalar pc)
{
return sw(params, pC);
return sw(params, pc);
}
/*!
......@@ -120,21 +120,21 @@ public:
p_c = p_c( \overline S_w (S_w))
\rightarrow p_c ^\prime = \frac{\partial p_c}{\partial \overline S_w} \frac{\partial \overline S_w}{\partial S_w}
\f]
* \param Sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$.
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of \f$p_c\f$ w.r.t. effective saturation according to EffLaw e.g. Brooks & Corey, van Genuchten, linear... .
*/
static Scalar dpc_dsw(const Params &params, Scalar Sw)
static Scalar dpc_dsw(const Params &params, Scalar sw)
{
return EffLaw::dpc_dsw(params, swToSwe(params, Sw) )*dswe_dsw_(params);
return EffLaw::dpc_dsw(params, swToSwe(params, sw) )*dswe_dsw_(params);
}
DUNE_DEPRECATED_MSG("use dpc_dsw() (uncapitalized 'c', 's') instead")
static Scalar dpC_dSw(const Params &params, Scalar Sw)
static Scalar dpC_dSw(const Params &params, Scalar sw)
{
return dpc_dsw(params, Sw);
return dpc_dsw(params, sw);
}
/*!
......@@ -148,27 +148,27 @@ public:
\f]
*
*
* \param pC Capillary pressure \f$p_C\f$:
* \param pc Capillary pressure \f$p_C\f$:
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of effective saturation w.r.t. \f$p_c\f$ according to EffLaw e.g. Brooks & Corey, van Genuchten, linear... .
*/
static Scalar dsw_dpc(const Params &params, Scalar pC)
static Scalar dsw_dpc(const Params &params, Scalar pc)
{
return EffLaw::dsw_dpc(params, pC)*dsw_dswe_(params);
return EffLaw::dsw_dpc(params, pc)*dsw_dswe_(params);
}
DUNE_DEPRECATED_MSG("use dsw_dpc() (uncapitalized 's', 'c') instead")
static Scalar dSw_dpC(const Params &params, Scalar pC)
static Scalar dSw_dpC(const Params &params, Scalar pc)
{
return dsw_dpc(params, pC);
return dsw_dpc(params, pc);
}
/*!
* \brief The relative permeability for the wetting phase.
*
* \param Sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$. It is converted to effective saturation
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$. It is converted to effective saturation
* and then handed over to the material law actually used for calculation.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
......@@ -176,79 +176,79 @@ public:
* \return Relative permeability of the wetting phase calculated as implied by EffLaw e.g. Brooks & Corey, van Genuchten, linear... .
*
*/
static Scalar krw(const Params &params, Scalar Sw)
static Scalar krw(const Params &params, Scalar sw)
{
return EffLaw::krw(params, swToSwe(params, Sw));
return EffLaw::krw(params, swToSwe(params, sw));
};
/*!
* \brief The relative permeability for the non-wetting phase.
*
* \param Sw Absolute saturation of the wetting phase \f${S}_w\f$. It is converted to effective saturation
* \param sw Absolute saturation of the wetting phase \f${S}_w\f$. It is converted to effective saturation
* and then handed over to the material law actually used for calculation.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Relative permeability of the non-wetting phase calculated as implied by EffLaw e.g. Brooks & Corey, van Genuchten, linear... .
*/
static Scalar krn(const Params &params, Scalar Sw)
static Scalar krn(const Params &params, Scalar sw)
{
return EffLaw::krn(params, swToSwe(params, Sw));
return EffLaw::krn(params, swToSwe(params, sw));
}
/*!
* \brief Convert an absolute wetting saturation to an effective one.
*
* \param Sw Absolute saturation of the wetting phase \f${S}_w\f$.
* \param sw Absolute saturation of the wetting phase \f${S}_w\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Effective saturation of the wetting phase.
*/
static Scalar swToSwe(const Params &params, Scalar Sw)
static Scalar swToSwe(const Params &params, Scalar sw)
{
return (Sw - params.swr())/(1 - params.swr() - params.snr());
return (sw - params.swr())/(1 - params.swr() - params.snr());
}
DUNE_DEPRECATED_MSG("use swToSwe() (uncapitalized 's') instead")
static Scalar SwToSwe(const Params &params, Scalar Sw)
static Scalar SwToSwe(const Params &params, Scalar sw)
{
return swToSwe(params, Sw);
return swToSwe(params, sw);
}
/*!
* \brief Convert an absolute non-wetting saturation to an effective one.
*
* \param Sn Absolute saturation of the non-wetting phase \f${S}_n\f$.
* \param sn Absolute saturation of the non-wetting phase \f${S}_n\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Effective saturation of the non-wetting phase.
*/
static Scalar snToSne(const Params &params, Scalar Sn)
static Scalar snToSne(const Params &params, Scalar sn)
{
return (Sn - params.snr())/(1 - params.swr() - params.snr());
return (sn - params.snr())/(1 - params.swr() - params.snr());
}
DUNE_DEPRECATED_MSG("use snToSne() (uncapitalized 's') instead")
static Scalar SnToSne(const Params &params, Scalar Sn)
static Scalar SnToSne(const Params &params, Scalar sn)
{
return snToSne(params, Sn);
return snToSne(params, sn);
}
private:
/*!
* \brief Convert an effective wetting saturation to an absolute one.
*
* \param Swe Effective saturation of the non-wetting phase \f$\overline{S}_n\f$.
* \param swe Effective saturation of the non-wetting phase \f$\overline{S}_n\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Absolute saturation of the non-wetting phase.
*/
static Scalar sweToSw_(const Params &params, Scalar Swe)
static Scalar sweToSw_(const Params &params, Scalar swe)
{
return Swe*(1 - params.swr() - params.snr()) + params.swr();
return swe*(1 - params.swr() - params.snr()) + params.swr();
}
/*!
......
......@@ -59,21 +59,21 @@ public:
p_C = (1 - \overline{S}_w) (p_{C,max} - p_{C,entry}) + p_{C,entry}
\f]
*
* \param Swe Effective saturation of the wetting phase \f$\overline{S}_w\f$ conversion from absolute saturation happened in EffToAbsLaw.
* \param swe Effective saturation of the wetting phase \f$\overline{S}_w\f$ conversion from absolute saturation happened in EffToAbsLaw.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Capillary pressure calculated by linear constitutive relation.
*/
static Scalar pc(const Params &params, Scalar Swe)
static Scalar pc(const Params &params, Scalar swe)
{
return (1 - Swe)*(params.maxPc() - params.entryPc()) + params.entryPc();
return (1 - swe)*(params.maxPc() - params.entryPc()) + params.entryPc();
}
DUNE_DEPRECATED_MSG("use pc() (uncapitalized 'c') instead")
static Scalar pC(const Params &params, Scalar Swe)
static Scalar pC(const Params &params, Scalar swe)
{
return pc(params, Swe);
return pc(params, swe);
}
/*!
......@@ -84,21 +84,21 @@ public:
S_w = 1 - \frac{p_C - p_{C,entry}}{p_{C,max} - p_{C,entry}}
\f]
*
* \param pC Capillary pressure \f$p_C\f$
* \param pc Capillary pressure \f$p_C\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Effective wetting phase saturation calculated as inverse of the linear constitutive relation.
*/
static Scalar sw(const Params &params, Scalar pC)
static Scalar sw(const Params &params, Scalar pc)
{
return 1 - (pC - params.entryPc())/(params.maxPc() - params.entryPc());
return 1 - (pc - params.entryPc())/(params.maxPc() - params.entryPc());
}