From d446c471a0da882c40441e27b572863d9c6f58aa Mon Sep 17 00:00:00 2001 From: Timo Koch <timokoch@uio.no> Date: Mon, 3 Jul 2023 11:56:45 +0200 Subject: [PATCH] [multistage][doc] Improve documentation --- .../timestepping/multistagemethods.hh | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) diff --git a/dumux/experimental/timestepping/multistagemethods.hh b/dumux/experimental/timestepping/multistagemethods.hh index 3533d7f7b2..3d000912a6 100644 --- a/dumux/experimental/timestepping/multistagemethods.hh +++ b/dumux/experimental/timestepping/multistagemethods.hh @@ -39,12 +39,12 @@ namespace Dumux::Experimental { * * \f[ * \begin{equation} - * \frac{\partial M(x)}{\partial t} - R(x, t) = 0, + * \frac{\partial M(x, t)}{\partial t} - R(x, t) = 0, * \end{equation} * \f] * - * where \f$ M(x)\f$ is the temporal operator/residual in terms of the solution \f$ x \f$, - * and \f$ R(x)\f$ is the discrete spatial operator/residual. + * where \f$ M(x, t)\f$ is the temporal operator/residual in terms of the solution \f$ x \f$, + * and \f$ R(x, t)\f$ is the discrete spatial operator/residual. * \f$ M(x)\f$ usually corresponds to the conserved quantity (e.g. mass), and \f$ R(x)\f$ * contains the rest of the residual. We can then construct \f$ m \f$-stage time discretization methods. * Integrating from time \f$ t^n\f$ to \f$ t^{n+1}\f$ with time step size \f$ \Delta t^n\f$, we solve: @@ -53,13 +53,22 @@ namespace Dumux::Experimental { * \begin{aligned} * x^{(0)} &= u^n\\ * \sum_{k=0}^i \left[ \alpha_{ik} M\left(x^{(k)}, t^n + d_k\Delta t^n\right) - * + \beta_{ik}\Delta t^n R \left(x^{(k)}, t^n+d_k\Delta t^n \right)\right] &= 0 & \forall i \in \{1,\ldots,m\} \\ + * + \beta_{ik}\Delta t^n R \left(x^{(k)}, t^n+d_k\Delta t^n \right)\right] + * &= 0 & \forall i \in \{1,\ldots,m\} \\ * x^{n+1} &= x^{(m)} * \end{aligned} * \f] * where \f$ x^{(k)} \f$ denotes the intermediate solution at stage \f$ k \f$. * Dependent on the number of stages \f$ m \f$, and the coefficients \f$ \alpha, \beta, d\f$, * schemes with different properties and order of accuracy can be constructed. + * + * That the summation only goes up to \f$ i \f$ in stage \f$ i \f$ means that we + * restrict ourselves to diagonally-implicit Runge-Kutta schemes (DIRK) + * and explicit schemes. + * + * Note that when computing the Jacobian of the residual with respect + * to \f$ x^{(k)} \f$ at stage \f$ k \f$, only the terms containing the solution of + * the current stage \f$ k \f$ contribute to the derivatives. */ template<class Scalar> class MultiStageMethod -- GitLab