From eb9ea429d041ded0bf14e9b08222381ec31cab86 Mon Sep 17 00:00:00 2001 From: Martin Schneider <martin.schneider@iws.uni-stuttgart.de> Date: Tue, 11 Dec 2018 17:39:30 +0100 Subject: [PATCH] [handbook][disc] Correction of indices used for the box method --- doc/handbook/5_spatialdiscretizations.tex | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) diff --git a/doc/handbook/5_spatialdiscretizations.tex b/doc/handbook/5_spatialdiscretizations.tex index 82ffd2673e..c772f2f1b2 100644 --- a/doc/handbook/5_spatialdiscretizations.tex +++ b/doc/handbook/5_spatialdiscretizations.tex @@ -146,19 +146,19 @@ Here, a mass lumping technique is applied by assuming that the storage capacity reduced to the nodes. This means that the integrals $M_{i,j} = \int_{B_j} N_i \: dx$ are replaced by some mass lumped terms $M^{lump}_{i,j}$ which are defined as \begin{equation} - M^{lump}_{i,j} =\begin{cases} V_i &i = j\\ - 0 &i \neq j.\\ + M^{lump}_{i,j} =\begin{cases} V_j &j = i\\ + 0 &j \neq i,\\ \end{cases} \end{equation} -where $V_i$ is the volume of the FV box $B_i$ associated with node $i$. +where $V_j$ is the volume of the FV box $B_j$ associated with node $j$. The application of this assumption yields \begin{equation} \label{eq:disc1} - V_i \frac{\partial \hat u_i}{\partial t} - + \int_{\partial B_j} F(\tilde u) \cdot \mathbf n \: d\varGamma_{B_j} - Q_i = 0, + V_j \frac{\partial \hat u_j}{\partial t} + + \int_{\partial B_j} F(\tilde u) \cdot \mathbf n \: d\varGamma_{B_j} - Q_j = 0, \end{equation} -where $Q_i$ is an approximation (using some quadrature rule) of the integrated source/sink term $\int_{B_j} q \: dx$. +where $Q_j$ is an approximation (using some quadrature rule) of the integrated source/sink term $\int_{B_j} q \: dx$. Using an implicit Euler time discretization finally leads to the discretized form which will be applied to the mathematical @@ -166,10 +166,11 @@ flow and transport equations: \begin{equation} \label{eq:discfin} - V_i \frac{\hat u_i^{n+1} - \hat u_i^{n}}{\Delta t} - + \int_{\partial B_i} F(\tilde u^{n+1}) \cdot \mathbf n - \; d{\varGamma}_{B_i} - Q_i^{n+1} \: = 0. + V_j \frac{\hat u_j^{n+1} - \hat u_j^{n}}{\Delta t} + + \int_{\partial B_j} F(\tilde u^{n+1}) \cdot \mathbf n + \; d{\varGamma}_{B_j} - Q_j^{n+1} \: = 0. \end{equation} +Equation \eqref{eq:discfin} has to be fulfilled for each box $B_j$. \subsection{Cell Centered Finite Volume Method -- A Short Introduction}\label{cc} -- GitLab