diff --git a/dumux/porousmediumflow/1p/model.hh b/dumux/porousmediumflow/1p/model.hh index 4d1cc3e27364b1bd92b52ec7f8f8f8887c3b2452..bb0dbffcbdfa6cd4fe5f418370b88987862c51e6 100644 --- a/dumux/porousmediumflow/1p/model.hh +++ b/dumux/porousmediumflow/1p/model.hh @@ -14,7 +14,7 @@ * * Furthermore, it solves the mass continuity equation * \f[ - \phi \frac{\partial \varrho}{\partial t} + \nabla \cdot \left\lbrace + \frac{\partial (\phi \varrho) }{\partial t} + \nabla \cdot \left\lbrace - \varrho \frac{\textbf K}{\mu} \left( \nabla p -\varrho {\textbf g} \right) \right\rbrace = q, * \f] * where: diff --git a/dumux/porousmediumflow/1pnc/model.hh b/dumux/porousmediumflow/1pnc/model.hh index 4ebdeb35f1eb58a4130adb77fb834c6a59a7d51e..58024ae384fc90855510ff4dfb16b7669ee6a7bb 100644 --- a/dumux/porousmediumflow/1pnc/model.hh +++ b/dumux/porousmediumflow/1pnc/model.hh @@ -15,14 +15,14 @@ * Gravity can be enabled or disabled via the property system. * By inserting Darcy's law into the continuity equation, one gets \f[ - \phi\frac{\partial \varrho}{\partial t} - \nabla \cdot \left\{ + \frac{\partial (\phi \varrho) }{\partial t} - \nabla \cdot \left\{ \varrho \frac{\textbf K}{\mu} \left(\nabla p - \varrho {\textbf g} \right) \right\} = q. \f] * * The transport of the components \f$\kappa \in \{ w, a, ... \}\f$ is described by the following equation: \f[ - \phi \frac{ \partial \varrho X^\kappa}{\partial t} + \frac{ \partial (\phi \varrho X^\kappa) }{\partial t} - \nabla \cdot \left\lbrace \varrho X^\kappa \frac{{\textbf K}}{\mu} \left( \nabla p - \varrho {\textbf g} \right) + \varrho D^\kappa_\text{pm} \nabla X^\kappa \right\rbrace = q, @@ -36,7 +36,7 @@ * * \f$ \mu \f$ represents the dynamic viscosity, * * \f$ p \f$ is the pressure, * * \f$ \textbf{g} \f$ is the gravitational acceleration vector, - * * \f$ {\bf D_{pm}^\kappa} \f$ is the diffusivity in the porous medium, + * * \f$ {\bf D_{pm}^\kappa} \f$ is the effective diffusivity in the porous medium, * * and \f$ q \f$ is a source or sink term. * * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the diff --git a/dumux/porousmediumflow/1pncmin/model.hh b/dumux/porousmediumflow/1pncmin/model.hh index 5c1bf5a51d8aa999d7847d32634366f2f7074f08..ffee022ef43f1192064dfde6485b6e96c9db1dae 100644 --- a/dumux/porousmediumflow/1pncmin/model.hh +++ b/dumux/porousmediumflow/1pncmin/model.hh @@ -18,7 +18,7 @@ * By inserting Darcy's law into the equations for the conservation of the * components, one gets one transport equation for each component, * \f[ - \frac{\partial ( \varrho_f X^\kappa \phi )} + \frac{\partial ( \phi \varrho_f X^\kappa )} {\partial t} - \nabla \cdot \left\{ \varrho_f X^\kappa \frac{k_{r}}{\mu} \mathbf{K} (\nabla p - \varrho_{f} \mathbf{g}) \right\} @@ -34,7 +34,7 @@ * * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor, * * \f$ p \f$ is the pressure, * * \f$ \mathbf{g} \f$ is the gravitational acceleration vector, -* * \f$ {\bf D_{pm}^\kappa} \f$ is the diffusivity in the porous medium, +* * \f$ {\bf D_{pm}^\kappa} \f$ is the effective diffusivity in the porous medium, * * \f$ q_\kappa \f$ is a source or sink term. * * The solid or mineral phases are assumed to consist of a single component. diff --git a/dumux/porousmediumflow/2p/model.hh b/dumux/porousmediumflow/2p/model.hh index fe7adb6fbe1f6a3f124a9990a87d97e9d5b8d742..791e30e077125648fa18ebc08bd2a1dacaaa6343 100644 --- a/dumux/porousmediumflow/2p/model.hh +++ b/dumux/porousmediumflow/2p/model.hh @@ -17,7 +17,7 @@ * By inserting Darcy's law into the equations for the conservation of the * phase mass, one gets \f[ - \phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t} + \frac{\partial (\phi \varrho_\alpha S_\alpha) }{\partial t} - \nabla \cdot \left\{ \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla p_\alpha - \varrho_{\alpha} \mathbf{g} \right) diff --git a/dumux/porousmediumflow/2p1c/model.hh b/dumux/porousmediumflow/2p1c/model.hh index a34e4799f0726394a6abd2e966d880537c16e95f..58bf838168c8add348afb89f5908d4f499eebc41 100644 --- a/dumux/porousmediumflow/2p1c/model.hh +++ b/dumux/porousmediumflow/2p1c/model.hh @@ -23,7 +23,7 @@ * By inserting Darcy's law into the equations for the conservation of the * phase mass, one gets \f[ -\phi \frac{\partial\ \sum_\alpha (\rho_\alpha S_\alpha)}{\partial t} \\-\sum \limits_ \alpha \nabla \cdot \left \{\rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} +\frac{\partial\ \sum_\alpha (\phi \rho_\alpha S_\alpha)}{\partial t} \\-\sum \limits_ \alpha \nabla \cdot \left \{\rho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} (\nabla p_\alpha - \rho_\alpha \mathbf{g}) \right \} -q^w =0, \f] * where: diff --git a/dumux/porousmediumflow/2p2c/model.hh b/dumux/porousmediumflow/2p2c/model.hh index e50ef401f24c4de403306ef64c01d98b72465838..da4df68d4d9744df1d4ccd642a9e41760fa1bef9 100644 --- a/dumux/porousmediumflow/2p2c/model.hh +++ b/dumux/porousmediumflow/2p2c/model.hh @@ -16,14 +16,14 @@ * The governing equations are the mass or the mole conservation equations of the two components, * depending on the property <tt>UseMoles</tt>. The mass balance equations are given as * \f[ - \phi \frac{\partial (\sum_\alpha \rho_\alpha X_\alpha^\kappa S_\alpha)}{\partial t} + \frac{\partial (\sum_\alpha \phi \rho_\alpha X_\alpha^\kappa S_\alpha)}{\partial t} - \sum_\alpha \nabla \cdot \left\{ \rho_\alpha X_\alpha^\kappa v_\alpha \right\} - \sum_\alpha \nabla \cdot \mathbf{F}_{\mathrm{diff, mass}, \alpha}^\kappa - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{\kappa_w, \kappa_n\} \, , \alpha \in \{w, n\}. \f] * The mole balance is given as * \f[ - \phi \frac{\partial (\sum_\alpha \varrho_{m, \alpha} x_\alpha^\kappa S_\alpha)}{\partial t} + \frac{\partial (\sum_\alpha \phi \varrho_{m, \alpha} x_\alpha^\kappa S_\alpha)}{\partial t} + \sum_\alpha \nabla \cdot \left\{ \varrho_{m, \alpha} x_\alpha^\kappa v_\alpha \right\} + \sum_\alpha \nabla \cdot \mathbf{F}_{\mathrm{diff, mole}, \alpha}^\kappa - \sum_\alpha q_\alpha^\kappa = 0 \qquad \kappa \in \{\kappa_w, \kappa_n\} \, , \alpha \in \{w, n\}, diff --git a/dumux/porousmediumflow/2pnc/model.hh b/dumux/porousmediumflow/2pnc/model.hh index 85d42a3c10e7ab8648b80ec3a4b8b6c723570582..8503e967d7580b6f95edf276ac4d888a5cb39500 100644 --- a/dumux/porousmediumflow/2pnc/model.hh +++ b/dumux/porousmediumflow/2pnc/model.hh @@ -20,7 +20,7 @@ * By inserting Darcy's law into the equations for the conservation of the * components, one gets one transport equation for each component, * \f{eqnarray*}{ - * && \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha )} + * && \frac{\partial (\sum_\alpha \phi \varrho_\alpha X_\alpha^\kappa S_\alpha )} * {\partial t} * - \sum_\alpha \nabla \cdot \left\{ \varrho_\alpha X_\alpha^\kappa * \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} diff --git a/dumux/porousmediumflow/2pncmin/model.hh b/dumux/porousmediumflow/2pncmin/model.hh index a10644a7cd59882c13e3d7ed7b773b0dfc55dcbe..f78816b71c2032268f5c58682679a6c822d14a71 100644 --- a/dumux/porousmediumflow/2pncmin/model.hh +++ b/dumux/porousmediumflow/2pncmin/model.hh @@ -20,7 +20,7 @@ * By inserting Darcy's law into the equations for the conservation of the * components, one gets one transport equation for each component, * \f{eqnarray*}{ - * && \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha )} + * && \frac{\partial (\sum_\alpha \phi \varrho_\alpha X_\alpha^\kappa S_\alpha )} * {\partial t} * - \sum_\alpha \nabla \cdot \left\{ \varrho_\alpha X_\alpha^\kappa * \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} diff --git a/dumux/porousmediumflow/3p/model.hh b/dumux/porousmediumflow/3p/model.hh index d2fc6cd27ac0b2885811c3a1f78e6dd6165d0fac..68c9388350e25de4a3e4d0481d0afd048c7c89a7 100644 --- a/dumux/porousmediumflow/3p/model.hh +++ b/dumux/porousmediumflow/3p/model.hh @@ -18,7 +18,7 @@ * By inserting Darcy's law into the equations for the conservation * of the phase mass, one gets \f[ - \phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t} + \frac{\partial (\phi \varrho_\alpha S_\alpha )}{\partial t} - \nabla \cdot \left\{ \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla p_\alpha - \varrho_{\alpha} \mathbf{g} \right) diff --git a/dumux/porousmediumflow/3p3c/model.hh b/dumux/porousmediumflow/3p3c/model.hh index b41ba06e32d17a3d415a49b61d1a490c1ab21031..a030d7c38311e6d3c6828e720ec6fdb4de9a7f0a 100644 --- a/dumux/porousmediumflow/3p3c/model.hh +++ b/dumux/porousmediumflow/3p3c/model.hh @@ -19,14 +19,14 @@ * By inserting Darcy's law into the equations for the conservation of the * components, one transport equation for each component is obtained as * \f{eqnarray*} - && \phi \frac{\partial (\sum_\alpha \varrho_{\alpha,mol} x_\alpha^\kappa + && \frac{\partial (\sum_\alpha \phi \varrho_{\alpha,mol} x_\alpha^\kappa S_\alpha )}{\partial t} - \sum\limits_\alpha \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\alpha,mol} x_\alpha^\kappa \mathbf{K} (\nabla p_\alpha - \varrho_{\alpha,mass} \mathbf{g}) \right\} \nonumber \\ \nonumber \\ - && - \sum\limits_\alpha \nabla \cdot \left\{ D_\text{pm}^\kappa \frac{1}{M_{\kappa}} \varrho_{\alpha} + && - \sum\limits_\alpha \nabla \cdot \left\{ D_{\alpha, \text{pm}}^\kappa \frac{1}{M_{\kappa}} \varrho_{\alpha} \nabla X^\kappa_{\alpha} \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha, \f} @@ -37,7 +37,7 @@ * * \f$ X_\alpha^\kappa \f$ is the mass fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ x_\alpha^\kappa \f$ is the mole fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ v_\alpha \f$ is the velocity of phase \f$ \alpha \f$, - * * \f$ {\bf D_{\alpha, pm}^\kappa} \f$ is the diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$, + * * \f$ D_{\alpha, \text{pm}}^\kappa \f$ is the effective diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ M_\kappa \f$ is the molar mass of component \f$ \kappa \f$ * * \f$ q_\alpha^\kappa \f$ is a source or sink term. * diff --git a/dumux/porousmediumflow/3pwateroil/model.hh b/dumux/porousmediumflow/3pwateroil/model.hh index 02806c10bdd4bc4c6901cd280a07a49424495301..5d81b1084f37f7fd37dc374c77add4140940a9ec 100644 --- a/dumux/porousmediumflow/3pwateroil/model.hh +++ b/dumux/porousmediumflow/3pwateroil/model.hh @@ -20,14 +20,14 @@ * By inserting Darcy's law into the equations for the conservation of the * components, one transport equation for each component is obtained as * \f{eqnarray*} - && \phi \frac{\partial (\sum_\alpha \varrho_\alpha X_\alpha^\kappa + && \frac{\partial (\sum_\alpha \phi \varrho_\alpha X_\alpha^\kappa S_\alpha )}{\partial t} - \sum\limits_\alpha \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_\alpha x_\alpha^\kappa \mathbf{K} (\nabla p_\alpha - \varrho_\alpha \mathbf{g}) \right\} \nonumber \\ \nonumber \\ - && - \sum\limits_\alpha \nabla \cdot \left\{ D_\text{pm}^\kappa \varrho_\alpha \frac{1}{M_\kappa} + && - \sum\limits_\alpha \nabla \cdot \left\{ D_{\alpha, \text{pm}}^\kappa \varrho_\alpha \frac{1}{M_\kappa} \nabla X^\kappa_{\alpha} \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha, \f} @@ -39,7 +39,7 @@ * * \f$ X_\alpha^\kappa \f$ is the mass fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ x_\alpha^\kappa \f$ is the mole fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ v_\alpha \f$ is the velocity of phase \f$ \alpha \f$, - * * \f$ {\bf D_{\alpha, pm}^\kappa} \f$ is the diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$, + * * \f$ D_{\alpha, \text{pm}}^\kappa \f$ is the effective diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ M_\kappa \f$ is the molar mass of component \f$ \kappa \f$ * * \f$ q_\alpha^\kappa \f$ is a source or sink term. * diff --git a/dumux/porousmediumflow/mpnc/model.hh b/dumux/porousmediumflow/mpnc/model.hh index f3ea0e7504450c50134441a7a20471e8b8b5b5c0..8181f0af7fa925e15f42bf7a2afdc6c2b6c7d3f4 100644 --- a/dumux/porousmediumflow/mpnc/model.hh +++ b/dumux/porousmediumflow/mpnc/model.hh @@ -25,7 +25,7 @@ * each component \f$\kappa\f$, * \f[ \sum_{\kappa} \left( - \phi \frac{\partial \left(\varrho_\alpha x_\alpha^\kappa S_\alpha\right)}{\partial t} + \frac{\partial \left(\phi \varrho_\alpha x_\alpha^\kappa S_\alpha\right)}{\partial t} + \mathrm{div}\; \left\{ diff --git a/dumux/porousmediumflow/nonisothermal/model.hh b/dumux/porousmediumflow/nonisothermal/model.hh index 024e76c4d1539e21929fef22b43dae05962f1b8a..294b58497509d6769ddf12c8d955baf481b260c2 100644 --- a/dumux/porousmediumflow/nonisothermal/model.hh +++ b/dumux/porousmediumflow/nonisothermal/model.hh @@ -19,9 +19,9 @@ * results in one energy conservation equation for the porous solid * matrix and the fluids, \f{align*}{ - \phi \frac{\partial \sum_\alpha \varrho_\alpha u_\alpha S_\alpha}{\partial t} + \frac{\partial (\sum_\alpha \phi \varrho_\alpha u_\alpha S_\alpha )}{\partial t} & + - \left( 1 - \phi \right) \frac{\partial (\varrho_s c_s T)}{\partial t} + \frac{\partial \left((\left( 1 - \phi \right) \varrho_s c_s T\right)}{\partial t} - \sum_\alpha \nabla \cdot \left\{ diff --git a/dumux/porousmediumflow/richards/model.hh b/dumux/porousmediumflow/richards/model.hh index 01efffdcb72d37514b94b3fde447aea7d208ff4b..00bdb7d97a456a4733540228fbf7e92a56e00e20 100644 --- a/dumux/porousmediumflow/richards/model.hh +++ b/dumux/porousmediumflow/richards/model.hh @@ -11,8 +11,10 @@ * equation for quasi-twophase flow. * * In the unsaturated zone, Richards' equation + * is frequently used to approximate the water distribution + * above the groundwater level (in the unsaturated zone): \f[ - \frac{\partial\;\phi S_w \varrho_w}{\partial t} + \frac{\partial (\phi S_w \varrho_w)}{\partial t} - \nabla \cdot \left\lbrace \varrho_w \frac{k_{rw}}{\mu_w} \; \mathbf{K} \; @@ -24,43 +26,27 @@ q_w, \f] * - * is frequently used to - * approximate the water distribution above the groundwater level. - * - * It can be derived from the two-phase equations, i.e. - \f[ - \phi\frac{\partial S_\alpha \varrho_\alpha}{\partial t} - - - \nabla \cdot \left\lbrace - \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\; \mathbf{K} \; - \left(\nabla - p_\alpha - \varrho_\alpha \textbf{g} - \right) - \right\rbrace - = - q_\alpha, - \f] - * * where: * * \f$ \phi \f$ is the porosity of the porous medium, - * * \f$ S_\alpha \f$ represents the saturation of phase \f$ \alpha \f$, - * * \f$ \varrho_\alpha \f$ is the mass density of phase \f$ \alpha \f$, - * * \f$ k_{r\alpha} \f$ is the relative permeability of phase \f$ \alpha \f$, - * * \f$ \mu_\alpha \f$ is the dynamic viscosity of phase \f$ \alpha \f$, + * * \f$ S_w \f$ represents the water saturation, + * * \f$ \varrho_w \f$ is the water density, + * * \f$ k_{rw} \f$ is the relative permeability of the water phase, + * * \f$ \mu_w \f$ is the dynamic viscosity of the water phase, * * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor, - * * \f$ p_\alpha \f$ is the pressure of phase \f$ \alpha \f$, + * * \f$ p_w \f$ is the liquid water pressure, * * \f$ \mathbf{g} \f$ is the gravitational acceleration vector, - * * \f$ q_\alpha \f$ is a source or sink term. + * * \f$ q_w \f$ is a source or sink term. * + * It can be derived from the two-phase flow equations. * In contrast to the full two-phase model, the Richards model assumes * gas as the nonwetting fluid and that it exhibits a much lower * viscosity than the (liquid) wetting phase. (For example at * atmospheric pressure and at room temperature, the viscosity of air * is only about \f$1\%\f$ of the viscosity of liquid water.) As a - * consequence, the \f$\frac{k_{r\alpha}}{\mu_\alpha}\f$ term - * typically is much larger for the gas phase than for the wetting + * consequence, the mobility (\f$\frac{k_{r}}{\mu}\f$) is + * typically much larger for the gas phase than for the wetting * phase. For this reason, the Richards model assumes that - * \f$\frac{k_{rn}}{\mu_n}\f$ is infinitely large. This implies that + * gas phase mobility is infinitely large. This implies that * the pressure of the gas phase is equivalent to the static pressure * distribution and that therefore, mass conservation only needs to be * considered for the wetting phase. @@ -70,9 +56,9 @@ * saturation is calculated using the inverse of the capillary * pressure, i.e. \f[ - S_w = p_c^{-1}(p_n - p_w) + S_w = p_c^{-1}(p_g - p_w) \f] - * holds, where \f$p_n\f$ is a given reference pressure. Nota bene, + * holds, where \f$p_g\f$ is a given reference gas pressure. Nota bene, * that the last step is assumes that the capillary * pressure-saturation curve can be uniquely inverted, so it is not * possible to set the capillary pressure to zero when using the diff --git a/dumux/porousmediumflow/richardsextended/model.hh b/dumux/porousmediumflow/richardsextended/model.hh index f3e0749cf64507dd7c3ad02169ac8c34094dca99..49922b3f1a6c4df0ec12feeb97c96f3f01019929 100644 --- a/dumux/porousmediumflow/richardsextended/model.hh +++ b/dumux/porousmediumflow/richardsextended/model.hh @@ -10,11 +10,11 @@ * \brief This model implements a variant of the extended Richards' * equation for quasi-twophase flow (see e.g. Vanderborght et al. 2017). * - * In the unsaturated zone, Richards' equation + * The extended Richards' equation \f[ - \frac{\partial\;\phi S_w \varrho_w}{\partial t} + \frac{\partial (\phi S_w \varrho_w) }{\partial t} + - \frac{\partial\;\phi (1-S_w)\varrho_n X_n^w}{\partial t} + \frac{\partial (\phi (1-S_w)\varrho_n X_n^w ) }{\partial t} - \nabla \cdot \left\lbrace \varrho_w \frac{k_{rw}}{\mu_w} \; \mathbf{K} \; @@ -37,63 +37,14 @@ * * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor, * * \f$ p_w \f$ is the pressure of the wetting phase, * * \f$ \mathbf{g} \f$ is the gravitational acceleration vector, - * * \f$ \bf D_{n,pm}^{w} \f$ is the diffusivity of water in the non-wetting phase, + * * \f$ \bf D_{n,pm}^{w} \f$ is the effective diffusivity of water in the non-wetting phase, * * \f$ X_n^w \f$ is the mass fraction of water in the non-wetting phase, * * \f$ q_w \f$ is a source or sink term in the wetting phase, * - * is frequently used to - * approximate the water distribution above the groundwater level. - * - * It can be derived from the two-phase equations, i.e. - \f[ - \phi\frac{\partial S_\alpha \varrho_\alpha}{\partial t} - - - \nabla \cdot \left\lbrace - \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha}\; \mathbf{K} \; - \left( \text{\nabla} - p_\alpha - \varrho_\alpha \textbf{g} - \right) - \right\rbrace - = - q_\alpha, - \f] - * - * where: - * * \f$ \phi \f$ is the porosity of the porous medium, - * * \f$ S_\alpha \f$ represents the saturation of phase \f$ \alpha \f$, - * * \f$ \varrho_\alpha \f$ is the mass density of phase \f$ \alpha \f$, - * * \f$ k_{r\alpha} \f$ is the relative permeability of phase \f$ \alpha \f$, - * * \f$ \mu_\alpha \f$ is the dynamic viscosity of phase \f$ \alpha \f$, - * * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor, - * * \f$ p_\alpha \f$ is the pressure of phase \f$ \alpha \f$, - * * \f$ \mathbf{g} \f$ is the gravitational acceleration vector, - * * \f$ q_\alpha \f$ is a source or sink term. - * - * In contrast to the full two-phase model, the Richards model assumes - * gas as the nonwetting fluid and that it exhibits a much lower - * viscosity than the (liquid) wetting phase. (For example at - * atmospheric pressure and at room temperature, the viscosity of air - * is only about \f$1\%\f$ of the viscosity of liquid water.) As a - * consequence, the \f$\frac{k_{r\alpha}}{\mu_\alpha}\f$ term - * typically is much larger for the gas phase than for the wetting - * phase. For this reason, the Richards model assumes that - * \f$\frac{k_{rn}}{\mu_n}\f$ is infinitely large. This implies that - * the pressure of the gas phase is equivalent to the static pressure - * distribution and that therefore, mass conservation only needs to be - * considered for the wetting phase. - * - * The model thus chooses the absolute pressure of the wetting phase - * \f$p_w\f$ as its only primary variable. The wetting phase - * saturation is calculated using the inverse of the capillary - * pressure, i.e. - \f[ - S_w = p_c^{-1}(p_n - p_w) - \f] - * holds, where \f$p_n\f$ is a given reference pressure. Nota bene, - * that the last step is assumes that the capillary - * pressure-saturation curve can be uniquely inverted, so it is not - * possible to set the capillary pressure to zero when using the - * Richards model! + * additionally models water vapor diffusion in the gas phase. + * The model is derived based on the two-phase flow equations + * based on the assumption that the gas phase does not move but + * and remains at constant pressure. */ #ifndef DUMUX_RICHARDSEXTENDED_MODEL_HH diff --git a/dumux/porousmediumflow/richardsnc/model.hh b/dumux/porousmediumflow/richardsnc/model.hh index 737f318cd671b74bdb660bf744cc032769334485..813666b637968139d80e210a8b5ee39f2dd35810 100644 --- a/dumux/porousmediumflow/richardsnc/model.hh +++ b/dumux/porousmediumflow/richardsnc/model.hh @@ -10,7 +10,8 @@ * \brief Base class for all models which use the Richards, * n-component fully implicit model. * - * In the unsaturated zone, Richards' equation + * This extension of Richards' equation, allows for + * the wetting phase to consist of multiple components: *\f{eqnarray*} && \frac{\partial (\sum_w \varrho_w X_w^\kappa \phi S_w )} {\partial t} @@ -31,38 +32,9 @@ * * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor, * * \f$ p_w \f$ is the pressure of the wetting phase, * * \f$ \mathbf{g} \f$ is the gravitational acceleration vector, - * * \f$ \bf D_{w,pm}^{k} \f$ is the diffusivity of component \f$ \kappa \f$ in the wetting phase, + * * \f$ \bf D_{w,pm}^{k} \f$ is the effective diffusivity of component \f$ \kappa \f$ in the wetting phase, * * \f$ X_w^k \f$ is the mass fraction of component \f$ \kappa \f$ in the wetting phase, - * * \f$ q_w \f$ is a source or sink term in the wetting phase, - * - * is frequently used to - * approximate the water distribution above the groundwater level. - * - * In contrast to the full two-phase model, the Richards model assumes - * gas as the nonwetting fluid and that it exhibits a much lower - * viscosity than the (liquid) wetting phase. (For example at - * atmospheric pressure and at room temperature, the viscosity of air - * is only about \f$1\%\f$ of the viscosity of liquid water.) As a - * consequence, the \f$\frac{k_{r\alpha}}{\mu_\alpha}\f$ term - * typically is much larger for the gas phase than for the wetting - * phase. For this reason, the Richards model assumes that - * \f$\frac{k_{rn}}{\mu_n}\f$ is infinitely large. This implies that - * the pressure of the gas phase is equivalent to the static pressure - * distribution and that therefore, mass conservation only needs to be - * considered for the wetting phase. - * - * The model thus chooses the absolute pressure of the wetting phase - * \f$p_w\f$ as its only primary variable. The wetting phase - * saturation is calculated using the inverse of the capillary - * pressure, i.e. - \f[ - S_w = p_c^{-1}(p_n - p_w) - \f] - * holds, where \f$p_n\f$ is a given reference pressure. Nota bene, - * that the last step is assumes that the capillary - * pressure-saturation curve can be uniquely inverted, so it is not - * possible to set the capillary pressure to zero when using the - * Richards model! + * * \f$ q_w \f$ is a source or sink term in the wetting phase. */ #ifndef DUMUX_RICHARDSNC_MODEL_HH diff --git a/dumux/porousmediumflow/solidenergy/model.hh b/dumux/porousmediumflow/solidenergy/model.hh index cffb23ec70cd371ffce623934f5a5c0f7003cb88..877618f032901416795d2153895ccdd556405a76 100644 --- a/dumux/porousmediumflow/solidenergy/model.hh +++ b/dumux/porousmediumflow/solidenergy/model.hh @@ -12,7 +12,7 @@ * * The energy balance is described by the following equation: \f[ - \frac{ \partial n c_p \varrho T}{\partial t} + \frac{ \partial (n c_p \varrho T)}{\partial t} - \nabla \cdot \left\lbrace \lambda_\text{pm} \nabla T \right\rbrace = q, \f] * where: diff --git a/dumux/porousmediumflow/tracer/model.hh b/dumux/porousmediumflow/tracer/model.hh index 4c4efa24f10cbfd073900cb243ac1c66a49f0dc8..98a6c14ed863e2e8061b90a45fb7b449cfb9327c 100644 --- a/dumux/porousmediumflow/tracer/model.hh +++ b/dumux/porousmediumflow/tracer/model.hh @@ -19,7 +19,7 @@ * * The transport of the components \f$\kappa \in \{ a, b, c, ... \}\f$ is described by the following equation: \f[ - \phi \frac{ \partial \varrho X^\kappa}{\partial t} + \frac{ \partial (\phi \varrho X^\kappa)}{\partial t} - \nabla \cdot \left\lbrace \varrho X^\kappa {\textbf v_f} + \varrho D^\kappa_\text{pm} \nabla X^\kappa \right\rbrace = q, \f]