Commit f5387518 by Timo Koch

 ... ... @@ -157,9 +157,7 @@ public: * \brief Specific internal energy of steam \f$\mathrm{[J/kg]}\f$. * * Definition of enthalpy: \f$h= u + pv = u + p / \rho\f$. * * Rearranging for internal energy yields: \f$u = h - pv\f$. * * Exploiting the Ideal Gas assumption (\f$pv = R_{\textnormal{specific}} T\f$)gives: \f$u = h - R / M T \f$. * * The universal gas constant can only be used in the case of molar formulations. ... ... @@ -169,10 +167,10 @@ public: static const Scalar gasInternalEnergy(Scalar temperature, Scalar pressure) { return gasEnthalpy(temperature, pressure) - 1/molarMass()* // conversion from [J/(mol K)] to [J/(kg K)] IdealGas::R*temperature; // = pressure *spec. volume for an ideal gas // 1/molarMass: conversion from [J/(mol K)] to [J/(kg K)] // R*T/molarMass: pressure *spec. volume for an ideal gas return gasEnthalpy(temperature, pressure) - 1/molarMass()*IdealGas::R*temperature; } /*! ... ... @@ -183,9 +181,10 @@ public: */ static const Scalar liquidInternalEnergy(Scalar temperature, Scalar pressure) { return liquidEnthalpy(temperature, pressure) - pressure/liquidDensity(temperature, pressure); } { return liquidEnthalpy(temperature, pressure) - pressure/liquidDensity(temperature, pressure); } /*! * \brief Returns true if the gas phase is assumed to be compressible ... ...