Commit fda22cfd authored by Alexander Kissinger's avatar Alexander Kissinger
Browse files

Commit concerns FS#249.

The material folder is now complete: 
-All units have been "TeXed"  and added where missing
-All relevant function arguments are described in doxygen
-All doxygen warnings but one have been removed, also from the recently added fluidsystems

Work done by Simon, reviewed by Alex


git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@15453 2fb0f335-1f38-0410-981e-8018bf24f1b0
parent 0bb6ce89
......@@ -46,11 +46,11 @@ class Brine_Air {
public:
/*!
* \brief Binary diffusion coefficent [m^2/s] of water in the Air phase.
* \brief Binary diffusion coefficent \f$\mathrm{[m^2/s]}\f$ of water in the Air phase.
*
* According to "Diffusion of Water in Liquid and Supercritical Carbon Dioxide: An NMR Study",Bin Xu et al., 2002
* \param temperature the temperature [K]
* \param pressure the phase pressure [Pa]
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure) {
//Diffusion coefficient of water in the Air phase
......@@ -74,6 +74,8 @@ public:
* linear dependency on temperature. We thus simply scale the
* experimentally obtained diffusion coefficient of Ferrell and
* Himmelblau by the temperature.
* \param temperature The temperature \f$\mathrm{[K]}\f$
* \param pressure The pressure \f$\mathrm{[Pa]}\f$
*
* See:
*
......@@ -101,12 +103,13 @@ public:
* applying the activity coefficient expression of "Duan and Sun 2003"
* and the correlations for pure water given in "Spycher, Pruess and Ennis-King 2003"
*
* \param temperature the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param XlNaCl the XlNaCl [kg NaCl / kg solution]
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param XlNaCl the XlNaCl \f$\mathrm{[kg NaCl / kg solution]}\f$
* \param knownPhaseIdx indicates which phases are present
* \param xlAir mole fraction of Air in brine [mol/mol]
* \param ygH2O mole fraction of water in the gas phase [mol/mol]
* \param xlAir mole fraction of Air in brine \f$\mathrm{[mol/mol]}\f$
* \param ygH2O mole fraction of water in the gas phase \f$\mathrm{[mol/mol]}\f$
* \param xlNaCl the xlNaCl
*/
static void calculateMoleFractions(const Scalar temperature,
const Scalar pg,
......@@ -152,11 +155,11 @@ public:
}
/*!
* \brief Returns the fugacity coefficient of the Air component in a water-Air mixture
* \brief Returns the fugacity coefficient \f$\mathrm{[-]}\f$ of the Air component in a water-Air mixture
* (given in Spycher, Pruess and Ennis-King (2003))
*
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar fugacityCoefficientAir(Scalar T, Scalar pg) {
......@@ -178,11 +181,11 @@ public:
}
/*!
* \brief Returns the fugacity coefficient of the H2O component in a water-Air mixture
* \brief Returns the fugacity coefficient \f$\mathrm{[-]}\f$ of the H2O component in a water-Air mixture
* (given in Spycher, Pruess and Ennis-King (2003))
*
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar fugacityCoefficientH2O(Scalar T, Scalar pg) {
......@@ -204,9 +207,9 @@ public:
}
/*!
* \brief Returns the molality of NaCl (mol NaCl / kg water) for a given mole fraction (mol NaCl / mol solution)
* \brief Returns the molality of NaCl \f$\mathrm{(mol NaCl / kg water)}\f$ for a given mole fraction \f$\mathrm{(mol NaCl / mol solution)}\f$
*
* \param xlNaCl mole fraction of NaCL in brine [mol/mol]
* \param XlNaCl mole fraction of NaCL in brine \f$\mathrm{[mol/mol]}\f$
*/
static Scalar molalityNaCl(Scalar XlNaCl) {
......@@ -218,9 +221,9 @@ public:
private:
/*!
* \brief Returns the molality of NaCl (mol NaCl / kg water) for a given mole fraction
* \brief Returns the molality of NaCl \f$\mathrm{(mol NaCl / kg water)}\f$ for a given mole fraction
*
* \param XlNaCl the XlNaCl [kg NaCl / kg solution]
* \param XlNaCl the XlNaCl \f$\mathrm{[kg NaCl / kg solution]}\f$
*/
static Scalar massTomoleFrac_(Scalar XlNaCl) {
......@@ -236,11 +239,11 @@ private:
}
/*!
* \brief Returns the equilibrium molality of Air (mol Air / kg water) for a
* \brief Returns the equilibrium molality of Air \f$\mathrm{(mol Air / kg water)}\f$ for a
* Air-water mixture at a given pressure and temperature
*
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar molalityAirinPureWater_(Scalar temperature, Scalar pg) {
Scalar A = computeA_(temperature, pg); // according to Spycher, Pruess and Ennis-King (2003)
......@@ -256,9 +259,9 @@ private:
* molal description. According to "Duan and Sun 2003"
* given in "Spycher and Pruess 2005"
*
* \param temperature the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param molalityNaCl molality of NaCl (mol NaCl / kg water)
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param molalityNaCl molality of NaCl \f$\mathrm{(mol NaCl / kg water)}\f$
*/
static Scalar activityCoefficient_(Scalar temperature, Scalar pg,
Scalar molalityNaCl) {
......@@ -275,8 +278,8 @@ private:
* them mutual solubility in the water-Air system.
* Given in Spycher, Pruess and Ennis-King (2003)
*
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeA_(Scalar T, Scalar pg) {
Scalar deltaP = pg / 1e5 - 1; // pressure range [bar] from p0 = 1bar to pg[bar]
......@@ -295,8 +298,8 @@ private:
* the mutual solubility in the water-Air system.
* Given in Spycher, Pruess and Ennis-King (2003)
*
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeB_(Scalar T, Scalar pg) {
Scalar deltaP = pg / 1e5 - 1; // pressure range [bar] from p0 = 1bar to pg[bar]
......@@ -314,8 +317,8 @@ private:
* \brief Returns the parameter lambda, which is needed for the
* calculation of the Air activity coefficient in the brine-Air system.
* Given in Spycher and Pruess (2005)
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeLambda_(Scalar T, Scalar pg) {
Scalar lambda;
......@@ -333,8 +336,8 @@ private:
* \brief Returns the parameter xi, which is needed for the
* calculation of the Air activity coefficient in the brine-Air system.
* Given in Spycher and Pruess (2005)
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param T the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
*/
static Scalar computeXi_(Scalar T, Scalar pg) {
Scalar xi;
......@@ -351,7 +354,7 @@ private:
* \brief Returns the equilibrium constant for Air, which is needed for the
* calculation of the mutual solubility in the water-Air system
* Given in Spycher, Pruess and Ennis-King (2003)
* \param T the temperature [K]
* \param T the temperature \f$\mathrm{[K]}\f$
*/
static Scalar equilibriumConstantAir_(Scalar T) {
Scalar TinC = T - 273.15; //temperature in °C
......@@ -365,7 +368,7 @@ private:
* \brief Returns the equilibrium constant for H2O, which is needed for the
* calculation of the mutual solubility in the water-Air system
* Given in Spycher, Pruess and Ennis-King (2003)
* \param T the temperature [K]
* \param T the temperature \f$\mathrm{[K]}\f$
*/
static Scalar equilibriumConstantH2O_(Scalar T) {
Scalar TinC = T - 273.15; //temperature in °C
......@@ -397,8 +400,8 @@ public:
* \brief Returns the _mole_ (!) fraction of Air in the liquid
* phase at a given temperature, pressure and density of
* Air.
* \param T the temperature [K]
* \param pg the gas phase pressure [Pa]
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pg the gas phase pressure \f$\mathrm{[Pa]}\f$
* \param rhoAir density of Air
*/
static Scalar moleFracAirInBrine(Scalar temperature, Scalar pg, Scalar rhoAir)
......
......@@ -38,7 +38,7 @@ class H2O_Air
{
public:
/*!
* \brief Henry coefficient \f$\mathrm{[N/m^2]}\f$ for air in liquid water.
* \brief Henry coefficient \f$\mathrm{[Pa]}\f$ for air in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*
* Henry coefficient See:
......
......@@ -39,7 +39,7 @@ class H2O_Mesitylene
{
public:
/*!
* \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for mesitylene in liquid water.
* \brief Henry coefficent \f$\mathrm{[Pa]}\f$ for mesitylene in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
* See:
*
......
......@@ -43,7 +43,7 @@ class H2O_N2
{
public:
/*!
* \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for molecular nitrogen in liquid water.
* \brief Henry coefficent \f$\mathrm{[Pa]}\f$ for molecular nitrogen in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
......
......@@ -43,7 +43,7 @@ class H2O_O2
{
public:
/*!
* \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for molecular oxygen in liquid water.
* \brief Henry coefficent \f$\mathrm{[Pa]}\f$ for molecular oxygen in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
......
......@@ -39,7 +39,7 @@ class H2O_Xylene
{
public:
/*!
* \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for xylene in liquid water.
* \brief Henry coefficent \f$\mathrm{[Pa]}\f$ for xylene in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*
* See:
......
......@@ -43,7 +43,7 @@ class N2_O2
{
public:
/*!
* \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for molecular oxygen in liquid nitrogen.
* \brief Henry coefficent \f$\mathrm{[Pa]}\f$ for molecular oxygen in liquid nitrogen.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*/
template <class Scalar>
......
......@@ -61,7 +61,7 @@ public:
/*!
* \brief The molar mass in \f$\mathrm{[kg/mol]}\f$ of brine.
*
*\param salinity The mass fraction of salt in brine
* This assumes that the salt is pure NaCl.
*/
static Scalar molarMass(Scalar salinity)
......@@ -120,6 +120,7 @@ public:
*
* \param T temperature of component in \f$\mathrm{[K]}\f$
* \param p pressure of component in \f$\mathrm{[Pa]}\f$
* \param salinity The mass fraction of salt
*
* Equations given in: - Palliser & McKibbin 1997
* - Michaelides 1981
......@@ -202,6 +203,7 @@ public:
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param salinity The mass fraction of salt
*/
static const Scalar liquidInternalEnergy(Scalar temperature,
Scalar pressure, Scalar salinity)
......@@ -225,6 +227,7 @@ public:
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param salinity The mass fraction of salt
*
* Equations given in: - Batzle & Wang (1992)
* - cited by: Adams & Bachu in Geofluids (2002) 2, 257-271
......@@ -269,6 +272,7 @@ public:
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param density density of component in \f$\mathrm{[kg/m^3]}\f$
* \param salinity The mass fraction of salt
*/
static Scalar liquidPressure(Scalar temperature, Scalar density, Scalar salinity)
{
......@@ -309,6 +313,7 @@ public:
*
* \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
* \param salinity The mass fraction of salt
*
* Equation given in: - Batzle & Wang (1992)
* - cited by: Bachu & Adams (2002)
......
......@@ -71,8 +71,8 @@ public:
/*!
* \brief Sets the liquid dynamic viscosity in \f$\mathrm{[Pa*s]}\f$.
*
* Although the dynamic viscosity \f$\mathrm{[Pa*s]} is returned,
* the kinematic viscosity \f$\mathrm{[m^2/s]} is requested from run time input.
* Although the dynamic viscosity \f$\mathrm{[Pa*s]}\f$ is returned,
* the kinematic viscosity \f$\mathrm{[m^2/s]}\f$ is requested from run time input.
*
* \param temperature phase temperature in \f$\mathrm{[K]}\f$
* \param pressure phase pressure in \f$\mathrm{[Pa]}\f$
......@@ -107,8 +107,8 @@ public:
/*!
* \brief Sets the gas dynamic viscosity in \f$\mathrm{[Pa*s]}\f$.
*
* Although the dynamic viscosity \f$\mathrm{[Pa*s]} is returned,
* the kinematic viscosity \f$\mathrm{[m^2/s]} is requested from run time input.
* Although the dynamic viscosity \f$\mathrm{[Pa*s]}\f$ is returned,
* the kinematic viscosity \f$\mathrm{[m^2/s]}\f$ is requested from run time input.
*
* \param temperature phase temperature in \f$\mathrm{[K]}\f$
* \param pressure phase pressure in \f$\mathrm{[Pa]}\f$
......
......@@ -38,44 +38,44 @@ template<class Scalar>
class Constants
{ public:
/*!
* \brief The ideal gas constant [J/(mol K)]
* \brief The ideal gas constant \f$\mathrm{[J/(mol K)]}\f$
*/
static const Scalar R;
/*!
* \brief The Avogadro constant [1/mol]
* \brief The Avogadro constant \f$\mathrm{[1/mol]}\f$
*/
static const Scalar Na;
/*!
* \brief The Boltzmann constant [J/K]
* \brief The Boltzmann constant \f$\mathrm{[J/K]}\f$
*/
static const Scalar kb;
/*!
* \brief Speed of light in vacuum [m/s]
* \brief Speed of light in vacuum \f$\mathrm{[m/s]}\f$
*/
static const Scalar c;
/*!
* \brief Faraday constant [C/mol]
* \brief Faraday constant \f$\mathrm{[C/mol]}\f$
*
* Source: CODATA 2010
*/
static const Scalar F;
/*!
* \brief Newtonian constant of gravitation [m^3/(kg s^2)]
* \brief Newtonian constant of gravitation \f$\mathrm{[m^3/(kg s^2)]}\f$
*/
static const Scalar G;
/*!
* \brief Planck constant [J s]
* \brief Planck constant \f$\mathrm{[J s]}\f$
*/
static const Scalar h;
/*!
* \brief Reduced Planck constant [J s]
* \brief Reduced Planck constant \f$\mathrm{[J s]}\f$
*/
static const Scalar hRed;
};
......
......@@ -87,6 +87,7 @@ public:
* \param paramCache Container for cache parameters
* \param phaseIdx The phase index
* \param targetFug target fugacity
* \param phasePresence Presence of the phase
*
* The phase's fugacities must already be set.
*/
......
......@@ -39,7 +39,7 @@ class ThermalConductivityAverage
{
public:
/*!
* \brief simple effective thermal conductivity \f$[W/(m K)]\f$
* \brief simple effective thermal conductivity \f$\mathrm{[W/(m K)]}\f$
*
* \param volVars volume variables
* \param spatialParams spatial parameters
......@@ -47,7 +47,7 @@ public:
* \param fvGeometry fvGeometry (to be passed to spatialParams)
* \param scvIdx scvIdx (to be passed to spatialParams)
*
* \return effective thermal conductivity \f$[W/(m K)]\f$
* \return effective thermal conductivity \f$\mathrm{[W/(m K)]}\f$
*/
template<class VolumeVariables, class SpatialParams, class Element, class FVGeometry>
static Scalar effectiveThermalConductivity(const VolumeVariables& volVars,
......
......@@ -57,11 +57,11 @@ public:
* The Brooks-Corey empirical capillary pressure <-> saturation
* function is given by
*
* \f[
* \f$\mathrm{
p_C = p_e\overline{S}_w^{-1/\lambda}
* \f]
* }\f$
*
* \param swe Effective saturation of the wetting phase \f$\overline{S}_w\f$
* \param swe Effective saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
and then the params container is constructed accordingly. Afterwards the values are set there, too.
......@@ -78,11 +78,10 @@ public:
* \brief The saturation-capillary pressure curve according to Brooks & Corey.
*
* This is the inverse of the capillary pressure-saturation curve:
* \f[
\overline{S}_w = (\frac{p_C}{p_e})^{-\lambda}
\f]
* \f$\mathrm{
\overline{S}_w = (\frac{p_C}{p_e})^{-\lambda}}\f$
*
* \param pc Capillary pressure \f$p_C\f$
* \param pc Capillary pressure \f$\mathrm{[p_C]}\f$ in \f$\mathrm{[Pa]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
......@@ -101,16 +100,16 @@ public:
* pressure w.r.t. the effective saturation according to Brooks & Corey.
*
* This is equivalent to
* \f[
* \f$\mathrm{
\frac{\partial p_C}{\partial \overline{S}_w} =
-\frac{p_e}{\lambda} \overline{S}_w^{-1/\lambda - 1}
\f]
}\f$
*
* \param swe Effective saturation of the wetting phase \f$\overline{S}_w\f$
* \param swe Effective saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of \f$p_c\f$ w.r.t. effective saturation according to Brooks & Corey.
* \return Partial derivative of \f$\mathrm{[p_c]}\f$ w.r.t. effective saturation according to Brooks & Corey.
*/
static Scalar dpc_dsw(const Params &params, Scalar swe)
{
......@@ -123,11 +122,11 @@ public:
* \brief The partial derivative of the effective
* saturation w.r.t. the capillary pressure according to Brooks & Corey.
*
* \param pc Capillary pressure \f$p_C\f$
* \param pc Capillary pressure \f$\mathrm{[p_c]}\f$ in \f$\mathrm{[Pa]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen, and then the params container
* is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of effective saturation w.r.t. \f$p_c\f$ according to Brooks & Corey.
* \return Partial derivative of effective saturation w.r.t. \f$\mathrm{[p_c]}\f$ according to Brooks & Corey.
*/
static Scalar dsw_dpc(const Params &params, Scalar pc)
{
......
......@@ -56,26 +56,26 @@ public:
}
/*!
* \brief Returns the entry pressure [Pa]
* \brief Returns the entry pressure in \f$\mathrm{[Pa]}\f$
*/
Scalar pe() const
{ return pe_; }
/*!
* \brief Set the entry pressure [Pa]
* \brief Set the entry pressure in \f$\mathrm{[Pa]}\f$]
*/
void setPe(Scalar v)
{ pe_ = v; }
/*!
* \brief Returns the lambda shape parameter
* \brief Returns the lambda shape parameter \f$\mathrm{[-]}\f$
*/
Scalar lambda() const
{ return lambda_; }
/*!
* \brief Set the lambda shape parameter
* \brief Set the lambda shape parameter \f$\mathrm{[-]}\f$
*/
void setLambda(Scalar v)
{ lambda_ = v; }
......
......@@ -70,7 +70,7 @@ public:
* \brief The capillary pressure-saturation curve.
*
*
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$. It is converted to effective saturation
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$. It is converted to effective saturation
* and then handed over to the material law actually used for calculation.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
......@@ -87,14 +87,14 @@ public:
/*!
* \brief The saturation-capillary pressure curve.
*
* \param pc Capillary pressure \f$p_C\f$:
* \param pc Capillary pressure \f$\mathrm{[p_c]}\f$ in \f$\mathrm{[Pa]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
* and then the params container is constructed accordingly. Afterwards the values are set there, too.
*\return Absolute wetting phase saturation calculated as inverse of
* (EffLaw e.g. Brooks & Corey, van Genuchten, linear...) constitutive relation.
*
* \return The absolute saturation of the wetting phase \f$S_w\f$
* \return The absolute saturation of the wetting phase \f$\mathrm{[S_w]}\f$
*/
static Scalar sw(const Params &params, Scalar pc)
{
......@@ -106,15 +106,15 @@ public:
* pressure w.r.t the absolute saturation.
*
* In this case the chain rule needs to be applied:
\f[
p_c = p_c( \overline S_w (S_w))
\rightarrow p_c ^\prime = \frac{\partial p_c}{\partial \overline S_w} \frac{\partial \overline S_w}{\partial S_w}
\f]
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$.
\f$\mathrm{
p_c = p_c( \overline{S}_w (S_w))
\rightarrow p_c ^\prime = \frac{\partial p_c}{\partial \overline S_w} \frac{\partial \overline{S}_w}{\partial S_w}
}\f$
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
and then the params container is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of \f$p_c\f$ w.r.t. effective saturation according to
* \return Partial derivative of \f$\mathrm{[p_c]}\f$ w.r.t. effective saturation according to
EffLaw e.g. Brooks & Corey, van Genuchten, linear... .
*/
static Scalar dpc_dsw(const Params &params, Scalar sw)
......@@ -127,17 +127,17 @@ public:
* saturation w.r.t. the capillary pressure.
*
* In this case the chain rule needs to be applied:
\f[
\f$\mathrm{
S_w = S_w(\overline{S}_w (p_c) )
\rightarrow S_w^\prime = \frac{\partial S_w}{\partial \overline S_w} \frac{\partial \overline S_w}{\partial p_c}
\f]
\rightarrow S_w^\prime = \frac{\partial S_w}{\partial \overline{S}_w} \frac{\partial \overline{S}_w}{\partial p_c}
}\f$
*
*
* \param pc Capillary pressure \f$p_C\f$:
* \param pc Capillary pressure \f$\mathrm{[p_c]}\f$ in \f$\mathrm{[Pa]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
and then the params container is constructed accordingly. Afterwards the values are set there, too.
* \return Partial derivative of effective saturation w.r.t. \f$p_c\f$ according to
* \return Partial derivative of effective saturation w.r.t. \f$\mathrm{[p_c]}\f$ according to
EffLaw e.g. Brooks & Corey, van Genuchten, linear... .
*/
static Scalar dsw_dpc(const Params &params, Scalar pc)
......@@ -148,7 +148,7 @@ public:
/*!
* \brief The relative permeability for the wetting phase.
*
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$. It is converted to effective saturation
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$. It is converted to effective saturation
* and then handed over to the material law actually used for calculation.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
......@@ -166,7 +166,7 @@ public:
* \brief Returns the partial derivative of the relative permeability
* of the wetting phase with respect to the wetting saturation.
*
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$.
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$.
* \param params A container object that is populated with the appropriate coefficients
* for the respective law.
*/
......@@ -178,7 +178,7 @@ public:
/*!
* \brief The relative permeability for the non-wetting phase.
*
* \param sw Absolute saturation of the wetting phase \f${S}_w\f$. It is converted to effective saturation
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[{S}_w]}\f$. It is converted to effective saturation
* and then handed over to the material law actually used for calculation.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
......@@ -195,7 +195,7 @@ public:
* \brief Returns the partial derivative of the relative permeability
* of the non-wetting phase with respect to the wetting saturation.
*
* \param sw Absolute saturation of the wetting phase \f$\overline{S}_w\f$.
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[\overline{S}_w]}\f$.
* \param params A container object that is populated with the appropriate coefficients
* for the respective law.
*/
......@@ -207,7 +207,7 @@ public:
/*!
* \brief Convert an absolute wetting saturation to an effective one.
*
* \param sw Absolute saturation of the wetting phase \f${S}_w\f$.
* \param sw Absolute saturation of the wetting phase \f$\mathrm{[{S}_w]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,
* and then the params container is constructed accordingly. Afterwards the values are set there, too.
......@@ -221,7 +221,7 @@ public:
/*!
* \brief Convert an absolute non-wetting saturation to an effective one.
*
* \param sn Absolute saturation of the non-wetting phase \f${S}_n\f$.
* \param sn Absolute saturation of the non-wetting phase \f$\mathrm{[{S}_n]}\f$.
* \param params A container object that is populated with the appropriate coefficients for the respective law.
* Therefore, in the (problem specific) spatialParameters first, the material law is chosen,