From ff50a4c39ad901e37ed1cda2706a05fca1f72c67 Mon Sep 17 00:00:00 2001
From: Thomas Fetzer <thomas.fetzer@iws.uni-stuttgart.de>
Date: Fri, 31 Jul 2015 11:02:48 +0000
Subject: [PATCH] [doxygen,freeflow] - adaption to style of other models
 (replaced use of \nabla by use of div or grad) - replaced use of mass
 fraction with mole fraction in diffusion term and added   comment about use
 of binary diffusion - fixed typos

[doxygen,material]
- fixed typos and line break



git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@15207 2fb0f335-1f38-0410-981e-8018bf24f1b0
---
 dumux/freeflow/stokes/stokesmodel.hh         | 26 ++++-----
 dumux/freeflow/stokesnc/stokesncmodel.hh     | 48 ++++++++-------
 dumux/freeflow/stokesncni/stokesncnimodel.hh | 61 +++++++++++---------
 dumux/freeflow/zeroeq/zeroeqmodel.hh         | 10 ++--
 dumux/freeflow/zeroeqnc/zeroeqncmodel.hh     | 16 ++---
 dumux/freeflow/zeroeqncni/zeroeqncnimodel.hh | 22 +++----
 dumux/material/binarycoefficients/h2o_air.hh | 13 +++--
 7 files changed, 109 insertions(+), 87 deletions(-)

diff --git a/dumux/freeflow/stokes/stokesmodel.hh b/dumux/freeflow/stokes/stokesmodel.hh
index 8a234eec7e..d9f36bfcfe 100644
--- a/dumux/freeflow/stokes/stokesmodel.hh
+++ b/dumux/freeflow/stokes/stokesmodel.hh
@@ -38,29 +38,29 @@ namespace Dumux
 {
 /*!
  * \ingroup BoxStokesModel
- * \brief Adaption of the box scheme to the Stokes model.
+ * \brief Adaptation of the box scheme to the Stokes model.
  *
  * This model implements laminar Stokes flow of a single fluid, solving the momentum balance equation
  * \f[
-\frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
-+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}}
-- \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g
-+ \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right)
-- \varrho_g {\bf g} = 0,
+ *    \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
+ *    + \text{div} \left( p_g {\bf {I}}
+ *    - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g
+ *                   + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right)
+ *    - \varrho_g {\bf g} = 0
  * \f]
- *
- * and the mass balance equation
- * \f[
-\frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0.
- * \f]
- *
  * By setting the property <code>EnableNavierStokes</code> to <code>true</code> the Navier-Stokes
  * equation can be solved. In this case an additional term
  * \f[
- *    + \varrho_g \left(\boldsymbol{v}_g \boldsymbol{\cdot} \boldsymbol{\nabla} \right) \boldsymbol{v}_g
+ *    + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right)
  * \f]
  * is added to the momentum balance equation.
  *
+ * The mass balance equation:
+ * \f[
+ *    \frac{\partial \varrho_g}{\partial t}
+ *    + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
+ * \f]
+ *
  * This is discretized by a fully-coupled vertex-centered finite volume
  * (box) scheme in space and by the implicit Euler method in time.
  */
diff --git a/dumux/freeflow/stokesnc/stokesncmodel.hh b/dumux/freeflow/stokesnc/stokesncmodel.hh
index 9928e7c037..1791dd0a33 100644
--- a/dumux/freeflow/stokesnc/stokesncmodel.hh
+++ b/dumux/freeflow/stokesnc/stokesncmodel.hh
@@ -34,38 +34,46 @@
 namespace Dumux {
 /*!
  * \ingroup BoxStokesncModel
- * \brief Adaptation of the BOX scheme to the compositional Stokes model.
+ * \brief Adaptation of the box scheme to the compositional Stokes model.
  *
  * This model implements an isothermal n-component Stokes flow of a fluid
- * solving a momentum balance, a mass balance and a conservation equation for each
- * component. When using mole fractions naturally the densities represent molar
- * densites
+ * solving a momentum balance, a mass balance and conservation equations for \f$n-1\f$
+ * components. When using mole fractions naturally the densities represent molar
+ * densities
  *
- * Momentum Balance:
+ * The momentum balance:
  * \f[
-\frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
-+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}}
-- \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g
-+ \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right)
-- \varrho_g {\bf g} = 0,
+ *    \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
+ *    + \text{div} \left( p_g {\bf {I}}
+ *    - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g
+ *                   + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right)
+ *    - \varrho_g {\bf g} = 0
  * \f]
+ * By setting the property <code>EnableNavierStokes</code> to <code>true</code> the Navier-Stokes
+ * equation can be solved. In this case an additional term
+ * \f[
+ *    + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right)
+ * \f]
+ * is added to the momentum balance equation.
  *
- * Mass balance equation:
+ * The mass balance equation:
  * \f[
-\frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
+ *    \frac{\partial \varrho_g}{\partial t}
+ *    + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
  * \f]
  *
- * Component mass balance equations:
+ * The component mass balance equations:
  * \f[
- \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
- + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
- - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \boldsymbol{\nabla} X_g^\kappa \right)
- - q_g^\kappa = 0
+ *    \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
+ *    + \text{div} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
+ *    - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \textbf{grad}\, x_g^\kappa \right)
+ *    - q_g^\kappa = 0
  * \f]
+ * Please note that, even though it is n-component model, the diffusive
+ * fluxes are still calculated with binary diffusion.
  *
- * This is discretized using a fully-coupled vertex
- * centered finite volume (box) scheme as spatial and
- * the implicit Euler method in time.
+ * This is discretized by a fully-coupled vertex-centered finite volume
+ * (box) scheme in space and by the implicit Euler method in time.
  */
 template<class TypeTag>
 class StokesncModel : public StokesModel<TypeTag>
diff --git a/dumux/freeflow/stokesncni/stokesncnimodel.hh b/dumux/freeflow/stokesncni/stokesncnimodel.hh
index 323c9b1a00..b12f9d34a7 100644
--- a/dumux/freeflow/stokesncni/stokesncnimodel.hh
+++ b/dumux/freeflow/stokesncni/stokesncnimodel.hh
@@ -19,8 +19,8 @@
 /*!
  * \file
  *
- * \brief Adaption of the BOX scheme to the non-isothermal
- *        compositional stokes model (with n components).
+ * \brief Adaptation of the box scheme to the non-isothermal
+ *        n-component Stokes model.
  */
 #ifndef DUMUX_STOKESNCNI_MODEL_HH
 #define DUMUX_STOKESNCNI_MODEL_HH
@@ -35,46 +35,55 @@
 namespace Dumux {
 /*!
  * \ingroup BoxStokesncniModel
- * \brief Adaption of the BOX scheme to the non-isothermal compositional n-component Stokes model.
+ * \brief Adaptation of the box scheme to the non-isothermal
+ *        n-component Stokes model.
  *
  * This model implements a non-isothermal n-component Stokes flow of a fluid
- * solving a momentum balance, a mass balance, a conservation equation for one component,
+ * solving a momentum balance, a mass balance, conservation equations for \f$n-1\f$ components,
  * and one balance equation for the energy.
  *
- * Momentum Balance:
+ * The momentum balance:
  * \f[
-\frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
-+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}}
-- \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g
-+ \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right)
-- \varrho_g {\bf g} = 0,
+ *    \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
+ *    + \text{div} \left( p_g {\bf {I}}
+ *    - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g
+ *                   + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right)
+ *    - \varrho_g {\bf g} = 0
  * \f]
- *
- * Mass balance equation:
+ * By setting the property <code>EnableNavierStokes</code> to <code>true</code> the Navier-Stokes
+ * equation can be solved. In this case an additional term
  * \f[
-\frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
+ *    + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right)
  * \f]
+ * is added to the momentum balance equation.
  *
- * Component mass balance equation:
+ * The mass balance equation:
  * \f[
- \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
- + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
- - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \boldsymbol{\nabla} x_g^\kappa \right)
- - q_g^\kappa = 0
+ *    \frac{\partial \varrho_g}{\partial t}
+ *    + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
  * \f]
  *
- * Energy balance equation:
+ * The component mass balance equations:
  * \f[
-\frac{\partial (\varrho_g  u_g)}{\partial t}
-+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g h_g {\boldsymbol{v}}_g
-- \sum_\kappa \left[ h^\kappa_g D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \nabla x^\kappa_g \right]
-- \lambda_g \boldsymbol{\nabla} T \right) - q_T = 0
+ *    \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
+ *    + \text{div} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
+ *    - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \textbf{grad}\, x_g^\kappa \right)
+ *    - q_g^\kappa = 0
  * \f]
+ * Please note that, even though it is n-component model, the diffusive
+ * fluxes are still calculated with binary diffusion.
  *
- * This is discretized using a fully-coupled vertex
- * centered finite volume (box) scheme as spatial and
- * the implicit Euler method as temporal discretization.
+ * The energy balance equation:
+ * \f[
+ *    \frac{\partial (\varrho_g  u_g)}{\partial t}
+ *    + \text{div} \left( \varrho_g h_g {\boldsymbol{v}}_g
+ *    - \sum_\kappa \left[ h^\kappa_g D^\kappa_g \varrho_g \frac{M^\kappa}{M_g}
+ *                         \textbf{grad}\, x^\kappa_g \right]
+ *    - \lambda_g \textbf{grad}\, T \right) - q_T = 0
+ * \f]
  *
+ * This is discretized by a fully-coupled vertex-centered finite volume
+ * (box) scheme in space and by the implicit Euler method in time.
  */
 template<class TypeTag>
 class StokesncniModel : public StokesncModel<TypeTag>
diff --git a/dumux/freeflow/zeroeq/zeroeqmodel.hh b/dumux/freeflow/zeroeq/zeroeqmodel.hh
index dcccae5520..f65750fbc4 100644
--- a/dumux/freeflow/zeroeq/zeroeqmodel.hh
+++ b/dumux/freeflow/zeroeq/zeroeqmodel.hh
@@ -43,21 +43,21 @@ namespace Dumux
  * Mass balance:
  * \f[
  *  \frac{\partial \varrho_\textrm{g}}{\partial t}
- *  + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)
+ *  + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right)
  *  - q_\textrm{g} = 0
  * \f]
  *
  * Momentum Balance:
  * \f[
  *   \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t}
- *   + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(
+ *   + \text{div} \left(
  *     \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}}
  *     - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right]
- *       \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}
- *             + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right)
+ *       \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g}
+ *              + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right)
  *   \right)
  *   + \left(p_\textrm{g} {\bf {I}} \right)
- *   - \varrho_\textrm{g} {\bf g} = 0,
+ *   - \varrho_\textrm{g} {\bf g} = 0
  * \f]
  *
  * This is discretized by a fully-coupled vertex-centered finite volume
diff --git a/dumux/freeflow/zeroeqnc/zeroeqncmodel.hh b/dumux/freeflow/zeroeqnc/zeroeqncmodel.hh
index 199ca9f169..3c089ee481 100644
--- a/dumux/freeflow/zeroeqnc/zeroeqncmodel.hh
+++ b/dumux/freeflow/zeroeqnc/zeroeqncmodel.hh
@@ -42,31 +42,33 @@ namespace Dumux
  * Mass balance:
  * \f[
  *  \frac{\partial \varrho_\textrm{g}}{\partial t}
- *  + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)
+ *  + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right)
  *  - q_\textrm{g} = 0
  * \f]
  *
  * Momentum Balance:
  * \f[
  *   \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t}
- *   + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(
+ *   + \text{div} \left(
  *     \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}}
  *     - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right]
- *       \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}
- *             + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right)
+ *       \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g}
+ *              + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right)
  *   \right)
  *   + \left(p_\textrm{g} {\bf {I}} \right)
- *   - \varrho_\textrm{g} {\bf g} = 0,
+ *   - \varrho_\textrm{g} {\bf g} = 0
  * \f]
  *
  * Component mass balance equations:
  * \f[
  *  \frac{\partial \left(\varrho_\textrm{g} X_\textrm{g}^\kappa\right)}{\partial t}
- *  + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
+ *  + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
  *  - \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right]
- *    \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \boldsymbol{\nabla} x_\textrm{g}^\kappa \right)
+ *    \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x_\textrm{g}^\kappa \right)
  *  - q_\textrm{g}^\kappa = 0
  * \f]
+ * Please note that, even though it is n-component model, the diffusive
+ * fluxes are still calculated with binary diffusion.
  *
  * This is discretized by a fully-coupled vertex-centered finite volume
  * (box) scheme in space and by the implicit Euler method in time.
diff --git a/dumux/freeflow/zeroeqncni/zeroeqncnimodel.hh b/dumux/freeflow/zeroeqncni/zeroeqncnimodel.hh
index 5ae50be080..b5a53fba61 100644
--- a/dumux/freeflow/zeroeqncni/zeroeqncnimodel.hh
+++ b/dumux/freeflow/zeroeqncni/zeroeqncnimodel.hh
@@ -43,41 +43,43 @@ namespace Dumux
  * Mass balance:
  * \f[
  *  \frac{\partial \varrho_\textrm{g}}{\partial t}
- *  + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)
+ *  + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right)
  *  - q_\textrm{g} = 0
  * \f]
  *
  * Momentum Balance:
  * \f[
  *   \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t}
- *   + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(
+ *   + \text{div} \left(
  *     \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}}
  *     - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right]
- *       \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}
- *             + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right)
+ *       \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g}
+ *              + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right)
  *   \right)
  *   + \left(p_\textrm{g} {\bf {I}} \right)
- *   - \varrho_\textrm{g} {\bf g} = 0,
+ *   - \varrho_\textrm{g} {\bf g} = 0
  * \f]
  *
  * Component mass balance equations:
  * \f[
  *  \frac{\partial \left(\varrho_\textrm{g} X_\textrm{g}^\kappa\right)}{\partial t}
- *  + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
+ *  + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
  *  - \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right]
- *    \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \boldsymbol{\nabla} x_\textrm{g}^\kappa \right)
+ *    \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x_\textrm{g}^\kappa \right)
  *  - q_\textrm{g}^\kappa = 0
  * \f]
  *
  * Energy balance equation:
  * \f[
  *  \frac{\partial (\varrho_\textrm{g}  u_\textrm{g})}{\partial t}
- *  + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} h_\textrm{g} {\boldsymbol{v}}_\textrm{g}
+ *  + \text{div} \left( \varrho_\textrm{g} h_\textrm{g} {\boldsymbol{v}}_\textrm{g}
  *  - \sum_\kappa \left( h^\kappa_\textrm{g} \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right]
- *                       \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \nabla x^\kappa_\textrm{g} \right)
- *  - \left[ \lambda_\textrm{g} + \lambda_\textrm{g,t} \right] \boldsymbol{\nabla} T \right)
+ *                       \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x^\kappa_\textrm{g} \right)
+ *  - \left[ \lambda_\textrm{g} + \lambda_\textrm{g,t} \right] \textbf{grad}\, T \right)
  *  - q_\textrm{T} = 0
  * \f]
+ * Please note that, even though it is n-component model, the diffusive
+ * fluxes are still calculated with binary diffusion.
  *
  * This is discretized by a fully-coupled vertex-centered finite volume
  * (box) scheme in space and by the implicit Euler method in time.
diff --git a/dumux/material/binarycoefficients/h2o_air.hh b/dumux/material/binarycoefficients/h2o_air.hh
index 4e9f77ff6c..63ea8f4300 100644
--- a/dumux/material/binarycoefficients/h2o_air.hh
+++ b/dumux/material/binarycoefficients/h2o_air.hh
@@ -38,10 +38,10 @@ class H2O_Air
 {
 public:
     /*!
-     * \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$  for air in liquid water.
+     * \brief Henry coefficient \f$\mathrm{[N/m^2]}\f$  for air in liquid water.
      * \param temperature the temperature \f$\mathrm{[K]}\f$
      *
-     * Henry coefficent See:
+     * Henry coefficient See:
      * Stefan Finsterle, 1993
      * Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweiphasensystems
      * page 29 Formula (2.9) (nach Tchobanoglous & Schroeder, 1985)
@@ -56,11 +56,12 @@ public:
     }
 
     /*!
-     * \brief Binary diffusion coefficent \f$\mathrm{[m^2/s]}\f$ for molecular water and air
+     * \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and air
      *
      * \param temperature the temperature \f$\mathrm{[K]}\f$
      * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
-     * Vargaftik : Tables on the thermophysical properties of liquids and gases. John Wiley &      * Sons, New York, 1975.
+     * Vargaftik: Tables on the thermophysical properties of liquids and gases.
+     * John Wiley & Sons, New York, 1975.
      *
      * Walker, Sabey, Hampton: Studies of heat transfer and water migration in soils.
      * Dep. of Agricultural and Chemical Engineering, Colorado State University,
@@ -83,7 +84,7 @@ public:
     /*!
      * Lacking better data on water-air diffusion in liquids, we use at the
      * moment the diffusion coefficient of the air's main component nitrogen!!
-     * \brief Diffusion coefficent \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
+     * \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
      *
      * \param temperature the temperature \f$\mathrm{[K]}\f$
      * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
@@ -99,7 +100,7 @@ public:
      * R. Reid et al.: "The properties of Gases and Liquids", 4th edition,
      * pp. 599, McGraw-Hill, 1987
      *
-     * R. Ferrell, D. Himmelblau: "Diffusion Coeffients of Nitrogen and
+     * R. Ferrell, D. Himmelblau: "Diffusion Coefficients of Nitrogen and
      * Oxygen in Water", Journal of Chemical Engineering and Data,
      * Vol. 12, No. 1, pp. 111-115, 1967
      */
-- 
GitLab