diff --git a/doc/handbook/4_assemblinglinearsystem.tex b/doc/handbook/4_assemblinglinearsystem.tex index 8268e39155f92b257e5c97f968b194780d6462bc..e05dad50ab5ad89acc3a9109a6f53a450fbd71ef 100644 --- a/doc/handbook/4_assemblinglinearsystem.tex +++ b/doc/handbook/4_assemblinglinearsystem.tex @@ -50,8 +50,8 @@ direction of maximum growth $\textbf{x}^i$ until our approximated solution becom \subsection{Structure of matrix and vectors} To understand the meaning of an entry in the matrix or the vector of the linear system, we have to define their structure. Both have a blocking structure. Each block contains the degrees of -freedom (also called variable or unknown) for a sub-control volume. The equation index is used -to order of the degrees of freedom. For each sub-control volume we have one block. The mapper is +freedom (also called variable or unknown) for a control volume. The equation index is used +to order of the degrees of freedom. For each control volume we have one block. The mapper is used to order the blocks. \begin{figure}[htbp] @@ -59,23 +59,23 @@ used to order the blocks. \begin{tikzpicture}[fill=dumuxBlue] %% blocking structure % matrix - \node at (0.3,4.2){\footnotesize 1. SCV}; - \node at (1.7,4.2){\footnotesize 2. SCV}; - \node at (3.5,4.2){\footnotesize $n$. SCV}; + \node at (0.3,4.2){\footnotesize 1. CV}; + \node at (1.7,4.2){\footnotesize 2. CV}; + \node at (3.5,4.2){\footnotesize $n$. CV}; \draw (0,0) rectangle (4,4); - + \fill (0.1,3.1) rectangle (0.9,3.9); \fill (1.1,3.1) rectangle (1.9,3.9); \node at (2.5,3.5) {$\dots$}; \fill (3.1,3.1) rectangle (3.9,3.9); - \node at (4,3.5) [right]{\footnotesize 1. SCV}; + \node at (4,3.5) [right]{\footnotesize 1. CV}; \fill (0.1,2.1) rectangle (0.9,2.9); \fill (1.1,2.1) rectangle (1.9,2.9); \node at (2.5,2.5) {$\dots$}; \fill (3.1,2.1) rectangle (3.9,2.9); - \node at (4,2.5) [right]{\footnotesize 2. SCV}; + \node at (4,2.5) [right]{\footnotesize 2. CV}; \node at (0.5,1.5) {$\vdots$}; \node at (1.5,1.5) {$\vdots$}; @@ -86,7 +86,7 @@ used to order the blocks. \fill (1.1,0.1) rectangle (1.9,0.9); \node at (2.5,0.5) {$\dots$}; \fill (3.1,0.1) rectangle (3.9,0.9); - \node at (4,0.5) [right]{\footnotesize $n$. SCV}; + \node at (4,0.5) [right]{\footnotesize $n$. CV}; % vector \draw (5.5,0) rectangle (5.9,4); @@ -94,19 +94,19 @@ used to order the blocks. \fill (5.6,2.1) rectangle (5.8,2.9); \node at (5.7,1.5) {$\vdots$}; \fill (5.6,0.1) rectangle (5.8,0.9); - + %% intra-block structure \fill (8.1,2.1) rectangle (8.9,2.9); \draw (9,2.8) -- (9.6,3.4); \draw (9,2.6) -- (9.6,2.8); \draw (9,2.2) -- (9.3,1.6); - + \node at (10,4) {${eqIdx}$}; \node at (10,3.4) {$0$}; \node at (10,2.8) {$1$}; \node at (10,2.2) {$\vdots$}; \node at (10,1.6) {$m-1$}; - + \fill (11.1,2.1) rectangle (11.3,2.9); \draw (11,2.8) -- (10.4,3.4); \draw (11,2.6) -- (10.4,2.8); diff --git a/doc/handbook/5_spatialdiscretizations.tex b/doc/handbook/5_spatialdiscretizations.tex index d45be682e004bb7f22ca4fba56425d8fa09ecd16..38295c5011efc57ade646d8358a09975eb96887e 100644 --- a/doc/handbook/5_spatialdiscretizations.tex +++ b/doc/handbook/5_spatialdiscretizations.tex @@ -1,7 +1,7 @@ \section{Spatial Discretization Schemes} \label{spatialdiscretization} -We discretize space with the cell-centered finite volume method (\ref{cc} ), the box method (\ref{box}) +We discretize space with cell-centered finite volume methods (\ref{cc} ), the box method (\ref{box}) or a staggered grid scheme. Grid adaption is available for both box and cell-centered finite volume method. In general, the spatial parameters, especially the porosity, have to be assigned on @@ -271,7 +271,7 @@ Using these conditions, the intermediate face unknowns ${u}_\sigma$ can be elimi \begin{figure} [ht] \centering -\includegraphics[width=0.8\linewidth,keepaspectratio]{png/mpfa_iv.png} +\includegraphics[width=0.8\linewidth,keepaspectratio]{pdf/mpfa_iv.pdf} \caption{Interaction region for the Mpfa-O method. The graphic on the right illustrates how the sub-control volume $L^v$ and face $\sigma^v_2$ are embedded in cell $L$. Note that the face stencils for all sub-control volume faces in the depicted interaction region are $\mathcal{S}_{\sigma^v_i} = \{ K,L,M \}$, meaning that the fluxes over the sub-control volume faces depend on the three cell unknowns $u_K, u_L, u_M$.} \label{pc:interactionRegion_mpfa} \end{figure} diff --git a/doc/handbook/5_stepsofasimulation.tex b/doc/handbook/5_stepsofasimulation.tex index 96e521aa9d6e41208c68356b49ed7b725f533285..06b28e5995221369392b1ef169c243da2c1beb4c 100644 --- a/doc/handbook/5_stepsofasimulation.tex +++ b/doc/handbook/5_stepsofasimulation.tex @@ -13,7 +13,7 @@ point of view. \label{content} In Figure \ref{fig:algorithm}, the algorithmic representations of a monolithical -solution solution scheme is illustrated down to the element level. +solution scheme is illustrated down to the element level. \begin{figure}[hbt] \setcounter{thingCounter}{0} diff --git a/doc/handbook/CMakeLists.txt b/doc/handbook/CMakeLists.txt index 5b3a54ea25982e5640bbc939e4e6cf579352b358..b9bd427d00059b8fc4038c13319180f23740e237 100644 --- a/doc/handbook/CMakeLists.txt +++ b/doc/handbook/CMakeLists.txt @@ -30,7 +30,7 @@ set(TEX_IMAGES png/dalton1.png png/dalton2.png pdf/staggered_grid.pdf - png/mpfa_iv.png) + pdf/mpfa_iv.pdf) dune_add_latex_document(0_dumux-handbook.tex BIBFILES dumux-handbook.bib diff --git a/doc/handbook/pdf/mpfa_iv.pdf b/doc/handbook/pdf/mpfa_iv.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8397ee1d184973c5eb0ace65608db7cacb63b97a Binary files /dev/null and b/doc/handbook/pdf/mpfa_iv.pdf differ diff --git a/doc/handbook/png/mpfa_iv.png b/doc/handbook/png/mpfa_iv.png deleted file mode 100644 index a54765dd8792a7e66b783696048467143c90cdec..0000000000000000000000000000000000000000 Binary files a/doc/handbook/png/mpfa_iv.png and /dev/null differ