// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see <http://www.gnu.org/licenses/>. * *****************************************************************************/ /*! * \file * * \brief Channel flow test for the multi-component staggered grid (Navier-)Stokes model */ #ifndef DUMUX_CHANNEL_NC_TEST_PROBLEM_HH #define DUMUX_CHANNEL_NC_TEST_PROBLEM_HH #include <dumux/material/fluidsystems/liquidphase.hh> #include <dumux/material/components/simpleh2o.hh> #include <dumux/material/components/constant.hh> #include <dumux/material/fluidsystems/h2oair.hh> #include <dumux/freeflow/navierstokes/problem.hh> #include <dumux/discretization/staggered/freeflow/properties.hh> #include <dumux/freeflow/navierstokesnc/model.hh> namespace Dumux { template <class TypeTag> class ChannelNCTestProblem; namespace Properties { #if !NONISOTHERMAL NEW_TYPE_TAG(ChannelNCTestProblem, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNC)); #else NEW_TYPE_TAG(ChannelNCTestProblem, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNCNI)); #endif NEW_PROP_TAG(FluidSystem); // Select the fluid system SET_TYPE_PROP(ChannelNCTestProblem, FluidSystem, FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)/*, SimpleH2O<typename GET_PROP_TYPE(TypeTag, Scalar)>, true*/>); SET_PROP(ChannelNCTestProblem, PhaseIdx) { private: using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); public: static constexpr int value = FluidSystem::wPhaseIdx; }; SET_INT_PROP(ChannelNCTestProblem, ReplaceCompEqIdx, 0); // Set the grid type SET_TYPE_PROP(ChannelNCTestProblem, Grid, Dune::YaspGrid<2>); // Set the problem property SET_TYPE_PROP(ChannelNCTestProblem, Problem, Dumux::ChannelNCTestProblem<TypeTag> ); SET_BOOL_PROP(ChannelNCTestProblem, EnableFVGridGeometryCache, true); SET_BOOL_PROP(ChannelNCTestProblem, EnableGridFluxVariablesCache, true); SET_BOOL_PROP(ChannelNCTestProblem, EnableGridVolumeVariablesCache, true); // Enable gravity SET_BOOL_PROP(ChannelNCTestProblem, UseMoles, true); // #if ENABLE_NAVIERSTOKES SET_BOOL_PROP(ChannelNCTestProblem, EnableInertiaTerms, true); // #else // SET_BOOL_PROP(ChannelNCTestProblem, EnableInertiaTerms, false); // #endif } /*! * \brief Test problem for the one-phase model: \todo doc me! */ template <class TypeTag> class ChannelNCTestProblem : public NavierStokesProblem<TypeTag> { using ParentType = NavierStokesProblem<TypeTag>; using GridView = typename GET_PROP_TYPE(TypeTag, GridView); using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); // copy some indices for convenience using Indices = typename GET_PROP_TYPE(TypeTag, Indices); enum { // Grid and world dimension dim = GridView::dimension, dimWorld = GridView::dimensionworld }; enum { massBalanceIdx = Indices::massBalanceIdx, transportEqIdx = 1, momentumBalanceIdx = Indices::momentumBalanceIdx, momentumXBalanceIdx = Indices::momentumXBalanceIdx, momentumYBalanceIdx = Indices::momentumYBalanceIdx, pressureIdx = Indices::pressureIdx, velocityXIdx = Indices::velocityXIdx, velocityYIdx = Indices::velocityYIdx, #if NONISOTHERMAL temperatureIdx = Indices::temperatureIdx, energyBalanceIdx = Indices::energyBalanceIdx, #endif transportCompIdx = 1/*FluidSystem::wCompIdx*/ }; using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); using Element = typename GridView::template Codim<0>::Entity; using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVElementGeometry); using SubControlVolume = typename GET_PROP_TYPE(TypeTag, SubControlVolume); using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>; using CellCenterPrimaryVariables = typename GET_PROP_TYPE(TypeTag, CellCenterPrimaryVariables); using FacePrimaryVariables = typename GET_PROP_TYPE(TypeTag, FacePrimaryVariables); using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); using SourceValues = typename GET_PROP_TYPE(TypeTag, NumEqVector); using TimeLoopPtr = std::shared_ptr<CheckPointTimeLoop<Scalar>>; using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); public: ChannelNCTestProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry) : ParentType(fvGridGeometry), eps_(1e-6) { inletVelocity_ = getParam<Scalar>("Problem.InletVelocity"); FluidSystem::init(); deltaP_.resize(this->fvGridGeometry().numCellCenterDofs()); } /*! * \name Problem parameters */ // \{ bool shouldWriteRestartFile() const { return false; } /*! * \brief Return the temperature within the domain in [K]. * * This problem assumes a temperature of 10 degrees Celsius. */ Scalar temperature() const { return 273.15 + 10; } // 10C /*! * \brief Return the sources within the domain. * * \param globalPos The global position */ SourceValues sourceAtPos(const GlobalPosition &globalPos) const { return SourceValues(0.0); } // \} /*! * \name Boundary conditions */ // \{ /*! * \brief Specifies which kind of boundary condition should be * used for which equation on a given boundary control volume. * * \param globalPos The position of the center of the finite volume */ BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const { BoundaryTypes values; if(isInlet(globalPos)) { values.setDirichlet(momentumBalanceIdx); values.setOutflow(massBalanceIdx); values.setDirichlet(transportEqIdx); #if NONISOTHERMAL values.setDirichlet(energyBalanceIdx); #endif } else if(isOutlet(globalPos)) { values.setOutflow(momentumBalanceIdx); values.setDirichlet(massBalanceIdx); values.setOutflow(transportEqIdx); #if NONISOTHERMAL values.setOutflow(energyBalanceIdx); #endif } else { // set Dirichlet values for the velocity everywhere values.setDirichlet(momentumBalanceIdx); values.setOutflow(massBalanceIdx); values.setOutflow(transportEqIdx); #if NONISOTHERMAL values.setOutflow(energyBalanceIdx); #endif } return values; } /*! * \brief Evaluate the boundary conditions for a dirichlet * control volume. * * \param globalPos The center of the finite volume which ought to be set. */ PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const { PrimaryVariables values = initialAtPos(globalPos); // give the system some time so that the pressure can equilibrate, then start the injection of the tracer if(isInlet(globalPos)) { if(time() >= 10.0 || inletVelocity_ < eps_) { values[transportCompIdx] = 1e-3; #if NONISOTHERMAL values[temperatureIdx] = 293.15; #endif } } return values; } // \} /*! * \name Volume terms */ // \{ /*! * \brief Evaluate the initial value for a control volume. * * \param globalPos The global position */ PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const { PrimaryVariables values; values[pressureIdx] = 1.1e+5; values[transportCompIdx] = 0.0; #if NONISOTHERMAL values[temperatureIdx] = 283.15; #endif // parabolic velocity profile values[velocityXIdx] = inletVelocity_*(globalPos[1] - this->fvGridGeometry().bBoxMin()[1])*(this->fvGridGeometry().bBoxMax()[1] - globalPos[1]) / (0.25*(this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1])*(this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1])); values[velocityYIdx] = 0.0; return values; } /*! * \brief Adds additional VTK output data to the VTKWriter. Function is called by the output module on every write. */ void calculateDeltaP(const GridVariables& gridVariables, const SolutionVector& sol) { for (const auto& element : elements(this->fvGridGeometry().gridView())) { auto fvGeometry = localView(this->fvGridGeometry()); fvGeometry.bindElement(element); for (auto&& scv : scvs(fvGeometry)) { auto ccDofIdx = scv.dofIndex(); auto elemVolVars = localView(gridVariables.curGridVolVars()); elemVolVars.bind(element, fvGeometry, sol); deltaP_[ccDofIdx] = elemVolVars[scv].pressure() - 1.1e5; } } } auto& getDeltaP() const { return deltaP_; } // \} void setTimeLoop(TimeLoopPtr timeLoop) { timeLoop_ = timeLoop; } Scalar time() const { return timeLoop_->time(); } private: bool isInlet(const GlobalPosition& globalPos) const { return globalPos[0] < eps_; } bool isOutlet(const GlobalPosition& globalPos) const { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } bool isWall(const GlobalPosition& globalPos) const { return globalPos[0] > eps_ || globalPos[0] < this->fvGridGeometry().bBoxMax()[0] - eps_; } const Scalar eps_; Scalar inletVelocity_; TimeLoopPtr timeLoop_; std::vector<Scalar> deltaP_; }; } //end namespace #endif