// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see <http://www.gnu.org/licenses/>. * *****************************************************************************/ /*! * \file * * \brief Channel flow test for the staggered grid (Navier-)Stokes model */ #include <config.h> #include <ctime> #include <iostream> #include <dune/common/parallel/mpihelper.hh> #include <dune/common/timer.hh> #include <dune/grid/io/file/dgfparser/dgfexception.hh> #include <dune/grid/io/file/vtk.hh> #include <dune/istl/io.hh> #include "channeltestproblem.hh" #include <dumux/common/properties.hh> #include <dumux/common/parameters.hh> #include <dumux/common/valgrind.hh> #include <dumux/common/dumuxmessage.hh> #include <dumux/common/defaultusagemessage.hh> #include <dumux/linear/seqsolverbackend.hh> #include <dumux/nonlinear/newtonsolver.hh> #include <dumux/assembly/staggeredfvassembler.hh> #include <dumux/assembly/diffmethod.hh> #include <dumux/discretization/methods.hh> #include <dumux/io/staggeredvtkoutputmodule.hh> #include <dumux/freeflow/navierstokes/staggered/fluxoversurface.hh> /*! * \brief Provides an interface for customizing error messages associated with * reading in parameters. * * \param progName The name of the program, that was tried to be started. * \param errorMsg The error message that was issued by the start function. * Comprises the thing that went wrong and a general help message. */ void usage(const char *progName, const std::string &errorMsg) { if (errorMsg.size() > 0) { std::string errorMessageOut = "\nUsage: "; errorMessageOut += progName; errorMessageOut += " [options]\n"; errorMessageOut += errorMsg; errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n" "\t-TimeManager.TEnd End of the simulation [s] \n" "\t-TimeManager.DtInitial Initial timestep size [s] \n" "\t-Grid.File Name of the file containing the grid \n" "\t definition in DGF format\n" "\t-SpatialParams.LensLowerLeftX x-coordinate of the lower left corner of the lens [m] \n" "\t-SpatialParams.LensLowerLeftY y-coordinate of the lower left corner of the lens [m] \n" "\t-SpatialParams.LensUpperRightX x-coordinate of the upper right corner of the lens [m] \n" "\t-SpatialParams.LensUpperRightY y-coordinate of the upper right corner of the lens [m] \n" "\t-SpatialParams.Permeability Permeability of the domain [m^2] \n" "\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n"; std::cout << errorMessageOut << "\n"; } } int main(int argc, char** argv) try { using namespace Dumux; // define the type tag for this problem using TypeTag = TTAG(ChannelTestTypeTag); // initialize MPI, finalize is done automatically on exit const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); // print dumux start message if (mpiHelper.rank() == 0) DumuxMessage::print(/*firstCall=*/true); // parse command line arguments and input file Parameters::init(argc, argv, usage); // try to create a grid (from the given grid file or the input file) using GridCreator = typename GET_PROP_TYPE(TypeTag, GridCreator); GridCreator::makeGrid(); GridCreator::loadBalance(); //////////////////////////////////////////////////////////// // run instationary non-linear problem on this grid //////////////////////////////////////////////////////////// // we compute on the leaf grid view const auto& leafGridView = GridCreator::grid().leafGridView(); // create the finite volume grid geometry using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); fvGridGeometry->update(); // the problem (initial and boundary conditions) using Problem = typename GET_PROP_TYPE(TypeTag, Problem); auto problem = std::make_shared<Problem>(fvGridGeometry); // get some time loop parameters using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); // check if we are about to restart a previously interrupted simulation Scalar restartTime = 0; if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) restartTime = getParam<Scalar>("TimeLoop.Restart"); // instantiate time loop auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(restartTime, dt, tEnd); timeLoop->setMaxTimeStepSize(maxDt); problem->setTimeLoop(timeLoop); // the solution vector using SolutionVector = typename GET_PROP_TYPE(TypeTag, SolutionVector); const auto numDofsCellCenter = leafGridView.size(0); const auto numDofsFace = leafGridView.size(1); SolutionVector x; x[FVGridGeometry::cellCenterIdx()].resize(numDofsCellCenter); x[FVGridGeometry::faceIdx()].resize(numDofsFace); problem->applyInitialSolution(x); auto xOld = x; // the grid variables using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables); auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); gridVariables->init(x, xOld); // initialize the vtk output module using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields); StaggeredVtkOutputModule<TypeTag, GET_PROP_VALUE(TypeTag, PhaseIdx)> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); VtkOutputFields::init(vtkWriter); //!< Add model specific output fields vtkWriter.write(0.0); // the assembler with time loop for instationary problem using Assembler = StaggeredFVAssembler<TypeTag, DiffMethod::numeric>; auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); // the linear solver using LinearSolver = Dumux::UMFPackBackend; auto linearSolver = std::make_shared<LinearSolver>(); // the non-linear solver using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>; NewtonSolver nonLinearSolver(assembler, linearSolver); // set up two surfaces over which fluxes are calculated FluxOverSurface<TypeTag> flux(*assembler, x); using GridView = typename GET_PROP_TYPE(TypeTag, GridView); using GlobalPosition = Dune::FieldVector<Scalar, GridView::dimensionworld>; const Scalar xMin = fvGridGeometry->bBoxMin()[0]; const Scalar xMax = fvGridGeometry->bBoxMax()[0]; const Scalar yMin = fvGridGeometry->bBoxMin()[1]; const Scalar yMax = fvGridGeometry->bBoxMax()[1]; // The first surface shall be placed at the middle of the channel. // If we have an odd number of cells in x-direction, there would not be any cell faces // at the position of the surface (which is required for the flux calculation). // In this case, we add half a cell-width to the x-position in order to make sure that // the cell faces lie on the surface. This assumes a regular cartesian grid. const Scalar planePosMiddleX = xMin + 0.5*(xMax - xMin); const int numCellsX = getParam<std::vector<int>>("Grid.Cells")[0]; const Scalar offsetX = (numCellsX % 2 == 0) ? 0.0 : 0.5*((xMax - xMin) / numCellsX); const auto p0middle = GlobalPosition{planePosMiddleX + offsetX, yMin}; const auto p1middle = GlobalPosition{planePosMiddleX + offsetX, yMax}; flux.addSurface("middle", p0middle, p1middle); // The second surface is placed at the outlet of the channel. const auto p0outlet = GlobalPosition{xMax, yMin}; const auto p1outlet = GlobalPosition{xMax, yMax}; flux.addSurface("outlet", p0outlet, p1outlet); // time loop timeLoop->start(); do { // set previous solution for storage evaluations assembler->setPreviousSolution(xOld); // solve the non-linear system with time step control nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; gridVariables->advanceTimeStep(); // advance to the time loop to the next step timeLoop->advanceTimeStep(); // write vtk output vtkWriter.write(timeLoop->time()); // calculate and print mass fluxes over the planes flux.calculateMassOrMoleFluxes(); if(GET_PROP_TYPE(TypeTag, ModelTraits)::enableEnergyBalance()) { std::cout << "mass / energy flux at middle is: " << flux.netFlux("middle") << std::endl; std::cout << "mass / energy flux at outlet is: " << flux.netFlux("outlet") << std::endl; } else { std::cout << "mass flux at middle is: " << flux.netFlux("middle") << std::endl; std::cout << "mass flux at outlet is: " << flux.netFlux("outlet") << std::endl; } // calculate and print volume fluxes over the planes flux.calculateVolumeFluxes(); std::cout << "volume flux at middle is: " << flux.netFlux("middle")[0] << std::endl; std::cout << "volume flux at outlet is: " << flux.netFlux("outlet")[0] << std::endl; // report statistics of this time step timeLoop->reportTimeStep(); // set new dt as suggested by newton solver timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); } while (!timeLoop->finished()); timeLoop->finalize(leafGridView.comm()); //////////////////////////////////////////////////////////// // finalize, print dumux message to say goodbye //////////////////////////////////////////////////////////// // print dumux end message if (mpiHelper.rank() == 0) { Parameters::print(); DumuxMessage::print(/*firstCall=*/false); } return 0; } // end main catch (Dumux::ParameterException &e) { std::cerr << std::endl << e << " ---> Abort!" << std::endl; return 1; } catch (Dune::DGFException & e) { std::cerr << "DGF exception thrown (" << e << "). Most likely, the DGF file name is wrong " "or the DGF file is corrupted, " "e.g. missing hash at end of file or wrong number (dimensions) of entries." << " ---> Abort!" << std::endl; return 2; } catch (Dune::Exception &e) { std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; return 3; } catch (...) { std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; return 4; }