// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * \ingroup CO2Tests * \brief Test for the two-phase two-component CC model. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // the problem definitions #include "problem.hh" int main(int argc, char** argv) try { using namespace Dumux; // define the type tag for this problem using TypeTag = Properties::TTag::TYPETAG; // initialize MPI, finalize is done automatically on exit const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); // print dumux start message if (mpiHelper.rank() == 0) DumuxMessage::print(/*firstCall=*/true); // parse command line arguments and input file Parameters::init(argc, argv); // try to create a grid (from the given grid file or the input file) GridManager> gridManager; gridManager.init(); //////////////////////////////////////////////////////////// // run instationary non-linear problem on this grid //////////////////////////////////////////////////////////// // we compute on the leaf grid view const auto& leafGridView = gridManager.grid().leafGridView(); // create the finite volume grid geometry using GridGeometry = GetPropType; auto gridGeometry = std::make_shared(leafGridView); gridGeometry->update(); // the spatial parameters using SpatialParams = GetPropType; auto spatialParams = std::make_shared(gridGeometry, gridManager.getGridData()); // the problem (initial and boundary conditions) using Problem = GetPropType; auto problem = std::make_shared(gridGeometry, spatialParams); // the solution vector using SolutionVector = GetPropType; SolutionVector x(gridGeometry->numDofs()); problem->applyInitialSolution(x); auto xOld = x; // the grid variables using GridVariables = GetPropType; auto gridVariables = std::make_shared(problem, gridGeometry); gridVariables->init(x); // get some time loop parameters using Scalar = GetPropType; const auto tEnd = getParam("TimeLoop.TEnd"); const auto maxDt = getParam("TimeLoop.MaxTimeStepSize"); auto dt = getParam("TimeLoop.DtInitial"); // intialize the vtk output module using IOFields = GetPropType; VtkOutputModule vtkWriter(*gridVariables, x, problem->name()); using VelocityOutput = GetPropType; vtkWriter.addVelocityOutput(std::make_shared(*gridVariables)); IOFields::initOutputModule(vtkWriter); // Add model specific output fields problem->addFieldsToWriter(vtkWriter); //!< Add some more problem dependent fields vtkWriter.write(0.0); // instantiate time loop auto timeLoop = std::make_shared>(0, dt, tEnd); timeLoop->setMaxTimeStepSize(maxDt); // the assembler with time loop for instationary problem using Assembler = FVAssembler; auto assembler = std::make_shared(problem, gridGeometry, gridVariables, timeLoop, xOld); // the linear solver using LinearSolver = AMGBiCGSTABBackend>; auto linearSolver = std::make_shared(leafGridView, gridGeometry->dofMapper()); // the non-linear solver using NewtonSolver = NewtonSolver; NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); do { // solve the non-linear system with time step control nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; gridVariables->advanceTimeStep(); // advance to the time loop to the next step timeLoop->advanceTimeStep(); // report statistics of this time step timeLoop->reportTimeStep(); // double the timestep each time (it is still limited by maximum time step size) timeLoop->setTimeStepSize(timeLoop->timeStepSize()*2.0); // write vtk output vtkWriter.write(timeLoop->time()); } while (!timeLoop->finished()); timeLoop->finalize(leafGridView.comm()); //////////////////////////////////////////////////////////// // finalize, print dumux message to say goodbye //////////////////////////////////////////////////////////// // print dumux end message if (mpiHelper.rank() == 0) { Parameters::print(); DumuxMessage::print(/*firstCall=*/false); } return 0; } // end main catch (Dumux::ParameterException &e) { std::cerr << std::endl << e << " ---> Abort!" << std::endl; return 1; } catch (Dune::DGFException & e) { std::cerr << "DGF exception thrown (" << e << "). Most likely, the DGF file name is wrong " "or the DGF file is corrupted, " "e.g. missing hash at end of file or wrong number (dimensions) of entries." << " ---> Abort!" << std::endl; return 2; } catch (Dune::Exception &e) { std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; return 3; } catch (...) { std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; return 4; }