// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see <http://www.gnu.org/licenses/>. * *****************************************************************************/ /*! * \file * \ingroup NavierStokesTests * \brief Channel flow test for the staggered grid (Navier-)Stokes model */ #ifndef DUMUX_CHANNEL_TEST_PROBLEM_HH #define DUMUX_CHANNEL_TEST_PROBLEM_HH #include <dumux/material/fluidsystems/liquidphase.hh> #include <dumux/material/components/simpleh2o.hh> #include <dumux/material/components/constant.hh> #include <dumux/freeflow/navierstokes/problem.hh> #include <dumux/discretization/staggered/freeflow/properties.hh> #include <dumux/freeflow/navierstokes/model.hh> namespace Dumux { template <class TypeTag> class ChannelTestProblem; namespace Properties { #if !NONISOTHERMAL NEW_TYPE_TAG(ChannelTestTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokes)); #else NEW_TYPE_TAG(ChannelTestTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNI)); #endif // the fluid system SET_PROP(ChannelTestTypeTag, FluidSystem) { using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); #if NONISOTHERMAL using type = FluidSystems::LiquidPhase<Scalar, SimpleH2O<Scalar> >; #else using type = FluidSystems::LiquidPhase<Scalar, Components::Constant<1, Scalar> >; #endif }; // Set the grid type SET_TYPE_PROP(ChannelTestTypeTag, Grid, Dune::YaspGrid<2>); // Set the problem property SET_TYPE_PROP(ChannelTestTypeTag, Problem, Dumux::ChannelTestProblem<TypeTag> ); SET_BOOL_PROP(ChannelTestTypeTag, EnableFVGridGeometryCache, true); SET_BOOL_PROP(ChannelTestTypeTag, EnableGridFluxVariablesCache, true); SET_BOOL_PROP(ChannelTestTypeTag, EnableGridVolumeVariablesCache, true); #if ENABLE_NAVIERSTOKES SET_BOOL_PROP(ChannelTestTypeTag, EnableInertiaTerms, true); #else SET_BOOL_PROP(ChannelTestTypeTag, EnableInertiaTerms, false); #endif } /*! * \ingroup NavierStokesTests * \brief Test problem for the one-phase (Navier-) Stokes problem in a channel. * \todo doc me! */ template <class TypeTag> class ChannelTestProblem : public NavierStokesProblem<TypeTag> { using ParentType = NavierStokesProblem<TypeTag>; using GridView = typename GET_PROP_TYPE(TypeTag, GridView); using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); // copy some indices for convenience using Indices = typename GET_PROP_TYPE(TypeTag, Indices); enum { dimWorld = GridView::dimensionworld }; enum { massBalanceIdx = Indices::massBalanceIdx, momentumBalanceIdx = Indices::momentumBalanceIdx, pressureIdx = Indices::pressureIdx, #if NONISOTHERMAL temperatureIdx = Indices::temperatureIdx, energyBalanceIdx = Indices::energyBalanceIdx, #endif velocityXIdx = Indices::velocityXIdx, velocityYIdx = Indices::velocityYIdx }; using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>; using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); using TimeLoopPtr = std::shared_ptr<CheckPointTimeLoop<Scalar>>; public: ChannelTestProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry) : ParentType(fvGridGeometry), eps_(1e-6) { inletVelocity_ = getParam<Scalar>("Problem.InletVelocity"); } /*! * \name Problem parameters */ // \{ bool shouldWriteRestartFile() const { return false; } /*! * \brief Return the temperature within the domain in [K]. * * This problem assumes a temperature of 10 degrees Celsius. */ Scalar temperature() const { return 273.15 + 10; } // 10C /*! * \brief Return the sources within the domain. * * \param globalPos The global position */ NumEqVector sourceAtPos(const GlobalPosition &globalPos) const { return NumEqVector(0.0); } // \} /*! * \name Boundary conditions */ // \{ /*! * \brief Specifies which kind of boundary condition should be * used for which equation on a given boundary control volume. * * \param globalPos The position of the center of the finite volume */ BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const { BoundaryTypes values; // set Dirichlet values for the velocity everywhere values.setDirichlet(momentumBalanceIdx); #if NONISOTHERMAL if(isInlet(globalPos)) values.setDirichlet(energyBalanceIdx); else values.setOutflow(energyBalanceIdx); #endif // set a fixed pressure in one cell if (isOutlet(globalPos)) { values.setDirichlet(massBalanceIdx); values.setOutflow(momentumBalanceIdx); } else values.setOutflow(massBalanceIdx); return values; } /*! * \brief Evaluate the boundary conditions for a dirichlet * control volume. * * \param globalPos The center of the finite volume which ought to be set. */ PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const { PrimaryVariables values = initialAtPos(globalPos); if(isInlet(globalPos)) { values[velocityXIdx] = inletVelocity_; #if NONISOTHERMAL // give the system some time so that the pressure can equilibrate, then start the injection of the hot liquid if(time() >= 200.0) values[temperatureIdx] = 293.15; #endif } return values; } // \} /*! * \name Volume terms */ // \{ /*! * \brief Evaluate the initial value for a control volume. * * \param globalPos The global position */ PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const { PrimaryVariables values; values[pressureIdx] = 1.1e+5; values[velocityXIdx] = 0.0; values[velocityYIdx] = 0.0; #if NONISOTHERMAL values[temperatureIdx] = 283.15; #endif return values; } // \} void setTimeLoop(TimeLoopPtr timeLoop) { timeLoop_ = timeLoop; if(inletVelocity_ > eps_) timeLoop_->setCheckPoint({200.0, 210.0}); } Scalar time() const { return timeLoop_->time(); } private: bool isInlet(const GlobalPosition& globalPos) const { return globalPos[0] < eps_; } bool isOutlet(const GlobalPosition& globalPos) const { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } bool isWall(const GlobalPosition& globalPos) const { return globalPos[0] > eps_ || globalPos[0] < this->fvGridGeometry().bBoxMax()[0] - eps_; } Scalar eps_; Scalar inletVelocity_; TimeLoopPtr timeLoop_; }; } //end namespace #endif