// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * \ingroup TwoPModel * \brief Contains the quantities which are constant within a * finite volume in the two-phase model. */ #ifndef DUMUX_2P_VOLUME_VARIABLES_HH #define DUMUX_2P_VOLUME_VARIABLES_HH #include #include #include #include namespace Dumux { /*! * \ingroup TwoPModel * \brief Contains the quantities which are are constant within a * finite volume in the two-phase model. */ template class TwoPVolumeVariables : public PorousMediumFlowVolumeVariables , public EnergyVolumeVariables > { using ParentType = PorousMediumFlowVolumeVariables; using EnergyVolVars = EnergyVolumeVariables >; using PermeabilityType = typename Traits::PermeabilityType; using ModelTraits = typename Traits::ModelTraits; using Idx = typename ModelTraits::Indices; using Scalar = typename Traits::PrimaryVariables::value_type; using FS = typename Traits::FluidSystem; static constexpr int numFluidComps = ParentType::numFluidComponents(); enum { pressureIdx = Idx::pressureIdx, saturationIdx = Idx::saturationIdx, phase0Idx = FS::phase0Idx, phase1Idx = FS::phase1Idx }; static constexpr auto formulation = ModelTraits::priVarFormulation(); public: //! Export type of fluid system using FluidSystem = typename Traits::FluidSystem; //! Export type of fluid state using FluidState = typename Traits::FluidState; //! Export the indices using Indices = typename ModelTraits::Indices; //! Export type of solid state using SolidState = typename Traits::SolidState; //! Export type of solid system using SolidSystem = typename Traits::SolidSystem; /*! * \brief Updates all quantities for a given control volume. * * \param elemSol A vector containing all primary variables connected to the element * \param problem The object specifying the problem which ought to * be simulated * \param element An element which contains part of the control volume * \param scv The sub control volume */ template void update(const ElemSol &elemSol, const Problem &problem, const Element &element, const Scv& scv) { ParentType::update(elemSol, problem, element, scv); completeFluidState(elemSol, problem, element, scv, fluidState_, solidState_); using MaterialLaw = typename Problem::SpatialParams::MaterialLaw; const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol); const int wPhaseIdx = fluidState_.wettingPhase(); const int nPhaseIdx = 1 - wPhaseIdx; mobility_[wPhaseIdx] = MaterialLaw::krw(materialParams, fluidState_.saturation(wPhaseIdx)) / fluidState_.viscosity(wPhaseIdx); mobility_[nPhaseIdx] = MaterialLaw::krn(materialParams, fluidState_.saturation(wPhaseIdx)) / fluidState_.viscosity(nPhaseIdx); // porosity calculation over inert volumefraction updateSolidVolumeFractions(elemSol, problem, element, scv, solidState_, numFluidComps); EnergyVolVars::updateSolidEnergyParams(elemSol, problem, element, scv, solidState_); permeability_ = problem.spatialParams().permeability(element, scv, elemSol); EnergyVolVars::updateEffectiveThermalConductivity(); } /*! * \brief Sets complete fluid state. * * \param elemSol A vector containing all primary variables connected to the element * \param problem The object specifying the problem which ought to be simulated * \param element An element which contains part of the control volume * \param scv The sub-control volume * \param fluidState A container with the current (physical) state of the fluid * \param solidState A container with the current (physical) state of the solid * * Set temperature, saturations, capillary pressures, viscosities, densities and enthalpies. */ template void completeFluidState(const ElemSol& elemSol, const Problem& problem, const Element& element, const Scv& scv, FluidState& fluidState, SolidState& solidState) { EnergyVolVars::updateTemperature(elemSol, problem, element, scv, fluidState, solidState); using MaterialLaw = typename Problem::SpatialParams::MaterialLaw; const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol); const auto& priVars = elemSol[scv.localDofIndex()]; const auto wPhaseIdx = problem.spatialParams().template wettingPhase(element, scv, elemSol); fluidState.setWettingPhase(wPhaseIdx); if (formulation == TwoPFormulation::p0s1) { fluidState.setPressure(phase0Idx, priVars[pressureIdx]); if (fluidState.wettingPhase() == phase1Idx) { fluidState.setSaturation(phase1Idx, priVars[saturationIdx]); fluidState.setSaturation(phase0Idx, 1 - priVars[saturationIdx]); pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx)); fluidState.setPressure(phase1Idx, priVars[pressureIdx] - pc_); } else { const auto Sn = Traits::SaturationReconstruction::reconstructSn(problem.spatialParams(), element, scv, elemSol, priVars[saturationIdx]); fluidState.setSaturation(phase1Idx, Sn); fluidState.setSaturation(phase0Idx, 1 - Sn); pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx)); fluidState.setPressure(phase1Idx, priVars[pressureIdx] + pc_); } } else if (formulation == TwoPFormulation::p1s0) { fluidState.setPressure(phase1Idx, priVars[pressureIdx]); if (wPhaseIdx == phase1Idx) { const auto Sn = Traits::SaturationReconstruction::reconstructSn(problem.spatialParams(), element, scv, elemSol, priVars[saturationIdx]); fluidState.setSaturation(phase0Idx, Sn); fluidState.setSaturation(phase1Idx, 1 - Sn); pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx)); fluidState.setPressure(phase0Idx, priVars[pressureIdx] + pc_); } else { fluidState.setSaturation(phase0Idx, priVars[saturationIdx]); fluidState.setSaturation(phase1Idx, 1 - priVars[saturationIdx]); pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx)); fluidState.setPressure(phase0Idx, priVars[pressureIdx] - pc_); } } typename FluidSystem::ParameterCache paramCache; paramCache.updateAll(fluidState); for (int phaseIdx = 0; phaseIdx < ModelTraits::numFluidPhases(); ++phaseIdx) { // compute and set the viscosity Scalar mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx); fluidState.setViscosity(phaseIdx, mu); // compute and set the density Scalar rho = FluidSystem::density(fluidState, paramCache, phaseIdx); fluidState.setDensity(phaseIdx, rho); // compute and set the enthalpy Scalar h = EnergyVolVars::enthalpy(fluidState, paramCache, phaseIdx); fluidState.setEnthalpy(phaseIdx, h); } } /*! * \brief Returns the phase state for the control volume. */ const FluidState &fluidState() const { return fluidState_; } /*! * \brief Returns the phase state for the control volume. */ const SolidState &solidState() const { return solidState_; } /*! * \brief Returns the saturation of a given phase within * the control volume in \f$[-]\f$. * * \param phaseIdx The phase index */ Scalar saturation(int phaseIdx) const { return fluidState_.saturation(phaseIdx); } /*! * \brief Returns the mass density of a given phase within the * control volume in \f$[kg/m^3]\f$. * * \param phaseIdx The phase index */ Scalar density(int phaseIdx) const { return fluidState_.density(phaseIdx); } /*! * \brief Returns the effective pressure of a given phase within * the control volume in \f$[kg/(m*s^2)=N/m^2=Pa]\f$. * * \param phaseIdx The phase index */ Scalar pressure(int phaseIdx) const { return fluidState_.pressure(phaseIdx); } /*! * \brief Returns the capillary pressure within the control volume * in \f$[kg/(m*s^2)=N/m^2=Pa]\f$. */ Scalar capillaryPressure() const { return pc_; } /*! * \brief Returns temperature inside the sub-control volume * in \f$[K]\f$. * * Note that we assume thermodynamic equilibrium, i.e. the * temperature of the rock matrix and of all fluid phases are * identical. */ Scalar temperature() const { return fluidState_.temperature(/*phaseIdx=*/0); } /*! * \brief Returns the dynamic viscosity of the fluid within the * control volume in \f$\mathrm{[Pa s]}\f$. * * \param phaseIdx The phase index */ Scalar viscosity(int phaseIdx) const { return fluidState_.viscosity(phaseIdx); } /*! * \brief Returns the effective mobility of a given phase within * the control volume in \f$[s*m/kg]\f$. * * \param phaseIdx The phase index */ Scalar mobility(int phaseIdx) const { return mobility_[phaseIdx]; } /*! * \brief Returns the average porosity within the control volume in \f$[-]\f$. */ Scalar porosity() const { return solidState_.porosity(); } /*! * \brief Returns the permeability within the control volume in \f$[m^2]\f$. */ const PermeabilityType& permeability() const { return permeability_; } /*! * \brief Returns the wetting phase index */ int wettingPhase() const { return fluidState_.wettingPhase(); } protected: FluidState fluidState_; SolidState solidState_; private: Scalar pc_; Scalar porosity_; PermeabilityType permeability_; Scalar mobility_[ModelTraits::numFluidPhases()]; }; } // end namespace Dumux #endif