// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
*****************************************************************************/
/*!
* \file
* \ingroup TwoPModel
* \brief Contains the quantities which are constant within a
* finite volume in the two-phase model.
*/
#ifndef DUMUX_2P_VOLUME_VARIABLES_HH
#define DUMUX_2P_VOLUME_VARIABLES_HH
#include
#include
#include
#include
namespace Dumux {
/*!
* \ingroup TwoPModel
* \brief Contains the quantities which are are constant within a
* finite volume in the two-phase model.
*/
template
class TwoPVolumeVariables
: public PorousMediumFlowVolumeVariables
, public EnergyVolumeVariables >
{
using ParentType = PorousMediumFlowVolumeVariables;
using EnergyVolVars = EnergyVolumeVariables >;
using PermeabilityType = typename Traits::PermeabilityType;
using ModelTraits = typename Traits::ModelTraits;
using Idx = typename ModelTraits::Indices;
using Scalar = typename Traits::PrimaryVariables::value_type;
using FS = typename Traits::FluidSystem;
static constexpr int numFluidComps = ParentType::numFluidComponents();
enum
{
pressureIdx = Idx::pressureIdx,
saturationIdx = Idx::saturationIdx,
phase0Idx = FS::phase0Idx,
phase1Idx = FS::phase1Idx
};
static constexpr auto formulation = ModelTraits::priVarFormulation();
public:
//! Export type of fluid system
using FluidSystem = typename Traits::FluidSystem;
//! Export type of fluid state
using FluidState = typename Traits::FluidState;
//! Export the indices
using Indices = typename ModelTraits::Indices;
//! Export type of solid state
using SolidState = typename Traits::SolidState;
//! Export type of solid system
using SolidSystem = typename Traits::SolidSystem;
/*!
* \brief Updates all quantities for a given control volume.
*
* \param elemSol A vector containing all primary variables connected to the element
* \param problem The object specifying the problem which ought to
* be simulated
* \param element An element which contains part of the control volume
* \param scv The sub control volume
*/
template
void update(const ElemSol &elemSol,
const Problem &problem,
const Element &element,
const Scv& scv)
{
ParentType::update(elemSol, problem, element, scv);
completeFluidState(elemSol, problem, element, scv, fluidState_, solidState_);
using MaterialLaw = typename Problem::SpatialParams::MaterialLaw;
const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
const int wPhaseIdx = fluidState_.wettingPhase();
const int nPhaseIdx = 1 - wPhaseIdx;
mobility_[wPhaseIdx] =
MaterialLaw::krw(materialParams, fluidState_.saturation(wPhaseIdx))
/ fluidState_.viscosity(wPhaseIdx);
mobility_[nPhaseIdx] =
MaterialLaw::krn(materialParams, fluidState_.saturation(wPhaseIdx))
/ fluidState_.viscosity(nPhaseIdx);
// porosity calculation over inert volumefraction
updateSolidVolumeFractions(elemSol, problem, element, scv, solidState_, numFluidComps);
EnergyVolVars::updateSolidEnergyParams(elemSol, problem, element, scv, solidState_);
permeability_ = problem.spatialParams().permeability(element, scv, elemSol);
EnergyVolVars::updateEffectiveThermalConductivity();
}
/*!
* \brief Sets complete fluid state.
*
* \param elemSol A vector containing all primary variables connected to the element
* \param problem The object specifying the problem which ought to be simulated
* \param element An element which contains part of the control volume
* \param scv The sub-control volume
* \param fluidState A container with the current (physical) state of the fluid
* \param solidState A container with the current (physical) state of the solid
*
* Set temperature, saturations, capillary pressures, viscosities, densities and enthalpies.
*/
template
void completeFluidState(const ElemSol& elemSol,
const Problem& problem,
const Element& element,
const Scv& scv,
FluidState& fluidState,
SolidState& solidState)
{
EnergyVolVars::updateTemperature(elemSol, problem, element, scv, fluidState, solidState);
using MaterialLaw = typename Problem::SpatialParams::MaterialLaw;
const auto& materialParams = problem.spatialParams().materialLawParams(element, scv, elemSol);
const auto& priVars = elemSol[scv.localDofIndex()];
const auto wPhaseIdx = problem.spatialParams().template wettingPhase(element, scv, elemSol);
fluidState.setWettingPhase(wPhaseIdx);
if (formulation == TwoPFormulation::p0s1)
{
fluidState.setPressure(phase0Idx, priVars[pressureIdx]);
if (fluidState.wettingPhase() == phase1Idx)
{
fluidState.setSaturation(phase1Idx, priVars[saturationIdx]);
fluidState.setSaturation(phase0Idx, 1 - priVars[saturationIdx]);
pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
fluidState.setPressure(phase1Idx, priVars[pressureIdx] - pc_);
}
else
{
const auto Sn = Traits::SaturationReconstruction::reconstructSn(problem.spatialParams(), element,
scv, elemSol, priVars[saturationIdx]);
fluidState.setSaturation(phase1Idx, Sn);
fluidState.setSaturation(phase0Idx, 1 - Sn);
pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
fluidState.setPressure(phase1Idx, priVars[pressureIdx] + pc_);
}
}
else if (formulation == TwoPFormulation::p1s0)
{
fluidState.setPressure(phase1Idx, priVars[pressureIdx]);
if (wPhaseIdx == phase1Idx)
{
const auto Sn = Traits::SaturationReconstruction::reconstructSn(problem.spatialParams(), element,
scv, elemSol, priVars[saturationIdx]);
fluidState.setSaturation(phase0Idx, Sn);
fluidState.setSaturation(phase1Idx, 1 - Sn);
pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
fluidState.setPressure(phase0Idx, priVars[pressureIdx] + pc_);
}
else
{
fluidState.setSaturation(phase0Idx, priVars[saturationIdx]);
fluidState.setSaturation(phase1Idx, 1 - priVars[saturationIdx]);
pc_ = MaterialLaw::pc(materialParams, fluidState.saturation(wPhaseIdx));
fluidState.setPressure(phase0Idx, priVars[pressureIdx] - pc_);
}
}
typename FluidSystem::ParameterCache paramCache;
paramCache.updateAll(fluidState);
for (int phaseIdx = 0; phaseIdx < ModelTraits::numFluidPhases(); ++phaseIdx) {
// compute and set the viscosity
Scalar mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx);
fluidState.setViscosity(phaseIdx, mu);
// compute and set the density
Scalar rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
fluidState.setDensity(phaseIdx, rho);
// compute and set the enthalpy
Scalar h = EnergyVolVars::enthalpy(fluidState, paramCache, phaseIdx);
fluidState.setEnthalpy(phaseIdx, h);
}
}
/*!
* \brief Returns the phase state for the control volume.
*/
const FluidState &fluidState() const
{ return fluidState_; }
/*!
* \brief Returns the phase state for the control volume.
*/
const SolidState &solidState() const
{ return solidState_; }
/*!
* \brief Returns the saturation of a given phase within
* the control volume in \f$[-]\f$.
*
* \param phaseIdx The phase index
*/
Scalar saturation(int phaseIdx) const
{ return fluidState_.saturation(phaseIdx); }
/*!
* \brief Returns the mass density of a given phase within the
* control volume in \f$[kg/m^3]\f$.
*
* \param phaseIdx The phase index
*/
Scalar density(int phaseIdx) const
{ return fluidState_.density(phaseIdx); }
/*!
* \brief Returns the effective pressure of a given phase within
* the control volume in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
*
* \param phaseIdx The phase index
*/
Scalar pressure(int phaseIdx) const
{ return fluidState_.pressure(phaseIdx); }
/*!
* \brief Returns the capillary pressure within the control volume
* in \f$[kg/(m*s^2)=N/m^2=Pa]\f$.
*/
Scalar capillaryPressure() const
{ return pc_; }
/*!
* \brief Returns temperature inside the sub-control volume
* in \f$[K]\f$.
*
* Note that we assume thermodynamic equilibrium, i.e. the
* temperature of the rock matrix and of all fluid phases are
* identical.
*/
Scalar temperature() const
{ return fluidState_.temperature(/*phaseIdx=*/0); }
/*!
* \brief Returns the dynamic viscosity of the fluid within the
* control volume in \f$\mathrm{[Pa s]}\f$.
*
* \param phaseIdx The phase index
*/
Scalar viscosity(int phaseIdx) const
{ return fluidState_.viscosity(phaseIdx); }
/*!
* \brief Returns the effective mobility of a given phase within
* the control volume in \f$[s*m/kg]\f$.
*
* \param phaseIdx The phase index
*/
Scalar mobility(int phaseIdx) const
{ return mobility_[phaseIdx]; }
/*!
* \brief Returns the average porosity within the control volume in \f$[-]\f$.
*/
Scalar porosity() const
{ return solidState_.porosity(); }
/*!
* \brief Returns the permeability within the control volume in \f$[m^2]\f$.
*/
const PermeabilityType& permeability() const
{ return permeability_; }
/*!
* \brief Returns the wetting phase index
*/
int wettingPhase() const
{ return fluidState_.wettingPhase(); }
protected:
FluidState fluidState_;
SolidState solidState_;
private:
Scalar pc_;
Scalar porosity_;
PermeabilityType permeability_;
Scalar mobility_[ModelTraits::numFluidPhases()];
};
} // end namespace Dumux
#endif