// $Id: tutorialproblem_coupled.hh 3783 2010-06-24 11:33:53Z bernd $ /***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis * * Copyright (C) 2009 by Andreas Lauser * * Institute of Hydraulic Engineering * * University of Stuttgart, Germany * * email: <givenname>.<name>@iws.uni-stuttgart.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version, as long as this copyright notice * * is included in its original form. * * * * This program is distributed WITHOUT ANY WARRANTY. * *****************************************************************************/ #ifndef DUMUX_TUTORIALPROBLEM_COUPLED_HH #define DUMUX_TUTORIALPROBLEM_COUPLED_HH // fluid properties #include <dumux/material/fluidsystems/h2o_n2_system.hh> // the numerical model #include <dumux/boxmodels/2p/2pmodel.hh> // the grid used #include <dune/grid/yaspgrid.hh> #include <dune/grid/io/file/dgfparser/dgfs.hh> // assign parameters dependent on space (e.g. soil properties) #include "tutorialspatialparameters_coupled.hh" namespace Dumux { // forward declaration of the problem class template <class TypeTag> class TutorialProblemCoupled; namespace Properties { // create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/ { typedef Dumux::TutorialProblemCoupled<TTAG(TutorialProblemCoupled)> type; }; // Set the grid SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/ { typedef Dune::SGrid<2,2> type; static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/ { typedef typename type::ctype ctype; Dune::FieldVector<int, 2> cellRes; Dune::FieldVector<ctype, 2> lowerLeft(0.0); Dune::FieldVector<ctype, 2> upperRight; cellRes[0] = 30; cellRes[1] = 10; upperRight[0] = 300; upperRight[1] = 60; return new Dune::SGrid<2,2>(cellRes, lowerLeft, upperRight); } }; // Select fluid system SET_PROP(TutorialProblemCoupled, FluidSystem) /*@\label{tutorial-coupled:set-fluidsystem}@*/ { typedef Dumux::H2O_N2_System<TypeTag> type; }; // Set the spatial parameters SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/ { typedef Dumux::TutorialSpatialParametersCoupled<TypeTag> type; }; // Disable gravity SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/ } // Definition of the actual problem template <class TypeTag = TTAG(TutorialProblemCoupled) > class TutorialProblemCoupled : public TwoPProblem<TypeTag> /*@\label{tutorial-coupled:def-problem}@*/ { typedef TutorialProblemCoupled<TypeTag> ThisType; typedef TwoPProblem<TypeTag> ParentType; typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView; typedef typename GET_PROP_TYPE(TypeTag, PTAG(TimeManager)) TimeManager; // Grid and world dimension enum { dim = GridView::dimension, dimWorld = GridView::dimensionworld, }; typedef typename GridView::Grid::ctype CoordScalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices; typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim<dim>::Entity Vertex; typedef typename GridView::Intersection Intersection; typedef Dune::FieldVector<CoordScalar, dim> LocalPosition; typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition; typedef typename GET_PROP_TYPE(TypeTag, PTAG(PrimaryVarVector)) PrimaryVarVector; typedef typename GET_PROP_TYPE(TypeTag, PTAG(BoundaryTypes)) BoundaryTypes; typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry; public: TutorialProblemCoupled(TimeManager &timeManager, const GridView &gridView) : ParentType(timeManager, gridView) {} // Return the temperature within the domain. We use 10 degrees Celsius. Scalar temperature(const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { return 283.15; }; // Specifies which kind of boundary condition should be used for // which equation on a given boundary segment. void boundaryTypes(BoundaryTypes &BCtype, const Element &element, const FVElementGeometry &fvElemGeom, const Intersection &isIt, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &pos = element.geometry().corner(scvIdx); if (pos[0] < eps_) // dirichlet conditions on left boundary BCtype.setAllDirichlet(); else // neuman for the remaining boundaries BCtype.setAllNeumann(); } // Evaluate the boundary conditions for a dirichlet boundary // segment. For this method, the 'values' parameter stores // primary variables. void dirichlet(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, const Intersection &isIt, int scvIdx, int boundaryFaceIdx) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 0.0; // 0 % oil saturation on left boundary } // Evaluate the boundary conditions for a neumann boundary // segment. For this method, the 'values' parameter stores the // mass flux in normal direction of each phase. Negative values // mean influx. void neumann(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, const Intersection &isIt, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &pos = fvElemGeom.boundaryFace[boundaryFaceIdx].ipGlobal; Scalar right = this->bboxMax()[0]; if (pos[0] > right - eps_) { // oil outflux of 0.3 g/(m * s) on the right boundary of // the domain. values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 0.3e-3; } else { // no-flow on the remaining neumann-boundaries values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 0; } } // Evaluate the initial value for a control volume. For this // method, the 'values' parameter stores primary variables. void initial(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::SnIdx] = 1.0; } // Evaluate the source term for all phases within a given // sub-control-volume. For this method, the \a values parameter // stores the rate mass generated or annihilate per volume // unit. Positive values mean that mass is created, negative ones // mean that it vanishes. void source(PrimaryVarVector &values, const Element &element, const FVElementGeometry &fvElemGeom, int scvIdx) const { values[Indices::contiWEqIdx] = 0.0; values[Indices::contiNEqIdx]= 0.0; } private: static const Scalar eps_ = 3e-6; }; } #endif