// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see <http://www.gnu.org/licenses/>. * *****************************************************************************/ /*! * \file * * \brief Tutorial problem for a fully coupled twophase box model. */ #ifndef DUMUX_TUTORIAL_PROBLEM_IMPLICIT_HH // guardian macro /*@\label{tutorial-implicit:guardian1}@*/ #define DUMUX_TUTORIAL_PROBLEM_IMPLICIT_HH // guardian macro /*@\label{tutorial-implicit:guardian2}@*/ // The numerical model #include <dumux/porousmediumflow/2p/implicit/model.hh> // The base porous media box problem #include <dumux/porousmediumflow/implicit/problem.hh> // Spatially dependent parameters #include "tutorialspatialparams_implicit.hh" // The components that are used #include <dumux/material/components/h2o.hh> #include <dumux/material/components/lnapl.hh> namespace Dumux{ // Forward declaration of the problem class template <class TypeTag> class TutorialProblemImplicit; namespace Properties { // Create a new type tag for the problem NEW_TYPE_TAG(TutorialProblemImplicit, INHERITS_FROM(BoxTwoP, TutorialSpatialParamsImplicit)); /*@\label{tutorial-implicit:create-type-tag}@*/ // Set the "Problem" property SET_PROP(TutorialProblemImplicit, Problem) /*@\label{tutorial-implicit:set-problem}@*/ { typedef TutorialProblemImplicit<TypeTag> type;}; // Set grid and the grid creator to be used #if HAVE_DUNE_ALUGRID /*@\label{tutorial-implicit:set-grid}@*/ SET_TYPE_PROP(TutorialProblemImplicit, Grid, Dune::ALUGrid</*dim=*/2, 2, Dune::cube, Dune::nonconforming>); /*@\label{tutorial-implicit:set-grid-ALU}@*/ #elif HAVE_UG SET_TYPE_PROP(TutorialProblemImplicit, Grid, Dune::UGGrid<2>); #else SET_TYPE_PROP(TutorialProblemImplicit, Grid, Dune::YaspGrid<2>); #endif // HAVE_DUNE_ALUGRID // Set the wetting phase SET_PROP(TutorialProblemImplicit, WettingPhase) /*@\label{tutorial-implicit:2p-system-start}@*/ { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef FluidSystems::LiquidPhase<Scalar, H2O<Scalar> > type; /*@\label{tutorial-implicit:wettingPhase}@*/ }; // Set the non-wetting phase SET_PROP(TutorialProblemImplicit, NonwettingPhase) { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef FluidSystems::LiquidPhase<Scalar, LNAPL<Scalar> > type; /*@\label{tutorial-implicit:nonwettingPhase}@*/ }; /*@\label{tutorial-implicit:2p-system-end}@*/ SET_TYPE_PROP(TutorialProblemImplicit, FluidSystem, TwoPImmiscibleFluidSystem<TypeTag>);/*@\label{tutorial-implicit:set-fluidsystem}@*/ // Disable gravity SET_BOOL_PROP(TutorialProblemImplicit, ProblemEnableGravity, false); /*@\label{tutorial-implicit:gravity}@*/ } /*! * \ingroup TwoPBoxModel * * \brief Tutorial problem for a fully coupled twophase box model. */ template <class TypeTag> class TutorialProblemImplicit : public ImplicitPorousMediaProblem<TypeTag> /*@\label{tutorial-implicit:def-problem}@*/ { typedef ImplicitPorousMediaProblem<TypeTag> ParentType; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; // Grid dimension enum { dim = GridView::dimension, dimWorld = GridView::dimensionworld }; // Types from DUNE-Grid typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim<dim>::Entity Vertex; typedef typename GridView::Intersection Intersection; typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition; // Dumux specific types typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager; typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes; typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry; public: TutorialProblemImplicit(TimeManager &timeManager, const GridView &gridView) : ParentType(timeManager, gridView) , eps_(3e-6) { #if !(HAVE_DUNE_ALUGRID || HAVE_UG) std::cout << "If you want to use simplices instead of cubes, install and use dune-ALUGrid or UGGrid." << std::endl; #endif // !(HAVE_DUNE_ALUGRID || HAVE_UG) } //! Specifies the problem name. This is used as a prefix for files //! generated by the simulation. const char *name() const { return "tutorial_implicit"; } //! Returns true if a restart file should be written. bool shouldWriteRestartFile() const /*@\label{tutorial-implicit:restart}@*/ { return false; } //! Returns true if the current solution should be written to disk //! as a VTK file bool shouldWriteOutput() const /*@\label{tutorial-implicit:output}@*/ { return (this->timeManager().timeStepIndex() > 0 && (this->timeManager().timeStepIndex() % 1 == 0)); } //! Returns the temperature within a finite volume. We use constant //! 10 degrees Celsius. Scalar temperature() const { return 283.15; } //! Specifies which kind of boundary condition should be used for //! which equation for a finite volume on the boundary. void boundaryTypes(BoundaryTypes &bcTypes, const Vertex &vertex) const { const GlobalPosition &globalPos = vertex.geometry().center(); if (globalPos[0] < eps_) // Dirichlet conditions on left boundary bcTypes.setAllDirichlet(); else // neuman for the remaining boundaries bcTypes.setAllNeumann(); } //! Evaluates the Dirichlet boundary conditions for a finite volume //! on the grid boundary. Here, the 'values' parameter stores //! primary variables. void dirichlet(PrimaryVariables &values, const Vertex &vertex) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::snIdx] = 0.0; // 0 % oil saturation on left boundary } //! Evaluates the boundary conditions for a Neumann boundary //! segment. Here, the 'values' parameter stores the mass flux in //! [kg/(m^2 * s)] in normal direction of each phase. Negative //! values mean influx. void neumann(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvGeometry, const Intersection &intersection, int scvIdx, int boundaryFaceIdx) const { const GlobalPosition &globalPos = fvGeometry.boundaryFace[boundaryFaceIdx].ipGlobal; Scalar right = this->bBoxMax()[0]; // extraction of oil on the right boundary for approx. 1.e6 seconds if (globalPos[0] > right - eps_) { // oil outflux of 30 g/(m * s) on the right boundary. values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 3e-2; } else { // no-flow on the remaining Neumann-boundaries. values[Indices::contiWEqIdx] = 0; values[Indices::contiNEqIdx] = 0; } } //! Evaluates the initial value for a control volume. For this //! method, the 'values' parameter stores primary variables. void initial(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvGeometry, int scvIdx) const { values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar values[Indices::snIdx] = 1.0; } //! Evaluates the source term for all phases within a given //! sub-control-volume. In this case, the 'values' parameter //! stores the rate mass generated or annihilated per volume unit //! in [kg / (m^3 * s)]. Positive values mean that mass is created. void source(PrimaryVariables &values, const Element &element, const FVElementGeometry &fvGeometry, int scvIdx) const { values[Indices::contiWEqIdx] = 0.0; values[Indices::contiNEqIdx]= 0.0; } private: // small epsilon value Scalar eps_; }; } #endif