From 06e86b923e69f7ddc891051dc0ba796484f94937 Mon Sep 17 00:00:00 2001 From: Farid Mohammadi <farid.mohammadi@iws.uni-stuttgart.de> Date: Mon, 20 Jun 2022 16:54:37 +0200 Subject: [PATCH] [examples][pollution] add the bootstrapping arguments. --- examples/pollution/test_pollution.py | 5 +++++ examples/pollution/test_valid_pollution.py | 13 +++++++++---- 2 files changed, 14 insertions(+), 4 deletions(-) diff --git a/examples/pollution/test_pollution.py b/examples/pollution/test_pollution.py index 3abd18dcb..9e9d56525 100644 --- a/examples/pollution/test_pollution.py +++ b/examples/pollution/test_pollution.py @@ -118,6 +118,11 @@ if __name__ == "__main__": # 7)EBL: Emperical Bayesian Learning MetaModelOpts.pce_reg_method = 'FastARD' + # Bootstraping + # 1) normal 2) fast + MetaModelOpts.bootstrap_method = 'fast' + MetaModelOpts.n_bootstrap_itrs = 100 + # Specify the max degree to be compared by the adaptive algorithm: # The degree with the lowest Leave-One-Out cross-validation (LOO) # error (or the highest score=1-LOO)estimator is chosen as the final diff --git a/examples/pollution/test_valid_pollution.py b/examples/pollution/test_valid_pollution.py index 1deea2f29..0d2a32c00 100644 --- a/examples/pollution/test_valid_pollution.py +++ b/examples/pollution/test_valid_pollution.py @@ -97,9 +97,9 @@ if __name__ == "__main__": MetaModelOpts = MetaModel(Inputs) # Select if you want to preserve the spatial/temporal depencencies - # MetaModelOpts.dim_red_method = 'PCA' + MetaModelOpts.dim_red_method = 'PCA' # MetaModelOpts.var_pca_threshold = 99.999 - # MetaModelOpts.n_pca_components = 12 + # MetaModelOpts.n_pca_components = 5 # Select your metamodel method # 1) PCE (Polynomial Chaos Expansion) 2) aPCE (arbitrary PCE) @@ -118,6 +118,11 @@ if __name__ == "__main__": # 7)EBL: Emperical Bayesian Learning MetaModelOpts.pce_reg_method = 'FastARD' + # Bootstraping + # 1) normal 2) fast + MetaModelOpts.bootstrap_method = 'fast' + MetaModelOpts.n_bootstrap_itrs = 100 + # Specify the max degree to be compared by the adaptive algorithm: # The degree with the lowest Leave-One-Out cross-validation (LOO) # error (or the highest score=1-LOO)estimator is chosen as the final @@ -170,7 +175,7 @@ if __name__ == "__main__": # Plot the sobol indices if MetaModelOpts.meta_model_type != 'GPE': - sobol_cell, total_sobol = PostPCE.sobol_indices() + total_sobol = PostPCE.sobol_indices() # Compute and print RMSE error valid_samples = np.load("data/validSet.npy") @@ -205,7 +210,7 @@ if __name__ == "__main__": DiscOutputOpts.add_marginals() DiscOutputOpts.Marginals[0].name = '$\\sigma^2_{\\epsilon}$' DiscOutputOpts.Marginals[0].dist_type = 'uniform' - DiscOutputOpts.Marginals[0].parameters = [0.0, 5.0] + DiscOutputOpts.Marginals[0].parameters = [0.0, 0.1] BayesOpts.Discrepancy = Discrepancy(DiscOutputOpts) # Start the inference -- GitLab