From 0e99146f1904162be20827d9a1d96803557a025f Mon Sep 17 00:00:00 2001 From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com> Date: Thu, 10 Oct 2024 16:26:29 +0200 Subject: [PATCH] [docs] Update docstrings for PostProcessing --- .../post_processing/post_processing.py | 57 ++++++++----------- tests/test_ExpDesign.py | 1 - 2 files changed, 23 insertions(+), 35 deletions(-) diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py index d5ad267b5..a111cc150 100644 --- a/src/bayesvalidrox/post_processing/post_processing.py +++ b/src/bayesvalidrox/post_processing/post_processing.py @@ -17,28 +17,29 @@ from matplotlib.patches import Patch plt.style.use(os.path.join(os.path.split(__file__)[0], '../', 'bayesvalidrox.mplstyle')) - - class PostProcessing: """ This class provides many helper functions to post-process the trained meta-model. - - Attributes + + Parameters ---------- - MetaModel : obj - MetaModel object to do postprocessing on. - name : str - Type of the anaylsis. The default is `'calib'`. If a validation is - expected to be performed change this to `'valid'`. + engine : obj + Trained Engine object, does not need to contain a trained MetaModel object. + name : string + Name of the PostProcessing object to be used for saving the generated files. + The default is 'calib'. + """ def __init__(self, engine, name='calib'): self.engine = engine self.name = name + + # ------------------------------------------------------------------------- - def plot_moments(self, xlabel='Time [s]', plot_type=None): + def plot_moments(self, xlabel:str='Time [s]', plot_type:str=None): """ Plots the moments in a pdf format in the directory `Outputs_PostProcessing`. @@ -145,7 +146,7 @@ class PostProcessing: # ------------------------------------------------------------------------- def valid_metamodel(self, n_samples=1, samples=None, model_out_dict=None, - x_axis='Time [s]'): + x_axis='Time [s]')-> None: """ Evaluates and plots the meta model and the PCEModel outputs for the given number of samples or the given samples. @@ -161,9 +162,6 @@ class PostProcessing: x_axis : str, optional Label of x axis. The default is `'Time [s]'`. - Returns - ------- - None. """ if samples is None: @@ -194,7 +192,7 @@ class PostProcessing: self._plot_validation_multi(x_values=x_values, x_axis=x_axis) # ------------------------------------------------------------------------- - def check_accuracy(self, n_samples=None, samples=None, outputs=None): + def check_accuracy(self, n_samples=None, samples=None, outputs=None)-> None: """ Checks accuracy of the metamodel by computing the root mean square error and validation error for all outputs. @@ -214,13 +212,6 @@ class PostProcessing: Exception When neither n_samples nor samples are provided. - Returns - ------- - rmse: dict - Root mean squared error for each output. - valid_error : dict - Validation error for each output. - """ # Set the number of samples if n_samples: @@ -264,10 +255,9 @@ class PostProcessing: self.engine.MetaModel.rmse = self.rmse self.engine.MetaModel.valid_error = self.valid_error - return # ------------------------------------------------------------------------- - def plot_seq_design_diagnostics(self, ref_BME_KLD=None): + def plot_seq_design_diagnostics(self, ref_BME_KLD=None)->None: """ Plots the Bayesian Model Evidence (BME) and Kullback-Leibler divergence (KLD) for the sequential design. @@ -277,10 +267,6 @@ class PostProcessing: ref_BME_KLD : array, optional Reference BME and KLD . The default is `None`. - Returns - ------- - None. - """ engine = self.engine n_init_samples = engine.ExpDesign.n_init_samples @@ -517,7 +503,7 @@ class PostProcessing: return # ------------------------------------------------------------------------- - def sobol_indices(self, xlabel='Time [s]', plot_type=None): + def sobol_indices(self, xlabel:str='Time [s]', plot_type:str=None): """ Provides Sobol indices as a sensitivity measure to infer the importance of the input parameters. See Eq. 27 in [1] for more details. For the @@ -541,6 +527,11 @@ class PostProcessing: Plot type. The default is `None`. This corresponds to line plot. Bar chart can be selected by `bar`. + Raises + ------ + AttributeError + MetaModel in given Engine needs to be of type 'pce' or 'apce'. + Returns ------- sobol_cell: dict @@ -827,7 +818,9 @@ class PostProcessing: return self.total_sobol # ------------------------------------------------------------------------- - def check_reg_quality(self, n_samples=1000, samples=None, outputs=None): + def check_reg_quality(self, n_samples:int=1000, samples=None, outputs:dict=None)->None: + """ + """ """ Checks the quality of the metamodel for single output models based on: https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685 @@ -843,10 +836,6 @@ class PostProcessing: Output dictionary with model outputs for all given output types in `Model.Output.names`. The default is None. - Returns - ------- - None. - """ if samples is None: self.n_samples = n_samples diff --git a/tests/test_ExpDesign.py b/tests/test_ExpDesign.py index 9cef6cd13..979fbb26c 100644 --- a/tests/test_ExpDesign.py +++ b/tests/test_ExpDesign.py @@ -16,7 +16,6 @@ import pytest import numpy as np from bayesvalidrox.surrogate_models.inputs import Input -import bayesvalidrox.surrogate_models.exp_designs as exp from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns #%% Test ExpDesign.pcm_sampler -- GitLab