diff --git a/BayesValidRox/BayesInference/BayesInference.py b/BayesValidRox/BayesInference/BayesInference.py index ec120c5e73fa1491f8984b5ed8d2f02bc3a79eb7..8c52958d320c8929efc684ddf26f0769597ddd49 100644 --- a/BayesValidRox/BayesInference/BayesInference.py +++ b/BayesValidRox/BayesInference/BayesInference.py @@ -41,7 +41,7 @@ class BayesInference: self.PCEStd = {} self.Discrepancy = None self.ReqOutputType = None - self.NrofSamples = None + self.NrofSamples = 100000 self.Samples = None self.Samplesu = None self.MCMCnSteps = None @@ -104,9 +104,9 @@ class BayesInference: meanPCEOutputs = {} stdPCEOutputs = {} univ_p_val = PCEModel.univ_basis_vals(Samples) + for Outkey, ValuesDict in PCEModel.CoeffsDict.items(): - PCEOutputs_mean = np.zeros((len(Samples), len(ValuesDict))) PCEOutputs_std = np.zeros((len(Samples), len(ValuesDict))) idx = 0 @@ -115,14 +115,15 @@ class BayesInference: PSI_Val = PCEModel.PCE_create_Psi(PolynomialDegrees, univ_p_val) # Perdiction - try: #with error bar + if PCEModel.RegMethod.lower() == 'ols': #without error bar + coeffs = PCEModel.CoeffsDict[Outkey][Inkey] + PCEOutputs_mean[:, idx] = np.dot(PSI_Val, coeffs) + + else: #with error bar clf_poly = PCEModel.clf_poly[Outkey][Inkey] y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True) PCEOutputs_mean[:, idx] = y_mean PCEOutputs_std[:, idx] = y_std - except: #without error bar - coeffs = PCEModel.CoeffsDict[Outkey][Inkey] - PCEOutputs_mean[:, idx] = np.dot(PSI_Val, coeffs) if PCEModel.metaModel == 'PCEKriging': gp = PCEModel.gp_poly[Outkey][Inkey] @@ -132,13 +133,11 @@ class BayesInference: idx += 1 - if PCEModel.index is None: if PCEModel.DimRedMethod.lower() == 'pca': PCA = PCEModel.pca[Outkey] meanPCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_) stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2)) - #np.dot(PCEOutputs_std, PCA.components_) else: meanPCEOutputs[Outkey] = PCEOutputs_mean stdPCEOutputs[Outkey] = PCEOutputs_std @@ -173,8 +172,7 @@ class BayesInference: Model = self.PCEModel.ModelObj if Samples is None: - PCEModel = self.PCEModel - Samples = self.get_Sample(PCEModel) + Samples = self.get_Sample() self.Samples = Samples else: Samples = Samples @@ -547,10 +545,6 @@ class BayesInference: self.Samples = SamplesAllParameters self.NrofSamples = self.Samples.shape[0] - NrofSamples = self.NrofSamples - else: - NrofSamples = self.NrofSamples - # ---------- Preparation of observation data ---------- # Read observation data and perturb it if requested @@ -619,57 +613,57 @@ class BayesInference: Data[itrIdx] = data.flatten('F') - # ----------------------------------------------------- - # ----- Loop over the perturbed observation data ------ - # ----------------------------------------------------- - # Initilize arrays - Likelihoods = np.zeros((NrofSamples,BootstrapItrNr)) - BME_Corr = np.zeros((BootstrapItrNr)) - BME = np.zeros((BootstrapItrNr)) - - for itrIdx, data in tqdm(enumerate(Data), ascii=True, desc ="Boostraping the BME calculations"): + # ----------------------------------------------------- + # ----- Loop over the perturbed observation data ------ + # ----------------------------------------------------- + # Initilize arrays + Likelihoods = np.zeros((self.NrofSamples,BootstrapItrNr)) + BME_Corr = np.zeros((BootstrapItrNr)) + BME = np.zeros((BootstrapItrNr)) - # ---------------- Likelihood calculation ---------------- - if self.emulator: - # Evaluate the PCEModel - self.meanPCEPriorPred, self.stdPCEPriorPred = self.eval_PCEmodel(Samples=self.Samples) + for itrIdx, data in tqdm(enumerate(Data), ascii=True, desc ="Boostraping the BME calculations"): - # unknown sigma2 - if optSigma == 'C': - Likelihoods[:,itrIdx] = self.normpdfSigma2(self.meanPCEPriorPred, data, TotalSigma2) - else: - # known sigma2 - Likelihoods[:,itrIdx] = self.normpdf(self.meanPCEPriorPred, data, TotalSigma2) - - else: - self.ModelPriorPred = self.eval_Model(Samples=self.Samples) - # unknown sigma2 - if optSigma == 'C': - Likelihoods[:,itrIdx] = self.normpdfSigma2(self.ModelPriorPred, data, TotalSigma2) + # ---------------- Likelihood calculation ---------------- + if self.emulator: + # Evaluate the PCEModel + self.meanPCEPriorPred, self.stdPCEPriorPred = self.eval_PCEmodel(Samples=self.Samples) + + # unknown sigma2 + if optSigma == 'C': + Likelihoods[:,itrIdx] = self.normpdfSigma2(self.meanPCEPriorPred, data, TotalSigma2) + else: + # known sigma2 + Likelihoods[:,itrIdx] = self.normpdf(self.meanPCEPriorPred, data, TotalSigma2) + else: - # known sigma2 - Likelihoods[:,itrIdx] = self.normpdf(self.ModelPriorPred, data, TotalSigma2) - - # ---------------- BME Calculations ---------------- - # BME (log) - BME[itrIdx] = np.log(np.nanmean(np.exp(Likelihoods[:,itrIdx]))) + self.ModelPriorPred = self.eval_Model(Samples=self.Samples) + # unknown sigma2 + if optSigma == 'C': + Likelihoods[:,itrIdx] = self.normpdfSigma2(self.ModelPriorPred, data, TotalSigma2) + else: + # known sigma2 + Likelihoods[:,itrIdx] = self.normpdf(self.ModelPriorPred, data, TotalSigma2) + + # ---------------- BME Calculations ---------------- + # BME (log) + BME[itrIdx] = np.log(np.nanmean(np.exp(Likelihoods[:,itrIdx]))) + + # BME correction when using Emulator + # if self.emulator: + # BME_Corr[itrIdx] = self.BME_Corr_Weight(data, sigma2) + + # ---------------- Store BME, Likelihoods for all ---------------- + # Likelihoods (Size: NrofSamples,BootstrapItrNr) + self.Likelihoods = Likelihoods - # BME correction when using Emulator - # if self.emulator: - # BME_Corr[itrIdx] = self.BME_Corr_Weight(data, sigma2) - - # ---------------- Store BME, Likelihoods for all ---------------- - # Likelihoods (Size: NrofSamples,BootstrapItrNr) - self.Likelihoods = Likelihoods - - # BME (log) (Size: 1,BootstrapItrNr) - self.BME = BME - - # TODO: BMECorrFactor (log) (Size: 1,BootstrapItrNr) - #if self.emulator: self.BMECorrFactor = BME_Corr - - # BME = BME + BMECorrFactor - if self.emulator: self.BME = self.BME #+ self.BMECorrFactor + # BME (log) (Size: 1,BootstrapItrNr) + self.BME = BME + + # TODO: BMECorrFactor (log) (Size: 1,BootstrapItrNr) + #if self.emulator: self.BMECorrFactor = BME_Corr + + # BME = BME + BMECorrFactor + if self.emulator: self.BME = self.BME #+ self.BMECorrFactor # ---------------- Parameter Bayesian inference ---------------- if self.SamplingMethod.lower() == 'mcmc': @@ -686,7 +680,7 @@ class BayesInference: # -------- Find MAP and run PCEModel and origModel -------- # Compute the MAP - if self.MAP =='Mean': + if self.MAP.lower() =='mean': MAP_theta = self.Posterior_df.to_numpy().mean(axis=0).reshape((1,NofPa)) else: MAP_theta = stats.mode(self.Posterior_df.to_numpy(),axis=0)[0] @@ -715,24 +709,25 @@ class BayesInference: # -------- Posteior parameters -------- parNames = [self.PCEModel.Inputs.Marginals[i].Name for i in range(NofPa)] figPosterior = corner.corner(self.Posterior_df.to_numpy(), labels=parNames, - show_titles=True, title_fmt=self.Corner_title_fmt, - title_kwargs={"fontsize": 14}) - - # Extract the axes - axes = np.array(figPosterior.axes).reshape((NofPa, NofPa)) - - # Loop over the diagonal - for i in range(NofPa): - ax = axes[i, i] - ax.axvline(MAP_theta[0,i], ls='--', color="r") - - # Loop over the histograms - for yi in range(NofPa): - for xi in range(yi): - ax = axes[yi, xi] - ax.axvline(MAP_theta[0,xi], ls='--', color="r") - ax.axhline(MAP_theta[0,yi], ls='--', color="r") - ax.plot(MAP_theta[0,xi], MAP_theta[0,yi], "sr") + quantiles=[0.15, 0.5, 0.85],show_titles=True, + title_fmt=self.Corner_title_fmt, + title_kwargs={"fontsize": 12}) + + # # Extract the axes + # axes = np.array(figPosterior.axes).reshape((NofPa, NofPa)) + + # # Loop over the diagonal + # for i in range(NofPa): + # ax = axes[i, i] + # ax.axvline(MAP_theta[0,i], ls='--', color="r") + + # # Loop over the histograms + # for yi in range(NofPa): + # for xi in range(yi): + # ax = axes[yi, xi] + # ax.axvline(MAP_theta[0,xi], ls='--', color="r") + # ax.axhline(MAP_theta[0,yi], ls='--', color="r") + # ax.plot(MAP_theta[0,xi], MAP_theta[0,yi], "sr") figPosterior.set_size_inches((24,16)) diff --git a/BayesValidRox/BayesInference/MCMC.py b/BayesValidRox/BayesInference/MCMC.py index 74a6190c87272534ec305e1c8e245e7823fafc7c..42e875bca9ab4ed44d0ecd60562911dae44e737e 100755 --- a/BayesValidRox/BayesInference/MCMC.py +++ b/BayesValidRox/BayesInference/MCMC.py @@ -13,7 +13,6 @@ from multiprocessing import Pool import scipy.stats as st from scipy.linalg import cholesky as chol import warnings -import time class MCMC(): """ @@ -49,7 +48,11 @@ class MCMC(): # set theta near the maximum likelihood, with np.random.seed(0) if self.initsamples is None: - initsamples = priorDist.sample(self.nwalkers).T + try: + initsamples = priorDist.sample(self.nwalkers).T + except: + # when aPCE selected - gaussian kernel distribution + initsamples = priorDist.resample(self.nwalkers).T else: # Pick samples based on a uniform dist between main and max of each dim initsamples = np.zeros((self.nwalkers, ndim)) @@ -109,8 +112,8 @@ class MCMC(): for i in range(nsamples): if not self.check_ranges(theta[i], params_range): - logprior[i] = priorDist.pdf(theta[i]) - + logprior[i] = np.log(priorDist.pdf(theta[i])) + if nsamples == 1: return logprior[0] else: @@ -129,10 +132,9 @@ class MCMC(): else: # Evaluate the origModel meanPCEPriorPred = BayesOpts.eval_Model(theta) - + return BayesOpts.normpdf(meanPCEPriorPred, Observation, TotalSigma2) - - + def log_posterior(self, theta, Observation, TotalSigma2): """ Computes the posterior likelihood for the given parameterset. @@ -152,6 +154,7 @@ class MCMC(): DESCRIPTION. """ + ndimTheta = theta.ndim nsamples = 1 if ndimTheta == 1 else theta.shape[0] diff --git a/BayesValidRox/PostProcessing/PostProcessing.py b/BayesValidRox/PostProcessing/PostProcessing.py index e9eae4e6c5fa37239b03de814f7a6691597ba4d8..776f7520baea9aa6b2ec427922c60bdfa300e89f 100644 --- a/BayesValidRox/PostProcessing/PostProcessing.py +++ b/BayesValidRox/PostProcessing/PostProcessing.py @@ -858,13 +858,12 @@ class PostProcessing: # Initialize the cell to store the names of the variables of the Sobol Idx. TotalVariance = np.zeros((NofMeasurements)) - # Loop over all measurement points and calculate sobol indices for PointIdx in range(NofMeasurements): # Extract the basis indices (alpha) and coefficients PolynomialDegree = PCEModel.BasisDict[Output]['y_%s'%(PointIdx+1)] - + try: clf_poly = PCEModel.clf_poly[Output]['y_%s'%(PointIdx+1)] PCECoeffs = clf_poly.coef_ @@ -873,7 +872,7 @@ class PostProcessing: # Compute total variance TotalVariance[PointIdx] = np.sum(np.square(PCECoeffs[1:])) - + nzidx = np.where(PCECoeffs != 0)[0] # Set all the Sobol indices equal to zero if the presence of a null output. if len(nzidx) == 0: @@ -902,7 +901,7 @@ class PostProcessing: sum_ind = nzidx[idx] total_sobol_array[ParIdx,PointIdx] = np.sum(np.square(PCECoeffs[sum_ind])) / TotalVariance[PointIdx] - + # ----- if PCA selected: Compute covariance # ----- if PCEModel.DimRedMethod.lower() == 'pca': cov_Z_p_q = np.zeros((NofPa)) @@ -926,8 +925,7 @@ class PostProcessing: cov_Z_p_q[ParIdx] = np.sum(PCECoeffs[sum_ind] * nextPCECoeffs[sum_ind]) except: cov_Z_p_q[ParIdx] = 0.0 - - + # Compute the sobol indices according to Ref. 2 if PCEModel.DimRedMethod.lower() == 'pca': ntMeasurements = PCEModel.ExpDesign.Y[Output].shape[1] diff --git a/BayesValidRox/surrogate_models/ExpDesigns.py b/BayesValidRox/surrogate_models/ExpDesigns.py index 53a21c9c7fd4473cdfd1aacf409adc5527d771b3..3707a5485f9a510bbd0379e4790daaec46f9912a 100644 --- a/BayesValidRox/surrogate_models/ExpDesigns.py +++ b/BayesValidRox/surrogate_models/ExpDesigns.py @@ -10,6 +10,7 @@ import numpy as np import math import itertools import chaospy +import scipy.stats as st from tqdm import tqdm from .aPoly_Construction import aPoly_Construction @@ -64,7 +65,7 @@ class ExpDesigns: NofPa = len(Inputs.Marginals) self.SamplingMethod = SamplingMethod NrSamples = int(NrSamples) - + self.arbitrary = False if len(Inputs.Marginals[0].InputValues) == 0 else True # Get the bounds if InputValues are directly defined by user: if Inputs.Marginals[0].Parameters is None: for i in range(NofPa): @@ -75,7 +76,7 @@ class ExpDesigns: self.JDist, self.Polytypes = self.DistConstructor() ## Sample the distribution of parameters - if len(Inputs.Marginals[0].InputValues) == 0 and self.SamplingMethod != 'user': + if not self.arbitrary and self.SamplingMethod != 'user': ## Case I = polytype not arbitrary # Execute initialization to get the boundtuples @@ -88,7 +89,7 @@ class ExpDesigns: else: # Case II: # polytype arbitrary or Input values are directly prescribed by the user. - + # Generate the samples based on requested method if self.SamplingMethod == 'user': X = self.X @@ -105,7 +106,10 @@ class ExpDesigns: else: raise Exception('Unfortunately, for the prescribed inputs, the samepling method ' '%s is not valid.'%self.SamplingMethod) - + + # Naive approach: Fit a gaussian kernel to the provided data + self.JDist = st.gaussian_kde(self.Input_distributions) + return X def DistConstructor(self):