diff --git a/BayesValidRox/BayesInference/BayesInference.py b/BayesValidRox/BayesInference/BayesInference.py
index ec120c5e73fa1491f8984b5ed8d2f02bc3a79eb7..8c52958d320c8929efc684ddf26f0769597ddd49 100644
--- a/BayesValidRox/BayesInference/BayesInference.py
+++ b/BayesValidRox/BayesInference/BayesInference.py
@@ -41,7 +41,7 @@ class BayesInference:
         self.PCEStd = {}
         self.Discrepancy = None
         self.ReqOutputType = None
-        self.NrofSamples = None
+        self.NrofSamples = 100000
         self.Samples = None
         self.Samplesu = None
         self.MCMCnSteps = None
@@ -104,9 +104,9 @@ class BayesInference:
         meanPCEOutputs = {}
         stdPCEOutputs = {}
         univ_p_val = PCEModel.univ_basis_vals(Samples)
+
         
         for Outkey, ValuesDict in PCEModel.CoeffsDict.items():
-            
             PCEOutputs_mean = np.zeros((len(Samples), len(ValuesDict)))
             PCEOutputs_std = np.zeros((len(Samples), len(ValuesDict)))
             idx = 0
@@ -115,14 +115,15 @@ class BayesInference:
                 PSI_Val = PCEModel.PCE_create_Psi(PolynomialDegrees, univ_p_val)
                 
                 # Perdiction 
-                try: #with error bar
+                if PCEModel.RegMethod.lower() == 'ols': #without error bar
+                    coeffs = PCEModel.CoeffsDict[Outkey][Inkey]
+                    PCEOutputs_mean[:, idx] = np.dot(PSI_Val, coeffs)
+                    
+                else: #with error bar
                     clf_poly = PCEModel.clf_poly[Outkey][Inkey]
                     y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True)
                     PCEOutputs_mean[:, idx] = y_mean
                     PCEOutputs_std[:, idx] = y_std
-                except: #without error bar
-                    coeffs = PCEModel.CoeffsDict[Outkey][Inkey]
-                    PCEOutputs_mean[:, idx] = np.dot(PSI_Val, coeffs)
                 
                 if PCEModel.metaModel == 'PCEKriging':
                     gp = PCEModel.gp_poly[Outkey][Inkey]
@@ -132,13 +133,11 @@ class BayesInference:
                     
                 idx += 1
             
-            
             if PCEModel.index is None:
                 if PCEModel.DimRedMethod.lower() == 'pca':
                     PCA = PCEModel.pca[Outkey]
                     meanPCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_)
                     stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))
-                    #np.dot(PCEOutputs_std, PCA.components_)
                 else:
                     meanPCEOutputs[Outkey] = PCEOutputs_mean
                     stdPCEOutputs[Outkey] = PCEOutputs_std
@@ -173,8 +172,7 @@ class BayesInference:
         Model = self.PCEModel.ModelObj
         
         if Samples is None:
-            PCEModel = self.PCEModel
-            Samples = self.get_Sample(PCEModel)
+            Samples = self.get_Sample()
             self.Samples = Samples
         else:
             Samples = Samples
@@ -547,10 +545,6 @@ class BayesInference:
                 self.Samples = SamplesAllParameters
                 
             self.NrofSamples = self.Samples.shape[0]
-            NrofSamples = self.NrofSamples
-        else:
-            NrofSamples = self.NrofSamples
-        
         
         # ---------- Preparation of observation data ----------
         # Read observation data and perturb it if requested
@@ -619,57 +613,57 @@ class BayesInference:
                     Data[itrIdx] = data.flatten('F')
         
         
-        # -----------------------------------------------------
-        # ----- Loop over the perturbed observation data ------
-        # -----------------------------------------------------
-        # Initilize arrays
-        Likelihoods = np.zeros((NrofSamples,BootstrapItrNr))
-        BME_Corr =  np.zeros((BootstrapItrNr))
-        BME = np.zeros((BootstrapItrNr))
-        
-        for itrIdx, data in tqdm(enumerate(Data), ascii=True, desc ="Boostraping the BME calculations"):
+            # -----------------------------------------------------
+            # ----- Loop over the perturbed observation data ------
+            # -----------------------------------------------------
+            # Initilize arrays
+            Likelihoods = np.zeros((self.NrofSamples,BootstrapItrNr))
+            BME_Corr =  np.zeros((BootstrapItrNr))
+            BME = np.zeros((BootstrapItrNr))
             
-            # ---------------- Likelihood calculation ---------------- 
-            if self.emulator:
-                # Evaluate the PCEModel
-                self.meanPCEPriorPred, self.stdPCEPriorPred = self.eval_PCEmodel(Samples=self.Samples)
+            for itrIdx, data in tqdm(enumerate(Data), ascii=True, desc ="Boostraping the BME calculations"):
                 
-                # unknown sigma2
-                if optSigma == 'C':
-                    Likelihoods[:,itrIdx] = self.normpdfSigma2(self.meanPCEPriorPred, data, TotalSigma2)
-                else:
-                    # known sigma2
-                    Likelihoods[:,itrIdx] = self.normpdf(self.meanPCEPriorPred, data, TotalSigma2)
-    
-            else:
-                self.ModelPriorPred = self.eval_Model(Samples=self.Samples)
-                # unknown sigma2
-                if optSigma == 'C':
-                    Likelihoods[:,itrIdx] = self.normpdfSigma2(self.ModelPriorPred, data, TotalSigma2)
+                # ---------------- Likelihood calculation ---------------- 
+                if self.emulator:
+                    # Evaluate the PCEModel
+                    self.meanPCEPriorPred, self.stdPCEPriorPred = self.eval_PCEmodel(Samples=self.Samples)
+                    
+                    # unknown sigma2
+                    if optSigma == 'C':
+                        Likelihoods[:,itrIdx] = self.normpdfSigma2(self.meanPCEPriorPred, data, TotalSigma2)
+                    else:
+                        # known sigma2
+                        Likelihoods[:,itrIdx] = self.normpdf(self.meanPCEPriorPred, data, TotalSigma2)
+        
                 else:
-                    # known sigma2
-                    Likelihoods[:,itrIdx] = self.normpdf(self.ModelPriorPred, data, TotalSigma2)
-            
-            # ---------------- BME Calculations ----------------
-            # BME (log)
-            BME[itrIdx] = np.log(np.nanmean(np.exp(Likelihoods[:,itrIdx])))
+                    self.ModelPriorPred = self.eval_Model(Samples=self.Samples)
+                    # unknown sigma2
+                    if optSigma == 'C':
+                        Likelihoods[:,itrIdx] = self.normpdfSigma2(self.ModelPriorPred, data, TotalSigma2)
+                    else:
+                        # known sigma2
+                        Likelihoods[:,itrIdx] = self.normpdf(self.ModelPriorPred, data, TotalSigma2)
+                
+                # ---------------- BME Calculations ----------------
+                # BME (log)
+                BME[itrIdx] = np.log(np.nanmean(np.exp(Likelihoods[:,itrIdx])))
+                
+                # BME correction when using Emulator
+                # if self.emulator:
+                #     BME_Corr[itrIdx] = self.BME_Corr_Weight(data, sigma2)
+                   
+            # ---------------- Store BME, Likelihoods for all ----------------
+            # Likelihoods (Size: NrofSamples,BootstrapItrNr)
+            self.Likelihoods = Likelihoods
             
-            # BME correction when using Emulator
-            # if self.emulator:
-            #     BME_Corr[itrIdx] = self.BME_Corr_Weight(data, sigma2)
-               
-        # ---------------- Store BME, Likelihoods for all ----------------
-        # Likelihoods (Size: NrofSamples,BootstrapItrNr)
-        self.Likelihoods = Likelihoods
-        
-        # BME (log) (Size: 1,BootstrapItrNr)
-        self.BME = BME
-
-        # TODO: BMECorrFactor (log) (Size: 1,BootstrapItrNr)
-        #if self.emulator: self.BMECorrFactor = BME_Corr
-
-        # BME = BME + BMECorrFactor
-        if self.emulator: self.BME = self.BME #+ self.BMECorrFactor
+            # BME (log) (Size: 1,BootstrapItrNr)
+            self.BME = BME
+    
+            # TODO: BMECorrFactor (log) (Size: 1,BootstrapItrNr)
+            #if self.emulator: self.BMECorrFactor = BME_Corr
+    
+            # BME = BME + BMECorrFactor
+            if self.emulator: self.BME = self.BME #+ self.BMECorrFactor
         
         # ---------------- Parameter Bayesian inference ---------------- 
         if self.SamplingMethod.lower() == 'mcmc':
@@ -686,7 +680,7 @@ class BayesInference:
         
         # -------- Find MAP and run PCEModel and origModel --------
         # Compute the MAP
-        if self.MAP =='Mean':
+        if self.MAP.lower() =='mean':
             MAP_theta = self.Posterior_df.to_numpy().mean(axis=0).reshape((1,NofPa))
         else:
             MAP_theta = stats.mode(self.Posterior_df.to_numpy(),axis=0)[0]
@@ -715,24 +709,25 @@ class BayesInference:
         # -------- Posteior parameters -------- 
         parNames = [self.PCEModel.Inputs.Marginals[i].Name for i in range(NofPa)]
         figPosterior = corner.corner(self.Posterior_df.to_numpy(), labels=parNames,
-                           show_titles=True, title_fmt=self.Corner_title_fmt,
-                           title_kwargs={"fontsize": 14})
-        
-        # Extract the axes
-        axes = np.array(figPosterior.axes).reshape((NofPa, NofPa))
-        
-        # Loop over the diagonal
-        for i in range(NofPa):
-            ax = axes[i, i]
-            ax.axvline(MAP_theta[0,i], ls='--', color="r")
-        
-        # Loop over the histograms
-        for yi in range(NofPa):
-            for xi in range(yi):
-                ax = axes[yi, xi]
-                ax.axvline(MAP_theta[0,xi], ls='--', color="r")
-                ax.axhline(MAP_theta[0,yi], ls='--', color="r")
-                ax.plot(MAP_theta[0,xi], MAP_theta[0,yi], "sr")
+                                     quantiles=[0.15, 0.5, 0.85],show_titles=True,
+                                     title_fmt=self.Corner_title_fmt,
+                                     title_kwargs={"fontsize": 12})
+        
+        # # Extract the axes
+        # axes = np.array(figPosterior.axes).reshape((NofPa, NofPa))
+        
+        # # Loop over the diagonal
+        # for i in range(NofPa):
+        #     ax = axes[i, i]
+        #     ax.axvline(MAP_theta[0,i], ls='--', color="r")
+        
+        # # Loop over the histograms
+        # for yi in range(NofPa):
+        #     for xi in range(yi):
+        #         ax = axes[yi, xi]
+        #         ax.axvline(MAP_theta[0,xi], ls='--', color="r")
+        #         ax.axhline(MAP_theta[0,yi], ls='--', color="r")
+        #         ax.plot(MAP_theta[0,xi], MAP_theta[0,yi], "sr")
         
         figPosterior.set_size_inches((24,16)) 
         
diff --git a/BayesValidRox/BayesInference/MCMC.py b/BayesValidRox/BayesInference/MCMC.py
index 74a6190c87272534ec305e1c8e245e7823fafc7c..42e875bca9ab4ed44d0ecd60562911dae44e737e 100755
--- a/BayesValidRox/BayesInference/MCMC.py
+++ b/BayesValidRox/BayesInference/MCMC.py
@@ -13,7 +13,6 @@ from multiprocessing import Pool
 import scipy.stats as st
 from scipy.linalg import cholesky as chol
 import warnings
-import time
 
 class MCMC():
     """
@@ -49,7 +48,11 @@ class MCMC():
         # set theta near the maximum likelihood, with 
         np.random.seed(0)
         if self.initsamples is None:
-            initsamples = priorDist.sample(self.nwalkers).T
+            try:
+                initsamples = priorDist.sample(self.nwalkers).T
+            except:
+                # when aPCE selected - gaussian kernel distribution
+                initsamples = priorDist.resample(self.nwalkers).T
         else:
             # Pick samples based on a uniform dist between main and max of each dim
             initsamples = np.zeros((self.nwalkers, ndim))
@@ -109,8 +112,8 @@ class MCMC():
         
         for i in range(nsamples):
             if not self.check_ranges(theta[i], params_range):
-                logprior[i] = priorDist.pdf(theta[i])
-                
+                logprior[i] = np.log(priorDist.pdf(theta[i]))
+
         if nsamples == 1:
             return logprior[0]
         else:
@@ -129,10 +132,9 @@ class MCMC():
         else:
             # Evaluate the origModel
             meanPCEPriorPred = BayesOpts.eval_Model(theta)
-
+        
         return BayesOpts.normpdf(meanPCEPriorPred, Observation, TotalSigma2)
-    
-    
+        
     def log_posterior(self, theta, Observation, TotalSigma2):
         """
         Computes the posterior likelihood for the given parameterset.
@@ -152,6 +154,7 @@ class MCMC():
             DESCRIPTION.
 
         """
+        
         ndimTheta = theta.ndim
         nsamples = 1 if ndimTheta == 1 else theta.shape[0]
         
diff --git a/BayesValidRox/PostProcessing/PostProcessing.py b/BayesValidRox/PostProcessing/PostProcessing.py
index e9eae4e6c5fa37239b03de814f7a6691597ba4d8..776f7520baea9aa6b2ec427922c60bdfa300e89f 100644
--- a/BayesValidRox/PostProcessing/PostProcessing.py
+++ b/BayesValidRox/PostProcessing/PostProcessing.py
@@ -858,13 +858,12 @@ class PostProcessing:
             # Initialize the cell to store the names of the variables of the Sobol Idx.
             TotalVariance = np.zeros((NofMeasurements))
         
-        
             # Loop over all measurement points and calculate sobol indices
             for PointIdx in range(NofMeasurements): 
                 
                 # Extract the basis indices (alpha) and coefficients
                 PolynomialDegree = PCEModel.BasisDict[Output]['y_%s'%(PointIdx+1)]
-                
+
                 try:
                     clf_poly = PCEModel.clf_poly[Output]['y_%s'%(PointIdx+1)]
                     PCECoeffs = clf_poly.coef_
@@ -873,7 +872,7 @@ class PostProcessing:
                 
                 # Compute total variance
                 TotalVariance[PointIdx] = np.sum(np.square(PCECoeffs[1:]))
-                
+
                 nzidx = np.where(PCECoeffs != 0)[0]
                 #  Set all the Sobol indices equal to zero if the presence of a null output.
                 if len(nzidx) == 0: 
@@ -902,7 +901,7 @@ class PostProcessing:
                         sum_ind = nzidx[idx]
                         
                         total_sobol_array[ParIdx,PointIdx] = np.sum(np.square(PCECoeffs[sum_ind])) / TotalVariance[PointIdx]
-
+                
                 # ----- if PCA selected: Compute covariance # -----
                 if PCEModel.DimRedMethod.lower() == 'pca':
                     cov_Z_p_q = np.zeros((NofPa))
@@ -926,8 +925,7 @@ class PostProcessing:
                                 cov_Z_p_q[ParIdx] = np.sum(PCECoeffs[sum_ind] * nextPCECoeffs[sum_ind])
                             except:
                                 cov_Z_p_q[ParIdx] = 0.0
-                        
-                            
+                                
             # Compute the sobol indices according to Ref. 2
             if PCEModel.DimRedMethod.lower() == 'pca':
                 ntMeasurements = PCEModel.ExpDesign.Y[Output].shape[1]
diff --git a/BayesValidRox/surrogate_models/ExpDesigns.py b/BayesValidRox/surrogate_models/ExpDesigns.py
index 53a21c9c7fd4473cdfd1aacf409adc5527d771b3..3707a5485f9a510bbd0379e4790daaec46f9912a 100644
--- a/BayesValidRox/surrogate_models/ExpDesigns.py
+++ b/BayesValidRox/surrogate_models/ExpDesigns.py
@@ -10,6 +10,7 @@ import numpy as np
 import math
 import itertools
 import chaospy
+import scipy.stats as st
 from tqdm import tqdm
 
 from .aPoly_Construction import aPoly_Construction
@@ -64,7 +65,7 @@ class ExpDesigns:
         NofPa = len(Inputs.Marginals) 
         self.SamplingMethod = SamplingMethod
         NrSamples = int(NrSamples)
-        
+        self.arbitrary = False if len(Inputs.Marginals[0].InputValues) == 0 else True
         # Get the bounds if InputValues are directly defined by user:
         if Inputs.Marginals[0].Parameters is None:
             for i in range(NofPa):
@@ -75,7 +76,7 @@ class ExpDesigns:
         self.JDist, self.Polytypes = self.DistConstructor()
         
         ## Sample the distribution of parameters
-        if len(Inputs.Marginals[0].InputValues) == 0 and self.SamplingMethod != 'user':
+        if not self.arbitrary and self.SamplingMethod != 'user':
             ## Case I = polytype not arbitrary
             
             # Execute initialization to get the boundtuples
@@ -88,7 +89,7 @@ class ExpDesigns:
         else:
             # Case II: 
             # polytype arbitrary or Input values are directly prescribed by the user.
-                    
+
             # Generate the samples based on requested method
             if self.SamplingMethod == 'user':
                 X = self.X
@@ -105,7 +106,10 @@ class ExpDesigns:
             else:
                 raise Exception('Unfortunately, for the prescribed inputs, the samepling method '
                                  '%s is not valid.'%self.SamplingMethod)
-        
+            
+            # Naive approach: Fit a gaussian kernel to the provided data
+            self.JDist = st.gaussian_kde(self.Input_distributions)
+            
         return X
     
     def DistConstructor(self):