diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py
index e09904f48469474528a56a7096b103f2b84db2f5..62230a3784069329ccf8c2039476e6ba9c5e05d4 100644
--- a/src/bayesvalidrox/post_processing/post_processing.py
+++ b/src/bayesvalidrox/post_processing/post_processing.py
@@ -17,12 +17,11 @@ from matplotlib.patches import Patch
 plt.style.use(os.path.join(os.path.split(__file__)[0],
                            '../', 'bayesvalidrox.mplstyle'))
 
-
 class PostProcessing:
     """
     This class provides many helper functions to post-process the trained
     meta-model.
-
+    
     Parameters
     ----------
     engine : obj
@@ -30,14 +29,14 @@ class PostProcessing:
     name : string
         Name of the PostProcessing object to be used for saving the generated files.
         The default is 'calib'.
-    out_dir : string
-        Output directory in which the images are placed. The default is ''.
-
+        
     """
 
     def __init__(self, engine, name='calib', out_dir=''):
         self.engine = engine
         self.name = name
+        
+        
 
         self.out_dir = f'./{out_dir}/Outputs_PostProcessing_{self.name}/'
 
@@ -59,7 +58,7 @@ class PostProcessing:
         self.pce_out_std = None
 
     # -------------------------------------------------------------------------
-    def plot_moments(self, xlabel: str = 'Time [s]', plot_type: str = None):
+    def plot_moments(self, xlabel:str='Time [s]', plot_type:str=None):
         """
         Plots the moments in a pdf format in the directory
         `Outputs_PostProcessing`.
@@ -546,7 +545,6 @@ class PostProcessing:
         ------
         AttributeError
             MetaModel in given Engine needs to be of type 'pce' or 'apce'.
-
         Returns
         -------
         sobol_cell: dict
@@ -556,21 +554,12 @@ class PostProcessing:
 
         """
         # This function currently only supports PCE/aPCE
-<<<<<<< HEAD
         metamod = self.engine.MetaModel
         if not hasattr(metamod, 'meta_model_type'):
             raise AttributeError('Sobol indices only support PCE-type models!')
         if metamod.meta_model_type.lower() not in ['pce', 'apce']:
             raise AttributeError('Sobol indices only support PCE-type models!')
 
-=======
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
-            raise AttributeError('Sobol indices only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
-            raise AttributeError('Sobol indices only support PCE-type models!')
-            
->>>>>>> 55b69984 ([tests] Add some PCE PostProcessing tests)
         # Extract the necessary variables
         basis_dict = metamod._basis_dict
         coeffs_dict = metamod._coeffs_dict
@@ -849,11 +838,8 @@ class PostProcessing:
         return self.total_sobol
 
     # -------------------------------------------------------------------------
-<<<<<<< HEAD
-    def check_reg_quality(self, n_samples: int = 1000, samples=None, outputs: dict = None) -> None:
-=======
-    def check_reg_quality(self, n_samples=1000, samples=None, outputs=None):
->>>>>>> 4281a0b3 ([fix] Add output-option to check_reg_quality)
+    def check_reg_quality(self, n_samples:int=1000, samples=None, outputs:dict=None)->None:
+
         """
         Checks the quality of the metamodel for single output models based on:
         https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
@@ -881,11 +867,7 @@ class PostProcessing:
         # Evaluate the original and the surrogate model
         if outputs is None:
             y_val = self._eval_model(samples, key_str='valid')
-<<<<<<< HEAD
         else:
-=======
-        else: 
->>>>>>> 4281a0b3 ([fix] Add output-option to check_reg_quality)
             y_val = outputs
         y_pce_val, _ = self.engine.eval_metamodel(samples=samples)
 
@@ -977,7 +959,6 @@ class PostProcessing:
             plt.close()
 
     # -------------------------------------------------------------------------
-<<<<<<< HEAD
     def plot_metamodel_3d(self, n_samples=10):
         """
         Visualize the results of a PCE MetaModel as a 3D surface over two input 
@@ -992,18 +973,6 @@ class PostProcessing:
         ------
         AttributeError
             This function is only applicable if the MetaModel input dimension is 2.
-=======
-    def eval_pce_model_3d(self):
-        # This function currently only supports PCE/aPCE
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
-            raise AttributeError('This evaluation only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
-            raise AttributeError('This evaluation only support PCE-type models!')
-
-        self.n_samples = 1000
-        n_samples = self.n_samples
->>>>>>> 55b69984 ([tests] Add some PCE PostProcessing tests)
 
         Returns
         -------
@@ -1098,7 +1067,6 @@ class PostProcessing:
 
         """
         # This function currently only supports PCE/aPCE
-<<<<<<< HEAD
         metamod = self.engine.MetaModel
         if not hasattr(metamod, 'meta_model_type'):
             raise AttributeError(
@@ -1106,14 +1074,6 @@ class PostProcessing:
         if metamod.meta_model_type.lower() not in ['pce', 'apce']:
             raise AttributeError(
                 'This evaluation only support PCE-type models!')
-=======
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
-            raise AttributeError('This evaluation only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
-            raise AttributeError('This evaluation only support PCE-type models!')
-
->>>>>>> 55b69984 ([tests] Add some PCE PostProcessing tests)
 
         # get the samples
         y_pce_val = self.pce_out_mean
@@ -1188,7 +1148,6 @@ class PostProcessing:
 
         """
         # This function currently only supports PCE/aPCE
-<<<<<<< HEAD
         metamod = self.engine.MetaModel
         if not hasattr(metamod, 'meta_model_type'):
             raise AttributeError(
@@ -1196,17 +1155,6 @@ class PostProcessing:
         if metamod.meta_model_type.lower() not in ['pce', 'apce']:
             raise AttributeError(
                 'This evaluation only support PCE-type models!')
-=======
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
-            raise AttributeError('This evaluation only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
-            raise AttributeError('This evaluation only support PCE-type models!')
-
-        newpath = f'Outputs_PostProcessing_{self.name}/'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
->>>>>>> 55b69984 ([tests] Add some PCE PostProcessing tests)
 
         # List of markers and colors
         color = cycle((['b', 'g', 'r', 'y', 'k']))