diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py index 10a27595a2ea0ac6619de25078094a94b47a3125..2fc4c84de15125a3d16910d916ba2fc7d78db98b 100644 --- a/src/bayesvalidrox/post_processing/post_processing.py +++ b/src/bayesvalidrox/post_processing/post_processing.py @@ -846,13 +846,10 @@ class PostProcessing: # ------------------------------------------------------------------------- def check_reg_quality(self, n_samples:int=1000, samples=None, outputs:dict=None)->None: - """ - """ """ Checks the quality of the metamodel for single output models based on: https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685 - Parameters ---------- n_samples : int, optional @@ -863,6 +860,10 @@ class PostProcessing: Output dictionary with model outputs for all given output types in `Model.Output.names`. The default is None. + Return + ------ + None + """ if samples is None: self.n_samples = n_samples @@ -871,7 +872,10 @@ class PostProcessing: self.n_samples = samples.shape[0] # Evaluate the original and the surrogate model - y_val = self._eval_model(samples, key_str='valid') + if outputs is None: + y_val = self._eval_model(samples, key_str='valid') + else: + y_val = outputs y_pce_val, _ = self.engine.eval_metamodel(samples=samples) # Open a pdf for the plots