diff --git a/Outputs_Bayes_None_Calib/emcee_sampler.h5 b/Outputs_Bayes_None_Calib/emcee_sampler.h5 index fb19ab42bc20ce5c07901fed541bc29760bfc3d9..81f2373f9817399ab2c7fb908ad03de3f94a7d88 100644 Binary files a/Outputs_Bayes_None_Calib/emcee_sampler.h5 and b/Outputs_Bayes_None_Calib/emcee_sampler.h5 differ diff --git a/src/bayesvalidrox/surrogate_models/sequential_design.py b/src/bayesvalidrox/surrogate_models/sequential_design.py index 2885331fd04f227963ca78edcd1afc8b1ef4d88d..f4669a7f29f0cefefdd4ae18f2ea5f0eab0b2317 100644 --- a/src/bayesvalidrox/surrogate_models/sequential_design.py +++ b/src/bayesvalidrox/surrogate_models/sequential_design.py @@ -371,20 +371,13 @@ class SequentialDesign: # Create a sample pool for rejection sampling # ToDo: remove from here, add only to BayesOptDesign option - # TODO: reduced for testing MCsize = 15000 X_MC = self.ExpDesign.generate_samples(MCsize, 'random') - # ToDo: Get samples from the "do_exploration" - #candidates = self.ExpDesign.generate_samples( - # n_candidates, 'latin_hypercube') - # Split the candidates in groups for multiprocessing split_cand = np.array_split( allCandidates, n_cand_groups, axis=0 ) - # print(candidates) - # print(split_cand) if self.parallel: results = Parallel(n_jobs=-1, backend='multiprocessing')( delayed(self.run_util_func)( @@ -411,52 +404,12 @@ class SequentialDesign: U_J_d = np.mean(U_J_d.reshape(-1, n_candidates), axis=1) # Normalize U_J_d - # ToDO: Check if this is working for the case where the util_func should be minimized (e.g. IE) # norm_U_J_D = U_J_d / np.nansum(np.abs(U_J_d)) # Possible solution norm_scoreExploitation = U_J_d / np.sum(U_J_d) else: norm_scoreExploitation = np.zeros((len(scoreExploration))) - # ------- Calculate Total score ------- - # ToDo: This should be outside of the exploration/exploitation if/else part - # ------- Trade off between EXPLORATION & EXPLOITATION ------- - # Accumulate the samples - # ToDo: Stop assuming 2 sets of samples (should only be 1) - #finalCandidates = np.concatenate((allCandidates, candidates), axis=0) # ToDo: Remove - finalCandidates = allCandidates#np.unique(finalCandidates, axis=0) # ToDo: Remove - - # Calculations take into account both exploration and exploitation - # samples without duplicates - #totalScore = np.zeros(finalCandidates.shape[0]) - # self.totalScore = totalScore - - # ToDo: Simplify (remove loop) for only one set of samples - # final_weights = explore_score*explore_weights + exploit_score*exploit_weight - #for cand_idx in range(finalCandidates.shape[0]): - # # find candidate indices - # idx1 = np.where(allCandidates == finalCandidates[cand_idx])[0] - # idx2 = np.where(candidates == finalCandidates[cand_idx])[0]# - - # exploration - # if idx1.shape[0] > 0: - # idx1 = idx1[0] - # totalScore[cand_idx] += explore_w * scoreExploration[idx1] - - # # exploitation - # if idx2.shape[0] > 0: - # idx2 = idx2[0] - # totalScore[cand_idx] += exploit_w * norm_U_J_d[idx2] - - # Total score - print('Shapes of components of the weights') - print(f'Exploration: {explore_w} * {scoreExploration.shape}') - print(f'Exploitation: {exploit_w} * {norm_scoreExploitation.shape}') - # TODO: for the combination none, voronoi, BOD+MI the exploration scores contain 10*more values than the exploitation scores - # This seems to be an issue resulting from the voronoi sampling, not BODMI - - totalScore = exploit_w * norm_scoreExploitation + explore_w * scoreExploration - # temp: Plot # dim = self.ExpDesign.X.shape[1] # if dim == 2: @@ -478,8 +431,6 @@ class SequentialDesign: # Generate candidate samples from Exploration class nMeasurement = old_EDY[OutputNames[0]].shape[1] - # print(UtilMethod) - # Find sensitive region if UtilMethod.lower() == 'loocv': # TODO: why is this not inside the VarOptDesign function? @@ -496,8 +447,6 @@ class SequentialDesign: elif UtilMethod in ['EIGF', 'ALM']: # ToDo: Check the methods it actually can receive (ALC is missing from conditional list and code) # ----- All other in ['EIGF', 'ALM'] ----- - # Initilize the ExploitScore array - # ExploitScore = np.zeros((len(old_EDX), len(OutputNames))) # Split the candidates in groups for multiprocessing if explore_method.lower() != 'voronoi': @@ -538,69 +487,40 @@ class SequentialDesign: else: raise NameError('The requested utility function is not ' 'available.') - - # print("ExploitScore:\n", ExploitScore) - - # find an optimal point subset to add to the initial design by - # maximization of the utility score and taking care of NaN values - # Total score - # Normalize U_J_d - # ToDo: MOve this out of the exploitation if/else part (same as with Bayesian approaches) - norm_scoreExploitation = ExploitScore / np.sum(ExploitScore) - totalScore = exploit_w * norm_scoreExploitation + explore_w * scoreExploration - + + # Total score - Normalize U_J_d + norm_scoreExploitation = ExploitScore / np.sum(ExploitScore) opt_type = 'maximization' - #temp = totalScore.copy() - #sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1] - #bestIdx = sorted_idxtotalScore[:n_new_samples] - - #Xnew = np.zeros((n_new_samples, ndim)) - #if explore_method.lower() != 'voronoi': - # Xnew = allCandidates[bestIdx] - #else: - # for i, idx in enumerate(bestIdx.flatten()): - # X_can = explore.closest_points[idx] - # plotter(self.ExpDesign.X, X_can, explore_method, - # scoreExploration=None) - - # Calculate the maxmin score for the region of interest - # newSamples, maxminScore = explore.get_mc_samples(X_can) - - # select the requested number of samples - # Xnew[i] = newSamples[np.argmax(maxminScore)] - - # ToDo: For these 2 last methods, we should find better ways elif exploit_method.lower() == 'alphabetic': # ToDo: Check function to see what it does for scores/how it chooses points, so it gives as an output the # scores. See how it works with exploration_scores. - # Todo: Check if it is a minimization or maximization. (We think it is minimization) - # TODO: Move the final accumulation of scores outside of this function to match the other methods + # TODO: Rethink the final accumulation of scores for this function + # Should this be reworked to maximization as well? # ------- EXPLOITATION: ALPHABETIC ------- - scoreExploitation = self.util_AlphOptDesign(allCandidates, var) - totalScore = exploit_w * scoreExploitation + explore_w * scoreExploration + norm_scoreExploitation = self.util_AlphOptDesign(allCandidates, var) opt_type = 'minimization' elif exploit_method.lower() == 'space-filling': - # ToDo: Set exploitation score to 0, so we can do tradeoff oustide of if/else # ------- EXPLOITATION: SPACE-FILLING ------- - scoreExploitation = scoreExploration - totalScore = exploit_w * scoreExploitation + explore_w * scoreExploration + norm_scoreExploitation = scoreExploration + exploit_w = 0 opt_type = 'maximization' - - # ------- Select the best candidate ------- - # find an optimal point subset to add to the initial design by - # maximization of the utility score and taking care of NaN values - #temp = totalScore.copy() - #temp[np.isnan(totalScore)] = -np.inf - #sorted_idxtotalScore = np.argsort(temp)[::-1] - - # select the requested number of samples - #Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]] - + else: raise NameError('The requested design method is not available.') + # Accumulate all candidates and scores + # TODO: recheck if this line holds true for all combinations of methods + # TODO: for the combination none, voronoi, BOD+MI the exploration scores contain 10*more values than the exploitation scores + # This seems to be an issue resulting from the voronoi sampling, not BODMI + #print('Shapes of components of the weights') + #print(f'Exploration: {explore_w} * {scoreExploration.shape}') + #print(f'Exploitation: {exploit_w} * {norm_scoreExploitation.shape}') + finalCandidates = allCandidates + totalScore = exploit_w * norm_scoreExploitation + explore_w * scoreExploration + + # Choose the new training samples # If the total weights should be maximized if opt_type == 'maximization': @@ -630,12 +550,12 @@ class SequentialDesign: # If the total weights should be maximized elif opt_type == 'minimization': - # find an optimal point subset to add to the initial design - # by minimization of the Phi - sorted_idxtotalScore = np.argsort(totalScore) + # find an optimal point subset to add to the initial design + # by minimization of the Phi + sorted_idxtotalScore = np.argsort(totalScore) - # select the requested number of samples - Xnew = finalCandidates[sorted_idxtotalScore[:n_new_samples]] + # select the requested number of samples + Xnew = finalCandidates[sorted_idxtotalScore[:n_new_samples]] print("\n")