From 2d9aa47712698e380cb2bbb7abe0092c61871c15 Mon Sep 17 00:00:00 2001 From: faridm69 <faridmohammadi69@gmail.com> Date: Wed, 23 Sep 2020 18:26:22 +0200 Subject: [PATCH] [surrogate][GPE] modified the kernels. --- .../surrogate_models/surrogate_models.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/BayesValidRox/surrogate_models/surrogate_models.py b/BayesValidRox/surrogate_models/surrogate_models.py index 1748f3090..636688190 100644 --- a/BayesValidRox/surrogate_models/surrogate_models.py +++ b/BayesValidRox/surrogate_models/surrogate_models.py @@ -866,10 +866,10 @@ class Metamodel: def PCATransformation(self, Output): # Transform via Principal Component Analysis - from sklearn.decomposition import PCA as sklearnPCA + from sklearn.decomposition import IncrementalPCA as sklearnPCA # from sklearn.decomposition import TruncatedSVD as TruncatedSVD n_samples, n_features = Output.shape - covar_matrix = sklearnPCA(n_components=None, svd_solver='full') + covar_matrix = sklearnPCA(n_components=None)#, svd_solver='full') covar_matrix.fit(Output) var = np.cumsum(np.round(covar_matrix.explained_variance_ratio_, decimals=5)*100) try: @@ -879,7 +879,7 @@ class Metamodel: nComponents = min(n_samples, n_features, selected_n_components) - pca = sklearnPCA(n_components=nComponents, svd_solver='full') + pca = sklearnPCA(n_components=nComponents)#, svd_solver='full') OutputMatrix = pca.fit_transform(Output) return pca, OutputMatrix @@ -893,10 +893,10 @@ class Metamodel: ConstantKernel) - kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-5, 1e5)), - 1.0 * RationalQuadratic(length_scale=0.2, alpha=1.0), + kernels = [np.var(y) * RBF(length_scale=1.0, length_scale_bounds=(1e-5, 1e5)), + np.var(y) * RationalQuadratic(length_scale=0.2, alpha=1.0), # 1.0 * ExpSineSquared(length_scale=1.0, length_scale_bounds=(1e-05, 1e05)), - 1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-5, 1e5), + np.var(y) * Matern(length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5)] if autoSelect:# Automatic selection of the kernel @@ -914,7 +914,7 @@ class Metamodel: gp = gp[np.argmax(BME)] else: - gp = GaussianProcessRegressor(kernel=kernels[0], n_restarts_optimizer=3, + gp = GaussianProcessRegressor(kernel=kernels[-1], n_restarts_optimizer=3, normalize_y=True) gp.fit(X, y) @@ -2186,7 +2186,7 @@ class Metamodel: # TODO: Plot PCE vs Components # PCA = self.pca[Outkey] - # self.plot_components(PCA, Y, PCEOutputs_mean, PCEOutputs_std, plotname='PCA_PCE_'+Outkey) + # self.plot_components(PCA, Y[Outkey], PCEOutputs_mean, PCEOutputs_std, plotname='PCA_PCE_'+Outkey) if self.index is None: if self.DimRedMethod.lower() == 'pca': -- GitLab