diff --git a/BayesValidRox/PostProcessing/PostProcessing.py b/BayesValidRox/PostProcessing/PostProcessing.py index 391d9a9c1b71f23280c6b62aea1b33301995621a..42bf97780c965de5b80e2da73b06ce056b028fd6 100644 --- a/BayesValidRox/PostProcessing/PostProcessing.py +++ b/BayesValidRox/PostProcessing/PostProcessing.py @@ -965,8 +965,10 @@ class PostProcessing: self.sobol_cell[Output] = sobol_array self.total_sobol[Output] = total_sobol - - + else: + self.sobol_cell[Output] = sobol_cell_array + self.total_sobol[Output] = total_sobol_array + # ---------------- Plot ----------------------- fig = plt.figure() parNames = [PCEModel.Inputs.Marginals[i].Name for i in range(NofPa)] diff --git a/BayesValidRox/PyLink/PyLinkForwardModel.py b/BayesValidRox/PyLink/PyLinkForwardModel.py index ed6f559d8e56abf06ca7cd3279be42b61b280867..e6201eb27274b7a263d583117421654053059d7e 100644 --- a/BayesValidRox/PyLink/PyLinkForwardModel.py +++ b/BayesValidRox/PyLink/PyLinkForwardModel.py @@ -328,7 +328,7 @@ class PyLinkForwardModel: for path in FilePaths: shutil.rmtree(path) print("\n") - print(dir_name+'.zip file is created successfully!') + print(dir_name+'.zip file is created successfully!\n') return diff --git a/BayesValidRox/surrogate_models/surrogate_models.py b/BayesValidRox/surrogate_models/surrogate_models.py index ab889fea44a0886364b06eb0573df9776b7d4a05..b357e53e3d6519bd97de651749bf22e53d0aa8ac 100644 --- a/BayesValidRox/surrogate_models/surrogate_models.py +++ b/BayesValidRox/surrogate_models/surrogate_models.py @@ -498,10 +498,12 @@ class aPCE: lambda_1=Lambda, lambda_2=Lambda) elif RegMethod == 'ARD': - # clf_poly = ARDRegression(fit_intercept = False,compute_score=True, - # n_iter=1000, tol= 0.001) + clf_poly = ARDRegression(fit_intercept=False,compute_score=compute_score, + n_iter=1000, tol= 0.001) # alpha_1=1e-6, alpha_2=1e-6, # lambda_1=Lambda, lambda_2=Lambda) + + elif RegMethod == 'FastARD': clf_poly = RegressionFastARD(start=startBasisIndices,fit_intercept=False,compute_score=compute_score, tol= 1e-3) @@ -902,20 +904,21 @@ class aPCE: """ - # ---- Experimental Design ------ # Get the collocation points to run the forward model self.Exe_ExpDesign(Model) CollocationPoints = self.OptimalCollocationPointsBase OutputDict = self.ModelOutputDict.copy() + # Initialize the nested dictionaries + self.CoeffsDict= self.AutoVivification() + self.BasisDict = self.AutoVivification() + self.ScoresDict = self.AutoVivification() + self.clf_poly = self.AutoVivification() + self.gp_poly = self.AutoVivification() + self.pca = self.AutoVivification() + self.LCerror = self.AutoVivification() + if self.ExpDesignFlag != 'sequential': - self.CoeffsDict= self.AutoVivification() - self.BasisDict = self.AutoVivification() - self.ScoresDict = self.AutoVivification() - self.clf_poly = self.AutoVivification() - self.gp_poly = self.AutoVivification() - self.pca = self.AutoVivification() - self.LCerror = self.AutoVivification() self.allBasisIndices = self.AutoVivification() # Read observations or MCReference @@ -939,7 +942,7 @@ class aPCE: M_uptoMax = lambda maxDeg: np.array([math.factorial(ndim+d)//(math.factorial(ndim)*math.factorial(d)) for d in range(1,maxDeg+1)]) deg = range(1,maxDeg+1)[np.argmin(abs(M_uptoMax(maxDeg)-nSamples*ndim*d))] self.q = np.array(self.q) if not np.isscalar(self.q) else np.array([self.q]) - + if deg not in self.DegreeArray: self.allBasisIndices = self.AutoVivification() self.DegreeArray = np.arange(self.MinPceDegree,deg+1) @@ -947,7 +950,7 @@ class aPCE: for qidx, q in enumerate(self.q): # Generate the polynomial basis indices self.allBasisIndices[str(deg)][str(q)] = self.PolyBasisIndices(degree=deg, q=q) - + # Evaluate the univariate polynomials on ExpDesign if self.RegMethod != 'GPE': @@ -1431,7 +1434,7 @@ class aPCE: return Subdomains #-------------------------------------------------------------------------------------------------------- - def Utility_runner(self, method, Model, allCandidates,index,X_MC=None, sigma2Dict=None, var=None): + def Utility_runner(self, method, Model, allCandidates,index, sigma2Dict=None, var=None, X_MC=None): if method == 'VarOptDesign': U_J_d = self.util_VarBasedDesign(allCandidates, index, var) @@ -1698,7 +1701,7 @@ class aPCE: # Split the candidates in groups for multiprocessing split_allCandidates = np.array_split(allCandidates, NrofCandGroups, axis=0) - args = [(ExploitMethod, Model, split_allCandidates[i], i,X_MC, sigma2Dict , var) for i in range(NrofCandGroups)] + args = [(ExploitMethod, Model, split_allCandidates[i], i, sigma2Dict , var, X_MC) for i in range(NrofCandGroups)] # With Pool.starmap_async() results = pool.starmap_async(self.Utility_runner, args).get() diff --git a/BayesValidRox/tests/Co2BenchmarkTest/Test_CO2Benchmark.py b/BayesValidRox/tests/Co2BenchmarkTest/Test_CO2Benchmark.py old mode 100644 new mode 100755 index 0b7dd91a2d9c5730191f768e74dc5aad9f7b6e25..1eb4684e8e8dfd57b07e393a9342076c308975f5 --- a/BayesValidRox/tests/Co2BenchmarkTest/Test_CO2Benchmark.py +++ b/BayesValidRox/tests/Co2BenchmarkTest/Test_CO2Benchmark.py @@ -115,6 +115,7 @@ if __name__ == "__main__": # 5)SGDRegressor: Stochastic gradient descent learning MetaModelOpts.metaModel = 'PCEKriging' MetaModelOpts.RegMethod = 'ARD' + MetaModelOpts.DimRedMethod = 'PCA' # Print summary of the regression results # MetaModelOpts.DisplayFlag = True @@ -126,8 +127,8 @@ if __name__ == "__main__": MetaModelOpts.ExpDesign.MCSize = 10000 # One-shot (normal) or Sequential Adaptive (sequential) Design - MetaModelOpts.ExpDesign.Method = 'sequential' - initNSamples = 10 + MetaModelOpts.ExpDesign.Method = 'normal' + initNSamples = 5 MetaModelOpts.ExpDesign.NrSamples = initNSamples # Sampling methods @@ -335,4 +336,4 @@ if __name__ == "__main__": # Plot original posteriors posteriorPlot(origPosterior, theta_true, parNames, 'origPosterior') - \ No newline at end of file +