diff --git a/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py b/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py index 3d09b8ddcc5c8d7fad79f472cd577cd4c6fa7df3..b6720694b50c5c42649d8e9adf6dabfe5f88a8e1 100755 --- a/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py +++ b/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py @@ -117,7 +117,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm Inputs.Marginals[0].InputValues = stats.uniform(loc=5.0e-04, scale=1.5e-03-5.0e-04).rvs(size=MCSize) Inputs.addMarginals() #TransmissibilityTotal '$g_{t,}$' - Inputs.Marginals[1].Name = '$g_{t}$' # [1.0e-7, 1.0e-05] + Inputs.Marginals[1].Name = '$g_{ij}$' # [1.0e-7, 1.0e-05] Inputs.Marginals[1].InputValues = stats.uniform(loc=1e-7, scale=1e-5-1e-7).rvs(size=MCSize) # Inputs.addMarginals() #TransmissibilityThroat '$g_{t,ij}$' @@ -377,7 +377,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm # Plot posterior predictive postPredictiveplot(PCEModel.ModelObj.Name, errorPerc, averaging, inletLoc=inletLoc, case='Calib', bins=20) - return BayesCalib + #===================================================== #================== VALIDATION ===================== #===================================================== @@ -386,14 +386,18 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm ValidInputs.addMarginals() #VyMaxTop ValidInputs.Marginals[0].Name = '$V^{top}$' ValidInputs.Marginals[0].InputValues = BayesCalib.Posterior_df['$V^{top}$'] + + ValidInputs.addMarginals() #TransmissibilityTotal + ValidInputs.Marginals[1].Name = '$g_{ij}$' + ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{ij}$'] + + # ValidInputs.addMarginals() #TransmissibilityThroat + # ValidInputs.Marginals[1].Name = '$g_{t,ij}$' + # ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{t,ij}$'] - ValidInputs.addMarginals() #TransmissibilityThroat - ValidInputs.Marginals[1].Name = '$g_{t,ij}$' - ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{t,ij}$'] - - ValidInputs.addMarginals() #TransmissibilityHalfPore - ValidInputs.Marginals[2].Name = '$g_{p,i}$' - ValidInputs.Marginals[2].InputValues = BayesCalib.Posterior_df['$g_{p,i}$'] + # ValidInputs.addMarginals() #TransmissibilityHalfPore + # ValidInputs.Marginals[2].Name = '$g_{p,i}$' + # ValidInputs.Marginals[2].InputValues = BayesCalib.Posterior_df['$g_{p,i}$'] ValidInputs.addMarginals() ValidInputs.Marginals[3].Name = '$\\beta_{pore}$' @@ -597,7 +601,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm # nTotalSamples = 200 #100 Total No. of orig. Model runs for surrogate training # nBootstrapItr = 1000 # No. of bootstraping iterations for Bayesian analysis # BootstrapNoise = 0.005 # Noise amount for bootstraping in Bayesian analysis -perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_topInflow.csv',delimiter=',') +# perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_topInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_leftInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_topInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_leftInflow.csv',delimiter=',')