From 3eac27299f55405f55cae81013427531a9c6609b Mon Sep 17 00:00:00 2001 From: Farid Mohammadi <farid.mohammadi@iws.uni-stuttgart.de> Date: Wed, 25 May 2022 11:44:54 +0200 Subject: [PATCH] [examples][analytical] adapt comments/descriptions to the newly implemented utilities. --- .../test_analytical_function.py | 25 ++++++++++--------- 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/examples/analytical_function/test_analytical_function.py b/examples/analytical_function/test_analytical_function.py index 2acf4101b..fc781751d 100755 --- a/examples/analytical_function/test_analytical_function.py +++ b/examples/analytical_function/test_analytical_function.py @@ -93,7 +93,7 @@ if __name__ == "__main__": # Select if you want to preserve the spatial/temporal depencencies MetaModelOpts.dim_red_method = 'PCA' # MetaModelOpts.var_pca_threshold = 99.999 - MetaModelOpts.n_pca_components = 3 + # MetaModelOpts.n_pca_components = 10 #3, 10 # Select your metamodel method # 1) PCE (Polynomial Chaos Expansion) 2) aPCE (arbitrary PCE) @@ -132,7 +132,7 @@ if __name__ == "__main__": # One-shot (normal) or Sequential Adaptive (sequential) Design MetaModelOpts.ExpDesign.method = 'sequential' - MetaModelOpts.ExpDesign.n_init_samples = 5*ndim + MetaModelOpts.ExpDesign.n_init_samples = ndim # Sampling methods # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley 6) korobov @@ -147,12 +147,12 @@ if __name__ == "__main__": # ------------------------------------------------ # Set the sampling parameters MetaModelOpts.ExpDesign.n_new_samples = 1 - MetaModelOpts.ExpDesign.n_max_samples = 75 # 150 + MetaModelOpts.ExpDesign.n_max_samples = 50 # 150 MetaModelOpts.ExpDesign.mod_LOO_threshold = 1e-16 MetaModelOpts.adapt_verbose = True # 1) None 2) 'equal' 3)'epsilon-decreasing' 4) 'adaptive' - MetaModelOpts.ExpDesign.tradeoff_scheme = 'epsilon-decreasing' + MetaModelOpts.ExpDesign.tradeoff_scheme = 'adaptive' # MetaModelOpts.ExpDesign.n_replication = 20 # -------- Exploration ------ # 1)'Voronoi' 2)'random' 3)'latin_hypercube' 4)'LOOCV' 5)'dual annealing' @@ -162,23 +162,24 @@ if __name__ == "__main__": MetaModelOpts.ExpDesign.max_func_itr = 100 # Use when 'Voronoi' or 'random' or 'latin_hypercube' chosen - MetaModelOpts.ExpDesign.n_canddidate = 10000 # 5000(vornoi) + MetaModelOpts.ExpDesign.n_canddidate = 5000 MetaModelOpts.ExpDesign.n_cand_groups = 4 # -------- Exploitation ------ # 1)'BayesOptDesign' 2)'BayesActDesign' 3)'VarOptDesign' 4)'alphabetic' # 5)'Space-filling' - MetaModelOpts.ExpDesign.exploit_method = 'BayesOptDesign' + MetaModelOpts.ExpDesign.exploit_method = 'VarOptDesign' # BayesOptDesign -> when data is available - # 1)DKL (Kullback-Leibler Divergence) 2)DPP (D-Posterior-percision) - # 3)APP (A-Posterior-percision) # ['DKL', 'BME', 'infEntropy'] - MetaModelOpts.ExpDesign.util_func = 'DKL' #['DKL', 'BME', 'APP'] + # 1) MI (Mutual information) 2) ALC (Active learning McKay) + # 2)DKL (Kullback-Leibler Divergence) 3)DPP (D-Posterior-percision) + # 4)APP (A-Posterior-percision) # ['DKL', 'BME', 'infEntropy'] + # MetaModelOpts.ExpDesign.util_func = 'DKL' #['MI', 'ALC'] # VarBasedOptDesign -> when data is not available - # 1)Entropy 2)EIGF, 3)LOOCV + # 1)ALM 2)EIGF, 3)LOOCV # or a combination as a list - # MetaModelOpts.ExpDesign.util_func = 'Entropy' + MetaModelOpts.ExpDesign.util_func = ['ALM', 'EIGF'] # alphabetic # 1)D-Opt (D-Optimality) 2)A-Opt (A-Optimality) @@ -193,7 +194,7 @@ if __name__ == "__main__": MetaModelOpts.Discrepancy = DiscrepancyOpts # Plot the posterior snapshots for SeqDesign - MetaModelOpts.ExpDesign.post_snapshot = False + MetaModelOpts.ExpDesign.post_snapshot = True MetaModelOpts.ExpDesign.step_snapshot = 1 MetaModelOpts.ExpDesign.max_a_post = [0] * ndim -- GitLab