From 3ef25b46979c024f9e4ac3b8dc4b8ca012fac4e7 Mon Sep 17 00:00:00 2001
From: faridm69 <faridmohammadi69@gmail.com>
Date: Fri, 24 Jul 2020 17:37:35 +0200
Subject: [PATCH] [all] replaced the eval_PCEmodel functions in all classes
 with only the eval_metamodel in metamodel class.

---
 .../BayesInference/BayesInference.py          | 109 +++------------
 BayesValidRox/BayesInference/MCMC.py          |   3 +-
 .../PostProcessing/PostProcessing.py          |  92 +------------
 .../surrogate_models/surrogate_models.py      | 124 ++++++++++++------
 .../Test_AnalyticalFunction.py                |  63 ++++-----
 5 files changed, 139 insertions(+), 252 deletions(-)

diff --git a/BayesValidRox/BayesInference/BayesInference.py b/BayesValidRox/BayesInference/BayesInference.py
index 40738d2fb..f48f67a5e 100644
--- a/BayesValidRox/BayesInference/BayesInference.py
+++ b/BayesValidRox/BayesInference/BayesInference.py
@@ -88,89 +88,7 @@ class BayesInference:
         
         
         return self.Samples
-    #--------------------------------------------------------------------------------------------------------
-    def eval_PCEmodel(self, Samples=None):
-        
-        PCEModel = self.PCEModel
-        
-        ModelDict = PCEModel.gp_poly if PCEModel.metaModel.lower() == 'gpe' else PCEModel.CoeffsDict 
-        
-        if Samples is None:
-            Samples = self.get_Sample()
-            self.Samples = Samples
-        else:
-            Samples = Samples
-            self.NrofSamples = len(Samples)
-        
-        
-        meanPCEOutputs = {}
-        stdPCEOutputs = {}
-        if PCEModel.metaModel.lower() != 'gpe':
-            univ_p_val = PCEModel.univ_basis_vals(Samples)
-
-        
-        for Outkey, ValuesDict in ModelDict.items():
-            PCEOutputs_mean = np.zeros((len(Samples), len(ValuesDict)))
-            PCEOutputs_std = np.zeros((len(Samples), len(ValuesDict)))
-            idx = 0
-            for Inkey, InIdxValues in ValuesDict.items():
-                
-                # Perdiction with GPE
-                if PCEModel.metaModel.lower() == 'gpe':
-                    gp = PCEModel.gp_poly[Outkey][Inkey]
-                    y_mean, y_std = gp.predict(Samples, return_std=True)
-                
-                else: # Perdiction with PCE or pcekriging
-                    PolynomialDegrees = PCEModel.BasisDict[Outkey][Inkey]
-                    PSI_Val = PCEModel.PCE_create_Psi(PolynomialDegrees, univ_p_val)
-                    
-                    # Perdiction 
-                    if PCEModel.RegMethod.lower() == 'ols': #without error bar
-                        coeffs = PCEModel.CoeffsDict[Outkey][Inkey]
-                        y_mean = np.dot(PSI_Val, coeffs)
-                        y_std = np.zeros(shape=y_mean.shape)
-                        
-                    else: #with error bar
-                        clf_poly = PCEModel.clf_poly[Outkey][Inkey]
-                        y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True)
-                    
-                    if PCEModel.metaModel == 'PCEKriging':
-                        gp = PCEModel.gp_poly[Outkey][Inkey]
-                        y_gp_mean, y_gp_std = gp.predict(Samples, return_std=True)
-                        y_gp_mean += y_gp_mean
-                    
-                PCEOutputs_mean[:, idx] = y_mean
-                PCEOutputs_std[:, idx] = y_std
-                idx += 1
-            
-            if PCEModel.index is None:
-                if PCEModel.DimRedMethod.lower() == 'pca':
-                    PCA = PCEModel.pca[Outkey]
-                    meanPCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_)
-                    stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))
-                else:
-                    meanPCEOutputs[Outkey] = PCEOutputs_mean
-                    stdPCEOutputs[Outkey] = PCEOutputs_std
-            else:
-                index = PCEModel.index
-                if self.Name == 'Calib':
-                    if PCEModel.DimRedMethod.lower() == 'pca':
-                        PCA = PCEModel.pca[Outkey]
-                        meanPCEOutputs[Outkey] = PCA.mean_[:index] + np.dot(PCEOutputs_mean,PCA.components_)[:,:index]
-                        stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,:index]
-                    else:
-                        meanPCEOutputs[Outkey] = PCEOutputs_mean[:,:index]
-                        stdPCEOutputs[Outkey] = PCEOutputs_std[:,:index]
-                else:
-                    if PCEModel.DimRedMethod.lower() == 'pca':
-                        PCA = PCEModel.pca[Outkey]
-                        meanPCEOutputs[Outkey] = PCA.mean_[index:] + np.dot(PCEOutputs_mean,PCA.components_)[:,index:]
-                        stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,index:]
-                    else:
-                        meanPCEOutputs[Outkey] = PCEOutputs_mean[:,index:]
-                        stdPCEOutputs[Outkey] = PCEOutputs_std[:,index:]
-
-        return meanPCEOutputs, stdPCEOutputs
+    
     #--------------------------------------------------------------------------------------------------------
     
     def eval_Model(self, Samples=None):
@@ -319,7 +237,8 @@ class BayesInference:
         """
         Calculates the correction factor for BMEs.
         """
-        OrigModelOutput = self.PCEModel.ExpDesign.Y
+        PCEModel = self.PCEModel
+        OrigModelOutput = PCEModel.ExpDesign.Y
         
         
         # Extract the requested model outputs for likelihood calulation
@@ -338,8 +257,8 @@ class BayesInference:
         
         NrofBayesSamples = self.NrofSamples
         # Evaluate PCEModel on the experimental design
-        Samples = self.PCEModel.ExpDesign.X
-        OutputRS, stdOutputRS = self.eval_PCEmodel(Samples)
+        Samples = PCEModel.ExpDesign.X
+        OutputRS, stdOutputRS = PCEModel.eval_metamodel(samples=Samples)
         
         # Reset the NrofSamples to NrofBayesSamples
         self.NrofSamples = NrofBayesSamples
@@ -463,7 +382,8 @@ class BayesInference:
     #--------------------------------------------------------------------------------------------------------
     def PosteriorPredictive(self):
         
-        Model = self.PCEModel.ModelObj
+        PCEModel = self.PCEModel
+        Model = PCEModel.ModelObj
         
         # Make a directory to save the prior/posterior predictive
         OutputDir = (r'Outputs_Bayes_' + Model.Name + '_' + self.Name)
@@ -495,7 +415,7 @@ class BayesInference:
         # Prior predictive
         if self.emulator:
             PriorPred = self.meanPCEPriorPred
-            PosteriorPred, _ = self.eval_PCEmodel(Samples=Posterior_df.to_numpy())
+            PosteriorPred, _ = PCEModel.eval_metamodel(samples=Posterior_df.to_numpy())
         else:
             PriorPred = self.ModelPriorPred
             PosteriorPred = self.eval_Model(Samples=Posterior_df.to_numpy())
@@ -534,14 +454,17 @@ class BayesInference:
 
     def create_Inference(self):
         
-        Model = self.PCEModel.ModelObj
-        NofPa = self.PCEModel.NofPa
+        PCEModel = self.PCEModel
+        Model = PCEModel.ModelObj
+        NofPa = PCEModel.NofPa
         OutputNames = Model.Output.Names
         BootstrapItrNr = self.BootstrapItrNr
         
         
         # If the prior is set by the user, take it.
-        if self.Samples is not None:
+        if self.Samples is None:
+            self.Samples = self.get_Sample()
+        else:
             try:
                 SamplesAllParameters = self.Samples.to_numpy()
             except:
@@ -636,7 +559,7 @@ class BayesInference:
                 # ---------------- Likelihood calculation ---------------- 
                 if self.emulator:
                     # Evaluate the PCEModel
-                    self.meanPCEPriorPred, self.stdPCEPriorPred = self.eval_PCEmodel(Samples=self.Samples)
+                    self.meanPCEPriorPred, self.stdPCEPriorPred = PCEModel.eval_metamodel(samples=self.Samples)
                     
                     # unknown sigma2
                     if optSigma == 'C':
@@ -699,7 +622,7 @@ class BayesInference:
         if self.PlotPostPred:
             # Run the models for MAP
             # PCEModel
-            MAP_PCEModel, MAP_PCEModelstd = self.eval_PCEmodel(Samples=MAP_theta)
+            MAP_PCEModel, MAP_PCEModelstd = PCEModel.eval_metamodel(samples=MAP_theta)
             self.MAPpceModelMean = MAP_PCEModel
             self.MAPpceModelStd = MAP_PCEModelstd
             
diff --git a/BayesValidRox/BayesInference/MCMC.py b/BayesValidRox/BayesInference/MCMC.py
index 42e875bca..db1c4a4a9 100755
--- a/BayesValidRox/BayesInference/MCMC.py
+++ b/BayesValidRox/BayesInference/MCMC.py
@@ -123,12 +123,13 @@ class MCMC():
     def log_likelihood(self, theta, Observation, TotalSigma2):
         
         BayesOpts = self.BayesOpts
+        PCEModel = BayesOpts.PCEModel
         ndimTheta = theta.ndim
         theta = theta if ndimTheta != 1 else theta.reshape((1,-1))
         
         if BayesOpts.emulator:
             # Evaluate the PCEModel
-            meanPCEPriorPred, BayesOpts.stdPCEPriorPred = BayesOpts.eval_PCEmodel(theta)
+            meanPCEPriorPred, BayesOpts.stdPCEPriorPred = PCEModel.eval_metamodel(samples=theta)
         else:
             # Evaluate the origModel
             meanPCEPriorPred = BayesOpts.eval_Model(theta)
diff --git a/BayesValidRox/PostProcessing/PostProcessing.py b/BayesValidRox/PostProcessing/PostProcessing.py
index 9899bde07..3fa0d9ac4 100644
--- a/BayesValidRox/PostProcessing/PostProcessing.py
+++ b/BayesValidRox/PostProcessing/PostProcessing.py
@@ -132,91 +132,6 @@ class PostProcessing:
 
         return self.Samples
     
-    #--------------------------------------------------------------------------------------------------------
-    def eval_PCEmodel(self, Samples=None):
-        
-        PCEModel = self.PCEModel
-        
-        ModelDict = PCEModel.gp_poly if PCEModel.metaModel.lower() == 'gpe' else PCEModel.CoeffsDict 
-        
-        if Samples is None:
-            Samples = self.get_Sample()
-            self.Samples = Samples
-        else:
-            Samples = Samples
-            self.NrofSamples = len(Samples)
-        
-        self.PCEOutputs = {}
-        self.PCEOutputs_std = {}
-        if PCEModel.metaModel.lower() != 'gpe':
-            univ_p_val = PCEModel.univ_basis_vals(Samples)
-        
-        # Loop over outputs
-        for Outkey, ValuesDict in ModelDict.items():
-            
-            PCEOutputs_mean = np.zeros((len(Samples), len(ValuesDict)))
-            PCEOutputs_std = np.zeros((len(Samples), len(ValuesDict)))
-            
-            idx = 0
-            for Inkey, InIdxValues in ValuesDict.items():
-                
-                # Perdiction with GPE
-                if PCEModel.metaModel.lower() == 'gpe':
-                    gp = PCEModel.gp_poly[Outkey][Inkey]
-                    y_mean, y_std = gp.predict(Samples, return_std=True)
-                    
-                else: # Perdiction with PCE or pcekriging
-                    PolynomialDegrees = PCEModel.BasisDict[Outkey][Inkey]
-                    clf_poly = PCEModel.clf_poly[Outkey][Inkey]
-                    PSI_Val = PCEModel.PCE_create_Psi(PolynomialDegrees, univ_p_val)
-                    try:
-                        # with error bar 
-                        y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True)
-                    except:
-                        # without error bar 
-                        coeffs = PCEModel.CoeffsDict[Outkey][Inkey]
-                        y_mean = np.dot(PSI_Val, coeffs)
-                        y_std = np.zeros(shape=y_mean.shape)
-                    
-                    if PCEModel.metaModel.lower() == 'pcekriging':
-                        gp = PCEModel.gp_poly[Outkey][Inkey]
-                        y_gp_mean, y_gp_std = gp.predict(Samples, return_std=True)
-                        y_mean += y_gp_mean
-                        y_std = y_gp_std
-                    
-                PCEOutputs_mean[:, idx] = y_mean
-                PCEOutputs_std[:, idx] = y_std
-                idx += 1
-            
-            if PCEModel.index is None:
-                if PCEModel.DimRedMethod.lower() == 'pca':
-                    PCA = PCEModel.pca[Outkey]
-                    self.PCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_) 
-                    self.PCEOutputs_std[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))
-                else:
-                    self.PCEOutputs[Outkey] = PCEOutputs_mean
-                    self.PCEOutputs_std[Outkey] = PCEOutputs_std
-            else:
-                index = PCEModel.index
-                if self.Name.lower() == 'calib':
-                    if PCEModel.DimRedMethod.lower() == 'pca':
-                        PCA = PCEModel.pca[Outkey]
-                        self.PCEOutputs[Outkey] = PCA.mean_[:index] + np.dot(PCEOutputs_mean,PCA.components_)[:,:index]
-                        self.PCEOutputs_std[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,:index]
-                    else:
-                        self.PCEOutputs[Outkey] = PCEOutputs_mean[:,:index]
-                        self.PCEOutputs_std[Outkey] = PCEOutputs_std[:,:index]
-                else:
-                    if PCEModel.DimRedMethod.lower() == 'pca':
-                        PCA = PCEModel.pca[Outkey]
-                        self.PCEOutputs[Outkey] = PCA.mean_[index:] + np.dot(PCEOutputs_mean,PCA.components_)[:,index:]
-                        self.PCEOutputs_std[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,index:]
-                    else:
-                        self.PCEOutputs[Outkey] = PCEOutputs_mean[:,index:]
-                        self.PCEOutputs_std[Outkey] = PCEOutputs_std[:,index:]
-                        
-        return self.PCEOutputs, self.PCEOutputs_std
-    
     #--------------------------------------------------------------------------------------------------------
     def eval_PCEmodel_3D(self, SaveFig=True):
         
@@ -353,10 +268,11 @@ class PostProcessing:
         """
         Evaluate the meta model and the PCEModel
         """
+        metaModel = self.PCEModel
         Samples = self.get_Sample()
         
         self.eval_Model(Samples)
-        self.eval_PCEmodel(Samples)
+        self.PCEOutputs, self.PCEOutputs_std = metaModel.eval_metamodel(samples=Samples)
         
         if self.plotFlag == True:
             try:
@@ -377,6 +293,8 @@ class PostProcessing:
         """
         Evaluate the relative error of the PCEModel
         """
+        metaModel = self.PCEModel
+        
         # Set the number of samples
         self.NrofSamples = nSamples if nSamples is not None else Samples.shape[0]
         
@@ -387,7 +305,7 @@ class PostProcessing:
         ModelOutputs = self.eval_Model(Samples) if validOutputsDict is None else validOutputsDict
         
         # Run the PCE model with the generated samples
-        PCEOutputs, PCEOutputs_std = self.eval_PCEmodel(Samples)
+        PCEOutputs, PCEOutputs_std = metaModel.eval_metamodel(samples=Samples)
         
         self.RMSE = {}
         # Loop over the keys and compute RMSE error.
diff --git a/BayesValidRox/surrogate_models/surrogate_models.py b/BayesValidRox/surrogate_models/surrogate_models.py
index 05cf52369..4431814f0 100644
--- a/BayesValidRox/surrogate_models/surrogate_models.py
+++ b/BayesValidRox/surrogate_models/surrogate_models.py
@@ -166,6 +166,7 @@ class Metamodel:
         return self.PolynomialDegrees
     
     #--------------------------------------------------------------------------------------------------------
+
     def addExpDesign(self):
         self.ExpDesign = ExpDesigns(self.Inputs)
 
@@ -1120,7 +1121,7 @@ class Metamodel:
         if UtilMethod == 'Entropy':
             # ----- Entropy/MMSE/active learning MacKay(ALM)  -----
             # Compute perdiction variance of the old model
-            Y_PC_can, std_PC_can = self.eval_PCEmodel(X_can)
+            Y_PC_can, std_PC_can = self.eval_metamodel(samples=X_can)
             canPredVar = {key:std_PC_can[key]**2 for key in OutputNames}
             
             varPCE = []
@@ -1131,7 +1132,7 @@ class Metamodel:
         elif UtilMethod == 'EIGF':
             # ----- Expected Improvement for Global fit -----
             # Compute perdiction error and variance of the old model
-            Y_PC_can, std_PC_can = self.eval_PCEmodel(X_can)
+            Y_PC_can, std_PC_can = self.eval_metamodel(samples=X_can)
             predError = {key:Y_PC_can[key] for key in OutputNames}
             canPredVar = {key:std_PC_can[key]**2 for key in OutputNames}
             
@@ -1150,7 +1151,7 @@ class Metamodel:
         nTriningPoints = self.ExpDesign.X.shape[0]
         
         # Evaluate the PCE metamodels at that location ???
-        Y_mean_can, Y_std_can = self.eval_PCEmodel(np.array([X_can]))
+        Y_mean_can, Y_std_can = self.eval_metamodel(samples=np.array([X_can]))
         
         # Get the data
         ObservationData = self.Observations
@@ -1305,7 +1306,7 @@ class Metamodel:
         oldExpDesignY = PCEModel.ExpDesign.Y
         
         # Evaluate the PCE metamodels at that location ???
-        Y_PC_can, _ = self.eval_PCEmodel(np.array([X_can]))
+        Y_PC_can, _ = self.eval_metamodel(samples=np.array([X_can]))
         
         # Add all suggestion as new ExpDesign
         NewExpDesignX = np.vstack((oldExpDesignX, X_can))
@@ -1339,7 +1340,7 @@ class Metamodel:
                 X_MC = self.ExpDesign.GetSample(MCsize, 'random');
            
             # Evaluate the PCEModel at the given samples
-            Y_PC_MC, std_PC_MC = PCE_SparseBayes_can.eval_PCEmodel(X_MC)
+            Y_PC_MC, std_PC_MC = PCE_SparseBayes_can.eval_metamodel(samples=X_MC)
            
             # Likelihood computation (Comparison of data 
             # and simulation results via PCE with candidate design)
@@ -1541,7 +1542,7 @@ class Metamodel:
                 
                 # TODO: New adaptive trade-off according to Liu et al. (2017)
                 # Mean squared error for last design point
-                lastPCEY, _ = self.eval_PCEmodel(OldExpDesign[-1].reshape(1,-1))
+                lastPCEY, _ = self.eval_metamodel(samples=OldExpDesign[-1].reshape(1,-1))
                 if 'x_values' in OutputDictY: del OutputDictY['x_values']
                 
                 mseError = mean_squared_error(np.array(list(lastPCEY.values()))[:,0], np.array(list(OutputDictY.values()))[:,-1,:])
@@ -2002,52 +2003,95 @@ class Metamodel:
         return Xnew
     
     #--------------------------------------------------------------------------------------------------------
-    def eval_PCEmodel(self,Samples):
+    def eval_metamodel(self,samples=None, nsamples=None, samplingMethod='random', return_samples=False):
         
+        ModelDict = self.gp_poly if self.metaModel.lower() == 'gpe' else self.CoeffsDict 
         
-        univ_p_val = self.univ_basis_vals(Samples)
+        if samples is None:
+            if nsamples is None:
+                self.NrofSamples = 100000
+            else:
+                self.NrofSamples = nsamples
+            
+            self.Samples = self.ExpDesign.GetSample(self.NrofSamples, samplingMethod)
+        else:
+            self.Samples = samples
+            self.NrofSamples = len(samples)
+            
+        if self.metaModel.lower() != 'gpe':
+            univ_p_val = self.univ_basis_vals(self.Samples)
         meanPCEOutputs = {}
         stdPCEOutputs = {}
         
-        for Outkey, ValuesDict in self.CoeffsDict.items():
+        # Loop over outputs
+        for Outkey, ValuesDict in ModelDict.items():
             
-            PCEOutputs_mean = np.zeros((len(Samples), len(ValuesDict)))
-            PCEOutputs_std = np.zeros((len(Samples), len(ValuesDict)))
+            PCEOutputs_mean = np.zeros((len(self.Samples), len(ValuesDict)))
+            PCEOutputs_std = np.zeros((len(self.Samples), len(ValuesDict)))
             
+            idx = 0
             for Inkey, InIdxValues in ValuesDict.items():
-                idx = int(Inkey.split('_')[1]) - 1
                 
-                PolynomialDegrees = self.BasisDict[Outkey][Inkey]
-                PSI_Val = self.PCE_create_Psi(PolynomialDegrees, univ_p_val)
-                
-                # Perdiction 
-                try: # with error bar
-                    clf_poly = self.clf_poly[Outkey][Inkey]
-                    y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True)
-                    
-                except: # without error bar
-                    coeffs = self.CoeffsDict[Outkey][Inkey]
-                    y_mean = np.dot(PSI_Val, coeffs)
-                    y_std = np.zeros(shape=y_mean.shape)
-                    
-                if self.metaModel.lower() == 'pcekriging':
+                # Perdiction with GPE
+                if self.metaModel.lower() == 'gpe':
                     gp = self.gp_poly[Outkey][Inkey]
-                    y_gp_mean, y_gp_std = gp.predict(Samples, return_std=True)
-                    y_mean += y_gp_mean
-                    y_std = y_gp_std
+                    y_mean, y_std = gp.predict(self.Samples, return_std=True)
+                
+                else: # Perdiction with PCE or pcekriging
+                    PolynomialDegrees = self.BasisDict[Outkey][Inkey]
+                    PSI_Val = self.PCE_create_Psi(PolynomialDegrees, univ_p_val)
+                
+                    # Perdiction 
+                    try: # with error bar
+                        clf_poly = self.clf_poly[Outkey][Inkey]
+                        y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True)
+                        
+                    except: # without error bar
+                        coeffs = self.CoeffsDict[Outkey][Inkey]
+                        y_mean = np.dot(PSI_Val, coeffs)
+                        y_std = np.zeros(shape=y_mean.shape)
+                        
+                    if self.metaModel.lower() == 'pcekriging':
+                        gp = self.gp_poly[Outkey][Inkey]
+                        y_gp_mean, y_gp_std = gp.predict(self.Samples, return_std=True)
+                        y_mean += y_gp_mean
+                        y_std = y_gp_std
                     
                 PCEOutputs_mean[:, idx] = y_mean
                 PCEOutputs_std[:, idx] = y_std
+                idx += 1
             
-            if self.DimRedMethod.lower() == 'pca':
-                PCA = self.pca[Outkey]    
-                meanPCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_)
-                stdPCEOutputs[Outkey] = np.dot(PCEOutputs_std, PCA.components_)
+            if self.index is None:
+                if self.DimRedMethod.lower() == 'pca':
+                    PCA = self.pca[Outkey]
+                    meanPCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_) 
+                    stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))
+                else:
+                    meanPCEOutputs[Outkey] = PCEOutputs_mean
+                    stdPCEOutputs[Outkey] = PCEOutputs_std
             else:
-                meanPCEOutputs[Outkey] = PCEOutputs_mean
-                stdPCEOutputs[Outkey] = PCEOutputs_std
-                
-        return meanPCEOutputs, stdPCEOutputs 
+                index = self.index
+                if self.Name.lower() == 'calib':
+                    if self.DimRedMethod.lower() == 'pca':
+                        PCA = self.pca[Outkey]
+                        meanPCEOutputs[Outkey] = PCA.mean_[:index] + np.dot(PCEOutputs_mean,PCA.components_)[:,:index]
+                        stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,:index]
+                    else:
+                        meanPCEOutputs[Outkey] = PCEOutputs_mean[:,:index]
+                        stdPCEOutputs[Outkey] = PCEOutputs_std[:,:index]
+                else:
+                    if self.DimRedMethod.lower() == 'pca':
+                        PCA = self.pca[Outkey]
+                        meanPCEOutputs[Outkey] = PCA.mean_[index:] + np.dot(PCEOutputs_mean,PCA.components_)[:,index:]
+                        stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,index:]
+                    else:
+                        meanPCEOutputs[Outkey] = PCEOutputs_mean[:,index:]
+                        stdPCEOutputs[Outkey] = PCEOutputs_std[:,index:]
+        
+        if return_samples:
+            return meanPCEOutputs, stdPCEOutputs, self.Samples
+        else:
+            return meanPCEOutputs, stdPCEOutputs 
             
     #--------------------------------------------------------------------------------------------------------
     def normpdf(self, PCEOutputs, std_PC_MC, ObservationData, Sigma2s):
@@ -2109,7 +2153,7 @@ class Metamodel:
         # ----- PCE model outputs on the ExpDesign ---------------
         # Evaluate PCEModel on the experimental design
         Samples = PCEModel.ExpDesign.X
-        OutputRS, stdOutputRS = PCEModel.eval_PCEmodel(Samples)
+        OutputRS, stdOutputRS = PCEModel.eval_metamodel(samples=Samples)
         
         # Flatten the mean Outputs for PCEModel
         TotalPCEOutputs = np.empty((SampleSize,0))
@@ -2324,7 +2368,7 @@ class Metamodel:
                 MCsize = X_MC.shape[0]
                 
             # Monte Carlo simulation for the candidate design
-            Y_PC_MC, std_PC_MC = PCEModel.eval_PCEmodel(X_MC)
+            Y_PC_MC, std_PC_MC = PCEModel.eval_metamodel(samples=X_MC)
              
             # Likelihood computation (Comparison of data and 
             # simulation results via PCE with candidate design)
@@ -2410,7 +2454,7 @@ class Metamodel:
         ModelOutputs = self.validModelRuns
         
         # Run the PCE model with the generated samples
-        PCEOutputs, PCEOutputs_std = self.eval_PCEmodel(Samples)
+        PCEOutputs, PCEOutputs_std = self.eval_metamodel(samples=Samples)
         
         validError_dict = {}
         # Loop over the keys and compute RMSE error.
diff --git a/BayesValidRox/tests/AnalyticalFunction/Test_AnalyticalFunction.py b/BayesValidRox/tests/AnalyticalFunction/Test_AnalyticalFunction.py
index 26a2c0ade..af95523e8 100755
--- a/BayesValidRox/tests/AnalyticalFunction/Test_AnalyticalFunction.py
+++ b/BayesValidRox/tests/AnalyticalFunction/Test_AnalyticalFunction.py
@@ -70,18 +70,18 @@ if __name__ == "__main__":
     # standard deviation
     Inputs = Input()
     
-    for i in range(ndim):
-        Inputs.addMarginals()
-        Inputs.Marginals[i].Name = '$X_{%s}$'%(i+1)
-        Inputs.Marginals[i].DistType = 'unif'
-        Inputs.Marginals[i].Parameters =  [-5, 5]
-    
-    # arbitrary polynomial chaos
-    # inputParams = np.load('data/InputParameters_{}.npy'.format(ndim))
     # for i in range(ndim):
     #     Inputs.addMarginals()
     #     Inputs.Marginals[i].Name = '$X_{%s}$'%(i+1)
-    #     Inputs.Marginals[i].InputValues = inputParams[:,i]
+    #     Inputs.Marginals[i].DistType = 'unif'
+    #     Inputs.Marginals[i].Parameters =  [-5, 5]
+    
+    # arbitrary polynomial chaos
+    inputParams = np.load('data/InputParameters_{}.npy'.format(ndim))
+    for i in range(ndim):
+        Inputs.addMarginals()
+        Inputs.Marginals[i].Name = '$X_{%s}$'%(i+1)
+        Inputs.Marginals[i].InputValues = inputParams[:,i]
     
     #=====================================================
     #==========  DEFINITION OF THE METAMODEL  ============
@@ -127,13 +127,13 @@ if __name__ == "__main__":
     
     # One-shot (normal) or Sequential Adaptive (sequential) Design
     MetaModelOpts.ExpDesign.Method = 'normal'
-    NrofInitSamples = 100 #75
+    NrofInitSamples = 150 #75
     MetaModelOpts.ExpDesign.NrSamples = NrofInitSamples
     
     # Sampling methods
     # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley 6) chebyshev(FT) 
     # 7) korobov 8) grid(FT) 9) nested_grid(FT) 10)user
-    MetaModelOpts.ExpDesign.SamplingMethod = 'latin_hypercube'
+    MetaModelOpts.ExpDesign.SamplingMethod = 'random'
     
     # Sequential experimental design (needed only for sequential ExpDesign)
     MetaModelOpts.ExpDesign.NrofNewSample = 1
@@ -208,29 +208,30 @@ if __name__ == "__main__":
     t = np.arange(0, 10, 1.) / 9
     PostPCE.ValidMetamodel(x_values=t, x_axis="Time [s]")
 
-    # # Comparison with Monte-Carlo reference
-    # # Compute the moments
-    # PostPCE.PCEMoments(PCEModel)
+    # Comparison with Monte-Carlo reference
+    # Compute the moments
+    PostPCE.PCEMoments(PCEModel)
     
-    # # Plot Mean & Std for all Outputs
-    # PostPCE.MomentLineplot(PCE_Means = PostPCE.PCEMeans,
-    #                        PCE_Stds = PostPCE.PCEStd,
-    #                        x_label = 'Time [s]', SaveFig = True)
+    # Plot Mean & Std for all Outputs
+    PostPCE.MomentLineplot(PCE_Means = PostPCE.PCEMeans,
+                            PCE_Stds = PostPCE.PCEStd,
+                            x_label = 'Time [s]', SaveFig = True)
     
     
-    # # Plot the evolution of the KLD,BME, and Modified LOOCV error
-    # if MetaModelOpts.ExpDesign.Method == 'sequential':
-    #     refBME_KLD = np.load("data/refBME_KLD_"+str(ndim)+".npy")
-    #     PostPCE.seqDesignDiagnosticPlots(NrofInitSamples, refBME_KLD
-    #                                      , SaveFig=True)
+    # Plot the evolution of the KLD,BME, and Modified LOOCV error
+    if MetaModelOpts.ExpDesign.Method == 'sequential':
+        refBME_KLD = np.load("data/refBME_KLD_"+str(ndim)+".npy")
+        PostPCE.seqDesignDiagnosticPlots(NrofInitSamples, refBME_KLD
+                                          , SaveFig=True)
     
-    # # Plot the sobol indices
-    # sobol_cell, total_sobol = PostPCE.SobolIndicesPCE(x_values=t, x_axis="Time [s]", 
-    #                                                   SaveFig=True)
+    # Plot the sobol indices
+    sobol_cell, total_sobol = PostPCE.SobolIndicesPCE(x_values=t, x_axis="Time [s]", 
+                                                      SaveFig=True)
     
     # Compute and print RMSE error
     PostPCE.relErrorPCEModel(nSamples=3000)
-    sys.exit('STOP!!')
+    
+    # sys.exit('STOP!!')
     #=====================================================
     #========  Bayesian inference with Emulator ==========
     #=====================================================
@@ -238,14 +239,14 @@ if __name__ == "__main__":
     BayesOpts.emulator = True
     
     # BME Bootstrap
-    BayesOpts.Bootstrap = True
+    BayesOpts.Bootstrap = False
     BayesOpts.BootstrapItrNr = 10
     BayesOpts.BootstrapNoise = 0.05
     
     # Select the inference method
-    # BayesOpts.SamplingMethod = 'MCMC'
-    # BayesOpts.MCMCnSteps = 1000
-    # BayesOpts.MultiProcessMCMC = True
+    BayesOpts.SamplingMethod = 'MCMC'
+    BayesOpts.MCMCnSteps = 1000
+    BayesOpts.MultiProcessMCMC = True
     
     
     BayesOpts.PlotPostPred = True
-- 
GitLab