From 4067c4a88dbd97b60570f31bb86faa46c4bec7d2 Mon Sep 17 00:00:00 2001 From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com> Date: Thu, 18 Jul 2024 16:27:30 +0200 Subject: [PATCH] [docs][userguide] Match website to the example --- docs/source/bayes_description.rst | 2 +- docs/source/model_description.rst | 14 +++++++-- examples/user_guide/example_user_guide.py | 37 +++++++++++++++++------ examples/user_guide/model.py | 2 +- 4 files changed, 40 insertions(+), 15 deletions(-) diff --git a/docs/source/bayes_description.rst b/docs/source/bayes_description.rst index 0cb36d10f..6dac51ad1 100644 --- a/docs/source/bayes_description.rst +++ b/docs/source/bayes_description.rst @@ -76,7 +76,7 @@ For this example we use the python package ``emcee`` to define the MCMC moves. >>> BayesObj.inference_method = 'MCMC' >>> import emcee >>> BayesObj.mcmc_params = { ->>> 'n_steps': 1e4,#5, +>>> 'n_steps': 1e4, >>> 'n_walkers': 30, >>> 'moves': emcee.moves.KDEMove(), >>> 'multiprocessing': False, diff --git a/docs/source/model_description.rst b/docs/source/model_description.rst index 923f20a7c..42103caa6 100644 --- a/docs/source/model_description.rst +++ b/docs/source/model_description.rst @@ -25,9 +25,11 @@ This function takes a single realization of the uncertain parameter as a 2-dimen Here we use the key ``A`` for the sample values and ``B`` for their squares. Under the key ``x_values`` a list should be given that is of the same length as each output of the model for a single input. The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis. +If we want to set the ``x_values`` outside of the model, it can also be given as an additional parameter ->>> def model(sample): ->>> square = sample*sample +>>> def model(samples, x_values): +>>> sample = samples[0]*x_values +>>> square = np.power(samples[0]*x_values, 2) >>> outputs = {'A': sample, 'B': square, 'x_values': [0]} >>> return outputs @@ -43,7 +45,13 @@ Lastly we list the keys of the outputs that we are interested in. >>> Model.link_type = 'Function' >>> Model.py_file = 'model' >>> Model.name = 'model' ->>> Model.Output.names = ['A', 'B'] +>>> Model.Output.names = ['A'] + +Any parameters to the model function, that are not the samples, can be set via the ``func_args`` argument. +In this case we define ``x_values`` as a ``np.array`` and include it. + +>>> x_values = np.arange(0,1,0.1) +>>> Model.func_args = {'x_values':x_values} With this we have completed an interface to our model. We can now evaluate this model on the samples created in the input example. diff --git a/examples/user_guide/example_user_guide.py b/examples/user_guide/example_user_guide.py index ea6ea0603..50b555f3b 100644 --- a/examples/user_guide/example_user_guide.py +++ b/examples/user_guide/example_user_guide.py @@ -15,7 +15,7 @@ import matplotlib # Add BayesValidRox path sys.path.append("../../src/") -from bayesvalidrox import Input, ExpDesigns, PyLinkForwardModel, MetaModel, Engine, PostProcessing, Discrepancy, BayesInference +from bayesvalidrox import Input, ExpDesigns, PyLinkForwardModel, MetaModel, Engine, PostProcessing, Discrepancy, BayesInference, BayesModelComparison if __name__ == '__main__': #### Priors, input space and experimental design @@ -102,7 +102,7 @@ if __name__ == '__main__': PostProc.sobol_indices() #PostProc.plot_seq_design_diagnostics() - # TODO: sanity check - test on training data + # Sanity check - test on training data mean, stdev = Engine_.eval_metamodel(Engine_.ExpDesign.X) print(mean['A']-Engine_.ExpDesign.Y['A']) @@ -130,7 +130,7 @@ if __name__ == '__main__': BayesObj.inference_method = 'MCMC' import emcee BayesObj.mcmc_params = { - 'n_steps': 1e4,#5 + 'n_steps': 1e4, 'n_walkers': 30, 'moves': emcee.moves.KDEMove(), 'multiprocessing': False, @@ -156,13 +156,10 @@ if __name__ == '__main__': ExpDesign1 = ExpDesigns(Inputs) ExpDesign1.n_init_samples = 30 - ExpDesign1.sampling_method = 'random'#'user' - #ExpDesign1.X = samples + ExpDesign1.sampling_method = 'random' Engine_1 = Engine(MetaMod1, Model1, ExpDesign1) Engine_1.train_normal() - # TODO: sanity checks for these two models look great, differently from the model above, perhaps just an issue of the training data? - Model2 = PyLinkForwardModel() Model2.link_type = 'Function' @@ -180,8 +177,28 @@ if __name__ == '__main__': ExpDesign2 = ExpDesigns(Inputs) ExpDesign2.n_init_samples = 30 - ExpDesign2.sampling_method = 'random'#'user' - #ExpDesign1.X = samples + ExpDesign2.sampling_method = 'random' Engine_2 = Engine(MetaMod2, Model2, ExpDesign2) - Engine_2.train_normal() \ No newline at end of file + Engine_2.train_normal() + + meta_models = { + "linear": Engine_, + #"square": Engine_1, + "degthree": Engine_2 + } + + BayesOpts = BayesModelComparison() + + opts_bootstrap = { + "bootstrap": True, + "n_samples": 100, + "Discrepancy": DiscrepancyOpts, + "emulator": True, + "plot_post_pred": False + } + + output_dict = BayesOpts.model_comparison_all( + meta_models, + opts_bootstrap + ) \ No newline at end of file diff --git a/examples/user_guide/model.py b/examples/user_guide/model.py index 0974cb1fa..744acc6f0 100644 --- a/examples/user_guide/model.py +++ b/examples/user_guide/model.py @@ -8,6 +8,6 @@ import numpy as np def model(samples, x_values): samples = samples[0]*x_values - square = np.power(samples*x_values, 2) + square = np.power(samples[0]*x_values, 2) outputs = {'A': samples, 'B': square, 'x_values': x_values} return outputs \ No newline at end of file -- GitLab