diff --git a/BayesValidRox/tests/PA-A/Benchmark_PAA.py b/BayesValidRox/tests/PA-A/Benchmark_PAA.py index 75c0a229732fc6b6db8c8a876ebea5869874b931..a3fa41fac3723ce8a5797cb1fc5b15818a88d1e8 100644 --- a/BayesValidRox/tests/PA-A/Benchmark_PAA.py +++ b/BayesValidRox/tests/PA-A/Benchmark_PAA.py @@ -136,7 +136,7 @@ def kdePlot_BayesFactor(BME_Dict, BF_label, plotName): # legend BF_label = key_i + '/' + key_j legend_elements = [Patch(facecolor=Colors[i], edgecolor=Colors[i],label='BF('+BF_label+')')] - ax.legend(loc='best', handles=legend_elements,fontsize=SIZE-25) + ax.legend(loc='best', handles=legend_elements,fontsize=SIZE) elif j == i: # build a rectangle in axes coords diff --git a/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py b/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py index 5ddd61778c94493ddb102bc99b1b308d386fb87c..cc9e5fc962ec866444e19d85e37140d1b51fedcf 100644 --- a/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py +++ b/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py @@ -59,7 +59,7 @@ def check_ranges(samples, BayesDF): index.append(i) return index -def run(params, errorPerc=0.1, couplingcond='BJ', PCEEDMethod='normal'): +def run(params, errorPerc=0.05, couplingcond='BJ', PCEEDMethod='normal'): print("\n" + "="*75) print("Stochastic calibration and validation of {0}.".format('ffpm-stokesdarcy'+couplingcond)) @@ -116,9 +116,9 @@ def run(params, errorPerc=0.1, couplingcond='BJ', PCEEDMethod='normal'): params = (1.0e-08, 1.5e-08) Inputs.Marginals[2].Name = '$K$' # [1e-10, 1e-7] # Inputs.Marginals[2].InputValues = stats.lognorm(ln_sigma, ln_loc, (rb-lb)/2).rvs(size=MCSize) - Inputs.Marginals[2].InputValues = stats.uniform(loc=1e-11, scale=1e-7-1e-11).rvs(size=MCSize) - # Inputs.Marginals[2].DistType = 'lognorm' - # Inputs.Marginals[2].Parameters = params + # Inputs.Marginals[2].InputValues = stats.uniform(loc=1e-11, scale=1e-7-1e-11).rvs(size=MCSize) + Inputs.Marginals[2].DistType = 'lognorm' + Inputs.Marginals[2].Parameters = params if couplingcond == 'BJ': Inputs.addMarginals() # AlphaBeaversJoseph @@ -155,8 +155,8 @@ def run(params, errorPerc=0.1, couplingcond='BJ', PCEEDMethod='normal'): # The degree with the lowest Leave-One-Out cross-validation (LOO) # error (or the highest score=1-LOO)estimator is chosen as the final # metamodel. - MetaModelOpts.MinPceDegree = 14 # default = 1 - MetaModelOpts.MaxPceDegree = 14 #7 + MetaModelOpts.MinPceDegree = 4 # default = 1 + MetaModelOpts.MaxPceDegree = 4 #7 # q-quasi-norm 0<q<1 (default=1) MetaModelOpts.q = 0.75 #np.linspace(0.3,0.6,3) diff --git a/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py b/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py index db8222f1873d6d45ada7e5120611edd6619ac67a..0d20055a3670a714938b8d034029504997319d44 100755 --- a/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py +++ b/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py @@ -59,7 +59,7 @@ def check_ranges(samples, BayesDF): index.append(i) return index -def run(params, errorPerc=0.1, PCEEDMethod='normal'): +def run(params, errorPerc=0.05, PCEEDMethod='normal'): print("\n" + "="*75) print("Stochastic calibration and validation of {0}.".format('ffpm-stokespnm')) diff --git a/BayesValidRox/tests/PA-A/vel_diagnostics.py b/BayesValidRox/tests/PA-A/vel_diagnostics.py index f4f7b7765d802151d73e5e25c4220b52ebb1bbe8..36cb236d0b0c6ff8addcc836faf519e2561d1863 100644 --- a/BayesValidRox/tests/PA-A/vel_diagnostics.py +++ b/BayesValidRox/tests/PA-A/vel_diagnostics.py @@ -57,6 +57,7 @@ validSamples = np.array(ValidSets["EDX/init_"]) EDX = validSamples EDY = np.array(ValidSets["EDY/"+"velocity [m/s]"+"/init_"]) +ValidSets.close() critIdx = [EDX[:,1]<0.004875] normIdx = [EDX[:,1]>=0.004875] @@ -66,7 +67,7 @@ critEDX = EDX[critIdx] critEDY = EDY[critIdx] # Select index -idx = 7 +idx = 3 # Run the surrogate model y_hat, y_std = PCEModel.eval_metamodel(samples=critEDX)