diff --git a/src/bayesvalidrox/surrogate_models/exp_designs.py b/src/bayesvalidrox/surrogate_models/exp_designs.py index 2caa086e5e1bace1b7ab5eee9671e4c27b633ef8..94f41469cf251e95e4962a066ac8b6ffb604794c 100644 --- a/src/bayesvalidrox/surrogate_models/exp_designs.py +++ b/src/bayesvalidrox/surrogate_models/exp_designs.py @@ -413,9 +413,9 @@ class ExpDesigns: elif 'lognorm' in dist_type.lower(): polytype = 'hermite' - Mu = np.log(params[0]**2/np.sqrt(params[0]**2 + params[1]**2)) - Sigma = np.sqrt(np.log(1 + params[1]**2 / params[0]**2)) - dist = chaospy.LogNormal(mu=Mu, sigma=Sigma) + # Mu = np.log(params[0]**2/np.sqrt(params[0]**2 + params[1]**2)) + # Sigma = np.sqrt(np.log(1 + params[1]**2 / params[0]**2)) + dist = chaospy.LogNormal(mu=params[0], sigma=params[1]) elif 'expon' in dist_type.lower(): polytype = 'arbitrary' @@ -478,7 +478,10 @@ class ExpDesigns: # store the raw data with given random indices samples[:, pa_idx] = self.raw_data[pa_idx, rand_idx] else: - samples = self.JDist.resample(int(n_samples)).T + try: + samples = self.JDist.resample(int(n_samples)).T + except AttributeError: + samples = self.JDist.sample(int(n_samples)).T # Check if all samples are in the bound_tuples for idx, param_set in enumerate(samples): if not self._check_ranges(param_set, self.bound_tuples):