From 708d354f183a464a621ff066cdeaca7ee2cff57a Mon Sep 17 00:00:00 2001 From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com> Date: Wed, 11 Dec 2024 21:24:04 +0100 Subject: [PATCH] Fix test --- .../post_processing/post_processing.py | 19 ++++++++----------- 1 file changed, 8 insertions(+), 11 deletions(-) diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py index 3b33fd1e6..1ab736ec9 100644 --- a/src/bayesvalidrox/post_processing/post_processing.py +++ b/src/bayesvalidrox/post_processing/post_processing.py @@ -856,18 +856,14 @@ class PostProcessing: n_samples = samples.shape[0] # Evaluate the original and the surrogate model - if outputs is None: - y_val = self._eval_model(samples, key_str='valid') - else: - y_val = outputs - y_pce_val, _ = self.engine.eval_metamodel(samples=samples) + y_val = outputs + if y_val is None: + y_val, _ = self.engine.Model.run_model_parallel(samples, key_str="valid") + y_metamod_val, _ = self.engine.eval_metamodel(samples=samples) # Fit the data(train the model) - for key in y_pce_val.keys(): - - y_pce_val_ = y_pce_val[key] - y_val_ = y_val[key] - residuals = y_val_ - y_pce_val_ + for key in y_metamod_val.keys(): + residuals = y_val[key] - y_metamod_val[key] # ------ Residuals vs. predicting variables ------ # Check the assumptions of linearity and independence @@ -891,7 +887,8 @@ class PostProcessing: # ------ Fitted vs. residuals ------ # Check the assumptions of linearity and independence - fig2 = plt.figure() + for i in range(y_metamod_val[key].shape[0]): + plt.scatter(x=y_metamod_val[key][i,:], y=residuals[i,:], color="blue", edgecolor="k") plt.title(f"{key}: Residuals vs. fitted values") plt.scatter(x=y_pce_val_, y=residuals, color='blue', edgecolor='k') plt.grid(True) -- GitLab