diff --git a/BayesValidRox/surrogate_models/sequential_design.py b/BayesValidRox/surrogate_models/sequential_design.py new file mode 100644 index 0000000000000000000000000000000000000000..33580f73c30d9272b241dd328d82297993f74dfc --- /dev/null +++ b/BayesValidRox/surrogate_models/sequential_design.py @@ -0,0 +1,1650 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Jan 28 09:21:18 2022 + +@author: farid +""" +import numpy as np +from scipy import stats, signal, linalg, sparse +from scipy.spatial import distance +from copy import deepcopy, copy +import tqdm +import scipy.optimize as opt +from sklearn.metrics import mean_squared_error +import multiprocessing +import matplotlib.pyplot as plt +import sys +import os +import seaborn as sns + +from .Exploration import Exploration + + +class SeqDesign(): + def __init__(self, MetaModel): + self.MetaModel = MetaModel + self.Model = MetaModel.ModelObj + + # ------------------------------------------------------------------------- + def util_VarBasedDesign(self, X_can, index, UtilMethod='Entropy'): + """ + Computes the exploitation scores based on: + active learning MacKay(ALM) and active learning Cohn (ALC) + Paper: Sequential Design with Mutual Information for Computer + Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas + (2016) + """ + OutputDictY = self.MetaModel.ExpDesign.Y + OutputNames = list(OutputDictY.keys())[1:] + + if UtilMethod == 'Entropy': + # ----- Entropy/MMSE/active learning MacKay(ALM) ----- + # Compute perdiction variance of the old model + Y_PC_can, std_PC_can = self.MetaModel.eval_metamodel(samples=X_can) + canPredVar = {key: std_PC_can[key]**2 for key in OutputNames} + + varPCE = np.zeros((len(OutputNames), X_can.shape[0])) + for KeyIdx, key in enumerate(OutputNames): + varPCE[KeyIdx] = np.max(canPredVar[key], axis=1) + score = np.max(varPCE, axis=0) + + elif UtilMethod == 'EIGF': + # ----- Expected Improvement for Global fit ----- + # Eq (5) from Liu et al.(2018) + # Compute perdiction error and variance of the old model + Y_PC_can, std_PC_can = self.eval_metamodel(samples=X_can) + predError = {key: Y_PC_can[key] for key in OutputNames} + canPredVar = {key: std_PC_can[key]**2 for key in OutputNames} + + EIGF_PCE = np.zeros((len(OutputNames), X_can.shape[0])) + for KeyIdx, key in enumerate(OutputNames): + residual = predError[key] - OutputDictY[key][index] + var = canPredVar[key] + EIGF_PCE[KeyIdx] = np.max(residual**2 + var, axis=1) + score = np.max(EIGF_PCE, axis=0) + + return -1 * score # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def util_BayesianActiveDesign(self, X_can, sigma2Dict, var='DKL'): + + # Evaluate the PCE metamodels at that location ??? + Y_mean_can, Y_std_can = self.eval_metamodel(samples=np.array([X_can])) + + # Get the data + obs_data = self.Observations + nObs = self.Model.nObs + # TODO: Analytical DKL + # Sample a distribution for a normal dist + # with Y_mean_can as the mean and Y_std_can as std. + + # priorMean, priorSigma2, Obs = np.empty((0)),np.empty((0)),np.empty((0)) + + # for key in list(Y_mean_can): + # # concatenate the measurement error + # Obs = np.hstack((Obs,ObservationData[key])) + + # # concatenate the mean and variance of prior predictive + # means, stds = Y_mean_can[key][0], Y_std_can[key][0] + # priorMean = np.hstack((priorSigma2,means)) + # priorSigma2 = np.hstack((priorSigma2,stds**2)) + + # # Covariance Matrix of prior + # covPrior = np.zeros((priorSigma2.shape[0], priorSigma2.shape[0]), float) + # np.fill_diagonal(covPrior, priorSigma2) + + # # Covariance Matrix of Likelihood + # covLikelihood = np.zeros((sigma2Dict.shape[0], sigma2Dict.shape[0]), float) + # np.fill_diagonal(covLikelihood, sigma2Dict) + + # # Calculate moments of the posterior (Analytical derivation) + # n = priorSigma2.shape[0] + # covPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))),covLikelihood/n) + + # meanPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))) , Obs) + \ + # np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))), + # priorMean/n) + # # Compute DKL from prior to posterior + # term1 = np.trace(np.dot(np.linalg.inv(covPrior),covPost)) + # deltaMean = priorMean-meanPost + # term2 = np.dot(np.dot(deltaMean,np.linalg.inv(covPrior)),deltaMean[:,None]) + # term3 = np.log(np.linalg.det(covPrior)/np.linalg.det(covPost)) + # DKL = 0.5 * (term1 + term2 - n + term3)[0] + + # ---------- Inner MC simulation for computing Utility Value ---------- + # Estimation of the integral via Monte Varlo integration + MCsize = 20000 + ESS = 0 + + while ((ESS > MCsize) or (ESS < 1)): + + # Sample a distribution for a normal dist + # with Y_mean_can as the mean and Y_std_can as std. + Y_MC, std_MC = {}, {} + logPriorLikelihoods = np.zeros((MCsize)) + for key in list(Y_mean_can): + means, stds = Y_mean_can[key][0], Y_std_can[key][0] + # cov = np.zeros((means.shape[0], means.shape[0]), float) + # np.fill_diagonal(cov, stds**2) + + Y_MC[key] = np.zeros((MCsize, nObs)) + logsamples = np.zeros((MCsize, nObs)) + for i in range(nObs): + NormalDensity = stats.norm(means[i], stds[i]) + Y_MC[key][:, i] = NormalDensity.rvs(MCsize) + logsamples[:, i] = NormalDensity.logpdf(Y_MC[key][:, i]) + + logPriorLikelihoods = np.sum(logsamples, axis=1) + std_MC[key] = np.zeros((MCsize, means.shape[0])) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self.normpdf(Y_MC, std_MC, obs_data, sigma2Dict) + + # Check the Effective Sample Size (1<ESS<MCsize) + ESS = 1 / np.sum(np.square(likelihoods/np.nansum(likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + # Utility function Eq.2 in Ref. (2) + # Posterior covariance matrix after observing data y + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # TODO: Calculate the correction factor for BME + # BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can, + # ObservationData, sigma2Dict) + # BME += BMECorrFactor + # Haun et al implementation + # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + U_J_d = postExpLikelihoods - logBME + + # Marginal log likelihood + elif var == 'BME': + U_J_d = logBME + + # Entropy-based information gain + elif var == 'infEntropy': + logBME = np.log(np.nanmean(likelihoods)) + infEntropy = logBME - postExpPrior - postExpLikelihoods + U_J_d = infEntropy * -1 # -1 for minimization + + # Bayesian information criterion + elif var == 'BIC': + coeffs = self.MetaModel.CoeffsDict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxL = np.nanmax(likelihoods) + U_J_d = -2 * np.log(maxL) + np.log(nObs) * nModelParams + + # Akaike information criterion + elif var == 'AIC': + coeffs = self.MetaModel.CoeffsDict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxlogL = np.log(np.nanmax(likelihoods)) + AIC = -2 * maxlogL + 2 * nModelParams + # 2 * nModelParams * (nModelParams+1) / (nObs-nModelParams-1) + penTerm = 0 + U_J_d = 1*(AIC + penTerm) + + # Deviance information criterion + elif var == 'DIC': + # D_theta_bar = np.mean(-2 * Likelihoods) + N_star_p = 0.5 * np.var(np.log(likelihoods[likelihoods != 0])) + Likelihoods_theta_mean = self.normpdf(Y_mean_can, Y_std_can, + obs_data, sigma2Dict) + DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p + + U_J_d = DIC + + else: + print('The algorithm you requested has not been implemented yet!') + + # Handle inf and NaN (replace by zero) + if np.isnan(U_J_d) or U_J_d == -np.inf or U_J_d == np.inf: + U_J_d = 0.0 + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def util_BayesianDesign(self, X_can, X_MC, sigma2Dict, var='DKL'): + + # To avoid changes ub original aPCE object + Model = self.Model + PCEModel = deepcopy(self.MetaModel) + + # Old Experimental design + oldExpDesignX = PCEModel.ExpDesign.X + oldExpDesignY = PCEModel.ExpDesign.Y + + # Evaluate the PCE metamodels at that location ??? + Y_PC_can, _ = self.MetaModel.eval_metamodel(samples=np.array([X_can])) + + # Add all suggestion as new ExpDesign + NewExpDesignX = np.vstack((oldExpDesignX, X_can)) + + NewExpDesignY = {} + for key in oldExpDesignY.keys(): + try: + NewExpDesignY[key] = np.vstack((oldExpDesignY[key], + Y_PC_can[key])) + except: + NewExpDesignY[key] = oldExpDesignY[key] + + PCEModel.ExpDesign.SamplingMethod = 'user' + PCEModel.ExpDesign.X = NewExpDesignX + PCEModel.ExpDesign.Y = NewExpDesignY + + # Create the SparseBayes-based PCE metamodel: + PCEModel.Inputs.polycoeffsFlag = False + univ_p_val = self.MetaModel.univ_basis_vals(X_can) + G_n_m_all = np.zeros((len(Model.Output.Names), Model.nObs)) + + for idx, key in enumerate(Model.Output.Names): + for i in range(Model.nObs): + BasisIndices = PCEModel.BasisDict[key]["y_"+str(i+1)] + clf_poly = PCEModel.clf_poly[key]["y_"+str(i+1)] + Mn = clf_poly.coef_ + Sn = clf_poly.sigma_ + beta = clf_poly.alpha_ + active = clf_poly.active_ + Psi = self.MetaModel.PCE_create_Psi(BasisIndices, univ_p_val) + + Sn_new_inv = np.linalg.inv(Sn) + Sn_new_inv += beta * np.dot(Psi[:, active].T, Psi[:, active]) + Sn_new = np.linalg.inv(Sn_new_inv) + + Mn_new = np.dot(Sn_new_inv, Mn[active]).reshape(-1, 1) + Mn_new += beta * np.dot(Psi[:, active].T, Y_PC_can[key][0, i]) + Mn_new = np.dot(Sn_new, Mn_new).flatten() + + # Compute new moments + mean_old = Mn[0] + mean_new = Mn_new[0] + std_old = np.sqrt(np.sum(np.square(Mn[1:]))) + std_new = np.sqrt(np.sum(np.square(Mn_new[1:]))) + + G_n_m = np.log(std_old/std_new) - 1./2 + G_n_m += std_new**2 / (2*std_new**2) + G_n_m += (mean_new - mean_old)**2 / (2*std_old**2) + + G_n_m_all[idx, i] = G_n_m + + clf_poly.coef_[active] = Mn_new + clf_poly.sigma_ = Sn_new + PCEModel.clf_poly[key]["y_"+str(i+1)] = clf_poly + + # return np.sum(G_n_m_all) + # PCEModel.create_PCE_normDesign(Model, OptDesignFlag=True) + PCE_SparseBayes_can = PCEModel + + # Get the data + obs_data = self.MetaModel.Observations + + # ---------- Inner MC simulation for computing Utility Value ---------- + # Estimation of the integral via Monte Varlo integration + MCsize = X_MC.shape[0] + ESS = 0 + + while ((ESS > MCsize) or (ESS < 1)): + + # Enriching Monte Carlo samples if need be + if ESS != 0: + X_MC = self.MetaModel.ExpDesign.GetSample(MCsize, 'random') + + # Evaluate the PCEModel at the given samples + Y_MC, std_MC = PCE_SparseBayes_can.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self.normpdf(Y_MC, std_MC, obs_data, sigma2Dict) + + # Check the Effective Sample Size (1<ESS<MCsize) + ESS = 1 / np.sum(np.square(likelihoods/np.sum(likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # -------------------- Utility functions -------------------- + # Utility function Eq.2 in Ref. (2) + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Haun et al implementation + U_J_d = np.mean(np.log(likelihoods[likelihoods != 0])- logBME) + + U_J_d = np.sum(G_n_m_all) + # Ryan et al (2014) implementation + # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0]) + # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME + + # U_J_d = postExpLikelihoods - logBME + + # Marginal likelihood + elif var == 'BME': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + U_J_d = logBME + + # Bayes risk likelihood + elif var == 'BayesRisk': + + U_J_d = -1 * np.var(likelihoods) + + # Entropy-based information gain + elif var == 'infEntropy': + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] / np.nansum(likelihoods[accepted]) + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + infEntropy = logBME - postExpPrior - postExpLikelihoods + + U_J_d = infEntropy * -1 # -1 for minimization + + # D-Posterior-precision + elif var == 'DPP': + X_Posterior = X_MC[accepted] + # covariance of the posterior parameters + U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior))) + + # A-Posterior-precision + elif var == 'APP': + X_Posterior = X_MC[accepted] + # trace of the posterior parameters + U_J_d = -np.log(np.trace(np.cov(X_Posterior))) + + else: + print('The algorithm you requested has not been implemented yet!') + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def subdomain(self, Bounds, NrofNewSample): + + NofPa = self.MetaModel.NofPa + NofSubdomain = NrofNewSample + 1 + LinSpace = np.zeros((NofPa, NofSubdomain)) + + for i in range(NofPa): + LinSpace[i] = np.linspace(start=Bounds[i][0], stop=Bounds[i][1], + num=NofSubdomain) + Subdomains = [] + for k in range(NofSubdomain-1): + mylist = [] + for i in range(NofPa): + mylist.append((LinSpace[i, k+0], LinSpace[i, k+1])) + Subdomains.append(tuple(mylist)) + + return Subdomains + + # ------------------------------------------------------------------------- + def Utility_runner(self, method, allCandidates, index, sigma2Dict=None, + var=None, X_MC=None): + + if method == 'VarOptDesign': + U_J_d = self.util_VarBasedDesign(allCandidates, index, var) + + elif method == 'BayesActDesign': + NCandidate = allCandidates.shape[0] + U_J_d = np.zeros((NCandidate)) + for idx, X_can in tqdm(enumerate(allCandidates), ascii=True, + desc="OptBayesianDesign"): + U_J_d[idx] = self.util_BayesianActiveDesign(X_can, sigma2Dict, + var) + elif method == 'BayesOptDesign': + NCandidate = allCandidates.shape[0] + U_J_d = np.zeros((NCandidate)) + for idx, X_can in tqdm(enumerate(allCandidates), ascii=True, + desc="OptBayesianDesign"): + U_J_d[idx] = self.util_BayesianDesign(X_can, X_MC, sigma2Dict, + var) + return (index, -1 * U_J_d) + + # ------------------------------------------------------------------------- + def dual_annealing(self, method, Bounds, sigma2Dict, var, Run_No, + debugFlag=False): + + Model = self.Model + MaxFunItr = self.MetaModel.ExpDesign.MaxFunItr + + if method == 'VarOptDesign': + Res_Global = opt.dual_annealing(self.util_VarBasedDesign, + bounds=Bounds, + args=(Model, var), + maxfun=MaxFunItr) + + elif method == 'BayesOptDesign': + Res_Global = opt.dual_annealing(self.util_BayesianDesign, + bounds=Bounds, + args=(Model, sigma2Dict, var), + maxfun=MaxFunItr) + + if debugFlag: + print(f"global minimum: xmin = {Res_Global.x}, " + f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}") + + return (Run_No, Res_Global.x) + + # ------------------------------------------------------------------------- + def tradoffWeights(self, TradeOffScheme, OldExpDesign, OutputDictY): + + if TradeOffScheme == 'None': + weightExploration = 0 + + elif TradeOffScheme == 'equal': + weightExploration = 0.5 + + elif TradeOffScheme == 'epsilon-decreasing': + # epsilon-decreasing scheme + # Start with more exploration and increase the influence of + # exploitation along the way with a exponential decay function + initNSamples = self.MetaModel.ExpDesign.initNrSamples + maxNSamples = self.MetaModel.ExpDesign.MaxNSamples + + itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.MetaModel.ExpDesign.NrofNewSample + + tau2 = -(maxNSamples-initNSamples-1) / np.log(1e-8) + weightExploration = signal.exponential(maxNSamples-initNSamples, 0, + tau2, False)[itrNumber] + + elif TradeOffScheme == 'adaptive': + + # Extract itrNumber + initNSamples = self.MetaModel.ExpDesign.initNrSamples + maxNSamples = self.MetaModel.ExpDesign.MaxNSamples + itrNumber = (self.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.ExpDesign.NrofNewSample + + if itrNumber == 0: + weightExploration = 0.5 + else: + # # Extract the model errors from the last and next to last + # # iterations + # errorModel_i , errorModel_i_1 = self.errorModel[itrNumber], + # self.errorModel[itrNumber-1] + + # # Evaluate the error models for all selected samples so far + # eLCAllCands_i, _ = errorModel_i.eval_errormodel(OldExpDesign) + # eLCAllCands_i_1, _ = errorModel_i_1.eval_errormodel(OldExpDesign) + + # # Local improvement of LC error at last selected design + # sl_i = np.max(np.dstack(eLCAllCands_i.values())[-1]) + # sl_i_1 = np.max(np.dstack(eLCAllCands_i_1.values())[-1]) + + # p = sl_i**2 / sl_i_1**2 + + # # Global improvement of LC error at OldExpDesign + # sg_i = np.max(np.dstack(eLCAllCands_i.values()),axis=1) + # sg_i_1 = np.max(np.dstack(eLCAllCands_i_1.values()),axis=1) + + # q = np.sum(np.square(sg_i)) / np.sum(np.square(sg_i_1)) + + # weightExploration = min([0.5*p/q, 1]) + + # TODO: New adaptive trade-off according to Liu et al. (2017) + # Mean squared error for last design point + last_EDX = OldExpDesign[-1].reshape(1, -1) + lastPCEY, _ = self.MetaModel.eval_metamodel(samples=last_EDX) + pce_y = np.array(list(lastPCEY.values()))[:, 0] + y = np.array(list(OutputDictY.values())[1:])[:, -1, :] + mseError = mean_squared_error(pce_y, y) + + # Mean squared CV - error for last design point + error = [] + for V in self.MetaModel.LCerror.values(): + for v in V.values(): + error.append(v[-1]) + mseCVError = np.mean(np.square(error)) + weightExploration = 0.99 * min([0.5*mseError/mseCVError, 1]) + + return weightExploration + + # ------------------------------------------------------------------------- + def opt_SeqDesign(self, sigma2Dict, NCandidate=5, var='DKL'): + + # Initialization + PCEModel = self.MetaModel + Model = self.Model + Bounds = PCEModel.BoundTuples + NrNewSample = PCEModel.ExpDesign.NrofNewSample + ExploreMethod = PCEModel.ExpDesign.ExploreMethod + ExploitMethod = PCEModel.ExpDesign.ExploitMethod + NrofCandGroups = PCEModel.ExpDesign.NrofCandGroups + TradeOffScheme = PCEModel.ExpDesign.TradeOffScheme + + OldExpDesign = PCEModel.ExpDesign.X + OutputDictY = PCEModel.ExpDesign.Y.copy() + ndim = PCEModel.ExpDesign.X.shape[1] + + # ----------------------------------------- + # ----------- CUSTOMIZED METHODS ---------- + # ----------------------------------------- + # Utility function ExploitMethod provided by user + if ExploitMethod.lower() == 'user': + + Xnew, filteredSamples = PCEModel.ExpDesign.ExploitFunction(self) + + print("\n") + print("\nXnew:\n", Xnew) + + return Xnew, filteredSamples + + # ----------------------------------------- + # ---------- EXPLORATION METHODS ---------- + # ----------------------------------------- + if ExploreMethod == 'dual annealing': + # ------- EXPLORATION: OPTIMIZATION ------- + import time + start_time = time.time() + + # Divide the domain to subdomains + args = [] + Subdomains = self.subdomain(Bounds, NrNewSample) + for i in range(NrNewSample): + args.append((ExploitMethod, Subdomains[i], sigma2Dict, var, i)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + + # With Pool.starmap_async() + results = pool.starmap_async(self.dual_annealing, args).get() + + # Close the pool + pool.close() + + Xnew = np.array([results[NofE][1] for NofE in range(NrNewSample)]) + + print("\nXnew:\n", Xnew) + + elapsed_time = time.time() - start_time + print("\n") + print(f"elapsed_time: {round(elapsed_time,2)} sec.") + print('-'*20) + + elif ExploreMethod == 'LOOCV': + # ----------------------------------------------------------------- + # TODO: LOOCV model construnction based on Feng et al. (2020) + # 'LOOCV': + # Initilize the ExploitScore array + OutputNames = list(OutputDictY.keys())[1:] + + # Generate random samples + allCandidates = PCEModel.ExpDesign.GetSample( + NCandidate, SamplingMethod='random' + ) + + # Construct error model based on LCerror + errorModel = PCEModel.create_ModelError(OldExpDesign, self.LCerror) + self.errorModel.append(copy(errorModel)) + + # Evaluate the error models for allCandidates + eLCAllCands, _ = errorModel.eval_errormodel(allCandidates) + # Select the maximum as the representative error + eLCAllCands = np.dstack(eLCAllCands.values()) + eLCAllCandidates = np.max(eLCAllCands, axis=1)[:, 0] + + # Normalize the error w.r.t the maximum error + scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates) + + else: + # ------- EXPLORATION: SPACE-FILLING DESIGN ------- + # Generate candidate samples from Exploration class + explore = Exploration(PCEModel, NCandidate) + explore.w = 100 # * ndim #500 + # Select criterion (mc-intersite-proj-th, mc-intersite-proj) + explore.mcCriterion = 'mc-intersite-proj' + allCandidates, scoreExploration = explore.getExplorationSamples() + + # Temp: ---- Plot all candidates ----- + if ndim == 2: + def plotter(points, allCandidates, Method, + scoreExploration=None): + if Method == 'Voronoi': + from scipy.spatial import Voronoi, voronoi_plot_2d + vor = Voronoi(points) + fig = voronoi_plot_2d(vor) + ax1 = fig.axes[0] + else: + fig = plt.figure() + ax1 = fig.add_subplot(111) + ax1.scatter(points[:, 0], points[:, 1], s=10, c='r', + marker="s", label='Old Design Points') + ax1.scatter(allCandidates[:, 0], allCandidates[:, 1], s=10, + c='b', marker="o", label='Design candidates') + for i in range(points.shape[0]): + txt = 'p'+str(i+1) + ax1.annotate(txt, (points[i, 0], points[i, 1])) + if scoreExploration is not None: + for i in range(allCandidates.shape[0]): + txt = str(round(scoreExploration[i], 5)) + ax1.annotate(txt, (allCandidates[i, 0], + allCandidates[i, 1])) + + plt.xlim(self.BoundTuples[0]) + plt.ylim(self.BoundTuples[1]) + # plt.show() + plt.legend(loc='upper left') + + # ----------------------------------------- + # --------- EXPLOITATION METHODS ---------- + # ----------------------------------------- + if ExploitMethod == 'BayesOptDesign' or\ + ExploitMethod == 'BayesActDesign': + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + weightExploration = self.tradoffWeights(TradeOffScheme, + OldExpDesign, + OutputDictY) + print(f"\nweightExploration={weightExploration:0.3f} " + f"weightExploitation={1- weightExploration:0.3f}") + + # ------- EXPLOITATION: BayesOptDesign & ActiveLearning ------- + if weightExploration != 1.0: + + # Create a sample pool for rejection sampling + MCsize = 15000 + X_MC = PCEModel.ExpDesign.GetSample(MCsize, 'random') + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + + # Split the candidates in groups for multiprocessing + split_cand = np.array_split(allCandidates, + NrofCandGroups, axis=0) + args = [] + for i in range(NrofCandGroups): + args.append((ExploitMethod, split_cand[i], i, sigma2Dict, + var, X_MC)) + + # With Pool.starmap_async() + results = pool.starmap_async(self.Utility_runner, args).get() + + # Close the pool + pool.close() + + # Retrieve the results and append them + U_J_d = np.concatenate([results[NofE][1] for NofE in + range(NrofCandGroups)]) + + # Get the expected value (mean) of the Utility score + # for each cell + if ExploreMethod == 'Voronoi': + U_J_d = np.mean(U_J_d.reshape(-1, NCandidate), axis=1) + + # Normalize U_J_d + norm_U_J_d = U_J_d / np.sum(U_J_d) + print("norm_U_J_d:\n", norm_U_J_d) + else: + norm_U_J_d = np.zeros((len(scoreExploration))) + + # ------- Calculate Total score ------- + # ------- Trade off between EXPLORATION & EXPLOITATION ------- + # Total score + totalScore = (1 - weightExploration)*norm_U_J_d + totalScore += weightExploration*scoreExploration + + # temp: Plot + # dim = self.ExpDesign.X.shape[1] + # if dim == 2: + # plotter(self.ExpDesign.X, allCandidates, ExploreMethod) + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + bestIdx = sorted_idxtotalScore[:NrNewSample] + + # select the requested number of samples + if ExploreMethod == 'Voronoi': + Xnew = np.zeros((NrNewSample, ndim)) + for i, idx in enumerate(bestIdx): + X_can = explore.closestPoints[idx] + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.getMCSamples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + else: + Xnew = allCandidates[sorted_idxtotalScore[:NrNewSample]] + + elif ExploitMethod == 'VarOptDesign': + # ------- EXPLOITATION: VarOptDesign ------- + UtilMethod = var + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + weightExploration = self.tradoffWeights(TradeOffScheme, + OldExpDesign, + OutputDictY) + print(f"\nweightExploration={weightExploration:0.3f} " + f"weightExploitation={1- weightExploration:0.3f}") + + # Generate candidate samples from Exploration class + OutputNames = list(OutputDictY.keys())[1:] + nMeasurement = OutputDictY[OutputNames[0]].shape[1] + + # Find indices of the Vornoi cells with samples + goodSampleIdx = [] + for idx in range(len(explore.closestPoints)): + if len(explore.closestPoints[idx]) != 0: + goodSampleIdx.append(idx) + + # Find sensitive region + if UtilMethod == 'LOOCV': + LCerror = PCEModel.LCerror + allModifiedLOO = np.zeros((len(OldExpDesign), len(OutputNames), + nMeasurement)) + for y_idx, y_key in enumerate(OutputNames): + for idx, key in enumerate(LCerror[y_key].keys()): + allModifiedLOO[:, y_idx, idx] = abs( + LCerror[y_key][key]) + + ExploitScore = np.max(np.max(allModifiedLOO, axis=1), axis=1) + + elif UtilMethod in ['EIGF', 'Entropy']: + # ----- All other in ['EIGF', 'Entropy', 'ALM'] ----- + # Initilize the ExploitScore array + ExploitScore = np.zeros((len(OldExpDesign), len(OutputNames))) + + # Split the candidates in groups for multiprocessing + if ExploreMethod != 'Voronoi': + split_cand = np.array_split(allCandidates, + NrofCandGroups, + axis=0) + goodSampleIdx = range(NrofCandGroups) + else: + split_cand = explore.closestPoints + + # Split the candidates in groups for multiprocessing + args = [] + for index in goodSampleIdx: + args.append((ExploitMethod, split_cand[index], index, + sigma2Dict, var)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + # With Pool.starmap_async() + results = pool.starmap_async(self.Utility_runner, args).get() + + # Close the pool + pool.close() + + # Retrieve the results and append them + ExploitScore = np.concatenate([results[NofE][1] for NofE in + range(len(goodSampleIdx))]) + + else: + raise NameError('The requested utility function is not ' + 'available.') + + # print("ExploitScore:\n", ExploitScore) + + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + # Total score + # Normalize U_J_d + ExploitScore = ExploitScore / np.sum(ExploitScore) + totalScore = (1 - weightExploration) * ExploitScore + totalScore += weightExploration * scoreExploration + + temp = totalScore.copy() + sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1] + bestIdx = sorted_idxtotalScore[:NrNewSample] + + Xnew = np.zeros((NrNewSample, ndim)) + if ExploreMethod != 'Voronoi': + Xnew = allCandidates[bestIdx] + else: + for i, idx in enumerate(bestIdx.flatten()): + X_can = explore.closestPoints[idx] + # plotter(self.ExpDesign.X, X_can, ExploreMethod, + # scoreExploration=None) + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.getMCSamples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + + elif ExploitMethod == 'alphabetic': + # ------- EXPLOITATION: ALPHABETIC ------- + Xnew = self.util_AlphOptDesign(allCandidates, var) + + elif ExploitMethod == 'Space-filling': + # ------- EXPLOITATION: SPACE-FILLING ------- + totalScore = scoreExploration + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + + # select the requested number of samples + Xnew = allCandidates[sorted_idxtotalScore[:NrNewSample]] + + else: + raise NameError('The requested design method is not available.') + + print("\n") + print("\nRun No. {}:".format(OldExpDesign.shape[0]+1)) + print("Xnew:\n", Xnew) + + return Xnew, None + + # ------------------------------------------------------------------------- + def util_AlphOptDesign(self, allCandidates, var='D-Opt'): + """ + Enrich the Experimental design with the requested alphabetic criterion + based on exploring the space with number of sampling points. + + Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos + expansion: A review of sampling strategies., Computer Methods in + Applied Mechanics and Engineering, 332, 382-407. + + Arguments + --------- + NCandidate : int + Number of candidate points to be searched + + var : string + Alphabetic optimality criterion + + Returns + ------- + X_new : ndarray[1, n] + The new sampling location in the input space. + """ + PCEModelOrig = self.PCEModel + Model = self.ModelObj + NrofNewSample = PCEModelOrig.ExpDesign.NrofNewSample + index = PCEModelOrig.index + NCandidate = allCandidates.shape[0] + + # TODO: Loop over outputs + OutputName = Model.Output.Names[0] + + # To avoid changes ub original aPCE object + PCEModel = deepcopy(PCEModelOrig) + + # Old Experimental design + oldExpDesignX = PCEModel.ExpDesign.X + + # TODO: Only one psi can be selected. + # Suggestion: Go for the one with the highest LOO error + Scores = list(PCEModel.ScoresDict[OutputName].values()) + ModifiedLOO = [1-score for score in Scores] + outIdx = np.argmax(ModifiedLOO[:index]) + + # Initialize Phi to save the criterion's values + Phi = np.zeros((NCandidate)) + + BasisIndices = PCEModelOrig.BasisDict[OutputName]["y_"+str(outIdx+1)] + P = len(BasisIndices) + + # ------ Old Psi ------------ + univ_p_val = PCEModelOrig.univ_basis_vals(oldExpDesignX) + Psi = PCEModelOrig.PCE_create_Psi(BasisIndices, univ_p_val) + + # ------ New candidates (Psi_c) ------------ + # Assemble Psi_c + univ_p_val_c = self.univ_basis_vals(allCandidates) + Psi_c = self.PCE_create_Psi(BasisIndices, univ_p_val_c) + + for idx in range(NCandidate): + + # Include the new row to the original Psi + Psi_cand = np.vstack((Psi, Psi_c[idx])) + + # Information matrix + PsiTPsi = np.dot(Psi_cand.T, Psi_cand) + M = PsiTPsi / (len(oldExpDesignX)+1) + + if np.linalg.cond(PsiTPsi) > 1e-12 \ + and np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon: + # faster + invM = linalg.solve(M, sparse.eye(PsiTPsi.shape[0]).toarray()) + else: + # stabler + invM = np.linalg.pinv(M) + + # ---------- Calculate optimality criterion ---------- + # Optimality criteria according to Section 4.5.1 in Ref. + + # D-Opt + if var == 'D-Opt': + Phi[idx] = (np.linalg.det(invM)) ** (1/P) + + # A-Opt + elif var == 'A-Opt': + Phi[idx] = np.trace(invM) + + # K-Opt + elif var == 'K-Opt': + Phi[idx] = np.linalg.cond(M) + + else: + raise Exception('The optimality criterion you requested has ' + 'not been implemented yet!') + + # find an optimal point subset to add to the initial design + # by minimization of the Phi + sorted_idxtotalScore = np.argsort(Phi) + + # select the requested number of samples + Xnew = allCandidates[sorted_idxtotalScore[:NrofNewSample]] + + return Xnew + + # ------------------------------------------------------------------------- + def normpdf(self, PCEOutputs, std_PC_MC, obs_data, Sigma2s): + + output_names = self.Model.Output.Names + + SampleSize, index = PCEOutputs[output_names[0]].shape + if type(self.MetaModel.index) is list: + index = self.MetaModel.index + else: + index = [self.MetaModel.index]*len(output_names) + + # Flatten the ObservationData + TotalData = obs_data[output_names].to_numpy().flatten('F') + + # Remove NaN + TotalData = TotalData[~np.isnan(TotalData)] + Sigma2s = Sigma2s[~np.isnan(Sigma2s)] + + # Flatten the Output + TotalOutputs = np.empty((SampleSize, 0)) + for idx, key in enumerate(output_names): + TotalOutputs = np.hstack((TotalOutputs, + PCEOutputs[key][:, :index[idx]])) + + # Covariance Matrix + covMatrix = np.zeros((Sigma2s.shape[0], Sigma2s.shape[0]), float) + np.fill_diagonal(covMatrix, Sigma2s) + + # Add the std of the PCE. + covMatrix_PCE = np.zeros((Sigma2s.shape[0], Sigma2s.shape[0]), float) + stdPCE = np.empty((SampleSize, 0)) + for idx, key in enumerate(output_names): + stdPCE = np.hstack((stdPCE, std_PC_MC[key][:, :index[idx]])) + + # Expected value of variance (Assump: i.i.d stds) + varPCE = np.mean(stdPCE**2, axis=0) + # # varPCE = np.var(stdPCE, axis=1) + np.fill_diagonal(covMatrix_PCE, varPCE) + + # Aggregate the cov matrices + covMatrix += covMatrix_PCE + + # Compute likelihood + self.Likelihoods = stats.multivariate_normal.pdf(TotalOutputs, + mean=TotalData, + cov=covMatrix, + allow_singular=True) + return self.Likelihoods + + # ------------------------------------------------------------------------- + def posteriorPlot(self, Posterior, MAP, parNames, key, figsize=(10, 10)): + + # Initialization + newpath = (r'Outputs_SeqPosteriorComparison') + if not os.path.exists(newpath): + os.makedirs(newpath) + + lw = 3. + BoundTuples = self.BoundTuples + NofPa = len(MAP) + + # This is the true mean of the second mode that we used above: + value1 = MAP + + # This is the empirical mean of the sample: + value2 = np.mean(Posterior, axis=0) + + if NofPa == 2: + + figPosterior, ax = plt.subplots() + plt.hist2d(Posterior[:, 0], Posterior[:, 1], bins=(200, 200), + range=np.array([BoundTuples[0], BoundTuples[1]]), + cmap=plt.cm.jet) + + plt.xlabel(parNames[0]) + plt.ylabel(parNames[1]) + + plt.xlim(BoundTuples[0]) + plt.ylim(BoundTuples[1]) + + ax.axvline(value1[0], color="g", lw=lw) + ax.axhline(value1[1], color="g", lw=lw) + ax.plot(value1[0], value1[1], "sg", lw=lw+1) + + ax.axvline(value2[0], ls='--', color="r", lw=lw) + ax.axhline(value2[1], ls='--', color="r", lw=lw) + ax.plot(value2[0], value2[1], "sr", lw=lw+1) + + else: + import corner + figPosterior = corner.corner(Posterior, labels=parNames, + title_fmt='.2e', show_titles=True, + title_kwargs={"fontsize": 12}) + + # Extract the axes + axes = np.array(figPosterior.axes).reshape((NofPa, NofPa)) + + # Loop over the diagonal + for i in range(NofPa): + ax = axes[i, i] + ax.axvline(value1[i], color="g") + ax.axvline(value2[i], ls='--', color="r") + + # Loop over the histograms + for yi in range(NofPa): + for xi in range(yi): + ax = axes[yi, xi] + ax.axvline(value1[xi], color="g") + ax.axvline(value2[xi], ls='--', color="r") + ax.axhline(value1[yi], color="g") + ax.axhline(value2[yi], ls='--', color="r") + ax.plot(value1[xi], value1[yi], "sg") + ax.plot(value2[xi], value2[yi], "sr") + + figPosterior.savefig(f'./{newpath}/{key}.svg', bbox_inches='tight') + plt.close() + + # Save the posterior as .npy + np.save(f'./{newpath}/{key}.npy', Posterior) + + return figPosterior + + # ------------------------------------------------------------------------- + def hellinger_distance(self, P, Q): + """ + Hellinger distance between two continuous distributions. + + The maximum distance 1 is achieved when P assigns probability zero to + every set to which Q assigns a positive probability, and vice versa. + 0 (identical) and 1 (maximally different) + + Parameters + ---------- + P : array + Reference likelihood. + Q : array + Estimated likelihood. + + Returns + ------- + float + Hellinger distance of two distributions. + + """ + mu1 = P.mean() + Sigma1 = np.std(P) + + mu2 = Q.mean() + Sigma2 = np.std(Q) + + term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2)) + + term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2)) + + H_squared = 1 - term1 * term2 + + return np.sqrt(H_squared) + + # ------------------------------------------------------------------------- + def BME_Calculator(self, PCEModel, obs_data, sigma2Dict): + """ + This function computes the Bayesian model evidence (BME) via Monte + Carlo integration. + + """ + # Initializations + validLikelihoods = PCEModel.validLikelihoods + PostSnapshot = PCEModel.ExpDesign.PostSnapshot + if PostSnapshot or len(validLikelihoods) != 0: + newpath = (r'Outputs_SeqPosteriorComparison') + if not os.path.exists(newpath): + os.makedirs(newpath) + + SamplingMethod = 'random' + MCsize = 100000 + ESS = 0 + + # Estimation of the integral via Monte Varlo integration + while ((ESS > MCsize) or (ESS < 1)): + + # Generate samples for Monte Carlo simulation + if len(validLikelihoods) == 0: + X_MC = PCEModel.ExpDesign.GetSample(MCsize, SamplingMethod) + else: + X_MC = PCEModel.validSamples + MCsize = X_MC.shape[0] + + # Monte Carlo simulation for the candidate design + Y_MC, std_MC = PCEModel.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and + # simulation results via PCE with candidate design) + Likelihoods = self.normpdf(Y_MC, std_MC, obs_data, sigma2Dict) + + # Check the Effective Sample Size (1000<ESS<MCsize) + ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + print('ESS={0} MC size should be larger.'.format(ESS)) + MCsize = MCsize * 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (Likelihoods/np.max(Likelihoods)) >= unif + X_Posterior = X_MC[accepted] + + # ------------------------------------------------------------ + # --- Kullback-Leibler Divergence & Information Entropy ------ + # ------------------------------------------------------------ + # Prior-based estimation of BME + logBME = np.log(np.nanmean(Likelihoods)) + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) + + # Posterior-based expectation of prior densities + # postExpPrior = np.mean([log_prior(sample) for sample in X_Posterior]) + + # Calculate Kullback-Leibler Divergence + # KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + KLD = postExpLikelihoods - logBME + + # Information Entropy based on Entropy paper Eq. 38 + # infEntropy = logBME - postExpPrior - postExpLikelihoods + + # If PostSnapshot is True, plot likelihood vs refrence + if PostSnapshot or len(validLikelihoods) != 0: + idx = len([name for name in os.listdir(newpath) if 'Likelihoods_' + in name and os.path.isfile(os.path.join(newpath, name))]) + fig, ax = plt.subplots() + sns.kdeplot(np.log(validLikelihoods[validLikelihoods > 0]), + shade=True, color="g", label='Ref. Likelihood') + sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), shade=True, + color="b", label='Likelihood with PCE') + + # Hellinger distance + ref_like = np.log(validLikelihoods[validLikelihoods > 0]) + est_like = np.log(Likelihoods[Likelihoods > 0]) + distHellinger = self.hellinger_distance(ref_like, est_like) + text = f"Hellinger Dist.={distHellinger:.3f}\n logBME={logBME:.3f}" + "\n DKL={KLD:.3f}" + + plt.text(0.05, 0.75, text, bbox=dict(facecolor='wheat', + edgecolor='black', + boxstyle='round,pad=1'), + transform=ax.transAxes) + + fig.savefig(f'./{newpath}/Likelihoods_{idx}.svg', + bbox_inches='tight') + plt.close() + + else: + distHellinger = 0.0 + + return (logBME, KLD, X_Posterior, distHellinger) + + # ------------------------------------------------------------------------- + def validError_(self): + + PCEModel = self.MetaModel + Model = self.Model + OutputName = Model.Output.Names + + # Generate random samples + Samples = PCEModel.validSamples + + # Extract the original model with the generated samples + ModelOutputs = PCEModel.validModelRuns + + # Run the PCE model with the generated samples + PCEOutputs, PCEOutputs_std = PCEModel.eval_metamodel(samples=Samples) + + validError_dict = {} + # Loop over the keys and compute RMSE error. + for key in OutputName: + weight = np.mean(np.square(PCEOutputs_std[key]), axis=0) + if all(weight == 0): + weight = 'variance_weighted' + validError_dict[key] = mean_squared_error(ModelOutputs[key], + PCEOutputs[key]) + validError_dict[key] /= np.var(ModelOutputs[key], ddof=1) + + return validError_dict + + # ------------------------------------------------------------------------- + def error_Mean_Std(self): + + PCEModel = self.MetaModel + # Extract the mean and std provided by user + df_MCReference = PCEModel.ModelObj.MCReference + + # Compute the mean and std based on the PCEModel + PCEMeans = dict() + PCEStds = dict() + for Outkey, ValuesDict in PCEModel.CoeffsDict.items(): + PCEMean = np.zeros((len(ValuesDict))) + PCEStd = np.zeros((len(ValuesDict))) + + for Inkey, InIdxValues in ValuesDict.items(): + idx = int(Inkey.split('_')[1]) - 1 + coeffs = PCEModel.CoeffsDict[Outkey][Inkey] + + # Mean = c_0 + if coeffs[0] != 0: + PCEMean[idx] = coeffs[0] + else: + PCEMean[idx] = PCEModel.clf_poly[Outkey][Inkey].intercept_ + + # Std = sqrt(sum(coeffs[1:]**2)) + PCEStd[idx] = np.sqrt(np.sum(np.square(coeffs[1:]))) + + if PCEModel.DimRedMethod.lower() == 'pca': + PCA = PCEModel.pca[Outkey] + PCEMean = PCA.mean_ + np.dot(PCEMean, PCA.components_) + PCEStd = np.dot(PCEStd, PCA.components_) + + # Compute the error between mean and std of PCEModel and OrigModel + RMSE_Mean = mean_squared_error(df_MCReference['mean'], PCEMean, + squared=False) + RMSE_std = mean_squared_error(df_MCReference['std'], PCEStd, + squared=False) + + PCEMeans[Outkey] = PCEMean + PCEStds[Outkey] = PCEStd + + return RMSE_Mean, RMSE_std + + # ------------------------------------------------------------------------- + def create_PCE_SeqDesign(self, Model): + + # Initialization + PCEModel = self.MetaModel + errorIncreases = False + PCEModel.SeqModifiedLOO = {} + PCEModel.seqValidError = {} + PCEModel.SeqBME = {} + PCEModel.SeqKLD = {} + PCEModel.SeqDistHellinger = {} + PCEModel.seqRMSEMean = {} + PCEModel.seqRMSEStd = {} + PCEModel.seqMinDist = [] + pce = True if PCEModel.metaModel.lower() != 'gpe' else False + mc_ref = True if hasattr(Model, 'MCReference') else False + if mc_ref: + Model.read_MCReference() + + # Get the parameters + max_n_samples = PCEModel.ExpDesign.MaxNSamples + mod_LOO_threshold = PCEModel.ExpDesign.ModifiedLOOThreshold + n_canddidate = PCEModel.ExpDesign.NCandidate + post_snapshot = PCEModel.ExpDesign.PostSnapshot + n_replication = PCEModel.ExpDesign.nReprications + + # Handle if only one UtilityFunctions is provided + if not isinstance(PCEModel.ExpDesign.UtilityFunction, list): + util_func = [PCEModel.ExpDesign.UtilityFunction] + + # ---------- Initial PCEModel ---------- + PCEModel = PCEModel.create_PCE_normDesign(Model) + initPCEModel = deepcopy(PCEModel) + + # TODO: Loop over outputs + OutputName = Model.Output.Names + + # Estimation of the integral via Monte Varlo integration + obs_data = PCEModel.Observations + + # Check if data is provided + TotalSigma2 = np.empty((0, 1)) + if len(obs_data) != 0: + # ------ Prepare diagonal enteries for co-variance matrix --------- + for keyIdx, key in enumerate(Model.Output.Names): + # optSigma = 'B' + sigma2 = np.array(PCEModel.Discrepancy.Parameters[key]) + TotalSigma2 = np.append(TotalSigma2, sigma2) + + # Calculate the initial BME + out = self.BME_Calculator(initPCEModel, obs_data, TotalSigma2) + initBME, initKLD, initPosterior, initDistHellinger = out + print("\nInitial BME:", initBME) + print("Initial KLD:", initKLD) + + # Posterior snapshot (initial) + if post_snapshot: + MAP = PCEModel.ExpDesign.MAP + parNames = PCEModel.ExpDesign.parNames + print('Posterior snapshot (initial) is being plotted...') + self.posteriorPlot(initPosterior, MAP, parNames, + 'SeqPosterior_init') + + # Check the convergence of the Mean & Std + if mc_ref and pce: + initRMSEMean, initRMSEStd = self.error_Mean_Std() + print(f"Initial Mean and Std error: {initRMSEMean}, {initRMSEStd}") + + # Read the initial experimental design + Xinit = initPCEModel.ExpDesign.X + initTotalNSamples = len(PCEModel.ExpDesign.X) + initYprev = initPCEModel.ModelOutputDict + initLCerror = initPCEModel.LCerror + + # Read the initial ModifiedLOO + if pce: + Scores_all, varExpDesignY = [], [] + for OutName in OutputName: + y = initPCEModel.ExpDesign.Y[OutName] + Scores_all.append(list( + initPCEModel.ScoresDict[OutName].values())) + if PCEModel.DimRedMethod.lower() == 'pca': + pca = PCEModel.pca[OutName] + components = pca.transform(y) + varExpDesignY.append(np.var(components, axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + + Scores = [item for sublist in Scores_all for item in sublist] + weights = [item for sublist in varExpDesignY for item in sublist] + initModifiedLOO = [np.average([1-score for score in Scores], + weights=weights)] + + if len(PCEModel.validModelRuns) != 0: + initValidError = self.validError_() + initValidError = list(initValidError.values()) + print("\nInitial ValidError:", initValidError) + + # Replicate the sequential design + for repIdx in range(n_replication): + print(f'>>>> Replication: {repIdx+1}<<<<') + + # To avoid changes ub original aPCE object + # PCEModel = copy.deepcopy(initPCEModel) + PCEModel.ExpDesign.X = Xinit + PCEModel.ExpDesign.Y = initYprev + PCEModel.LCerror = initLCerror + + for util_f in util_func: + print(f'>>>> UtilityFunction: {util_f} <<<<') + # To avoid changes ub original aPCE object + # PCEModel = copy.deepcopy(initPCEModel) + PCEModel.ExpDesign.X = Xinit + PCEModel.ExpDesign.Y = initYprev + PCEModel.LCerror = initLCerror + + # Set the experimental design + Xprev = Xinit + total_n_samples = initTotalNSamples + Yprev = initYprev + + Xfull = [] + Yfull = [] + + # Store the initial ModifiedLOO + if pce: + print("\nInitial ModifiedLOO:", initModifiedLOO) + ModifiedLOO = initModifiedLOO + SeqModifiedLOO = np.array(ModifiedLOO) + + if len(PCEModel.validModelRuns) != 0: + ValidError = initValidError + SeqValidError = np.array(ValidError) + + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.array([initBME]) + SeqKLD = np.array([initKLD]) + SeqDistHellinger = np.array([initDistHellinger]) + + if mc_ref and pce: + seqRMSEMean = np.array([initRMSEMean]) + seqRMSEStd = np.array([initRMSEStd]) + + # Start Sequential Experimental Design + postcnt = 1 + itrNr = 1 + while total_n_samples < max_n_samples: + + # Optimal Bayesian Design + PCEModel.ExpDesignFlag = 'sequential' + Xnew, updatedPrior = self.opt_SeqDesign(TotalSigma2, + n_canddidate, + util_f) + + S = np.min(distance.cdist(Xinit, Xnew, 'euclidean')) + PCEModel.seqMinDist.append(S) + print("\nmin Dist from OldExpDesign:", S) + print("\n") + + # Evaluate the full model response at the new sample: + Ynew, _ = Model.Run_Model_Parallel( + Xnew, prevRun_No=total_n_samples + ) + total_n_samples += Xnew.shape[0] + + # ------ Plot the surrogate model vs Origninal Model ------ + if PCEModel.adaptVerbose: + from PostProcessing.adaptPlot import adaptPlot + y_hat, std_hat = PCEModel.eval_metamodel(samples=Xnew) + adaptPlot(PCEModel, Ynew, y_hat, std_hat, plotED=False) + + # -------- Retrain the surrogate model ------- + # Extend new experimental design + Xfull = np.vstack((Xprev, Xnew)) + + # Updating existing key's value + for OutIdx in range(len(OutputName)): + OutName = OutputName[OutIdx] + try: + Yfull = np.vstack((Yprev[OutName], Ynew[OutName])) + except: + Yfull = np.vstack((Yprev[OutName], Ynew)) + + PCEModel.ModelOutputDict[OutName] = Yfull + + PCEModel.ExpDesign.SamplingMethod = 'user' + PCEModel.ExpDesign.X = Xfull + PCEModel.ExpDesign.Y = PCEModel.ModelOutputDict + + # save the Experimental Design for next iteration + Xprev = Xfull + Yprev = PCEModel.ModelOutputDict + + # Pass the new prior as the input + PCEModel.Inputs.polycoeffsFlag = False + if updatedPrior is not None: + PCEModel.Inputs.polycoeffsFlag = True + print("updatedPrior:", updatedPrior.shape) + # Arbitrary polynomial chaos + for i in range(updatedPrior.shape[1]): + PCEModel.Inputs.Marginals[i].DistType = None + x = updatedPrior[:, i] + PCEModel.Inputs.Marginals[i].InputValues = x + + prevPCEModel = PCEModel + PCEModel = PCEModel.create_PCE_normDesign(Model) + + # -------- Evaluate the retrain surrogate model ------- + # Compute the validation error + if len(PCEModel.validModelRuns) != 0: + validError = self.validError_() + ValidError = list(validError.values()) + print("\nUpdated ValidError:", ValidError) + + # Extract Modified LOO from Output + if pce: + Scores_all, varExpDesignY = [], [] + for OutName in OutputName: + y = initPCEModel.ExpDesign.Y[OutName] + Scores_all.append(list( + PCEModel.ScoresDict[OutName].values())) + if PCEModel.DimRedMethod.lower() == 'pca': + pca = PCEModel.pca[OutName] + components = pca.transform(y) + varExpDesignY.append(np.var(components, + axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + Scores = [item for sublist in Scores_all for item + in sublist] + weights = [item for sublist in varExpDesignY for item + in sublist] + ModifiedLOO = [np.average( + [1-score for score in Scores], weights=weights)] + + print('\n') + print(f"Updated ModifiedLOO {util_f}:\n", ModifiedLOO) + print("Xfull:", Xfull.shape) + print('\n') + + # check the direction of the error (on average): + # if it increases consistently stop the iterations + n_checks = 3 + if itrNr > n_checks * PCEModel.ExpDesign.NrofNewSample: + # ss<0 error increasing + ss = np.sign(SeqModifiedLOO - ModifiedLOO) + errorIncreases = np.sum(np.mean(ss[-2:], axis=1)) <= \ + -1*n_checks + + # If error is increasing in the last n_check iteration, + # stop the search and return the previous PCEModel + if errorIncreases: + print("Warning: The modified error is increasing " + "compared to the last {n_checks} iterations.") + PCEModel = prevPCEModel + break + else: + prevPCEModel = PCEModel + + # Store updated ModifiedLOO + if pce: + SeqModifiedLOO = np.vstack( + (SeqModifiedLOO, ModifiedLOO)) + if len(PCEModel.validModelRuns) != 0: + SeqValidError = np.vstack( + (SeqValidError, ValidError)) + + # -------- Caclulation of BME as accuracy metric ------- + # Check if data is provided + if len(obs_data) != 0: + # Calculate the initial BME + out = self.BME_Calculator(PCEModel, obs_data, + TotalSigma2) + BME, KLD, Posterior, DistHellinger = out + print('\n') + print("Updated BME:", BME) + print("Updated KLD:", KLD) + print('\n') + + # Plot some snapshots of the posterior + stepSnapshot = PCEModel.ExpDesign.stepSnapshot + if post_snapshot and postcnt % stepSnapshot == 0: + MAP = PCEModel.ExpDesign.MAP + parNames = PCEModel.ExpDesign.parNames + print('Posterior snapshot is being plotted...') + self.posteriorPlot(Posterior, MAP, parNames, + 'SeqPosterior_{postcnt}') + postcnt += 1 + + # Check the convergence of the Mean&Std + if mc_ref and pce: + print('\n') + RMSE_Mean, RMSE_std = self.error_Mean_Std() + print(f"Updated Mean and Std error: {RMSE_Mean}, " + f"{RMSE_std}") + print('\n') + + # Store the updated BME & KLD + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.vstack((SeqBME, BME)) + SeqKLD = np.vstack((SeqKLD, KLD)) + SeqDistHellinger = np.vstack((SeqDistHellinger, + DistHellinger)) + if mc_ref and pce: + seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean)) + seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std)) + + if pce and any(LOO < mod_LOO_threshold + for LOO in ModifiedLOO): + break + itrNr += 1 + # Store updated ModifiedLOO and BME in dictonary + strKey = f'{util_f}_rep_{repIdx+1}' + if pce: + PCEModel.SeqModifiedLOO[strKey] = SeqModifiedLOO + if len(PCEModel.validModelRuns) != 0: + PCEModel.seqValidError[strKey] = SeqValidError + + # Check if data is provided + if len(obs_data) != 0: + PCEModel.SeqBME[strKey] = SeqBME + PCEModel.SeqKLD[strKey] = SeqKLD + if len(PCEModel.validLikelihoods) != 0: + PCEModel.SeqDistHellinger[strKey] = SeqDistHellinger + if mc_ref and pce: + PCEModel.seqRMSEMean[strKey] = seqRMSEMean + PCEModel.seqRMSEStd[strKey] = seqRMSEStd + + return PCEModel diff --git a/BayesValidRox/surrogate_models/surrogate_models.py b/BayesValidRox/surrogate_models/surrogate_models.py index 080e09a079d5b16a682515693f1d62a44807bdbd..5511d0afe39680702502dcaa4f0d1f32f4a75c5f 100644 --- a/BayesValidRox/surrogate_models/surrogate_models.py +++ b/BayesValidRox/surrogate_models/surrogate_models.py @@ -5,109 +5,86 @@ Created on Sat Aug 24 13:07:07 2019 @author: farid """ - - -# To supress warnings import warnings -warnings.filterwarnings("ignore") import numpy as np import math import h5py -from mpl_toolkits import mplot3d import matplotlib.pyplot as plt -from matplotlib.offsetbox import AnchoredText from sklearn.preprocessing import MinMaxScaler - -SIZE = 30 -plt.rc('figure', figsize = (24, 16)) -plt.rc('font', family='serif', serif='Arial') -plt.rc('font', size=SIZE) -plt.rc('axes', grid = True) -plt.rc('text', usetex=True) -plt.rc('axes', linewidth=3) -plt.rc('axes', grid=True) -plt.rc('grid', linestyle="-") -plt.rc('axes', titlesize=SIZE) # fontsize of the axes title -plt.rc('axes', labelsize=SIZE) # fontsize of the x and y labels -plt.rc('xtick', labelsize=SIZE) # fontsize of the tick labels -plt.rc('ytick', labelsize=SIZE) # fontsize of the tick labels -plt.rc('legend', fontsize=SIZE) # legend fontsize -plt.rc('figure', titlesize=SIZE) # fontsize of the figure title - import scipy as sp from tqdm import tqdm -import warnings -from itertools import combinations, product -from scipy import stats +from sklearn.decomposition import PCA as sklearnPCA import sklearn.linear_model as lm -from sklearn.metrics import r2_score, mean_squared_error from sklearn.gaussian_process import GaussianProcessRegressor import sklearn.gaussian_process.kernels as kernels -# import (RBF, Matern, RationalQuadratic, -# ExpSineSquared, DotProduct, -# ConstantKernel) import os import sys -import multiprocessing -import copy -import seaborn as sns -import pandas as pd -from scipy.spatial import distance -import scipy.linalg as spla -from numpy.polynomial.polynomial import polyval -import chaospy -from joblib import Parallel,delayed - -from BayesInference.Discrepancy import Discrepancy +from joblib import Parallel, delayed + from .ExpDesigns import ExpDesigns from .glexindex import glexindex -from .aPoly_Construction import aPoly_Construction -from .Exploration import Exploration from .RegressionFastARD import RegressionFastARD from .RegressionFastLaplace import RegressionFastLaplace from .bayes_linear import VBLinearRegression, EBLinearRegression +warnings.filterwarnings("ignore") +plt.style.use('../../bayesvalidrox.mplstyle') + class Metamodel: - + def __init__(self, InputClass): self.Inputs = InputClass + self.metaModel = 'PCE' self.DisplayFlag = False - self.slicingforValidation = False - self.NofPa = len(InputClass.Marginals) self.MaxPceDegree = None self.MinPceDegree = 1 self.q = 1.0 self.P = None self.RegMethod = None - self.metaModel = 'PCE' self.DimRedMethod = 'no' - self.varPCAThreshold = 100 self.Discrepancy = None - self.ExpDesign = None self.ExpDesignFlag = 'normal' self.OptDesignFlag = False - self.ModelOutputDict= None + self.ModelOutputDict = None self.qNormDict = {} - self.OptimalCollocationPointsBase = [] - # self.errorModel = [] - self.SeqModifiedLOO = {} - self.seqValidError = {} - self.SeqBME = {} - self.SeqKLD = {} - self.SeqDistHellinger = {} - self.seqRMSEMean = {} - self.seqRMSEStd = {} - self.seqMinDist = [] self.Observations = [] self.validModelRuns = [] - # self.validSamples = [] + self.validSamples = [] self.validLikelihoods = [] - self.index = None self.adaptVerbose = False - self.Likelihoods = None + + # ------------------------------------------------------------------------- + def create_metamodel(self, Model): + + self.ModelObj = Model + self.ExpDesign.initNrSamples = self.ExpDesign.NrSamples + self.NofPa = len(self.Inputs.Marginals) + + if self.ExpDesign.Method == 'sequential': + from .sequential_design import SeqDesign + seq_design = SeqDesign(self) + metamodel = seq_design.create_PCE_SeqDesign(Model) + + elif self.ExpDesign.Method == 'normal': + metamodel = self.create_PCE_normDesign(Model) + + else: + raise Exception("The method for experimental design you requested" + " has not been implemented yet.") + + # Cleanup + # Zip the subdirectories + try: + dir_name = Model.Name + key = Model.Name + '_' + Model.zip_subdirs(dir_name, key) + except: + pass + + return metamodel # ------------------------------------------------------------------------- class AutoVivification(dict): @@ -119,8 +96,8 @@ class Metamodel: except KeyError: value = self[item] = type(self)() return value - # ------------------------------------------------------------------------- + # ------------------------------------------------------------------------- def PolyBasisIndices(self, degree, q): self.PolynomialDegrees = glexindex(start=0, stop=degree+1, @@ -170,7 +147,7 @@ class Metamodel: f.close() else: # Check if an old hdf5 file exists: if yes, rename it - hdf5file = 'ExpDesign'+'_'+self.ModelObj.Name+'.hdf5' + hdf5file = 'ExpDesign'+'_'+self.ModelObj.name+'.hdf5' if os.path.exists(hdf5file): os.rename(hdf5file, 'old_'+hdf5file) @@ -219,41 +196,6 @@ class Metamodel: apolycoeffs = None return eval_univ_basis(ED_X, n_max, polyTypes, apolycoeffs) - # polytypes = self.ExpDesign.Polytypes - # origSpaceDist = self.ExpDesign.JDist - # if ED_X.ndim != 2: - # ED_X = ED_X.reshape(1, len(ED_X)) - # NofSamples, NofPa = ED_X.shape - # n_max = self.MaxPceDegree if n_max is None else n_max - # P = n_max + 1 - # Allocate the output matrix - # univ_vals = np.zeros((NofSamples, NofPa, P), dtype=np.float32) - - # ---------------- - # if 'arbitrary' in polytypes: - - # def eval_rec_rule_arbitrary(x, max_deg, polycoeffs): - # P = max_deg+1 - # values = np.zeros((len(x), P)) - - # for deg in range(P): - # values[:, deg] = polyval(x, polycoeffs[deg]).T - - # return values - - # # Calculate the univariate polynomials - # for parIdx in range(NofPa): - # polycoeffs = self.ExpDesign.polycoeffs['p_'+str(parIdx+1)] - # univ_vals[:, parIdx] = eval_rec_rule_arbitrary(ED_X[:, parIdx], - # n_max, - # polycoeffs) - # return univ_vals - # # ---------------- - # else: - # from .eval_rec_rule import eval_univ_basis - # polyTypes = self.ExpDesign.Polytypes - # return eval_univ_basis(ED_X, n_max, polyTypes) - # ------------------------------------------------------------------------- def PCE_create_Psi(self, BasisIndices, univ_p_val): """ @@ -296,11 +238,31 @@ class Metamodel: return Psi # ------------------------------------------------------------------------- - def RS_Builder(self, PSI, ModelOutput, BasisIndices, - startBasisIndices=None, RegMethod=None): + def RS_Builder(self, X, y, BasisIndices, RegMethod=None): """ + Fit regression using the regression method provided. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Training vector, where n_samples is the number of samples and + n_features is the number of features. + y : array-like of shape (n_samples,) + Target values. + BasisIndices : TYPE + DESCRIPTION. + RegMethod : string, optional + DESCRIPTION. The default is None. + + Raises + ------ + ValueError + DESCRIPTION. - Fit regression model. + Returns + ------- + returnOuts : Dict + Fitted estimator, spareMulti-Index, sparseX and coefficients. """ if RegMethod is None: @@ -313,14 +275,14 @@ class Metamodel: compute_score = True if self.DisplayFlag else False # inverse of the observed variance of the data - if np.var(ModelOutput) != 0: - Lambda = 1 / np.var(ModelOutput) + if np.var(y) != 0: + Lambda = 1 / np.var(y) else: Lambda = 1e-6 # Bayes sparse adaptive aPCE if RegMethod.lower() != 'ols': - if RegMethod.lower() == 'brr' or np.all(ModelOutput == 0): + if RegMethod.lower() == 'brr' or np.all(y == 0): clf_poly = lm.BayesianRidge(n_iter=1000, tol=1e-7, fit_intercept=True, normalize=True, @@ -338,8 +300,7 @@ class Metamodel: lambda_1=Lambda, lambda_2=Lambda) elif RegMethod.lower() == 'fastard': - clf_poly = RegressionFastARD(start=startBasisIndices, - fit_intercept=True, + clf_poly = RegressionFastARD(fit_intercept=True, normalize=True, compute_score=compute_score, n_iter=300, tol=1e-10) @@ -366,7 +327,7 @@ class Metamodel: clf_poly = EBLinearRegression(optimizer='em') # Fit - clf_poly.fit(PSI, ModelOutput) + clf_poly.fit(X, y) # Select the nonzero entries of coefficients # The first column must be kept (For mean calculations) @@ -376,269 +337,288 @@ class Metamodel: nnz_idx = np.insert(np.nonzero(clf_poly.coef_)[0], 0, 0) # Remove the zero entries for Bases and PSI if need be if sparsity: - PolynomialDegrees_Sparse = BasisIndices.toarray()[nnz_idx] + sparse_basis_indices = BasisIndices.toarray()[nnz_idx] else: - PolynomialDegrees_Sparse = BasisIndices[nnz_idx] - PSI_Sparse = PSI[:, nnz_idx] + sparse_basis_indices = BasisIndices[nnz_idx] + sparse_X = X[:, nnz_idx] # Store the coefficients of the regression model - clf_poly.fit(PSI_Sparse, ModelOutput) + clf_poly.fit(sparse_X, y) coeffs = clf_poly.coef_ else: # This is for the case where all outputs are zero, thereby # all coefficients are zero if sparsity: - PolynomialDegrees_Sparse = BasisIndices.toarray() + sparse_basis_indices = BasisIndices.toarray() else: - PolynomialDegrees_Sparse = BasisIndices - PSI_Sparse = PSI + sparse_basis_indices = BasisIndices + sparse_X = X coeffs = clf_poly.coef_ - # Raise an error, if all coeffs are zero - # raise ValueError('All the coefficients of the regression - # model are zero!') # Ordinary least square method (OLS) else: if sparsity: - PolynomialDegrees_Sparse = BasisIndices.toarray() + sparse_basis_indices = BasisIndices.toarray() else: - PolynomialDegrees_Sparse = BasisIndices - PSI_Sparse = PSI + sparse_basis_indices = BasisIndices + sparse_X = X - PsiTPsi = np.dot(PSI_Sparse.T, PSI_Sparse) + X_T_X = np.dot(sparse_X.T, sparse_X) - if np.linalg.cond(PsiTPsi) > 1e-12 and \ - np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon: + if np.linalg.cond(X_T_X) > 1e-12 and \ + np.linalg.cond(X_T_X) < 1 / sys.float_info.epsilon: # faster - coeffs = sp.linalg.solve(PsiTPsi, np.dot(PSI_Sparse.T, ModelOutput)) + coeffs = sp.linalg.solve(X_T_X, np.dot(sparse_X.T, y)) else: # stabler - coeffs = np.dot(np.dot(np.linalg.pinv(PsiTPsi), PSI_Sparse.T), - ModelOutput) + coeffs = np.dot(np.dot(np.linalg.pinv(X_T_X), sparse_X.T), y) - return PolynomialDegrees_Sparse, PSI_Sparse, coeffs, clf_poly + # Create a dict to pass the outputs + returnOuts = dict() + returnOuts['clf_poly'] = clf_poly + returnOuts['spareMulti-Index'] = sparse_basis_indices + returnOuts['sparePsi'] = sparse_X + returnOuts['coeffs'] = coeffs + return returnOuts # -------------------------------------------------------------------------------------------------------- - def adaptiveSparseaPCE(self, CollocationPoints, ModelOutput, varIdx, prevBasisIndices=None, verbose=False): - - NrSamples, NofPa = CollocationPoints.shape + def adaptiveSparseaPCE(self, ED_X, ED_Y, varIdx, verbose=False): + """ + Adaptively fits the PCE model by comparing the scores of different + degrees and q-norm. + + Parameters + ---------- + ED_X : array-like of shape (n_samples, n_params) + Experimental design. + ED_Y : array-like of shape (n_samples,) + Target values, i.e. simulation results for the Experimental design. + varIdx : int + Index of the output. + verbose : bool, optional + Print out summary. The default is False. + + Returns + ------- + returnVars : Dict + Fitted estimator, best degree, best q-norm, LOOCVScore and + coefficients. + + """ + + NrSamples, NofPa = ED_X.shape # Initialization qAllCoeffs, AllCoeffs = {}, {} - qAllIndices_Sparse ,AllIndices_Sparse = {}, {} + qAllIndices_Sparse, AllIndices_Sparse = {}, {} qAllclf_poly, Allclf_poly = {}, {} qAllnTerms, AllnTerms = {}, {} qAllLCerror, AllLCerror = {}, {} - + # Extract degree array and qnorm array - DegreeArray = np.array([*self.allBasisIndices],dtype=int) + DegreeArray = np.array([*self.allBasisIndices], dtype=int) qnorm = [*self.allBasisIndices[str(int(DegreeArray[0]))]] + # Some options for EarlyStop errorIncreases = False - # Overall score indicator: this will be used to compare between different - # methods - bestScore = -np.inf - - # some options for EarlyStop - # stop degree, if LOO error does not decrease n_checks_degree times + # Stop degree, if LOO error does not decrease n_checks_degree times n_checks_degree = 3 - # stop qNorm, if criterion isn't fulfilled n_checks_qNorm times + # Stop qNorm, if criterion isn't fulfilled n_checks_qNorm times n_checks_qNorm = 2 nqnorms = len(qnorm) qNormEarlyStop = True if nqnorms < n_checks_qNorm+1: qNormEarlyStop = False - - #============================================================================== - #==== basis adaptive polynomial chaos: repeat the calculation by - #==== increasing polynomial degree until the highest accuracy is reached - #============================================================================== + + # ===================================================================== + # basis adaptive polynomial chaos: repeat the calculation by increasing + # polynomial degree until the highest accuracy is reached + # ===================================================================== # For each degree check all q-norms and choose the best one - scores = -np.inf*np.ones(DegreeArray.shape[0]) - qNormScores = -np.inf*np.ones(nqnorms) - scores_BRR = -np.inf*np.ones(DegreeArray.shape[0]) - + scores = -np.inf * np.ones(DegreeArray.shape[0]) + qNormScores = -np.inf * np.ones(nqnorms) + for degIdx, deg in enumerate(DegreeArray): for qidx, q in enumerate(qnorm): - # Extract the polynomial basis indices from the pool of allBasisIndices + # Extract the polynomial basis indices from the pool of + # allBasisIndices BasisIndices = self.allBasisIndices[str(deg)][str(q)] # Assemble the Psi matrix Psi = self.PCE_create_Psi(BasisIndices, self.univ_p_val) - # ---- Calulate the cofficients of aPCE ---------------------- - sparseBasisIndices, sparsePSI, Coeffs, clf_poly = self.RS_Builder(Psi,ModelOutput,BasisIndices) + # Calulate the cofficients of the meta model + outs = self.RS_Builder(Psi, ED_Y, BasisIndices) # Calculate and save the score of LOOCV - score, LCerror = self.CorrectedLeaveoutError(sparsePSI, Coeffs, ModelOutput, clf_poly) + score, LCerror = self.CorrectedLeaveoutError(outs['clf_poly'], + outs['sparePsi'], + outs['coeffs'], + ED_Y) # Check the convergence of noise for FastARD - if self.RegMethod == 'FastARD' and clf_poly.alpha_ < np.finfo(np.float32).eps: + if self.RegMethod == 'FastARD' and \ + outs['clf_poly'].alpha_ < np.finfo(np.float32).eps: score = -np.inf qNormScores[qidx] = score - qAllCoeffs[str(qidx+1)] = Coeffs - qAllIndices_Sparse[str(qidx+1)] = sparseBasisIndices - qAllclf_poly[str(qidx+1)] = clf_poly + qAllCoeffs[str(qidx+1)] = outs['coeffs'] + qAllIndices_Sparse[str(qidx+1)] = outs['spareMulti-Index'] + qAllclf_poly[str(qidx+1)] = outs['clf_poly'] qAllnTerms[str(qidx+1)] = BasisIndices.shape[0] qAllLCerror[str(qidx+1)] = LCerror # EarlyStop check # if there are at least n_checks_qNorm entries after the # best one, we stop - if qNormEarlyStop and sum(np.isfinite(qNormScores)) > n_checks_qNorm: - # If the error has increased the last two iterations, stop - deltas = np.sign(np.diff(qNormScores[np.isfinite(qNormScores)])) + if qNormEarlyStop and \ + sum(np.isfinite(qNormScores)) > n_checks_qNorm: + # If the error has increased the last two iterations, stop! + qNormScores_nonInf = qNormScores[np.isfinite(qNormScores)] + deltas = np.sign(np.diff(qNormScores_nonInf)) if sum(deltas[-n_checks_qNorm+1:]) == 2: # stop the q-norm loop here break - if np.var(ModelOutput) == 0: + if np.var(ED_Y) == 0: break - - # Leave the loop, if FastARD did not converge. - # if self.RegMethod == 'FastARD' and not clf_poly.converged and deg != 1: - # print("Degree {0} not converged!".format(deg)) - # # scores[degIdx] = -1*np.inf - # # break - # else: + # Store the score in the scores list - bestqIdx = np.nanargmax(qNormScores) - scores[degIdx] = qNormScores[bestqIdx] #np.max(qNormScores) - - AllCoeffs[str(degIdx+1)] = qAllCoeffs[str(bestqIdx+1)] - AllIndices_Sparse[str(degIdx+1)] = qAllIndices_Sparse[str(bestqIdx+1)] - Allclf_poly[str(degIdx+1)] = qAllclf_poly[str(bestqIdx+1)] - AllnTerms[str(degIdx+1)] = qAllnTerms[str(bestqIdx+1)] - AllLCerror[str(degIdx+1)] = qAllLCerror[str(bestqIdx+1)] - - - # check the direction of the error (on average): + best_q = np.nanargmax(qNormScores) + scores[degIdx] = qNormScores[best_q] + + AllCoeffs[str(degIdx+1)] = qAllCoeffs[str(best_q+1)] + AllIndices_Sparse[str(degIdx+1)] = qAllIndices_Sparse[str(best_q+1)] + Allclf_poly[str(degIdx+1)] = qAllclf_poly[str(best_q+1)] + AllnTerms[str(degIdx+1)] = qAllnTerms[str(best_q+1)] + AllLCerror[str(degIdx+1)] = qAllLCerror[str(best_q+1)] + + # Check the direction of the error (on average): # if it increases consistently stop the iterations - if len(scores[scores!=-np.inf]) > n_checks_degree: - ss = np.sign(scores[scores!=-np.inf] - np.max(scores[scores!=-np.inf])) #ss<0 error decreasing + if len(scores[scores != -np.inf]) > n_checks_degree: + scores_nonInf = scores[scores != -np.inf] + ss = np.sign(scores_nonInf - np.max(scores_nonInf)) + # ss<0 error decreasing errorIncreases = np.sum(np.sum(ss[-2:])) <= -1*n_checks_degree - + if errorIncreases: break - - # Check only one degree - if np.var(ModelOutput) == 0: + + # Check only one degree, if target matrix has zero variance + if np.var(ED_Y) == 0: break # ------------------ Summary of results ------------------ # Select the one with the best score and save the necessary outputs - bestIdx = np.nanargmax(scores)+1 - coeffs = AllCoeffs[str(bestIdx)] - PolynomialDegrees = AllIndices_Sparse[str(bestIdx)] - clf_poly = Allclf_poly[str(bestIdx)] + best_deg = np.nanargmax(scores)+1 + coeffs = AllCoeffs[str(best_deg)] + PolynomialDegrees = AllIndices_Sparse[str(best_deg)] + clf_poly = Allclf_poly[str(best_deg)] LOOCVScore = np.nanmax(scores) - P = AllnTerms[str(bestIdx)] - LCerror = AllLCerror[str(bestIdx)] + P = AllnTerms[str(best_deg)] + LCerror = AllLCerror[str(best_deg)] degree = DegreeArray[np.nanargmax(scores)] - qnorm = float(qnorm[bestqIdx]) + qnorm = float(qnorm[best_q]) - # ------------------ Summary of results ------------------ + # ------------------ Print out Summary of results ------------------ if self.DisplayFlag: # Create PSI_Sparse by removing redundent terms nnz_idx = np.nonzero(coeffs)[0] BasisIndices_Sparse = PolynomialDegrees[nnz_idx] - print('Output variable %s:'%(varIdx+1)) - print('The estimation of PCE coefficients converged at polynomial degree ' - '%s with %s terms (Sparsity index = %s).'%(DegreeArray[bestIdx-1], - len(BasisIndices_Sparse), - round(len(BasisIndices_Sparse)/P, 3))) - print('Final ModLOO error estimate: %.3e'%(1-max(scores))) + print(f'Output variable {varIdx+1}:') + print('The estimation of PCE coefficients converged at polynomial ' + f'degree {DegreeArray[best_deg-1]} with ' + f'{len(BasisIndices_Sparse)} terms (Sparsity index = ' + f'{round(len(BasisIndices_Sparse)/P, 3)}).') + + print(f'Final ModLOO error estimate: {1-max(scores):.3e}') print('\n'+'-'*50) - + if verbose: print('='*50) - print(' '* 10 +' Summary of results ') + print(' '*10 + ' Summary of results ') print('='*50) - + print("scores:\n", scores) - print("Best score's degree:", self.DegreeArray[bestIdx-1]) + print("Best score's degree:", self.DegreeArray[best_deg-1]) print("NO. of terms:", len(PolynomialDegrees)) print("Sparsity index:", round(len(PolynomialDegrees)/P, 3)) print("Best Indices:\n", PolynomialDegrees) - + if self.RegMethod in ['BRR', 'ARD']: fig, ax = plt.subplots(figsize=(12, 10)) plt.title("Marginal log-likelihood") plt.plot(clf_poly.scores_, color='navy', linewidth=2) plt.ylabel("Score") plt.xlabel("Iterations") - try: - text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format( - clf_poly.alpha_, clf_poly.lambda_, clf_poly.scores_[-1]) - except: - text = "$\\alpha={:.1f}$\n$\\L={:.1f}$".format( - clf_poly.alpha_, clf_poly.scores_[-1]) - - plt.text(0.75, 0.5, text, fontsize=18, transform = ax.transAxes) + if self.RegMethod.lower() == 'bbr': + text = f"$\\alpha={clf_poly.alpha_:.1f}$\n" + f"$\\lambda={clf_poly.lambda_:.3f}$\n" + f"$L={clf_poly.scores_[-1]:.1f}$" + else: + text = f"$\\alpha={clf_poly.alpha_:.1f}$\n$" + f"\\L={clf_poly.scores_[-1]:.1f}$" + + plt.text(0.75, 0.5, text, fontsize=18, transform=ax.transAxes) plt.show() - - print ('='*80) - - # Create a dict to pass the variables + print('='*80) + + # Create a dict to pass the outputs returnVars = dict() - + returnVars['clf_poly'] = clf_poly returnVars['degree'] = degree returnVars['qnorm'] = qnorm returnVars['coeffs'] = coeffs - returnVars['PolynomialDegrees'] = PolynomialDegrees + returnVars['multi_indices'] = PolynomialDegrees returnVars['LOOCVScore'] = LOOCVScore - returnVars['clf_poly'] = clf_poly returnVars['LCerror'] = LCerror - - return returnVars - - #-------------------------------------------------------------------------------------------------------- - def CoeffsUpdateaPCE(self, CollocationPoints, ModelOutput, BasisIndices): - - # Evaluate the multivariate polynomials on CollocationPoints - Psi = self.PCE_create_Psi(BasisIndices,self.univ_p_val) - - # Calulate the cofficients of surrogate model - PolynomialDegrees, PSI_Sparse, coeffs, clf_poly = self.RS_Builder(Psi, ModelOutput, BasisIndices, RegMethod='OLS') #,startIdxes=startIdxes) - - # Calculate and save the score of LOOCV - LOOCVScore, LCerror = self.CorrectedLeaveoutError(PSI_Sparse, coeffs, - ModelOutput, clf_poly) - - # Create a dict to pass the variables - returnVars = dict() - - + return returnVars - + # ------------------------------------------------------------------------- - def CorrectedLeaveoutError(self, TotalPsi, Coeffs, ModelOutputs, clf): + def CorrectedLeaveoutError(self, clf, psi, coeffs, y): """ - calculate the corrected LOO error for the OLS regression on regressor - matrix PSI that generated the coefficients. - (based on Blatman, 2009 (PhD Thesis), pg. 115-116). + Calculates the corrected LOO error for the OLS regression on regressor + matrix PSI that generated the coefficients. + (based on Blatman, 2009 (PhD Thesis), pg. 115-116). This is based on the following paper: - ""Blatman, G., & Sudret, B. (2011). Adaptive sparse polynomial - chaos expansion based on least angle regression. - Journal of Computational Physics, 230(6), 2345-2367."" + ""Blatman, G., & Sudret, B. (2011). Adaptive sparse polynomial + chaos expansion based on least angle regression. + Journal of Computational Physics, 230(6), 2345-2367."" + + Parameters + ---------- + clf : object + Fitted estimator. + psi : array-like of shape (n_samples, n_features) + The multivariate orthogonal polynomials (regressor). + coeffs : array-like of shape (n_features,) + Estimated cofficients. + y : array-like of shape (n_samples,) + Target values. + + Returns + ------- + Q_2 : float + LOOCV Validation score (1-LOOCV erro). + residual : array-like of shape (n_samples,) + Residual values (y - predicted targets). - Psi: the orthogonal polynomials of the response surface """ - Psi = np.array(TotalPsi, dtype=float) + psi = np.array(psi, dtype=float) # Create PSI_Sparse by removing redundent terms - nnz_idx = np.nonzero(Coeffs)[0] + nnz_idx = np.nonzero(coeffs)[0] if len(nnz_idx) == 0: nnz_idx = [0] - PSI_Sparse = Psi[:, nnz_idx] + PSI_Sparse = psi[:, nnz_idx] # NrCoeffs of aPCEs P = len(nnz_idx) # NrEvaluation (Size of experimental design) - N = Psi.shape[0] + N = psi.shape[0] # Build the projection matrix PsiTPsi = np.dot(PSI_Sparse.T, PSI_Sparse) @@ -661,17 +641,17 @@ class Metamodel: # ------ Calculate Error Loocv for each measurement point ---- # Residuals if isinstance(clf, list): - residual = np.dot(Psi, Coeffs) - ModelOutputs + residual = np.dot(psi, coeffs) - y else: - residual = clf.predict(Psi) - ModelOutputs + residual = clf.predict(psi) - y # Variance - varY = np.var(ModelOutputs) + varY = np.var(y) if varY == 0: normEmpErr = 0 ErrLoo = 0 - LCerror = np.zeros((ModelOutputs.shape)) + LCerror = np.zeros((y.shape)) else: normEmpErr = np.mean(residual**2)/varY @@ -686,7 +666,7 @@ class Metamodel: # Corrected Error for over-determined system trM = np.trace(M) if trM < 0 or abs(trM) > 1e6: - trM = np.trace(np.linalg.pinv(np.dot(Psi.T, Psi))) + trM = np.trace(np.linalg.pinv(np.dot(psi.T, psi))) # Over-determined system of Equation if N > P: @@ -702,67 +682,118 @@ class Metamodel: return Q_2, residual - #-------------------------------------------------------------------------------------------------------- + # ------------------------------------------------------------------------- def PCATransformation(self, Output): - - # Transform via Principal Component Analysis - from sklearn.decomposition import PCA as sklearnPCA - # from sklearn.decomposition import TruncatedSVD as sklearnPCA + """ + Transforms the targets (outputs) via Principal Component Analysis + + Parameters + ---------- + Output : array-like of shape (n_samples,) + Target values. + + Returns + ------- + pca : object + Fitted sklearnPCA object. + OutputMatrix : array-like of shape (n_samples,) + Transformed target values. + """ + # Transform via Principal Component Analysis + if isinstance(self, 'varPCAThreshold'): + varPCAThreshold = self.varPCAThreshold + else: + varPCAThreshold = 100.0 n_samples, n_features = Output.shape - covar_matrix = sklearnPCA(n_components=None) #, svd_solver='full') + + # Instantiate and fit sklearnPCA object + covar_matrix = sklearnPCA(n_components=None) covar_matrix.fit(Output) - var = np.cumsum(np.round(covar_matrix.explained_variance_ratio_, decimals=5)*100) + var = np.cumsum(np.round(covar_matrix.explained_variance_ratio_, + decimals=5)*100) + # Find the number of components to explain self.varPCAThreshold of + # variance try: - selected_n_components = np.where(var>=self.varPCAThreshold)[0][0] + 1 - except: + selected_n_components = np.where(var >= varPCAThreshold)[0][0] + 1 + except ValueError: selected_n_components = min(n_samples, n_features) - + nComponents = min(n_samples, n_features, selected_n_components) - pca = sklearnPCA(n_components=nComponents, svd_solver='randomized') #, svd_solver='full') + + # Fit and transform with the selected number of components + pca = sklearnPCA(n_components=nComponents, svd_solver='randomized') OutputMatrix = pca.fit_transform(Output) - + return pca, OutputMatrix - #-------------------------------------------------------------------------------------------------------- - def GaussianProcessEmulator(self, X, y, nugTerm=None,autoSelect=False, varIdx=None): - + # ------------------------------------------------------------------------- + def GaussianProcessEmulator(self, X, y, nugTerm=None, autoSelect=False, + varIdx=None): + """ + Fits a Gaussian Process Emulator to the target given the training + points. + + Parameters + ---------- + X : array-like of shape (n_samples, n_params) + Training points. + y : array-like of shape (n_samples,) + Target values. + nugTerm : float, optional + Nugget term. The default is None, i.e. variance of y. + autoSelect : bool, optional + Loop over some kernels and select the best. The default is False. + varIdx : int, optional + The index number. The default is None. + + Returns + ------- + gp : object + Fitted estimator. + + """ + nugTerm = nugTerm if nugTerm else np.var(y) - Kernels = [ nugTerm * kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-25, 1e15)), - nugTerm * kernels.RationalQuadratic(length_scale=0.2, alpha=1.0), - # 1.0 * kernels.ExpSineSquared(length_scale=1.0, length_scale_bounds=(1e-05, 1e05)), - nugTerm * kernels.Matern(length_scale=1.0, length_scale_bounds=(1e-15, 1e5), + Kernels = [nugTerm * kernels.RBF(length_scale=1.0, + length_scale_bounds=(1e-25, 1e15)), + nugTerm * kernels.RationalQuadratic(length_scale=0.2, + alpha=1.0), + nugTerm * kernels.Matern(length_scale=1.0, + length_scale_bounds=(1e-15, 1e5), nu=1.5)] - if autoSelect:# Automatic selection of the kernel + # Automatic selection of the kernel + if autoSelect: gp = {} BME = [] for i, kernel in enumerate(Kernels): - gp[i] = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=2, - normalize_y=True) - - # Fit to data using Maximum Likelihood Estimation of the parameters + gp[i] = GaussianProcessRegressor(kernel=kernel, + n_restarts_optimizer=3, + normalize_y=False) + + # Fit to data using Maximum Likelihood Estimation gp[i].fit(X, y) - + + # Store the MLE as BME score BME.append(gp[i].log_marginal_likelihood()) - - gp = gp[np.argmax(BME)] - + + gp = gp[np.argmax(BME)] + else: - gp = GaussianProcessRegressor(kernel=Kernels[0], n_restarts_optimizer=3, - normalize_y=False) + gp = GaussianProcessRegressor(kernel=Kernels[0], + n_restarts_optimizer=3, + normalize_y=False) gp.fit(X, y) # Compute score if varIdx is not None: Score = gp.score(X, y) - print('-'*50) - print('Output variable %s:'%(varIdx)) + print(f'Output variable {varIdx}:') print('The estimation of GPE coefficients converged,') - print('with the R^2 score: {0:.3f}'.format(Score)) - #print("BME:", gp.log_marginal_likelihood()) + print(f'with the R^2 score: {Score:.3f}') print('-'*50) return gp @@ -773,6 +804,18 @@ class Metamodel: This function loops over the outputs and each time step/point and fits the meta model. + Parameters + ---------- + Model : object + Model object. + OptDesignFlag : bool, optional + Flag for a sequential design in silent mode. The default is False. + + Returns + ------- + self: object + Meta-model object. + """ # Get the collocation points to run the forward model @@ -791,33 +834,24 @@ class Metamodel: self.LCerror = self.AutoVivification() self.x_scaler = {} + # Read observations or MCReference if self.ExpDesignFlag != 'sequential': - # Read observations or MCReference - if Model.MeasurementFile is not None \ - or len(Model.Observations) != 0: + if len(Model.Observations) != 0: self.Observations = Model.read_Observation() # Define the DegreeArray - maxDeg = self.MaxPceDegree nSamples, ndim = CollocationPoints.shape - nitr = nSamples - self.ExpDesign.initNrSamples - M_uptoMax = lambda maxDeg: np.array([math.factorial(ndim+d)//(math.factorial(ndim)*math.factorial(d)) for d in range(1,maxDeg+1)]) - d = nitr if nitr != 0 and self.NofPa > 5 else 1 - degNew = range(1,maxDeg+1)[np.argmin(abs(M_uptoMax(maxDeg)-ndim*nSamples*d))] - degNew = degNew if self.ExpDesignFlag == 'sequential' else self.MaxPceDegree - self.q = np.array(self.q) if not np.isscalar(self.q) else np.array([self.q]) - if degNew > self.MinPceDegree and self.RegMethod.lower() != 'fastard': - self.DegreeArray = np.arange(self.MinPceDegree, degNew+1) - else: - self.DegreeArray = np.array([degNew]) + self.DegreeArray = self.select_degree(ndim, nSamples) # Generate all basis indices self.allBasisIndices = self.AutoVivification() for deg in self.DegreeArray: - if deg not in np.fromiter(self.allBasisIndices.keys(), dtype=float): + keys = self.allBasisIndices.keys() + if deg not in np.fromiter(keys, dtype=float): # Generate the polynomial basis indices for qidx, q in enumerate(self.q): - self.allBasisIndices[str(deg)][str(q)] = self.PolyBasisIndices(degree=deg, q=q) + basis_indices = self.PolyBasisIndices(degree=deg, q=q) + self.allBasisIndices[str(deg)][str(q)] = basis_indices # Evaluate the univariate polynomials on ExpDesign if self.metaModel.lower() != 'gpe': @@ -828,7 +862,8 @@ class Metamodel: # --- Loop through data points and fit the surrogate --- if not OptDesignFlag: - print(f"\n>>>> Training the {self.metaModel} metamodel started. <<<<<<\n") + print(f"\n>>>> Training the {self.metaModel} metamodel " + "started. <<<<<<\n") items = tqdm(OutputDict.items(), desc="Fitting regression") else: items = OutputDict.items() @@ -838,9 +873,9 @@ class Metamodel: # Dimensionality reduction with PCA, if specified if self.DimRedMethod.lower() == 'pca': - self.pca[key], OutputMatrix = self.PCATransformation(Output) + self.pca[key], target = self.PCATransformation(Output) else: - OutputMatrix = Output + target = Output # Parallel fit regression if self.metaModel.lower() == 'gpe': @@ -850,38 +885,28 @@ class Metamodel: self.x_scaler[key] = scaler - outDict = Parallel(n_jobs=-1, prefer='threads')( - delayed(self.GaussianProcessEmulator)(X_S, OutputMatrix[:, idx]) - for idx in range(OutputMatrix.shape[1])) + out = Parallel(n_jobs=-1, prefer='threads')( + delayed(self.GaussianProcessEmulator)(X_S, target[:, idx]) + for idx in range(target.shape[1])) - for idx in range(OutputMatrix.shape[1]): - self.gp_poly[key][f"y_{idx+1}"] = outDict[idx] + for idx in range(target.shape[1]): + self.gp_poly[key][f"y_{idx+1}"] = out[idx] else: - outDict = Parallel(n_jobs=-1, prefer='threads')( + out = Parallel(n_jobs=-1, prefer='threads')( delayed(self.adaptiveSparseaPCE)(CollocationPoints, - OutputMatrix[:, idx], idx) - for idx in range(OutputMatrix.shape[1])) + target[:, idx], idx) + for idx in range(target.shape[1])) - for idx in range(OutputMatrix.shape[1]): + for i in range(target.shape[1]): # Create a dict to pass the variables - self.DegreeDict[key][f"y_{idx+1}"] = outDict[idx]['degree'] - self.qNormDict[key][f"y_{idx+1}"] = outDict[idx]['qnorm'] - self.CoeffsDict[key][f"y_{idx+1}"] = outDict[idx]['coeffs'] - self.BasisDict[key][f"y_{idx+1}"] = outDict[idx]['PolynomialDegrees'] - self.ScoresDict[key][f"y_{idx+1}"] = outDict[idx]['LOOCVScore'] - self.clf_poly[key][f"y_{idx+1}"] = outDict[idx]['clf_poly'] - self.LCerror[key][f"y_{idx+1}"] = outDict[idx]['LCerror'] - - # PCEKriging (PCE with Gaussian Process Emulator) - # if self.metaModel.lower() == 'pcekriging': - # # outDict = Parallel(n_jobs=-1)( - # # delayed(self.GaussianProcessEmulator)(CollocationPoints,self.LCerror[key]["y_"+str(idx+1)]) - # # for idx in range(OutputMatrix.shape[1])) - - # for idx in range(OutputMatrix.shape[1]): - # self.gp_poly[key]["y_"+str(idx+1)] = self.GaussianProcessEmulator(CollocationPoints, self.LCerror[key]["y_"+str(idx+1)]) - # self.gp_poly[key]["y_"+str(idx+1)] = outDict[idx] + self.DegreeDict[key][f"y_{i+1}"] = out[i]['degree'] + self.qNormDict[key][f"y_{i+1}"] = out[i]['qnorm'] + self.CoeffsDict[key][f"y_{i+1}"] = out[i]['coeffs'] + self.BasisDict[key][f"y_{i+1}"] = out[i]['multi_indices'] + self.ScoresDict[key][f"y_{i+1}"] = out[i]['LOOCVScore'] + self.clf_poly[key][f"y_{i+1}"] = out[i]['clf_poly'] + self.LCerror[key][f"y_{i+1}"] = out[i]['LCerror'] if not OptDesignFlag: print(f"\n>>>> Training the {self.metaModel} metamodel" @@ -889,1038 +914,130 @@ class Metamodel: return self - #-------------------------------------------------------------------------------------------------------- - def create_ModelError(self,X,y,Name='Calib'): + # ------------------------------------------------------------------------- + def select_degree(self, ndim, nSamples): + # Define the DegreeArray + maxDeg = self.MaxPceDegree + nitr = nSamples - self.ExpDesign.initNrSamples + + # Check q-norm + if not np.isscalar(self.q): + self.q = np.array(self.q) + else: + self.q = np.array([self.q]) + + def M_uptoMax(maxDeg): + n_combo = np.zeros(maxDeg) + for i, d in enumerate(range(1, maxDeg+1)): + n_combo[i] = math.factorial(ndim+d) + n_combo[i] /= math.factorial(ndim) * math.factorial(d) + return n_combo + + if self.ExpDesignFlag != 'sequential': + degNew = self.MaxPceDegree + else: + d = nitr if nitr != 0 and self.NofPa > 5 else 1 + min_index = np.argmin(abs(M_uptoMax(maxDeg)-ndim*nSamples*d)) + degNew = range(1, maxDeg+1)[min_index] + + if degNew > self.MinPceDegree and self.RegMethod.lower() != 'fastard': + DegreeArray = np.arange(self.MinPceDegree, degNew+1) + else: + DegreeArray = np.array([degNew]) + + return DegreeArray + + # ------------------------------------------------------------------------- + def create_ModelError(self, X, y, Name='Calib'): """ - This function loops over the outputs and each time step/point to compute the PCE - coefficients. - + This function fits a GPE-based model error. + + Parameters + ---------- + X : array-like of shape (n_outputs, n_inputs) + Input array. It can contain any forcing inputs or coordinates of + extracted data. + y : array-like of shape (n_outputs,) + The model response for the MAP parameter set. + Name : string, optional + Calibration or validation. The default is 'Calib'. + + Returns + ------- + TYPE + DESCRIPTION. + """ Model = self.ModelObj outputNames = Model.Output.Names self.errorRegMethod = 'GPE' self.errorclf_poly = self.AutoVivification() self.errorScale = self.AutoVivification() - + # Read data if Name.lower() == 'calib': MeasuredData = Model.read_Observation() else: MeasuredData = Model.read_ObservationValid() - + # Fitting GPR based bias model for out in outputNames: + nan_idx = ~np.isnan(MeasuredData[out]) # Select data try: - data = MeasuredData[out].to_numpy()[~np.isnan(MeasuredData[out])] + data = MeasuredData[out].values[nan_idx] except: - data = MeasuredData[out][~np.isnan(MeasuredData[out])] - + data = MeasuredData[out][nan_idx] + # Prepare the input matrix scaler = MinMaxScaler() - delta = data #- y[out][0] - BiasInputs = np.hstack((X[out],y[out].reshape(-1,1))) + delta = data # - y[out][0] + BiasInputs = np.hstack((X[out], y[out].reshape(-1, 1))) X_S = scaler.fit_transform(BiasInputs) - + gp = self.GaussianProcessEmulator(X_S, delta) + self.errorScale[out]["y_1"] = scaler - self.errorclf_poly[out]["y_1"] = self.GaussianProcessEmulator(X_S, delta,nugTerm=np.var(delta)) - + self.errorclf_poly[out]["y_1"] = gp + return self - - #-------------------------------------------------------------------------------------------------------- - def eval_errormodel(self,X,y_pred): + + # ------------------------------------------------------------------------- + def eval_errormodel(self, X, y_pred): meanPCEOutputs = {} stdPCEOutputs = {} for Outkey, ValuesDict in self.errorclf_poly.items(): - + PCEOutputs_mean = np.zeros_like(y_pred[Outkey]) PCEOutputs_std = np.zeros_like(y_pred[Outkey]) - + for Inkey, InIdxValues in ValuesDict.items(): - + gp = self.errorclf_poly[Outkey][Inkey] scaler = self.errorScale[Outkey][Inkey] - + # Transform Samples using scaler - for j,pred in enumerate(y_pred[Outkey]): - BiasInputs = np.hstack((X[Outkey],pred.reshape(-1,1))) + for j, pred in enumerate(y_pred[Outkey]): + BiasInputs = np.hstack((X[Outkey], pred.reshape(-1, 1))) Samples_S = scaler.transform(BiasInputs) - - PCEOutputs_mean[j], PCEOutputs_std[j] = gp.predict(Samples_S, return_std=True) - # PCEOutputs_mean[j] += pred + y_hat, y_std = gp.predict(Samples_S, return_std=True) + PCEOutputs_mean[j] = y_hat + PCEOutputs_std[j] = y_std + # PCEOutputs_mean[j] += pred meanPCEOutputs[Outkey] = PCEOutputs_mean stdPCEOutputs[Outkey] = PCEOutputs_std - - return meanPCEOutputs, stdPCEOutputs - - #-------------------------------------------------------------------------------------------------------- - def util_VarBasedDesign(self, X_can, index, UtilMethod='Entropy'): - """ - Computes the exploitation scores based on: - active learning MacKay(ALM) and active learning Cohn (ALC) - Paper: Sequential Design with Mutual Information for Computer Experiments (MICE): - Emulation of a Tsunami Model by Beck and Guillas (2016) - """ - OutputDictY = self.ExpDesign.Y - OutputNames = list(OutputDictY.keys())[1:] - - if UtilMethod == 'Entropy': - # ----- Entropy/MMSE/active learning MacKay(ALM) ----- - # Compute perdiction variance of the old model - Y_PC_can, std_PC_can = self.eval_metamodel(samples=X_can) - canPredVar = {key:std_PC_can[key]**2 for key in OutputNames} - - varPCE = np.zeros((len(OutputNames),X_can.shape[0])) - for KeyIdx, key in enumerate(OutputNames): - varPCE[KeyIdx] = np.max(canPredVar[key],axis=1) - score = np.max(varPCE, axis=0) - - elif UtilMethod == 'EIGF': - # ----- Expected Improvement for Global fit ----- - # Eq (5) from Liu et al.(2018) - # Compute perdiction error and variance of the old model - Y_PC_can, std_PC_can = self.eval_metamodel(samples=X_can) - predError = {key:Y_PC_can[key] for key in OutputNames} - canPredVar = {key:std_PC_can[key]**2 for key in OutputNames} - - EIGF_PCE = np.zeros((len(OutputNames),X_can.shape[0])) - for KeyIdx, key in enumerate(OutputNames): - residual = predError[key] - OutputDictY[key][index] - var = canPredVar[key] - EIGF_PCE[KeyIdx] = np.max(residual**2 + var,axis=1) - score = np.max(EIGF_PCE, axis=0) - - return -1 * score # -1 is for minimization instead of maximization - - #-------------------------------------------------------------------------------------------------------- - def util_BayesianActiveDesign(self, X_can, Model, sigma2Dict, var='DKL'): - - nTriningPoints = self.ExpDesign.X.shape[0] - - # Evaluate the PCE metamodels at that location ??? - Y_mean_can, Y_std_can = self.eval_metamodel(samples=np.array([X_can])) - - # Get the data - ObservationData = self.Observations - nObs = Model.nObs - # TODO: Analytical DKL - # Sample a distribution for a normal dist - # with Y_mean_can as the mean and Y_std_can as std. - - # priorMean, priorSigma2, Obs = np.empty((0)),np.empty((0)),np.empty((0)) - - # for key in list(Y_mean_can): - # # concatenate the measurement error - # Obs = np.hstack((Obs,ObservationData[key])) - - # # concatenate the mean and variance of prior predictive - # means, stds = Y_mean_can[key][0], Y_std_can[key][0] - # priorMean = np.hstack((priorSigma2,means)) - # priorSigma2 = np.hstack((priorSigma2,stds**2)) - - # # Covariance Matrix of prior - # covPrior = np.zeros((priorSigma2.shape[0], priorSigma2.shape[0]), float) - # np.fill_diagonal(covPrior, priorSigma2) - - # # Covariance Matrix of Likelihood - # covLikelihood = np.zeros((sigma2Dict.shape[0], sigma2Dict.shape[0]), float) - # np.fill_diagonal(covLikelihood, sigma2Dict) - - - # # Calculate moments of the posterior (Analytical derivation) - # n = priorSigma2.shape[0] - # covPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))),covLikelihood/n) - - # meanPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))) , Obs) + \ - # np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))), - # priorMean/n) - # # Compute DKL from prior to posterior - # term1 = np.trace(np.dot(np.linalg.inv(covPrior),covPost)) - # deltaMean = priorMean-meanPost - # term2 = np.dot(np.dot(deltaMean,np.linalg.inv(covPrior)),deltaMean[:,None]) - # term3 = np.log(np.linalg.det(covPrior)/np.linalg.det(covPost)) - # DKL = 0.5 * (term1 + term2 - n + term3)[0] - - # ---------- Inner MC simulation for computing Utility Value ---------- - # Estimation of the integral via Monte Varlo integration - MCsize = 20000 - ESS = 0 - - while ((ESS > MCsize) or (ESS < 1)): - - # Sample a distribution for a normal dist - # with Y_mean_can as the mean and Y_std_can as std. - Y_PC_MC, std_PC_MC = {}, {} - logPriorLikelihoods = np.zeros((MCsize)) - for key in list(Y_mean_can): - means, stds = Y_mean_can[key][0], Y_std_can[key][0] - # cov = np.zeros((means.shape[0], means.shape[0]), float) - # np.fill_diagonal(cov, stds**2) - - - Y_PC_MC[key] = np.zeros((MCsize,nObs)) - logsamples = np.zeros((MCsize,nObs)) - for i in range(nObs): - NormalDensity = stats.norm(means[i], stds[i]) - Y_PC_MC[key][:,i] = NormalDensity.rvs(MCsize) - logsamples[:,i] = NormalDensity.logpdf(Y_PC_MC[key][:,i]) - - logPriorLikelihoods = np.sum(logsamples, axis=1) - std_PC_MC[key] = np.zeros((MCsize, means.shape[0])) - - # Likelihood computation (Comparison of data - # and simulation results via PCE with candidate design) - Likelihoods = self.normpdf(Y_PC_MC,std_PC_MC, ObservationData, sigma2Dict) - - # Check the Effective Sample Size (1<ESS<MCsize) - ESS = 1 / np.sum(np.square(Likelihoods/np.nansum(Likelihoods))) - - # Enlarge sample size if it doesn't fulfill the criteria - if ((ESS > MCsize) or (ESS < 1)): - MCsize *= 10 - ESS = 0 - - # Rejection Step - # Random numbers between 0 and 1 - unif = np.random.rand(1, MCsize)[0] - - # Reject the poorly performed prior - accepted = (Likelihoods/np.max(Likelihoods)) >= unif - - # Prior-based estimation of BME - logBME = np.log(np.nanmean(Likelihoods)) - - # Posterior-based expectation of likelihoods - postLikelihoods = Likelihoods[accepted] - postExpLikelihoods = np.mean(np.log(postLikelihoods)) - - # Posterior-based expectation of prior densities - postExpPrior = np.mean(logPriorLikelihoods[accepted]) - - # Utility function Eq.2 in Ref. (2) - # Posterior covariance matrix after observing data y - # Kullback-Leibler Divergence (Sergey's paper) - if var == 'DKL': - - # TODO: Calculate the correction factor for BME -# BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can, ObservationData, sigma2Dict) -# BME += BMECorrFactor - # Haun et al implementation - # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) - U_J_d = postExpLikelihoods - logBME - - - # Marginal log likelihood - elif var == 'BME': - U_J_d = logBME - - # Entropy-based information gain - elif var == 'infEntropy': - logBME = np.log(np.nanmean(Likelihoods)) - infEntropy = logBME - postExpPrior - postExpLikelihoods - U_J_d = infEntropy * -1 # -1 for minimization - - # Bayesian information criterion - elif var == 'BIC': - nModelParams = max(len(v) for val in self.CoeffsDict.values() for v in val.values()) - maxL = np.nanmax(Likelihoods) - U_J_d = -2* np.log(maxL) + np.log(nObs) * nModelParams - - # Akaike information criterion - elif var == 'AIC': - nModelParams = max(len(v) for val in self.CoeffsDict.values() for v in val.values()) - maxlogL = np.log(np.nanmax(Likelihoods)) - AIC = -2 * maxlogL + 2 * nModelParams - penTerm = 0 #2 * nModelParams * (nModelParams+1) / (nObs-nModelParams-1) - U_J_d = 1*(AIC + penTerm) - - # Deviance information criterion - elif var == 'DIC': - # D_theta_bar = np.mean(-2 * Likelihoods) - N_star_p = 0.5 * np.var(np.log(Likelihoods[Likelihoods!=0])) - Likelihoods_theta_mean = self.normpdf(Y_mean_can,Y_std_can, ObservationData, - sigma2Dict) - DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p - - U_J_d = DIC - - else: - print('The algorithm you requested has not been implemented yet!') - - # Handle inf and NaN (replace by zero) - if np.isnan(U_J_d) or U_J_d==-np.inf or U_J_d==np.inf: U_J_d = 0.0 - - return -1 * U_J_d # -1 is for minimization instead of maximization - - #-------------------------------------------------------------------------------------------------------- - def util_BayesianDesign(self,X_can, X_MC, Model, sigma2Dict, var='DKL'): - - # To avoid changes ub original aPCE object - from copy import deepcopy - PCEModel = deepcopy(self) - - # Old Experimental design - oldExpDesignX = PCEModel.ExpDesign.X - oldExpDesignY = PCEModel.ExpDesign.Y - - # Evaluate the PCE metamodels at that location ??? - Y_PC_can, _ = self.eval_metamodel(samples=np.array([X_can])) - - # Add all suggestion as new ExpDesign - NewExpDesignX = np.vstack((oldExpDesignX, X_can)) - - NewExpDesignY = {} - for key in oldExpDesignY.keys(): - try: - NewExpDesignY[key] = np.vstack((oldExpDesignY[key], Y_PC_can[key])) - except: - NewExpDesignY[key] = oldExpDesignY[key] - - PCEModel.ExpDesign.SamplingMethod = 'user' - PCEModel.ExpDesign.X = NewExpDesignX - PCEModel.ExpDesign.Y = NewExpDesignY - - # Create the SparseBayes-based PCE metamodel: - PCEModel.Inputs.polycoeffsFlag = False - univ_p_val = self.univ_basis_vals(X_can) - G_n_m_all = np.zeros((len(Model.Output.Names),Model.nObs)) - - for idx, key in enumerate(Model.Output.Names): - for i in range(Model.nObs): - BasisIndices = PCEModel.BasisDict[key]["y_"+str(i+1)] - clf_poly = PCEModel.clf_poly[key]["y_"+str(i+1)] - Mn = clf_poly.coef_ - Sn = clf_poly.sigma_ - beta = clf_poly.alpha_ - Psi = self.PCE_create_Psi(BasisIndices,univ_p_val) - Sn_new_inv = np.linalg.inv(Sn) + beta * np.dot(Psi[:,clf_poly.active_].T,Psi[:,clf_poly.active_]) - Sn_new = np.linalg.inv(Sn_new_inv) - - Mn_new = np.dot(Sn_new_inv, Mn[clf_poly.active_]).reshape(-1,1) - Mn_new += beta * np.dot(Psi[:,clf_poly.active_].T, Y_PC_can[key][0,i]) - Mn_new = np.dot(Sn_new,Mn_new).flatten() - - # Compute new moments - mean_old = Mn[0] - mean_new = Mn_new[0] - std_old = np.sqrt(np.sum(np.square(Mn[1:]))) - std_new = np.sqrt(np.sum(np.square(Mn_new[1:]))) - - G_n_m = np.log(std_old/std_new) - 1./2 - G_n_m += std_new**2 / (2*std_new**2) - G_n_m += (mean_new - mean_old)**2 / (2*std_old**2) - - G_n_m_all[idx,i] = G_n_m - - - clf_poly.coef_[clf_poly.active_] = Mn_new - clf_poly.sigma_ = Sn_new - PCEModel.clf_poly[key]["y_"+str(i+1)] = clf_poly - - # return np.sum(G_n_m_all) - PCE_SparseBayes_can = PCEModel#.create_PCE_normDesign(Model, OptDesignFlag=True) - - # Get the data - ObservationData = self.Observations - - # ---------- Inner MC simulation for computing Utility Value ---------- - # Estimation of the integral via Monte Varlo integration - MCsize = X_MC.shape[0] - ESS = 0 - - while ((ESS > MCsize) or (ESS < 1)): - - # Enriching Monte Carlo samples if need be - if ESS != 0: - X_MC = self.ExpDesign.GetSample(MCsize, 'random'); - - # Evaluate the PCEModel at the given samples - Y_PC_MC, std_PC_MC = PCE_SparseBayes_can.eval_metamodel(samples=X_MC) - - # Likelihood computation (Comparison of data - # and simulation results via PCE with candidate design) - Likelihoods = self.normpdf(Y_PC_MC,std_PC_MC, ObservationData, sigma2Dict) - - # Check the Effective Sample Size (1<ESS<MCsize) - ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods))) - - # Enlarge sample size if it doesn't fulfill the criteria - if ((ESS > MCsize) or (ESS < 1)): - MCsize *= 10 - ESS = 0 - - # Rejection Step - # Random numbers between 0 and 1 - unif = np.random.rand(1, MCsize)[0] - - # Reject the poorly performed prior - accepted = (Likelihoods/np.max(Likelihoods)) >= unif - - - # -------------------- Utility functions -------------------- - # Utility function Eq.2 in Ref. (2) - # Kullback-Leibler Divergence (Sergey's paper) - if var == 'DKL': - - # Prior-based estimation of BME - logBME = np.log(np.nanmean(Likelihoods)) - - # Posterior-based expectation of likelihoods - postLikelihoods = Likelihoods[accepted] - postExpLikelihoods = np.mean(np.log(postLikelihoods)) - - # Haun et al implementation - U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) - - U_J_d = np.sum(G_n_m_all) - # Ryan et al (2014) implementation - # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0]) - # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME - - # U_J_d = postExpLikelihoods - logBME - - # Marginal likelihood - elif var == 'BME': - - # Prior-based estimation of BME - logBME = np.log(np.nanmean(Likelihoods)) - - U_J_d = logBME - - # Bayes risk likelihood - elif var == 'BayesRisk': - - U_J_d = -1 * np.var(Likelihoods) - - # Entropy-based information gain - elif var == 'infEntropy': - # Prior-based estimation of BME - logBME = np.log(np.nanmean(Likelihoods)) - - # Posterior-based expectation of likelihoods - postLikelihoods = Likelihoods[accepted] / np.nansum(Likelihoods[accepted]) - postExpLikelihoods = np.mean(np.log(postLikelihoods)) - - # Posterior-based expectation of prior densities - postExpPrior = np.mean(logPriorLikelihoods[accepted]) - - - infEntropy = logBME - postExpPrior - postExpLikelihoods - - U_J_d = infEntropy * -1 # -1 for minimization - - # D-Posterior-precision - elif var == 'DPP': - X_Posterior = X_MC[accepted] - # covariance of the posterior parameters - U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior))) - - # A-Posterior-precision - elif var == 'APP': - X_Posterior = X_MC[accepted] - # trace of the posterior parameters - U_J_d = -np.log(np.trace(np.cov(X_Posterior))) - - else: - print('The algorithm you requested has not been implemented yet!') - - return -1 * U_J_d # -1 is for minimization instead of maximization - - #-------------------------------------------------------------------------------------------------------- - def subdomain(self, Bounds, NrofNewSample): - - NofPa = self.NofPa - NofSubdomain = NrofNewSample+1 - LinSpace = np.zeros((NofPa,NofSubdomain)) - - for i in range(NofPa): - LinSpace[i]=np.linspace(start = Bounds[i][0], stop = Bounds[i][1], num = NofSubdomain) - Subdomains=[] - - for k in range(NofSubdomain-1): - mylist = [] - for i in range(NofPa): - mylist.append((LinSpace[i,k+0],LinSpace[i,k+1])) - Subdomains.append(tuple(mylist)) - return Subdomains - - #-------------------------------------------------------------------------------------------------------- - def Utility_runner(self, method, Model, allCandidates,index, sigma2Dict=None, var=None, X_MC=None): - - if method == 'VarOptDesign': - U_J_d = self.util_VarBasedDesign(allCandidates, index, var) - - elif method == 'BayesActDesign': - NCandidate = allCandidates.shape[0] - U_J_d = np.zeros((NCandidate)) - for idx, X_can in tqdm(enumerate(allCandidates), ascii=True, desc ="OptBayesianDesign"): - U_J_d[idx] = self.util_BayesianActiveDesign(X_can, Model, sigma2Dict, var) - - elif method == 'BayesOptDesign': - NCandidate = allCandidates.shape[0] - U_J_d = np.zeros((NCandidate)) - for idx, X_can in tqdm(enumerate(allCandidates), ascii=True, desc ="OptBayesianDesign"): - U_J_d[idx] = self.util_BayesianDesign(X_can,X_MC, Model, sigma2Dict, var) - - return (index,-1 * U_J_d) - #-------------------------------------------------------------------------------------------------------- - - def dual_annealing(self,method,Bounds,sigma2Dict, var, Run_No, debugFlag=False): - - Model = self.ModelObj - MaxFunItr = self.ExpDesign.MaxFunItr - - import scipy.optimize as opt - if method == 'VarOptDesign': - Res_Global = opt.dual_annealing(self.util_VarBasedDesign, bounds=Bounds, - args=(Model,var,), maxfun=MaxFunItr) - - elif method == 'BayesOptDesign': - Res_Global = opt.dual_annealing(self.util_BayesianDesign, bounds=Bounds, - args=(Model,sigma2Dict,var), maxfun=MaxFunItr) - - if debugFlag: - print("global minimum: xmin = {0}, f(xmin) = {1:.6f}, nfev = {2}".format( - Res_Global.x, Res_Global.fun, Res_Global.nfev)) - - return (Run_No,Res_Global.x) - #-------------------------------------------------------------------------------------------------------- - def tradoffWeights(self, TradeOffScheme, OldExpDesign, OutputDictY): - - if TradeOffScheme == 'None': - weightExploration = 0 - - elif TradeOffScheme == 'equal': - weightExploration = 0.5 - - elif TradeOffScheme == 'epsilon-decreasing': - # epsilon-decreasing scheme - # Start with more exploration and increase the influence of exploitation - # along the way with a exponential decay function - initNSamples, maxNSamples = self.ExpDesign.initNrSamples, self.ExpDesign.MaxNSamples - itrNumber = (self.ExpDesign.X.shape[0] - initNSamples)//self.ExpDesign.NrofNewSample - - from scipy import signal - tau2 = -(maxNSamples-initNSamples-1) / np.log(1e-8) - weightExploration = signal.exponential(maxNSamples-initNSamples, 0, tau2, False)[itrNumber] - - - elif TradeOffScheme == 'adaptive': - - # Extract itrNumber - initNSamples, maxNSamples = self.ExpDesign.initNrSamples, self.ExpDesign.MaxNSamples - itrNumber = (self.ExpDesign.X.shape[0] - initNSamples)//self.ExpDesign.NrofNewSample - - if itrNumber == 0: - weightExploration = 0.5 - else: - # # Extract the model errors from the last and next to last iterations - # errorModel_i , errorModel_i_1 = self.errorModel[itrNumber], self.errorModel[itrNumber-1] - - # # Evaluate the error models for all selected samples so far - # eLCAllCands_i, _ = errorModel_i.eval_errormodel(OldExpDesign) - # eLCAllCands_i_1, _ = errorModel_i_1.eval_errormodel(OldExpDesign) - - - # # Local improvement of LC error at last selected design - # sl_i = np.max(np.dstack(eLCAllCands_i.values())[-1]) - # sl_i_1 = np.max(np.dstack(eLCAllCands_i_1.values())[-1]) - - # p = sl_i**2 / sl_i_1**2 - - # # Global improvement of LC error at OldExpDesign - # sg_i = np.max(np.dstack(eLCAllCands_i.values()),axis=1) - # sg_i_1 = np.max(np.dstack(eLCAllCands_i_1.values()),axis=1) - - # q = np.sum(np.square(sg_i)) / np.sum(np.square(sg_i_1)) - - # weightExploration = min([0.5*p/q, 1]) - - # TODO: New adaptive trade-off according to Liu et al. (2017) - # Mean squared error for last design point - lastPCEY, _ = self.eval_metamodel(samples=OldExpDesign[-1].reshape(1,-1)) - - mseError = mean_squared_error(np.array(list(lastPCEY.values()))[:,0], np.array(list(OutputDictY.values())[1:])[:,-1,:]) - - # Mean squared CV - error for last design point - mseCVError = np.mean(np.square(([v[-1] for V in self.LCerror.values() for v in V.values()]))) - - weightExploration = 0.99 * min([0.5*mseError/mseCVError, 1]) - - return weightExploration - #-------------------------------------------------------------------------------------------------------- - def opt_SeqDesign(self, Model, sigma2Dict, NCandidate=5, var='DKL'): - - # Initialization - Model = self.ModelObj - Bounds = self.BoundTuples - NrofNewSample = self.ExpDesign.NrofNewSample - ExploreMethod = self.ExpDesign.ExploreMethod - ExploitMethod = self.ExpDesign.ExploitMethod - NrofCandGroups = self.ExpDesign.NrofCandGroups - TradeOffScheme = self.ExpDesign.TradeOffScheme - - OldExpDesign = self.ExpDesign.X - OutputDictY = self.ExpDesign.Y.copy() - - ndim = self.ExpDesign.X.shape[1] - - # ----------------------------------------- - # ----------- CUSTOMIZED METHODS ---------- - # ----------------------------------------- - # Utility function ExploitMethod provided by user - if ExploitMethod.lower() == 'user': - - Xnew, filteredSamples = self.ExpDesign.ExploitFunction(self) - - print("\n") - print("\nXnew:\n", Xnew) - - return Xnew, filteredSamples - # ----------------------------------------- - # ---------- EXPLORATION METHODS ---------- - # ----------------------------------------- - - if ExploreMethod == 'dual annealing': - # ------- EXPLORATION: OPTIMIZATION ------- - import time - start_time = time.time() - - #Divide the domain to subdomains - Subdomains = self.subdomain(Bounds, NrofNewSample) - - args = [(ExploitMethod, Subdomains[i], sigma2Dict, var, i) for i in range(NrofNewSample)] - - # Multiprocessing - pool = multiprocessing.Pool(multiprocessing.cpu_count()) - - # With Pool.starmap_async() - results = pool.starmap_async(self.dual_annealing, args).get() - - # Close the pool - pool.close() - - Xnew = np.array([results[NofE][1] for NofE in range(NrofNewSample)]) - - print("\nXnew:\n", Xnew) - - elapsed_time = time.time() - start_time - print("\n") - print("elapsed_time: %s sec."%round(elapsed_time,2)) - print('-'*20) - - elif ExploreMethod == 'LOOCV': - # ----------------------------------------------------------------- - # TODO: LOOCV model construnction based on Feng et al. (2020) - #'LOOCV': - # Initilize the ExploitScore array - OutputNames = list(OutputDictY.keys())[1:] - - # Generate random samples - allCandidates = self.ExpDesign.GetSample(NCandidate, - SamplingMethod='random') - - # Construct error model based on LCerror - errorModel = self.create_ModelError(OldExpDesign, self.LCerror) - self.errorModel.append(copy.copy(errorModel)) - - # Evaluate the error models for allCandidates - eLCAllCands, _ = errorModel.eval_errormodel(allCandidates) - - # Select the maximum as the representative error - eLCAllCandidates = np.max(np.dstack(eLCAllCands.values()), axis=1)[:,0] - - # Normalize the error w.r.t the maximum error - scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates) - - else: - # ------- EXPLORATION: SPACE-FILLING DESIGN ------- - # Generate candidate samples from Exploration class - exploration = Exploration(self,NCandidate) - exploration.w = 100# * ndim #500 - exploration.mcCriterion = 'mc-intersite-proj' #'mc-intersite-proj-th' - allCandidates , scoreExploration = exploration.getExplorationSamples() - - # Temp: ---- Plot all candidates ----- - if ndim == 2: - def plotter(points, allCandidates, Method, scoreExploration=None): - - if Method == 'Voronoi': - from scipy.spatial import Voronoi, voronoi_plot_2d - vor = Voronoi(points) - fig = voronoi_plot_2d(vor) - ax1 = fig.axes[0] - else: - fig = plt.figure() - ax1 = fig.add_subplot(111) - ax1.scatter(points[:,0], points[:,1], s=10, c='r', marker="s", label='Old Design Points') - ax1.scatter(allCandidates[:,0],allCandidates[:,1], s=10, c='b', marker="o", label='Design candidates') - for i in range(points.shape[0]): - txt = 'p'+str(i+1) - ax1.annotate(txt, (points[i,0],points[i,1])) - if scoreExploration is not None: - for i in range(allCandidates.shape[0]): - txt = str(round(scoreExploration[i],5)) - ax1.annotate(txt, (allCandidates[i,0],allCandidates[i,1])) - - plt.xlim(self.BoundTuples[0]) - plt.ylim(self.BoundTuples[1]) - # plt.show() - plt.legend(loc='upper left'); - if ndim == 3: - def plotter3D(points, closestPoints, Method, scoreExploration=None): - from mpl_toolkits.mplot3d import Axes3D - - jet= plt.get_cmap('Dark2') - colors = iter(jet(np.linspace(0,1,10))) - - fig = plt.figure() - ax1 = Axes3D(fig) - - for idx in range(len(closestPoints)): - Color = next(colors) - ax1.scatter(points[idx,0], points[idx,1], points[idx,2], s=10, color = Color, marker="s") - ax1.scatter(closestPoints[idx][:,0],closestPoints[idx][:,1], closestPoints[idx][:,2], s=10, color = Color, marker="o") - - for i in range(points.shape[0]): - label = 'p'+str(i+1) - ax1.text(points[i,0],points[i,1],points[i,2], label, None) - - if scoreExploration is not None: - for i in range(allCandidates.shape[0]): - label = str(round(scoreExploration[i],5)) - ax1.text(allCandidates[i,0],allCandidates[i,1],allCandidates[i,2],label, None) - - #ax1.set_xlim(-5, 5) - #ax1.set_ylim(-5, 5) - #ax1.set_zlim(-5, 5) - plt.show() - plt.legend(loc='upper left'); - - #plotter3D(self.ExpDesign.X, exploration.closestPoints, ExploreMethod) - - - # ----------------------------------------- - # --------- EXPLOITATION METHODS ---------- - # ----------------------------------------- - - if ExploitMethod == 'BayesOptDesign' or ExploitMethod == 'BayesActDesign': - - # ------- Calculate Exoploration weight ------- - # Compute exploration weight based on trade off scheme - weightExploration = self.tradoffWeights(TradeOffScheme, OldExpDesign, OutputDictY) - print("\nweightExploration={0:0.3f} weightExploitation={1:0.3f}".format(weightExploration, (1 - weightExploration))) - - # ------- EXPLOITATION: BayesOptDesign & ActiveLearning ------- - if weightExploration != 1.0: - - # Create a sample pool for rejection sampling - MCsize = 15000 - X_MC = self.ExpDesign.GetSample(MCsize, 'random'); - - # Multiprocessing - pool = multiprocessing.Pool(multiprocessing.cpu_count()) - - # Split the candidates in groups for multiprocessing - split_allCandidates = np.array_split(allCandidates, NrofCandGroups, axis=0) - args = [(ExploitMethod, Model, split_allCandidates[i], i, sigma2Dict , var, X_MC) for i in range(NrofCandGroups)] - - # With Pool.starmap_async() - results = pool.starmap_async(self.Utility_runner, args).get() - - # Close the pool - pool.close() - - # Retrieve the results and append them - U_J_d = np.concatenate([results[NofE][1] for NofE in range(NrofCandGroups)]) - - # TODO: Get the expected value (mean) of the Utility score for each cell - if ExploreMethod == 'Voronoi': U_J_d = np.mean(U_J_d.reshape(-1, NCandidate), axis=1) - - # Normalize U_J_d - norm_U_J_d = U_J_d / np.sum(U_J_d) - print("norm_U_J_d:\n", norm_U_J_d) - else: - norm_U_J_d = np.zeros((len(scoreExploration))) - # ------- Calculate Total score ------- - # if ExploreMethod == 'Voronoi': - # # Randomly select points in each vornoi - # badSampleIdx=[] - # nsurvivedOldDesign = len(scoreExploration) - # allCandidates = np.empty((0, self.ExpDesign.X.shape[1])) - # for idx in range(nsurvivedOldDesign): - # candidates = exploration.closestPoints[idx] - # if len(candidates) == 0: - # badSampleIdx.append(idx) - # else: - # randomIdx = np.random.randint(0, len(candidates), NCandidate) - # allCandidates = np.vstack((allCandidates, candidates[randomIdx])) - - # scoreExploration = np.delete(scoreExploration, badSampleIdx, axis=0) - - # ------- Calculate Total score ------- - # ------- Trade off between EXPLORATION & EXPLOITATION ------- - # Total score - totalScore = (1 - weightExploration)*norm_U_J_d + weightExploration*scoreExploration - - # temp: Plot - # dim = self.ExpDesign.X.shape[1] - # if dim == 2: - # plotter(self.ExpDesign.X, allCandidates, ExploreMethod) - - # ------- Select the best candidate ------- - # find an optimal point subset to add to the initial design - # by maximization of the utility score and taking care of NaN values - temp = totalScore.copy() - temp[np.isnan(totalScore)] = -np.inf - sorted_idxtotalScore = np.argsort(temp)[::-1] - bestIdx = sorted_idxtotalScore[:NrofNewSample] - - # select the requested number of samples - if ExploreMethod == 'Voronoi': - Xnew = np.zeros((NrofNewSample,ndim)) - for i, idx in enumerate(bestIdx): - X_can = exploration.closestPoints[idx] - - # Calculate the maxmin score for the region of interest - newSamples, maxminScore = exploration.getMCSamples(allCandidates=X_can) - - # select the requested number of samples - Xnew[i] = newSamples[np.argmax(maxminScore)] - else: - Xnew = allCandidates[sorted_idxtotalScore[:NrofNewSample]] - - elif ExploitMethod == 'VarOptDesign': - # ------- EXPLOITATION: VarOptDesign ------- - UtilMethod = var - - # ------- Calculate Exoploration weight ------- - # Compute exploration weight based on trade off scheme - weightExploration = self.tradoffWeights(TradeOffScheme, OldExpDesign, OutputDictY) - print("\nweightExploration={0:0.3f} weightExploitation={1:0.3f}".format(weightExploration, (1 - weightExploration))) - - # Generate candidate samples from Exploration class - OutputNames = list(OutputDictY.keys())[1:] - nMeasurement = OutputDictY[OutputNames[0]].shape[1] - - # Find indices of the Vornoi cells with samples - goodSampleIdx=[] - for idx in range(len(exploration.closestPoints)): - if len(exploration.closestPoints[idx]) != 0: goodSampleIdx.append(idx) - - - # Find sensitive region - if UtilMethod == 'LOOCV': - - allModifiedLOO = np.zeros((len(OldExpDesign),len(OutputNames), nMeasurement)) - for y_idx , y_key in enumerate(OutputNames): - for idx, key in enumerate(self.LCerror[y_key].keys()): - allModifiedLOO[:, y_idx,idx] = abs(self.LCerror[y_key][key]) - - ExploitScore = np.max(np.max(allModifiedLOO, axis=1),axis=1) - - elif UtilMethod in ['EIGF', 'Entropy']: - # ----- All other in ['EIGF', 'Entropy', 'ALM'] ----- - # Initilize the ExploitScore array - ExploitScore = np.zeros((len(OldExpDesign),len(OutputNames))) - - # Split the candidates in groups for multiprocessing - if ExploreMethod != 'Voronoi': - split_allCandidates = np.array_split(allCandidates, NrofCandGroups, axis=0) - goodSampleIdx = range(NrofCandGroups) - else: - split_allCandidates = exploration.closestPoints - - - # Split the candidates in groups for multiprocessing - args = [(ExploitMethod, Model, split_allCandidates[index], index, sigma2Dict , var) for index in goodSampleIdx] - #args = [(ExploitMethod, Model, exploration.closestPoints[index], index, sigma2Dict , var) for index in goodSampleIdx] - - # Multiprocessing - pool = multiprocessing.Pool(multiprocessing.cpu_count()) - - # With Pool.starmap_async() - results = pool.starmap_async(self.Utility_runner, args).get() - - # Close the pool - pool.close() - - # Retrieve the results and append them - ExploitScore = np.concatenate([results[NofE][1] for NofE in range(len(goodSampleIdx))]) - - else: - - raise NameError('The utility function you requested is not available.') - - #print("ExploitScore:\n", ExploitScore) - - # find an optimal point subset to add to the initial design - # by maximization of the utility score and taking care of NaN values - # Total score - # Normalize U_J_d - ExploitScore = ExploitScore / np.sum(ExploitScore) - totalScore = (1 - weightExploration)*ExploitScore + weightExploration*scoreExploration - - temp = totalScore.copy() - sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1] - bestIdx = sorted_idxtotalScore[:NrofNewSample] - - Xnew = np.zeros((NrofNewSample,ndim)) - if ExploreMethod != 'Voronoi': - Xnew = allCandidates[bestIdx] - else: - for i, idx in enumerate(bestIdx.flatten()): - X_can = exploration.closestPoints[idx] - - #plotter(self.ExpDesign.X, X_can, ExploreMethod, scoreExploration=None) - - # Calculate the maxmin score for the region of interest - newSamples, maxminScore = exploration.getMCSamples(allCandidates=X_can) - - # select the requested number of samples - Xnew[i] = newSamples[np.argmax(maxminScore)] - - elif ExploitMethod == 'alphabetic': - # ------- EXPLOITATION: ALPHABETIC ------- - Xnew = self.util_AlphOptDesign(Model, allCandidates, var) - - elif ExploitMethod == 'Space-filling': - # ------- EXPLOITATION: SPACE-FILLING ------- - totalScore = scoreExploration - - # ------- Select the best candidate ------- - # find an optimal point subset to add to the initial design - # by maximization of the utility score and taking care of NaN values - temp = totalScore.copy() - temp[np.isnan(totalScore)] = -np.inf - sorted_idxtotalScore = np.argsort(temp)[::-1] - - # select the requested number of samples - Xnew = allCandidates[sorted_idxtotalScore[:NrofNewSample]] - - else: - raise NameError('The method you requested is not available.') - - print("\n") - print("\nRun No. {}:".format(OldExpDesign.shape[0]+1)) - print("Xnew:\n", Xnew) - - return Xnew, None - - #-------------------------------------------------------------------------------------------------------- - def util_AlphOptDesign(self, Model, allCandidates, var='D-Opt'): - """ - Enrich the Experimental design with the requested alphabetic criterion - based on exploring the space with number of sampling points (candidates). - - Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos expansion: - A review of sampling strategies., Computer Methods in Applied Mechanics and Engineering, 332, 382-407. - - Arguments - --------- - Model : obj - Model specification - - NCandidate : int - Number of candidate points to be searched - - var : string - Alphabetic optimality criterion - - Returns - ------- - X_new : ndarray[1, n] - The new sampling location in the input space. - """ - NrofNewSample = self.ExpDesign.NrofNewSample - index = self.index - NCandidate = allCandidates.shape[0] - - # TODO: Loop over outputs - OutputName = Model.Output.Names[0] - - # To avoid changes ub original aPCE object - from copy import deepcopy - PCEModel = deepcopy(self) - - # Old Experimental design - oldExpDesignX = PCEModel.ExpDesign.X - - # TODO: Only one psi can be selected. - # Suggestion: Go for the one with the highest LOO error - Scores = list(PCEModel.ScoresDict[OutputName].values()) - ModifiedLOO = [1-score for score in Scores] - outIdx = np.argmax(ModifiedLOO[:index]) - - - # Initialize Phi to save the criterion's values - Phi = np.zeros((NCandidate)) - - BasisIndices = self.BasisDict[OutputName]["y_"+str(outIdx+1)] - P = len(BasisIndices) - - - # ------ Old Psi ------------ - univ_p_val = self.univ_basis_vals(oldExpDesignX) - Psi = self.PCE_create_Psi(BasisIndices,univ_p_val) - - - # ------ New candidates (Psi_c) ------------ - # Assemble Psi_c - univ_p_val_c = self.univ_basis_vals(allCandidates) - Psi_c = self.PCE_create_Psi(BasisIndices,univ_p_val_c) - - - for idx in range(NCandidate): - - # Include the new row to the original Psi - Psi_cand = np.vstack((Psi, Psi_c[idx])) - - # Information matrix - PsiTPsi = np.dot(Psi_cand.T, Psi_cand) - M = PsiTPsi / (len(oldExpDesignX)+1) - - if np.linalg.cond(PsiTPsi) > 1e-12 and np.linalg.cond(PsiTPsi) < 1/sys.float_info.epsilon: - # faster - invM = sp.linalg.solve(M, sp.sparse.eye(PsiTPsi.shape[0]).toarray()) - else: - # stabler - invM = np.linalg.pinv(M) - - # ---------- Calculate optimality criterion ---------- - # Optimality criteria according to Section 4.5.1 in Ref. - - # D-Opt - if var == 'D-Opt': - Phi[idx] = (np.linalg.det(invM)) ** (1/P) - - # A-Opt - elif var == 'A-Opt': - Phi[idx] = np.trace(invM) - - # K-Opt - elif var == 'K-Opt': - Phi[idx] = np.linalg.cond(M) - - else: - print('The optimality criterion you requested has not been implemented yet!') - - - # find an optimal point subset to add to the initial design - # by minimization of the Phi - sorted_idxtotalScore = np.argsort(Phi) - - # select the requested number of samples - Xnew = allCandidates[sorted_idxtotalScore[:NrofNewSample]] - - return Xnew - - # ------------------------------------------------------------------------- - def eval_metamodel(self,samples=None, nsamples=None, Y=None, discrepModel=False,samplingMethod='random', name='Calib', return_samples=False): - ModelDict = self.gp_poly if self.metaModel.lower() == 'gpe' else self.CoeffsDict + return meanPCEOutputs, stdPCEOutputs + + # ------------------------------------------------------------------------- + def eval_metamodel(self, samples=None, nsamples=None, Y=None, + discrepModel=False, samplingMethod='random', + name='Calib', return_samples=False): + if self.metaModel.lower() == 'gpe': + ModelDict = self.gp_poly + else: + ModelDict = self.CoeffsDict if samples is None: if nsamples is None: @@ -1928,7 +1045,7 @@ class Metamodel: else: self.NrofSamples = nsamples - samples = self.ExpDesign.GetSample(self.NrofSamples, + samples = self.ExpDesign.GetSample(self.NrofSamples, samplingMethod, transform=True) else: @@ -1976,16 +1093,6 @@ class Metamodel: y_mean = np.dot(psi, coeffs) y_std = np.zeros_like(y_mean) - # if self.metaModel.lower() == 'pcekriging': - # gp = self.gp_poly[Outkey][Inkey] - # y_gp_mean, y_gp_std = gp.predict(samples, return_std=True) - # y_mean += y_gp_mean - # try: - # y_std = y_error[Outkey][:,Inkey] - # print("y_std:",y_std) - # except: - # y_std = np.zeros(shape=y_mean.shape) - PCEOutputs_mean[:, idx] = y_mean PCEOutputs_std[:, idx] = y_std idx += 1 @@ -1993,8 +1100,11 @@ class Metamodel: if self.index is None: if self.DimRedMethod.lower() == 'pca': PCA = self.pca[Outkey] - meanPCEOutputs[Outkey] = PCA.mean_ + np.dot(PCEOutputs_mean,PCA.components_) - stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2)) + meanPCEOutputs[Outkey] = PCA.mean_ + meanPCEOutputs[Outkey] += np.dot(PCEOutputs_mean, + PCA.components_) + stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, + PCA.components_**2)) else: meanPCEOutputs[Outkey] = PCEOutputs_mean stdPCEOutputs[Outkey] = PCEOutputs_std @@ -2004,16 +1114,22 @@ class Metamodel: if name.lower() == 'calib': if self.DimRedMethod.lower() == 'pca': PCA = self.pca[Outkey] - meanPCEOutputs[Outkey] = PCA.mean_[:index] + np.dot(PCEOutputs_mean,PCA.components_)[:,:index] - stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,:index] + meanPCEOutputs[Outkey] = PCA.mean_[:index] + meanPCEOutputs[Outkey] += np.dot(PCEOutputs_mean, + PCA.components_)[:, :index] + stdPCEOutputs[Outkey] = np.sqrt(np.dot( + PCEOutputs_std**2, PCA.components_**2))[:, :index] else: meanPCEOutputs[Outkey] = PCEOutputs_mean[:, :index] stdPCEOutputs[Outkey] = PCEOutputs_std[:, :index] else: if self.DimRedMethod.lower() == 'pca': PCA = self.pca[Outkey] - meanPCEOutputs[Outkey] = PCA.mean_[index:] + np.dot(PCEOutputs_mean,PCA.components_)[:,index:] - stdPCEOutputs[Outkey] = np.sqrt(np.dot(PCEOutputs_std**2, PCA.components_**2))[:,index:] + meanPCEOutputs[Outkey] = PCA.mean_[index:] + meanPCEOutputs[Outkey] += np.dot(PCEOutputs_mean, + PCA.components_)[:, index:] + stdPCEOutputs[Outkey] = np.sqrt(np.dot( + PCEOutputs_std**2, PCA.components_**2))[:, index:] else: meanPCEOutputs[Outkey] = PCEOutputs_mean[:, index:] stdPCEOutputs[Outkey] = PCEOutputs_std[:, index:] @@ -2023,1012 +1139,3 @@ class Metamodel: return meanPCEOutputs, stdPCEOutputs, samples else: return meanPCEOutputs, stdPCEOutputs - - #-------------------------------------------------------------------------------------------------------- - def normpdf(self, PCEOutputs, std_PC_MC, ObservationData, Sigma2s): - - ModelOutputNames = self.ModelObj.Output.Names - - SampleSize, index = PCEOutputs[ModelOutputNames[0]].shape - # if self.index is not None: index = self.index - index = self.index if type(self.index) is list else [self.index]*len(ModelOutputNames) - - # Flatten the ObservationData - TotalData = ObservationData[ModelOutputNames].to_numpy().flatten('F') - - # Remove NaN - TotalData = TotalData[~np.isnan(TotalData)] - Sigma2s = Sigma2s[~np.isnan(Sigma2s)] - - # Flatten the Output - TotalOutputs = np.empty((SampleSize,0)) - for idx, key in enumerate(ModelOutputNames): - TotalOutputs = np.hstack((TotalOutputs, PCEOutputs[key][:,:index[idx]])) - - # Covariance Matrix - covMatrix = np.zeros((Sigma2s.shape[0], Sigma2s.shape[0]), float) - np.fill_diagonal(covMatrix, Sigma2s) - - # Add the std of the PCE. - covMatrix_PCE = np.zeros((Sigma2s.shape[0], Sigma2s.shape[0]), float) - stdPCE = np.empty((SampleSize,0)) - for idx, key in enumerate(ModelOutputNames): - stdPCE = np.hstack((stdPCE, std_PC_MC[key][:,:index[idx]])) - - # Expected value of variance (Assump: i.i.d stds) - varPCE = np.mean(stdPCE**2, axis=0) - # # varPCE = np.var(stdPCE, axis=1) - np.fill_diagonal(covMatrix_PCE, varPCE) - - # Aggregate the cov matrices - covMatrix += covMatrix_PCE - - # Compute likelihood - self.Likelihoods = stats.multivariate_normal.pdf(TotalOutputs, - mean=TotalData, - cov=covMatrix, - allow_singular=True) - - return self.Likelihoods - - #-------------------------------------------------------------------------------------------------------- - def BME_Corr_Weight(self, PCEModel, Data, Sigma2sDict): - """ - Calculates the correction factor for BMEs. - """ - - # ----- Original model outputs on the ExpDesign --------------- - # Extract the outputs - Model = PCEModel.ModelObj - OutputType = Model.Output.Names - OrigModelOutput = PCEModel.ExpDesign.Y - SampleSize = OrigModelOutput[OutputType[0]].shape[0] - - # Flatten the OutputType for OrigModel - TotalOutputs = np.empty((SampleSize,0)) - for outputType in OutputType: - TotalOutputs = np.hstack((TotalOutputs, OrigModelOutput[outputType])) - - # ----- PCE model outputs on the ExpDesign --------------- - # Evaluate PCEModel on the experimental design - Samples = PCEModel.ExpDesign.X - OutputRS, stdOutputRS = PCEModel.eval_metamodel(samples=Samples) - - # Flatten the mean Outputs for PCEModel - TotalPCEOutputs = np.empty((SampleSize,0)) - for outputType in OutputType: - TotalPCEOutputs = np.hstack((TotalPCEOutputs, OutputRS[outputType])) - - NofMeasurements = TotalPCEOutputs.shape[1] - - # Flatten the mean Outputs for PCEModel - stdPCEOutputs = np.empty((SampleSize,0)) - for outputType in OutputType: - stdPCEOutputs = np.hstack((stdPCEOutputs, stdOutputRS[outputType])) - - # ----- Observation data --------------- - # Flatten Oberservation datasets - #Observations = Data.flatten() - Observations = np.empty((1,0)) - for outputType in OutputType: - Observations = np.append(Observations, Data[outputType]) - - # ------------- Sigma2s --------------- - Sigma2s = np.empty((1,0)) - for outputType in OutputType: - Sigma2s = np.append(Sigma2s, Sigma2sDict[outputType]) - - # ----------------- LIKELIHOOD CALCULATION -------------------- - # Initialization - covMatrix=np.zeros((NofMeasurements, NofMeasurements), float) - BME_RM_Model_Weight = np.zeros((SampleSize)) - BME_RM_Data_Weight = np.zeros((SampleSize)) - BME_Corr = 0 - - # Deviation Computations - RM_Model_Deviation = np.zeros((SampleSize,NofMeasurements)) - RM_Data_Deviation = np.zeros((SampleSize,NofMeasurements)) - for i in range(SampleSize): - RM_Model_Deviation[i] = TotalOutputs[i][:NofMeasurements] - TotalPCEOutputs[i, :] # Reduce model- Full Model - RM_Data_Deviation[i] = Observations - TotalPCEOutputs[i, :] # Reduce model- Measurement Data - - - # Initialization of Co-Variance Matrix - # For BME_RM_ModelWeight - if NofMeasurements == 1: - RM_Model_Error = np.zeros((NofMeasurements, NofMeasurements), float) - np.fill_diagonal(RM_Model_Error, np.cov(RM_Model_Deviation.T)) - else: - RM_Model_Error = np.cov(RM_Model_Deviation.T) - - - # Computation of Weight according to the deviations - for i in range(SampleSize): - # For BME_RM_DataWeight - try: - var = Sigma2s[i] - if len(var)==1: - np.fill_diagonal(covMatrix, var) - else: - row,col = np.diag_indices(covMatrix.shape[0]) - covMatrix[row,col] = np.hstack((np.repeat(var[0], NofMeasurements*0.5),np.repeat(var[1], NofMeasurements*0.5))) - - except: - var = Sigma2s - - np.fill_diagonal(covMatrix, var) - - # Add the std of the PCE is emulator is chosen. - covMatrix_PCE = np.zeros((NofMeasurements, NofMeasurements), float) - - stdPCE = np.mean(stdPCEOutputs, axis=1) - np.fill_diagonal(covMatrix_PCE, stdPCE**2) - - covMatrix = covMatrix + covMatrix_PCE - - # Calculate the denomitor - denom1 = (np.sqrt(2*np.pi)) ** NofMeasurements - denom2 = (((2*np.pi)**(NofMeasurements/2)) * np.sqrt(np.linalg.det(covMatrix))) - - BME_RM_Model_Weight[i] = (np.exp(-0.5 * np.dot(np.dot(RM_Model_Deviation[i], np.linalg.pinv(RM_Model_Error)), RM_Model_Deviation[i])))/denom1 - BME_RM_Data_Weight[i] = (np.exp(-0.5 * np.dot(np.dot(RM_Data_Deviation[i], np.linalg.pinv(covMatrix)), RM_Data_Deviation[i][:,np.newaxis])))/denom2 - - for i in range(SampleSize): - BME_Corr += BME_RM_Model_Weight[i] * BME_RM_Data_Weight[i] / np.nansum(BME_RM_Data_Weight) - - - return np.log(BME_Corr) - - #-------------------------------------------------------------------------------------------------------- - def posteriorPlot(self, Posterior, MAP, parNames, key, figsize=(10,10)): - - # Initialization - newpath = (r'Outputs_SeqPosteriorComparison') - if not os.path.exists(newpath): os.makedirs(newpath) - - lw = 3. - BoundTuples = self.BoundTuples - NofPa = len(MAP) - - # This is the true mean of the second mode that we used above: - value1 = MAP - - # This is the empirical mean of the sample: - value2 = np.mean(Posterior, axis=0) - - if NofPa == 2: - - figPosterior, ax = plt.subplots() - plt.hist2d(Posterior[:,0], Posterior[:,1], bins=(200, 200), - range=np.array([BoundTuples[0],BoundTuples[1]]), cmap=plt.cm.jet) - - plt.xlabel(parNames[0]) - plt.ylabel(parNames[1]) - - plt.xlim(BoundTuples[0]) - plt.ylim(BoundTuples[1]) - - ax.axvline(value1[0], color="g", lw=lw) - ax.axhline(value1[1], color="g", lw=lw) - ax.plot(value1[0], value1[1], "sg", lw=lw+1) - - ax.axvline(value2[0], ls='--', color="r", lw=lw) - ax.axhline(value2[1], ls='--', color="r", lw=lw) - ax.plot(value2[0], value2[1], "sr", lw=lw+1) - - else: - import corner - figPosterior = corner.corner(Posterior, labels=parNames,title_fmt='.2e', - show_titles=True, title_kwargs={"fontsize": 12}) - - # Extract the axes - axes = np.array(figPosterior.axes).reshape((NofPa, NofPa)) - - # Loop over the diagonal - for i in range(NofPa): - ax = axes[i, i] - ax.axvline(value1[i], color="g") - ax.axvline(value2[i], ls='--', color="r") - - # Loop over the histograms - for yi in range(NofPa): - for xi in range(yi): - ax = axes[yi, xi] - ax.axvline(value1[xi], color="g") - ax.axvline(value2[xi], ls='--', color="r") - ax.axhline(value1[yi], color="g") - ax.axhline(value2[yi], ls='--', color="r") - ax.plot(value1[xi], value1[yi], "sg") - ax.plot(value2[xi], value2[yi], "sr") - - - #figPosterior.set_size_inches((10,10)) - figPosterior.savefig('./'+newpath+'/'+key+'.svg',bbox_inches='tight') - plt.close() - - # Save the posterior as .npy - np.save('./'+newpath+'/'+key+'.npy', Posterior) - - return figPosterior - - #-------------------------------------------------------------------------------------------------------- - def hellinger_distance(self, P, Q): - """ - Hellinger distance between two continuous distributions. - - The maximum distance 1 is achieved when P assigns probability zero to - every set to which Q assigns a positive probability, and vice versa. - 0 (identical) and 1 (maximally different) - """ - - mu1 = P.mean() - Sigma1 = np.std(P) - - mu2 = Q.mean() - Sigma2 = np.std(Q) - - term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2)) - - term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2)) - - H_squared = 1 - term1 * term2 - - - return np.sqrt(H_squared) - - #-------------------------------------------------------------------------------------------------------- - def BME_Calculator(self, PCEModel, ObservationData, sigma2Dict): - """ - This function computes the Bayesian model evidence (BME) via Monte Carlo - integration. - - """ - - # Initializations - validLikelihoods = self.validLikelihoods - PostSnapshot = self.ExpDesign.PostSnapshot - if PostSnapshot or len(validLikelihoods)!=0: - newpath = (r'Outputs_SeqPosteriorComparison') - if not os.path.exists(newpath): os.makedirs(newpath) - - SamplingMethod = 'random' - MCsize = 100000 - ESS = 0 - - # Estimation of the integral via Monte Varlo integration - while ((ESS > MCsize) or (ESS < 1)): - - # Generate samples for Monte Carlo simulation - if len(validLikelihoods)==0: - # ExpDesign = ExpDesigns(self.Inputs) - X_MC = PCEModel.ExpDesign.GetSample(MCsize, SamplingMethod); - else: - X_MC = self.validSamples - MCsize = X_MC.shape[0] - - # Monte Carlo simulation for the candidate design - Y_PC_MC, std_PC_MC = PCEModel.eval_metamodel(samples=X_MC) - - # Likelihood computation (Comparison of data and - # simulation results via PCE with candidate design) - Likelihoods = self.normpdf(Y_PC_MC,std_PC_MC,ObservationData, sigma2Dict) - - # Check the Effective Sample Size (1000<ESS<MCsize) - ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods))) - - # Enlarge sample size if it doesn't fulfill the criteria - if ((ESS > MCsize) or (ESS < 1)): - print('ESS={0} MC size should be larger.'.format(ESS)) - MCsize = MCsize * 10 - ESS = 0 - - # Rejection Step - # Random numbers between 0 and 1 - unif = np.random.rand(1, MCsize)[0] - - # Reject the poorly performed prior - accepted = (Likelihoods/np.max(Likelihoods)) >= unif - X_Posterior = X_MC[accepted] - - - # ------------------------------------------------------------------------- - # ------------- Kullback-Leibler Divergence & Information Entropy --------- - # ------------------------------------------------------------------------- - # Prior-based estimation of BME - logBME = np.log(np.nanmean(Likelihoods)) - # Calculate BME and its correction factor -# BMECorrFactor = self.BME_Corr_Weight(PCEModel, ObservationData, sigma2Dict) -# -# logBME += BMECorrFactor - - # Posterior-based expectation of likelihoods - postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) - - # Posterior-based expectation of prior densities - #postExpPrior = np.mean([log_prior(sample) for sample in X_Posterior]) - - - # Calculate Kullback-Leibler Divergence - #KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) - KLD = postExpLikelihoods - logBME - - # Information Entropy based on Entropy paper Eq. 38 - #infEntropy = logBME - postExpPrior - postExpLikelihoods - - # If PostSnapshot is True, plot likelihood vs refrence - if PostSnapshot or len(validLikelihoods)!=0: - idx = len([name for name in os.listdir(newpath) if 'Likelihoods_' in name and os.path.isfile(os.path.join(newpath, name))]) - fig, ax = plt.subplots() - sns.kdeplot(np.log(validLikelihoods[validLikelihoods>0]), shade=True, color="g", label='Ref. Likelihood') - sns.kdeplot(np.log(Likelihoods[Likelihoods>0]), shade=True, color="b", label= 'Likelihood with PCE') - - # Hellinger distance - distHellinger = self.hellinger_distance(np.log(validLikelihoods[validLikelihoods>0]), np.log(Likelihoods[Likelihoods>0])) - text = "Hellinger Dist.={:.3f}\n logBME={:.3f}\n DKL={:.3f}".format(distHellinger, logBME, KLD) - - plt.text(0.05, 0.75, text,bbox=dict(facecolor='wheat', edgecolor='black', boxstyle='round,pad=1'), - transform = ax.transAxes) - #plt.show() - - fig.savefig('./'+newpath+'/Likelihoods_'+str(idx)+'.svg',bbox_inches='tight') - plt.close() - - else: - distHellinger = 0.0 - - return (logBME, KLD, X_Posterior,distHellinger) - - #-------------------------------------------------------------------------------------------------------- - - def validError_(self): - - Model = self.ModelObj - OutputName = Model.Output.Names - - # Generate random samples - Samples = self.validSamples - - # Extract the original model with the generated samples - ModelOutputs = self.validModelRuns - - # Run the PCE model with the generated samples - PCEOutputs, PCEOutputs_std = self.eval_metamodel(samples=Samples) - - validError_dict = {} - # Loop over the keys and compute RMSE error. - for key in OutputName: - weight = np.mean(np.square(PCEOutputs_std[key]), axis=0) - if all(weight==0): weight='variance_weighted' - validError_dict[key] = mean_squared_error(ModelOutputs[key], PCEOutputs[key])/\ - np.var(ModelOutputs[key],ddof=1) - - return validError_dict - - #-------------------------------------------------------------------------------------------------------- - def error_Mean_Std(self): - - from sklearn.metrics import mean_squared_error, mean_absolute_error - # Extract the mean and std provided by user - df_MCReference = self.ModelObj.read_MCReference() - - # Compute the mean and std based on the PCEModel - PCEMeans = dict() - PCEStds = dict() - for Outkey, ValuesDict in self.CoeffsDict.items(): - - PCEMean = np.zeros((len(ValuesDict))) - PCEStd = np.zeros((len(ValuesDict))) - - for Inkey, InIdxValues in ValuesDict.items(): - idx = int(Inkey.split('_')[1]) - 1 - coeffs = self.CoeffsDict[Outkey][Inkey] - - # Mean = c_0 - PCEMean[idx] = coeffs[0] if coeffs[0]!=0 else self.clf_poly[Outkey][Inkey].intercept_ - # Std = sqrt(sum(coeffs[1:]**2)) - PCEStd[idx] = np.sqrt(np.sum(np.square(coeffs[1:]))) - - if self.DimRedMethod.lower() == 'pca': - PCA = self.pca[Outkey] - PCEMean = PCA.mean_ + np.dot(PCEMean, PCA.components_) # PCEMean - PCEStd = np.dot(PCEStd, PCA.components_) #PCEStd - - # Compute the error between mean and std of PCEModel and OrigModel - # RMSE_Mean = mean_absolute_error(df_MCReference['mean'], PCEMean) - # RMSE_std = mean_absolute_error(df_MCReference['std'], PCEStd) - RMSE_Mean = mean_squared_error(df_MCReference['mean'], PCEMean,squared=False) - RMSE_std = mean_squared_error(df_MCReference['std'], PCEStd,squared=False) - - PCEMeans[Outkey] = PCEMean - PCEStds[Outkey] = PCEStd - - - return RMSE_Mean, RMSE_std - #-------------------------------------------------------------------------------------------------------- - def create_PCE_SeqDesign(self, Model): - - #Initialization - errorIncreases = False - - # Get the parameters - MaxNSamples = self.ExpDesign.MaxNSamples - ModifiedLOOThreshold = self.ExpDesign.ModifiedLOOThreshold - NCandidate = self.ExpDesign.NCandidate - UtilityFunctions = self.ExpDesign.UtilityFunction - PostSnapshot = self.ExpDesign.PostSnapshot - nReprications = self.ExpDesign.nReprications - - # Handle if only one UtilityFunctions is provided - if not isinstance(self.ExpDesign.UtilityFunction, list): - UtilityFunctions = [self.ExpDesign.UtilityFunction] - - # ---------- Initial PCEModel ---------- - PCEModel = self.create_PCE_normDesign(Model) - initPCEModel= copy.deepcopy(PCEModel) - - # TODO: Loop over outputs - OutputName = Model.Output.Names - - # Estimation of the integral via Monte Varlo integration - ObservationData = self.Observations - - # Check if data is provided - TotalSigma2 = np.empty((0,1)) - if len(ObservationData) != 0: - # ---------- Prepare diagonal enteries for co-variance matrix ---------- - for keyIdx, key in enumerate(Model.Output.Names): - optSigma = 'B' - sigma2 = np.array(self.Discrepancy.Parameters[key]) - TotalSigma2 = np.append(TotalSigma2,sigma2) - - # Calculate the initial BME - initBME, initKLD, initPosterior, initDistHellinger = self.BME_Calculator(initPCEModel, ObservationData, TotalSigma2) - print("\nInitial BME:", initBME) - print("Initial KLD:", initKLD) - - # Posterior snapshot (initial) - if PostSnapshot: - MAP = self.ExpDesign.MAP - parNames = self.ExpDesign.parNames - print('Posterior snapshot (initial) is being plotted...') - self.posteriorPlot(initPosterior, MAP, parNames, 'SeqPosterior_init') - - # Check the convergence of the Mean&Std - if self.ModelObj.MCReference and self.metaModel.lower()!='gpe': - initRMSEMean, initRMSEStd = self.error_Mean_Std() - print("Initial Mean and Std error: %s, %s"%(initRMSEMean, initRMSEStd)) - - # Read the initial experimental design - Xinit = initPCEModel.ExpDesign.X - initTotalNSamples = len(self.ExpDesign.X) - initYprev = initPCEModel.ModelOutputDict - initLCerror = initPCEModel.LCerror - - # Read the initial ModifiedLOO - if self.metaModel.lower()!='gpe': - Scores_all, varExpDesignY =[], [] - for OutName in OutputName: - Scores_all.append(list(initPCEModel.ScoresDict[OutName].values())) - if self.DimRedMethod.lower() == 'pca': - components = self.pca[OutName].transform(initPCEModel.ExpDesign.Y[OutName]) - varExpDesignY.append(np.var(components,axis=0)) - else: - varExpDesignY.append(np.var(initPCEModel.ExpDesign.Y[OutName],axis=0)) - Scores = [item for sublist in Scores_all for item in sublist] - weights = [item for sublist in varExpDesignY for item in sublist] - initModifiedLOO = [np.average([1-score for score in Scores], weights=weights)] - - if len(self.validModelRuns) != 0: - initValidError = initPCEModel.validError_() - initValidError = list(initValidError.values()) - print("\nInitial ValidError:", initValidError) - - - # Replicate the sequential design - for repIdx in range(nReprications): - print ('>>>> Replication: %s<<<<'%(repIdx+1)) - - # To avoid changes ub original aPCE object - # PCEModel = copy.deepcopy(initPCEModel) - PCEModel.ExpDesign.X = Xinit - PCEModel.ExpDesign.Y = initYprev - PCEModel.LCerror = initLCerror - - for UtilityFunction in UtilityFunctions: - - print ('>>>> UtilityFunction: %s<<<<'%UtilityFunction) - # To avoid changes ub original aPCE object - # PCEModel = copy.deepcopy(initPCEModel) - PCEModel.ExpDesign.X = Xinit - PCEModel.ExpDesign.Y = initYprev - PCEModel.LCerror = initLCerror - - - # Set the experimental design - Xprev = Xinit - TotalNSamples = initTotalNSamples - Yprev = initYprev - - Xfull = [] - Yfull = [] - - # Store the initial ModifiedLOO - if self.metaModel.lower()!='gpe': - print("\nInitial ModifiedLOO:", initModifiedLOO) - - ModifiedLOO = initModifiedLOO - SeqModifiedLOO = np.array(ModifiedLOO) - - if len(self.validModelRuns) != 0: - ValidError = initValidError - SeqValidError = np.array(ValidError) - - # Check if data is provided - if len(ObservationData) != 0: - SeqBME = np.array([initBME]) - SeqKLD = np.array([initKLD]) - SeqDistHellinger = np.array([initDistHellinger]) - if self.ModelObj.MCReference and self.metaModel.lower()!='gpe': - seqRMSEMean = np.array([initRMSEMean]) - seqRMSEStd = np.array([initRMSEStd]) - - postcnt = 1 - itrNr = 1 - # Start Sequential Experimental Design - while (TotalNSamples < MaxNSamples) and any(LOO > ModifiedLOOThreshold for LOO in ModifiedLOO): - - # Optimal Bayesian Design - PCEModel.ExpDesignFlag = 'sequential' - Xnew, updatedPrior = PCEModel.opt_SeqDesign(Model, TotalSigma2, NCandidate, UtilityFunction) - - - S = np.min(distance.cdist(Xinit, Xnew, 'euclidean')) - self.seqMinDist.append(S) - print("\nmin Dist from OldExpDesign:", S) - print("\n") - - # Evaluate the full model response at the new sample points: - Ynew, _ = Model.Run_Model_Parallel(Xnew, prevRun_No=TotalNSamples) - TotalNSamples += Xnew.shape[0] - - # -------- Plot the surrogate model vs Origninal Model ------- - if self.adaptVerbose: - from PostProcessing.adaptPlot import adaptPlot - y_hat, std_hat = PCEModel.eval_metamodel(samples=Xnew) - adaptPlot(PCEModel, Ynew, y_hat, std_hat,plotED=False) - - # -------- Retrain the surrogate model ------- - # Extend new experimental design - Xfull = np.vstack((Xprev,Xnew)) - - # Updating existing key's value - for OutIdx in range(len(OutputName)): - OutName = OutputName[OutIdx] - try: - Yfull = np.vstack((Yprev[OutName],Ynew[OutName])) - except: - Yfull = np.vstack((Yprev[OutName],Ynew)) - - PCEModel.ModelOutputDict[OutName] = Yfull - - - PCEModel.ExpDesign.SamplingMethod = 'user' - PCEModel.ExpDesign.X = Xfull - PCEModel.ExpDesign.Y = PCEModel.ModelOutputDict - - # save the Experimental Design for next iteration - Xprev = Xfull - Yprev = PCEModel.ModelOutputDict - - # Pass the new prior as the input - PCEModel.Inputs.polycoeffsFlag = False - if updatedPrior is not None: - PCEModel.Inputs.polycoeffsFlag = True - print("updatedPrior:", updatedPrior.shape) - # arbitrary polynomial chaos - for i in range(updatedPrior.shape[1]): - PCEModel.Inputs.Marginals[i].DistType = None - PCEModel.Inputs.Marginals[i].InputValues = updatedPrior[:,i] - - prevPCEModel = PCEModel - PCEModel = PCEModel.create_PCE_normDesign(Model) - - # -------- Evaluate the retrain surrogate model ------- - # Compute the validation error - if len(self.validModelRuns) != 0: - validError = PCEModel.validError_() - ValidError = list(validError.values()) - print("\nUpdated ValidError:", ValidError) - - # Extract Modified LOO from Output - if self.metaModel.lower()!='gpe': - Scores_all, varExpDesignY =[], [] - for OutName in OutputName: - Scores_all.append(list(PCEModel.ScoresDict[OutName].values())) - if self.DimRedMethod.lower() == 'pca': - components = self.pca[OutName].transform(initPCEModel.ExpDesign.Y[OutName]) - varExpDesignY.append(np.var(components,axis=0)) - else: - varExpDesignY.append(np.var(PCEModel.ExpDesign.Y[OutName],axis=0)) - Scores = [item for sublist in Scores_all for item in sublist] - weights = [item for sublist in varExpDesignY for item in sublist] - ModifiedLOO = [np.average([1-score for score in Scores], - weights=weights)] - - print('\n') - print("Updated ModifiedLOO %s:\n"%UtilityFunction, ModifiedLOO) - print("Xfull:", Xfull.shape) - print('\n') - - - # check the direction of the error (on average): - # if it increases consistently stop the iterations - n_checks = 3 - if itrNr > n_checks * self.ExpDesign.NrofNewSample: - ss = np.sign(SeqModifiedLOO - ModifiedLOO) #ss<0 error increasing - errorIncreases = np.sum(np.mean(ss[-2:], axis=1)) <= -1*n_checks - - # If error is increasing in the last n_check iteration, - # stop the search and return the previous PCEModel - if errorIncreases: - print("Warning: The modified error is increasing compared to \ - the last %s iterations."%n_checks) - - PCEModel = prevPCEModel - break - - else: - prevPCEModel = PCEModel - - - # Store updated ModifiedLOO - SeqModifiedLOO = np.vstack((SeqModifiedLOO, ModifiedLOO)) - if len(self.validModelRuns) != 0: - SeqValidError = np.vstack((SeqValidError, ValidError)) - - # -------- Caclulation of BME as accuracy metric ------- - # Check if data is provided - if len(ObservationData) != 0: - # Calculate the initial BME - BME, KLD, Posterior, DistHellinger = self.BME_Calculator(PCEModel, ObservationData, TotalSigma2) - print('\n') - print("Updated BME:", BME) - print("Updated KLD:", KLD) - print('\n') - - # Plot some snapshots of the posterior - stepSnapshot = self.ExpDesign.stepSnapshot - if PostSnapshot and postcnt % stepSnapshot == 0: - MAP = self.ExpDesign.MAP - parNames = self.ExpDesign.parNames - print('Posterior snapshot is being plotted...') - self.posteriorPlot(Posterior, MAP, parNames, 'SeqPosterior_'+str(postcnt)) - postcnt += 1 - - # Check the convergence of the Mean&Std - if self.ModelObj.MCReference and self.metaModel.lower()!='gpe': - print('\n') - RMSE_Mean, RMSE_std = self.error_Mean_Std() - print("Updated Mean and Std error: %s, %s"%(RMSE_Mean, RMSE_std)) - print('\n') - - # Store the updated BME & KLD & - # Check if data is provided - if len(ObservationData) != 0: - SeqBME = np.vstack((SeqBME, BME)) - SeqKLD = np.vstack((SeqKLD, KLD)) - SeqDistHellinger= np.vstack((SeqDistHellinger, DistHellinger)) - if self.ModelObj.MCReference and self.metaModel.lower()!='gpe': - seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean)) - seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std)) - - itrNr += 1 - # Store updated ModifiedLOO and BME in dictonary - strKey = UtilityFunction + '_rep_' +str(repIdx+1) - PCEModel.SeqModifiedLOO[strKey] = SeqModifiedLOO - if len(self.validModelRuns) != 0: - PCEModel.seqValidError[strKey] = SeqValidError - - # Check if data is provided - if len(ObservationData) != 0: - PCEModel.SeqBME[strKey] = SeqBME - PCEModel.SeqKLD[strKey] = SeqKLD - if len(self.validLikelihoods) != 0: - PCEModel.SeqDistHellinger[strKey] = SeqDistHellinger - if self.ModelObj.MCReference and self.metaModel.lower()!='gpe': - PCEModel.seqRMSEMean[strKey] = seqRMSEMean - PCEModel.seqRMSEStd[strKey] = seqRMSEStd - - - return PCEModel - - #-------------------------------------------------------------------------------------------------------- - def create_GPE_SeqDesign(self, Model): - - #Initialization - - # Get the parameters - MaxNSamples = self.ExpDesign.MaxNSamples - NCandidate = self.ExpDesign.NCandidate - UtilityFunctions = self.ExpDesign.UtilityFunction - PostSnapshot = self.ExpDesign.PostSnapshot - nReprications = self.ExpDesign.nReprications - - # Handle if only one UtilityFunctions is provided - if not isinstance(self.ExpDesign.UtilityFunction, list): - UtilityFunctions = [self.ExpDesign.UtilityFunction] - - # ---------- Initial PCEModel ---------- - metamodel = self.create_PCE_normDesign(Model) - initPCEModel= metamodel - - # TODO: Loop over outputs - OutputName = Model.Output.Names - - # Estimation of the integral via Monte Varlo integration - ObservationData = self.Observations - - # Check if data is provided - TotalSigma2 = np.empty((0,1)) - if len(ObservationData) != 0: - # ---------- Prepare diagonal enteries for co-variance matrix ---------- - for keyIdx, key in enumerate(Model.Output.Names): - optSigma = 'B' - sigma2 = np.array(self.Discrepancy.Parameters[key]) - TotalSigma2 = np.append(TotalSigma2,sigma2) - - # Calculate the initial BME - initBME, initKLD, initPosterior, initDistHellinger = self.BME_Calculator(initPCEModel, ObservationData, TotalSigma2) - print("\nInitial BME:", initBME) - print("Initial KLD:", initKLD) - - # Posterior snapshot (initial) - if PostSnapshot: - MAP = self.ExpDesign.MAP - parNames = self.ExpDesign.parNames - print('Posterior snapshot (initial) is being plotted...') - self.posteriorPlot(initPosterior, MAP, parNames, 'SeqPosterior_init') - - # Read the initial experimental design - Xinit = initPCEModel.ExpDesign.X - initTotalNSamples = len(self.ExpDesign.X) - initYprev = initPCEModel.ModelOutputDict - - # Read the initial ModifiedLOO - if len(self.validModelRuns) != 0: - initValidError = initPCEModel.validError_() - initValidError = list(initValidError.values()) - print("\nInitial ValidError:", initValidError) - - self.SeqModifiedLOO = {} - self.SeqBME = {} - self.seqRMSEMean = {} - self.seqRMSEStd = {} - self.seqMinDist = [] - - # Replicate the sequential design - for repIdx in range(nReprications): - print ('>>>> Replication: %s<<<<'%(repIdx+1)) - # To avoid changes ub original aPCE object - metamodel.ExpDesign.X = Xinit - metamodel.ExpDesign.Y = initYprev - - for UtilityFunction in UtilityFunctions: - - print ('>>>> UtilityFunction: %s<<<<'%UtilityFunction) - # To avoid changes ub original aPCE object - metamodel.ExpDesign.X = Xinit - metamodel.ExpDesign.Y = initYprev - - # Set the experimental design - Xprev = Xinit - TotalNSamples = initTotalNSamples - Yprev = initYprev - - Xfull = [] - Yfull = [] - - # Store the validation error - if len(self.validModelRuns) != 0: - ValidError = initValidError - SeqValidError = np.array(ValidError) - - # Check if data is provided - if len(ObservationData) != 0: - SeqBME = np.array([initBME]) - SeqKLD = np.array([initKLD]) - SeqDistHellinger = np.array([initDistHellinger]) - - postcnt = 1 - itrNr = 1 - # Start Sequential Experimental Design - while TotalNSamples < MaxNSamples: - - # Optimal Bayesian Design - self.ExpDesignFlag = 'sequential' - Xnew, updatedPrior = self.opt_SeqDesign(Model, TotalSigma2, NCandidate, UtilityFunction) - - - S = np.min(distance.cdist(Xinit, Xnew, 'euclidean')) - self.seqMinDist.append(S) - print("\nmin Dist from OldExpDesign:", S) - print("\n") - - # Evaluate the full model response at the new sample points: - Ynew, _ = Model.Run_Model_Parallel(Xnew, prevRun_No=TotalNSamples) - TotalNSamples += Xnew.shape[0] - - # -------- Plot the surrogate model vs Origninal Model ------- - if self.adaptVerbose: - from PostProcessing.adaptPlot import adaptPlot - y_hat, std_hat = metamodel.eval_metamodel(samples=Xnew) - adaptPlot(metamodel, Ynew, y_hat, std_hat,plotED=True) - - # -------- Retrain the surrogate model ------- - # Extend new experimental design - Xfull = np.vstack((Xprev,Xnew)) - - # Updating existing key's value - for OutIdx in range(len(OutputName)): - OutName = OutputName[OutIdx] - try: - Yfull = np.vstack((Yprev[OutName],Ynew[OutName])) - except: - Yfull = np.vstack((Yprev[OutName],Ynew)) - - metamodel.ModelOutputDict[OutName] = Yfull - - - metamodel.ExpDesign.SamplingMethod = 'user' - metamodel.ExpDesign.X = Xfull - metamodel.ExpDesign.Y = metamodel.ModelOutputDict - - # save the Experimental Design for next iteration - Xprev = Xfull - Yprev = metamodel.ModelOutputDict - - # Pass the new prior as the input - if updatedPrior is not None: - print("updatedPrior:", updatedPrior.shape) - # arbitrary polynomial chaos - for i in range(updatedPrior.shape[1]): - self.Inputs.Marginals[i].DistType = None - self.Inputs.Marginals[i].InputValues = updatedPrior[:,i] - - prevPCEModel = metamodel - metamodel = metamodel.create_PCE_normDesign(Model)#, OptDesignFlag=True) - - # -------- Evaluate the retrain surrogate model ------- - # Compute the validation error - if len(self.validModelRuns) != 0: - validError = metamodel.validError_() - ValidError = list(validError.values()) - print("\nUpdated ValidError:", ValidError) - - # Store updated validation error - if len(self.validModelRuns) != 0: - SeqValidError = np.vstack((SeqValidError, ValidError)) - - # -------- Caclulation of BME as accuracy metric ------- - # Check if data is provided - if len(ObservationData) != 0: - # Calculate the initial BME - BME, KLD, Posterior, DistHellinger = self.BME_Calculator(metamodel, ObservationData, TotalSigma2) - print('\n') - print("Updated BME:", BME) - print("Updated KLD:", KLD) - print('\n') - - # Plot some snapshots of the posterior - stepSnapshot = self.ExpDesign.stepSnapshot - if PostSnapshot and postcnt % stepSnapshot == 0: - MAP = self.ExpDesign.MAP - parNames = self.ExpDesign.parNames - print('Posterior snapshot is being plotted...') - self.posteriorPlot(Posterior, MAP, parNames, 'SeqPosterior_'+str(postcnt)) - postcnt += 1 - - # Store the updated BME & KLD & - # Check if data is provided - if len(ObservationData) != 0: - SeqBME = np.vstack((SeqBME, BME)) - SeqKLD = np.vstack((SeqKLD, KLD)) - SeqDistHellinger= np.vstack((SeqDistHellinger, DistHellinger)) - - itrNr += 1 - # Store updated ModifiedLOO and BME in dictonary - strKey = UtilityFunction + '_rep_' +str(repIdx+1) - if len(self.validModelRuns) != 0: - metamodel.seqValidError[strKey] = SeqValidError - - # Check if data is provided - if len(ObservationData) != 0: - metamodel.SeqBME[strKey] = SeqBME - metamodel.SeqKLD[strKey] = SeqKLD - if len(self.validLikelihoods) != 0: - metamodel.SeqDistHellinger[strKey] = SeqDistHellinger - - return metamodel - #-------------------------------------------------------------------------------------------------------- - - def create_metamodel(self, Model): - - self.ModelObj = Model - self.ExpDesign.initNrSamples = self.ExpDesign.NrSamples - - if self.ExpDesign.Method == 'sequential': - if self.metaModel.lower() == 'gpe': - metamodel = self.create_GPE_SeqDesign(Model) - else: - metamodel = self.create_PCE_SeqDesign(Model) - - elif self.ExpDesign.Method == 'normal': - metamodel = self.create_PCE_normDesign(Model) - - else: - - print("The method for experimental design you requested has not been\ - implemented.") - - # Cleanup - # Zip the subdirectories - try: - dir_name = Model.Name - key = Model.Name + '_' - Model.zip_subdirs(dir_name, key) - except: - pass - - - if not self.slicingforValidation: - return metamodel - - # Slice if slicingforValidation is set True - elif self.slicingforValidation: - - # ---- Slice ------ - # Slice the dict based on the index given - self.index = self.index if type(self.index) is list else [self.index]*len(Model.Output.Names) - - OutputDictCalib = {key: self.ModelOutputDict[key][:self.index[idx]] for idx, key in enumerate([list(self.ModelOutputDict.keys())[0]])} - OutputDictValid = {key: self.ModelOutputDict[key][self.index[idx]:] for idx, key in enumerate([list(self.ModelOutputDict.keys())[0]])} - - DictCalib = {key: self.ModelOutputDict[key][:,:self.index[idx]] for idx, key in enumerate(Model.Output.Names)} - DictValid = {key: self.ModelOutputDict[key][:,self.index[idx]:] for idx, key in enumerate(Model.Output.Names)} - - OutputDictCalib.update(DictCalib) - OutputDictValid.update(DictValid) - - # ---- Calibration ---- - PCEModelCalib = self.Slice(metamodel, OutputDictCalib) - - # ---- Validation ---- - PCEModelValid = self.Slice(metamodel, OutputDictValid, self.index) - - - return PCEModelCalib , PCEModelValid - - - - #-------------------------------------------------------------------------------------------------------- - def Slice(self, PCEModel, OutputDict, index_list=None): - # Deep copy object - from copy import deepcopy - newPCEModel = deepcopy(PCEModel) - - # Initilize - newPCEModel.ModelOutputDict = OutputDict - newPCEModel.CoeffsDict = self.AutoVivification() - newPCEModel.BasisDict = self.AutoVivification() - newPCEModel.ScoresDict = self.AutoVivification() - newPCEModel.clf_poly = self.AutoVivification() - - for i, key in enumerate(list(OutputDict.keys())[1:]): - OutputMatrix = OutputDict[key] - index = 0 if index_list is None else index_list[i] - for idx in range(OutputMatrix.shape[1]): - newPCEModel.CoeffsDict[key]["y_"+str(index+idx+1)] = PCEModel.CoeffsDict[key]["y_"+str(index+idx+1)] - newPCEModel.BasisDict[key]["y_"+str(index+idx+1)] = PCEModel.BasisDict[key]["y_"+str(index+idx+1)] - newPCEModel.ScoresDict[key]["y_"+str(index+idx+1)] = PCEModel.ScoresDict[key]["y_"+str(index+idx+1)] - newPCEModel.clf_poly[key]["y_"+str(index+idx+1)] = PCEModel.clf_poly[key]["y_"+str(index+idx+1)] - return newPCEModel