diff --git a/BayesValidRox/PostProcessing/PostProcessing.py b/BayesValidRox/PostProcessing/PostProcessing.py index c50be9a86038dbeafb77f2687949a9926cfa84f6..4c3cd1f5e848da579e6fab6029255c7508f7e135 100644 --- a/BayesValidRox/PostProcessing/PostProcessing.py +++ b/BayesValidRox/PostProcessing/PostProcessing.py @@ -91,7 +91,7 @@ class PostProcessing: # Get the variables Keys = list(self.PCEMeans.keys()) index = self.PCEModel.index - cases = ['Calib'] if index == -1 else ['Calib', 'Valid'] + cases = [''] if index is None else ['Calib', 'Valid'] for case in cases: # Open a pdf for the plots @@ -342,7 +342,7 @@ class PostProcessing: # Run the original model with the generated samples ModelOutputs = self.eval_Model(Samples, keyString='validSet') if validOutputsDict is None else validOutputsDict - + # Run the PCE model with the generated samples PCEOutputs, PCEOutputs_std = metaModel.eval_metamodel(samples=Samples) @@ -576,7 +576,7 @@ class PostProcessing: # Calculate the RMSE RMSE = mean_squared_error(Y_PC_Val_, Y_Val_, squared=False) - R2 = r2_score(Y_Val_[idx,:].reshape(-1,1), Y_Val_[idx,:].reshape(-1,1)) + R2 = r2_score(Y_PC_Val_[idx,:].reshape(-1,1), Y_Val_[idx,:].reshape(-1,1)) plt.annotate('RMSE = '+ str(round(RMSE, 3)) + '\n' + r'$R^2$ = '+ str(round(R2, 3)), xy=(0.2, 0.75), xycoords='axes fraction') @@ -1030,7 +1030,7 @@ class PostProcessing: plt.xlabel(x_axis) plt.title('Sensitivity analysis of '+ Output) - plt.legend(loc='best') + plt.legend(loc='best', frameon=True) if SaveFig: