From 92209db64dc70748ef767ae2f0114c8284b70ffd Mon Sep 17 00:00:00 2001 From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com> Date: Wed, 24 Jan 2024 15:40:18 +0100 Subject: [PATCH] Added engine file --- src/bayesvalidrox/surrogate_models/engine.py | 2195 ++++++++++++++++++ 1 file changed, 2195 insertions(+) create mode 100644 src/bayesvalidrox/surrogate_models/engine.py diff --git a/src/bayesvalidrox/surrogate_models/engine.py b/src/bayesvalidrox/surrogate_models/engine.py new file mode 100644 index 000000000..7f5c1bf77 --- /dev/null +++ b/src/bayesvalidrox/surrogate_models/engine.py @@ -0,0 +1,2195 @@ +# -*- coding: utf-8 -*- +""" +Created on Sat Dec 16 10:16:50 2023 +Engine to train the surrogate with + +@author: Rebecca Kohlhaas +""" +import copy +from copy import deepcopy, copy +import h5py +import joblib +import numpy as np +import os + +from scipy import stats, signal, linalg, sparse +from scipy.spatial import distance +from tqdm import tqdm +import scipy.optimize as opt +from sklearn.metrics import mean_squared_error +import multiprocessing +import matplotlib.pyplot as plt +import sys +import seaborn as sns +from joblib import Parallel, delayed +from .exploration import Exploration +import pathlib + +#from .inputs import Input +#from .exp_designs import ExpDesigns +#from .surrogate_models import MetaModel +#from bayesvalidrox.post_processing.post_processing import PostProcessing + +def hellinger_distance(P, Q): + """ + Hellinger distance between two continuous distributions. + + The maximum distance 1 is achieved when P assigns probability zero to + every set to which Q assigns a positive probability, and vice versa. + 0 (identical) and 1 (maximally different) + + Parameters + ---------- + P : array + Reference likelihood. + Q : array + Estimated likelihood. + + Returns + ------- + float + Hellinger distance of two distributions. + + """ + P = np.array(P) + Q= np.array(Q) + + mu1 = P.mean() + Sigma1 = np.std(P) + + mu2 = Q.mean() + Sigma2 = np.std(Q) + + term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2)) + + term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2)) + + H_squared = 1 - term1 * term2 + + return np.sqrt(H_squared) + + +def logpdf(x, mean, cov): + """ + Computes the likelihood based on a multivariate normal distribution. + + Parameters + ---------- + x : TYPE + DESCRIPTION. + mean : array_like + Observation data. + cov : 2d array + Covariance matrix of the distribution. + + Returns + ------- + log_lik : float + Log likelihood. + + """ + n = len(mean) + L = linalg.cholesky(cov, lower=True) + beta = np.sum(np.log(np.diag(L))) + dev = x - mean + alpha = dev.dot(linalg.cho_solve((L, True), dev)) + log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi) + + return log_lik + +def subdomain(Bounds, n_new_samples): + """ + Divides a domain defined by Bounds into sub domains. + + Parameters + ---------- + Bounds : list of tuples + List of lower and upper bounds. + n_new_samples : int + Number of samples to divide the domain for. + n_params : int + The number of params to build the subdomains for + + Returns + ------- + Subdomains : List of tuples of tuples + Each tuple of tuples divides one set of bounds into n_new_samples parts. + + """ + n_params = len(Bounds) + n_subdomains = n_new_samples + 1 + LinSpace = np.zeros((n_params, n_subdomains)) + + for i in range(n_params): + LinSpace[i] = np.linspace(start=Bounds[i][0], stop=Bounds[i][1], + num=n_subdomains) + Subdomains = [] + for k in range(n_subdomains-1): + mylist = [] + for i in range(n_params): + mylist.append((LinSpace[i, k+0], LinSpace[i, k+1])) + Subdomains.append(tuple(mylist)) + + return Subdomains + +class Engine(): + + + def __init__(self, MetaMod, Model, ExpDes): + self.MetaModel = MetaMod + self.Model = Model + self.ExpDesign = ExpDes + self.parallel = False + + def start_engine(self) -> None: + """ + Do all the preparations that need to be run before the actual training + + Returns + ------- + None + + """ + self.out_names = self.Model.Output.names + self.MetaModel.out_names = self.out_names + + + def train_normal(self, parallel = False, verbose = False, save = False) -> None: + """ + Trains surrogate on static samples only. + Samples are taken from the experimental design and the specified + model is run on them. + Alternatively the samples can be read in from a provided hdf5 file. + + + Returns + ------- + None + + """ + + ExpDesign = self.ExpDesign + MetaModel = self.MetaModel + + # Read ExpDesign (training and targets) from the provided hdf5 + if ExpDesign.hdf5_file is not None: + # TODO: need to run 'generate_ED' as well after this or not? + ExpDesign.read_from_file(self.out_names) + else: + # Check if an old hdf5 file exists: if yes, rename it + hdf5file = f'ExpDesign_{self.Model.name}.hdf5' + if os.path.exists(hdf5file): + # os.rename(hdf5file, 'old_'+hdf5file) + file = pathlib.Path(hdf5file) + file.unlink() + + # Prepare X samples + # For training the surrogate use ExpDesign.X_tr, ExpDesign.X is for the model to run on + ExpDesign.generate_ED(ExpDesign.n_init_samples, + transform=True, + max_pce_deg=np.max(MetaModel.pce_deg)) + + # Run simulations at X + if not hasattr(ExpDesign, 'Y') or ExpDesign.Y is None: + print('\n Now the forward model needs to be run!\n') + ED_Y, up_ED_X = self.Model.run_model_parallel(ExpDesign.X, mp = parallel) + ExpDesign.Y = ED_Y + else: + # Check if a dict has been passed. + if not type(ExpDesign.Y) is dict: + raise Exception('Please provide either a dictionary or a hdf5' + 'file to ExpDesign.hdf5_file argument.') + + # Separate output dict and x-values + if 'x_values' in ExpDesign.Y: + ExpDesign.x_values = ExpDesign.Y['x_values'] + del ExpDesign.Y['x_values'] + else: + print('No x_values are given, this might lead to issues during PostProcessing') + + + # Fit the surrogate + MetaModel.fit(ExpDesign.X_tr, ExpDesign.Y, parallel, verbose) + + # Save what there is to save + if save: + # Save surrogate + with open(f'surrogates/surrogate_{self.Model.name}.pk1', 'wb') as output: + joblib.dump(MetaModel, output, 2) + + # Zip the model run directories + if self.Model.link_type.lower() == 'pylink' and\ + self.ExpDesign.sampling_method.lower() != 'user': + self.Model.zip_subdirs(self.Model.name, f'{self.Model.name}_') + + + def train_sequential(self, parallel = False, verbose = False) -> None: + """ + Train the surrogate in a sequential manner. + First build and train evereything on the static samples, then iterate + choosing more samples and refitting the surrogate on them. + + Returns + ------- + None + + """ + #self.train_normal(parallel, verbose) + self.parallel = parallel + self.train_seq_design(parallel, verbose) + + + # ------------------------------------------------------------------------- + def eval_metamodel(self, samples=None, nsamples=None, + sampling_method='random', return_samples=False): + """ + Evaluates meta-model at the requested samples. One can also generate + nsamples. + + Parameters + ---------- + samples : array of shape (n_samples, n_params), optional + Samples to evaluate meta-model at. The default is None. + nsamples : int, optional + Number of samples to generate, if no `samples` is provided. The + default is None. + sampling_method : str, optional + Type of sampling, if no `samples` is provided. The default is + 'random'. + return_samples : bool, optional + Retun samples, if no `samples` is provided. The default is False. + + Returns + ------- + mean_pred : dict + Mean of the predictions. + std_pred : dict + Standard deviatioon of the predictions. + """ + # Generate or transform (if need be) samples + if samples is None: + # Generate + samples = self.ExpDesign.generate_samples( + nsamples, + sampling_method + ) + + # Transformation to other space is to be done in the MetaModel + # TODO: sort the transformations better + mean_pred, std_pred = self.MetaModel.eval_metamodel(samples) + + if return_samples: + return mean_pred, std_pred, samples + else: + return mean_pred, std_pred + + + # ------------------------------------------------------------------------- + def train_seq_design(self, parallel = False, verbose = False): + """ + Starts the adaptive sequential design for refining the surrogate model + by selecting training points in a sequential manner. + + Returns + ------- + MetaModel : object + Meta model object. + + """ + self.parallel = parallel + + # Initialization + self.SeqModifiedLOO = {} + self.seqValidError = {} + self.SeqBME = {} + self.SeqKLD = {} + self.SeqDistHellinger = {} + self.seqRMSEMean = {} + self.seqRMSEStd = {} + self.seqMinDist = [] + + if not hasattr(self.MetaModel, 'valid_samples'): + self.ExpDesign.valid_samples = [] + self.ExpDesign.valid_model_runs = [] + self.valid_likelihoods = [] + + validError = None + + + # Determine the metamodel type + if self.MetaModel.meta_model_type.lower() != 'gpe': + pce = True + else: + pce = False + mc_ref = True if bool(self.Model.mc_reference) else False + if mc_ref: + self.Model.read_observation('mc_ref') + + # Get the parameters + max_n_samples = self.ExpDesign.n_max_samples + mod_LOO_threshold = self.ExpDesign.mod_LOO_threshold + n_canddidate = self.ExpDesign.n_canddidate + post_snapshot = self.ExpDesign.post_snapshot + n_replication = self.ExpDesign.n_replication + util_func = self.ExpDesign.util_func + output_name = self.out_names + + # Handle if only one UtilityFunctions is provided + if not isinstance(util_func, list): + util_func = [self.ExpDesign.util_func] + + # Read observations or MCReference + # TODO: recheck the logic in this if statement + if (len(self.Model.observations) != 0 or self.Model.meas_file is not None) and hasattr(self.MetaModel, 'Discrepancy'): + self.observations = self.Model.read_observation() + obs_data = self.observations + else: + obs_data = [] + # TODO: TotalSigma2 not defined if not in this else??? + # TODO: no self.observations if in here + TotalSigma2 = {} + + # ---------- Initial self.MetaModel ---------- + self.train_normal(parallel = parallel, verbose=verbose) + + initMetaModel = deepcopy(self.MetaModel) + + # Validation error if validation set is provided. + if self.ExpDesign.valid_model_runs: + init_rmse, init_valid_error = self._validError(initMetaModel) + init_valid_error = list(init_valid_error.values()) + else: + init_rmse = None + + # Check if discrepancy is provided + if len(obs_data) != 0 and hasattr(self.MetaModel, 'Discrepancy'): + TotalSigma2 = self.MetaModel.Discrepancy.parameters + + # Calculate the initial BME + out = self._BME_Calculator( + obs_data, TotalSigma2, init_rmse) + init_BME, init_KLD, init_post, init_likes, init_dist_hellinger = out + print(f"\nInitial BME: {init_BME:.2f}") + print(f"Initial KLD: {init_KLD:.2f}") + + # Posterior snapshot (initial) + if post_snapshot: + parNames = self.ExpDesign.par_names + print('Posterior snapshot (initial) is being plotted...') + self.__posteriorPlot(init_post, parNames, 'SeqPosterior_init') + + # Check the convergence of the Mean & Std + if mc_ref and pce: + init_rmse_mean, init_rmse_std = self._error_Mean_Std() + print(f"Initial Mean and Std error: {init_rmse_mean:.2f}," + f" {init_rmse_std:.2f}") + + # Read the initial experimental design + Xinit = self.ExpDesign.X + init_n_samples = len(self.ExpDesign.X) + initYprev = self.ExpDesign.Y#initMetaModel.ModelOutputDict + #self.MetaModel.ModelOutputDict = self.ExpDesign.Y + initLCerror = initMetaModel.LCerror + n_itrs = max_n_samples - init_n_samples + + ## Get some initial statistics + # Read the initial ModifiedLOO + if pce: + Scores_all, varExpDesignY = [], [] + for out_name in output_name: + y = self.ExpDesign.Y[out_name] + Scores_all.append(list( + self.MetaModel.score_dict['b_1'][out_name].values())) + if self.MetaModel.dim_red_method.lower() == 'pca': + pca = self.MetaModel.pca['b_1'][out_name] + components = pca.transform(y) + varExpDesignY.append(np.var(components, axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + + Scores = [item for sublist in Scores_all for item in sublist] + weights = [item for sublist in varExpDesignY for item in sublist] + init_mod_LOO = [np.average([1-score for score in Scores], + weights=weights)] + + prevMetaModel_dict = {} + #prevExpDesign_dict = {} + # Can run sequential design multiple times for comparison + for repIdx in range(n_replication): + print(f'\n>>>> Replication: {repIdx+1}<<<<') + + # util_func: the function to use inside the type of exploitation + for util_f in util_func: + print(f'\n>>>> Utility Function: {util_f} <<<<') + # To avoid changes ub original aPCE object + self.ExpDesign.X = Xinit + self.ExpDesign.Y = initYprev + self.ExpDesign.LCerror = initLCerror + + # Set the experimental design + Xprev = Xinit + total_n_samples = init_n_samples + Yprev = initYprev + + Xfull = [] + Yfull = [] + + # Store the initial ModifiedLOO + if pce: + print("\nInitial ModifiedLOO:", init_mod_LOO) + SeqModifiedLOO = np.array(init_mod_LOO) + + if len(self.ExpDesign.valid_model_runs) != 0: + SeqValidError = np.array(init_valid_error) + + # Check if data is provided + if len(obs_data) != 0 and hasattr(self.MetaModel, 'Discrepancy'): + SeqBME = np.array([init_BME]) + SeqKLD = np.array([init_KLD]) + SeqDistHellinger = np.array([init_dist_hellinger]) + + if mc_ref and pce: + seqRMSEMean = np.array([init_rmse_mean]) + seqRMSEStd = np.array([init_rmse_std]) + + # ------- Start Sequential Experimental Design ------- + postcnt = 1 + for itr_no in range(1, n_itrs+1): + print(f'\n>>>> Iteration number {itr_no} <<<<') + + # Save the metamodel prediction before updating + prevMetaModel_dict[itr_no] = deepcopy(self.MetaModel) + #prevExpDesign_dict[itr_no] = deepcopy(self.ExpDesign) + if itr_no > 1: + pc_model = prevMetaModel_dict[itr_no-1] + self._y_hat_prev, _ = pc_model.eval_metamodel( + samples=Xfull[-1].reshape(1, -1)) + del prevMetaModel_dict[itr_no-1] + + # Optimal Bayesian Design + #self.MetaModel.ExpDesignFlag = 'sequential' + Xnew, updatedPrior = self.choose_next_sample(TotalSigma2, + n_canddidate, + util_f) + S = np.min(distance.cdist(Xinit, Xnew, 'euclidean')) + self.seqMinDist.append(S) + print(f"\nmin Dist from OldExpDesign: {S:2f}") + print("\n") + + # Evaluate the full model response at the new sample + Ynew, _ = self.Model.run_model_parallel( + Xnew, prevRun_No=total_n_samples + ) + total_n_samples += Xnew.shape[0] + + # ------ Plot the surrogate model vs Origninal Model ------ + if hasattr(self.ExpDesign, 'adapt_verbose') and \ + self.ExpDesign.adapt_verbose: + from .adaptPlot import adaptPlot + y_hat, std_hat = self.MetaModel.eval_metamodel( + samples=Xnew + ) + adaptPlot( + self.MetaModel, Ynew, y_hat, std_hat, + plotED=False + ) + + # -------- Retrain the surrogate model ------- + # Extend new experimental design + Xfull = np.vstack((Xprev, Xnew)) + + # Updating experimental design Y + for out_name in output_name: + Yfull = np.vstack((Yprev[out_name], Ynew[out_name])) + self.ExpDesign.Y[out_name] = Yfull + + # Pass new design to the metamodel object + self.ExpDesign.sampling_method = 'user' + self.ExpDesign.X = Xfull + #self.ExpDesign.Y = self.MetaModel.ModelOutputDict + + # Save the Experimental Design for next iteration + Xprev = Xfull + Yprev = self.ExpDesign.Y + + # Pass the new prior as the input + # TODO: another look at this - no difference apc to pce to gpe? + self.MetaModel.input_obj.poly_coeffs_flag = False + if updatedPrior is not None: + self.MetaModel.input_obj.poly_coeffs_flag = True + print("updatedPrior:", updatedPrior.shape) + # Arbitrary polynomial chaos + for i in range(updatedPrior.shape[1]): + self.MetaModel.input_obj.Marginals[i].dist_type = None + x = updatedPrior[:, i] + self.MetaModel.input_obj.Marginals[i].raw_data = x + + # Train the surrogate model for new ExpDesign + self.train_normal(parallel=False) + + # -------- Evaluate the retrained surrogate model ------- + # Extract Modified LOO from Output + if pce: + Scores_all, varExpDesignY = [], [] + for out_name in output_name: + y = self.ExpDesign.Y[out_name] + Scores_all.append(list( + self.MetaModel.score_dict['b_1'][out_name].values())) + if self.MetaModel.dim_red_method.lower() == 'pca': + pca = self.MetaModel.pca['b_1'][out_name] + components = pca.transform(y) + varExpDesignY.append(np.var(components, + axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + Scores = [item for sublist in Scores_all for item + in sublist] + weights = [item for sublist in varExpDesignY for item + in sublist] + ModifiedLOO = [np.average( + [1-score for score in Scores], weights=weights)] + + print('\n') + print(f"Updated ModifiedLOO {util_f}:\n", ModifiedLOO) + print('\n') + + # Compute the validation error + if self.ExpDesign.valid_model_runs: + rmse, validError = self._validError(self.MetaModel) + ValidError = list(validError.values()) + else: + rmse = None + + # Store updated ModifiedLOO + if pce: + SeqModifiedLOO = np.vstack( + (SeqModifiedLOO, ModifiedLOO)) + if len(self.ExpDesign.valid_model_runs) != 0: + SeqValidError = np.vstack( + (SeqValidError, ValidError)) + # -------- Caclulation of BME as accuracy metric ------- + # Check if data is provided + if len(obs_data) != 0: + # Calculate the initial BME + out = self._BME_Calculator(obs_data, TotalSigma2, rmse) + BME, KLD, Posterior, likes, DistHellinger = out + print('\n') + print(f"Updated BME: {BME:.2f}") + print(f"Updated KLD: {KLD:.2f}") + print('\n') + + # Plot some snapshots of the posterior + step_snapshot = self.ExpDesign.step_snapshot + if post_snapshot and postcnt % step_snapshot == 0: + parNames = self.ExpDesign.par_names + print('Posterior snapshot is being plotted...') + self.__posteriorPlot(Posterior, parNames, + f'SeqPosterior_{postcnt}') + postcnt += 1 + + # Check the convergence of the Mean&Std + if mc_ref and pce: + print('\n') + RMSE_Mean, RMSE_std = self._error_Mean_Std() + print(f"Updated Mean and Std error: {RMSE_Mean:.2f}, " + f"{RMSE_std:.2f}") + print('\n') + + # Store the updated BME & KLD + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.vstack((SeqBME, BME)) + SeqKLD = np.vstack((SeqKLD, KLD)) + SeqDistHellinger = np.vstack((SeqDistHellinger, + DistHellinger)) + if mc_ref and pce: + seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean)) + seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std)) + + if pce and any(LOO < mod_LOO_threshold + for LOO in ModifiedLOO): + break + + # Clean up + if len(obs_data) != 0: + del out + print() + print('-'*50) + print() + + # Store updated ModifiedLOO and BME in dictonary + strKey = f'{util_f}_rep_{repIdx+1}' + if pce: + self.SeqModifiedLOO[strKey] = SeqModifiedLOO + if len(self.ExpDesign.valid_model_runs) != 0: + self.seqValidError[strKey] = SeqValidError + + # Check if data is provided + if len(obs_data) != 0: + self.SeqBME[strKey] = SeqBME + self.SeqKLD[strKey] = SeqKLD + if hasattr(self.MetaModel, 'valid_likelihoods') and \ + self.valid_likelihoods: + self.SeqDistHellinger[strKey] = SeqDistHellinger + if mc_ref and pce: + self.seqRMSEMean[strKey] = seqRMSEMean + self.seqRMSEStd[strKey] = seqRMSEStd + + # return self.MetaModel + + # ------------------------------------------------------------------------- + def util_VarBasedDesign(self, X_can, index, util_func='Entropy'): + """ + Computes the exploitation scores based on: + active learning MacKay(ALM) and active learning Cohn (ALC) + Paper: Sequential Design with Mutual Information for Computer + Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas + (2016) + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + index : int + Model output index. + UtilMethod : string, optional + Exploitation utility function. The default is 'Entropy'. + + Returns + ------- + float + Score. + + """ + MetaModel = self.MetaModel + ED_X = self.ExpDesign.X + out_dict_y = self.ExpDesign.Y + out_names = self.out_names + + # Run the Metamodel for the candidate + X_can = X_can.reshape(1, -1) + Y_PC_can, std_PC_can = MetaModel.eval_metamodel(samples=X_can) + + if util_func.lower() == 'alm': + # ----- Entropy/MMSE/active learning MacKay(ALM) ----- + # Compute perdiction variance of the old model + canPredVar = {key: std_PC_can[key]**2 for key in out_names} + + varPCE = np.zeros((len(out_names), X_can.shape[0])) + for KeyIdx, key in enumerate(out_names): + varPCE[KeyIdx] = np.max(canPredVar[key], axis=1) + score = np.max(varPCE, axis=0) + + elif util_func.lower() == 'eigf': + # ----- Expected Improvement for Global fit ----- + # Find closest EDX to the candidate + distances = distance.cdist(ED_X, X_can, 'euclidean') + index = np.argmin(distances) + + # Compute perdiction error and variance of the old model + predError = {key: Y_PC_can[key] for key in out_names} + canPredVar = {key: std_PC_can[key]**2 for key in out_names} + + # Compute perdiction error and variance of the old model + # Eq (5) from Liu et al.(2018) + EIGF_PCE = np.zeros((len(out_names), X_can.shape[0])) + for KeyIdx, key in enumerate(out_names): + residual = predError[key] - out_dict_y[key][int(index)] + var = canPredVar[key] + EIGF_PCE[KeyIdx] = np.max(residual**2 + var, axis=1) + score = np.max(EIGF_PCE, axis=0) + + return -1 * score # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def util_BayesianActiveDesign(self, y_hat, std, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian active design criterion (var). + + It is based on the following paper: + Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak. + "Bayesian3 active learning for the gaussian process emulator using + information theory." Entropy 22, no. 8 (2020): 890. + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + BAL design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # Get the data + obs_data = self.observations + # TODO: this should be optimizable to be calculated explicitly + if hasattr(self.Model, 'n_obs'): + n_obs = self.Model.n_obs + else: + n_obs = self.n_obs + mc_size = 10000 + + # Sample a distribution for a normal dist + # with Y_mean_can as the mean and Y_std_can as std. + Y_MC, std_MC = {}, {} + logPriorLikelihoods = np.zeros((mc_size)) + # print(y_hat) + # print(list[y_hat]) + for key in list(y_hat): + cov = np.diag(std[key]**2) + # print(y_hat[key], cov) + # TODO: added the allow_singular = True here + rv = stats.multivariate_normal(mean=y_hat[key], cov=cov,) + Y_MC[key] = rv.rvs(size=mc_size) + logPriorLikelihoods += rv.logpdf(Y_MC[key]) + std_MC[key] = np.zeros((mc_size, y_hat[key].shape[0])) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self._normpdf(Y_MC, std_MC, obs_data, sigma2Dict) + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, mc_size)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods), dtype=np.longdouble)#float128) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + # Utility function Eq.2 in Ref. (2) + # Posterior covariance matrix after observing data y + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # TODO: Calculate the correction factor for BME + # BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can, + # ObservationData, sigma2Dict) + # BME += BMECorrFactor + # Haun et al implementation + # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + U_J_d = postExpLikelihoods - logBME + + # Marginal log likelihood + elif var == 'BME': + U_J_d = np.nanmean(likelihoods) + + # Entropy-based information gain + elif var == 'infEntropy': + logBME = np.log(np.nanmean(likelihoods)) + infEntropy = logBME - postExpPrior - postExpLikelihoods + U_J_d = infEntropy * -1 # -1 for minimization + + # Bayesian information criterion + elif var == 'BIC': + coeffs = self.MetaModel.coeffs_dict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxL = np.nanmax(likelihoods) + U_J_d = -2 * np.log(maxL) + np.log(n_obs) * nModelParams + + # Akaike information criterion + elif var == 'AIC': + coeffs = self.MetaModel.coeffs_dict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxlogL = np.log(np.nanmax(likelihoods)) + AIC = -2 * maxlogL + 2 * nModelParams + # 2 * nModelParams * (nModelParams+1) / (n_obs-nModelParams-1) + penTerm = 0 + U_J_d = 1*(AIC + penTerm) + + # Deviance information criterion + elif var == 'DIC': + # D_theta_bar = np.mean(-2 * Likelihoods) + N_star_p = 0.5 * np.var(np.log(likelihoods[likelihoods != 0])) + Likelihoods_theta_mean = self._normpdf( + y_hat, std, obs_data, sigma2Dict + ) + DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p + + U_J_d = DIC + + else: + print('The algorithm you requested has not been implemented yet!') + + # Handle inf and NaN (replace by zero) + if np.isnan(U_J_d) or U_J_d == -np.inf or U_J_d == np.inf: + U_J_d = 0.0 + + # Clear memory + del likelihoods + del Y_MC + del std_MC + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def util_BayesianDesign(self, X_can, X_MC, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian sequential design criterion (var). + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + Bayesian design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # To avoid changes ub original aPCE object + MetaModel = self.MetaModel + out_names = self.out_names + if X_can.ndim == 1: + X_can = X_can.reshape(1, -1) + + # Compute the mean and std based on the MetaModel + # pce_means, pce_stds = self._compute_pce_moments(MetaModel) + if var == 'ALC': + Y_MC, Y_MC_std = MetaModel.eval_metamodel(samples=X_MC) + + # Old Experimental design + oldExpDesignX = self.ExpDesign.X + oldExpDesignY = self.ExpDesign.Y + + # Evaluate the PCE metamodels at that location ??? + Y_PC_can, Y_std_can = MetaModel.eval_metamodel(samples=X_can) + PCE_Model_can = deepcopy(MetaModel) + engine_can = deepcopy(self) + # Add the candidate to the ExpDesign + NewExpDesignX = np.vstack((oldExpDesignX, X_can)) + + NewExpDesignY = {} + for key in oldExpDesignY.keys(): + NewExpDesignY[key] = np.vstack( + (oldExpDesignY[key], Y_PC_can[key]) + ) + + engine_can.ExpDesign.sampling_method = 'user' + engine_can.ExpDesign.X = NewExpDesignX + #engine_can.ModelOutputDict = NewExpDesignY + engine_can.ExpDesign.Y = NewExpDesignY + + # Train the model for the observed data using x_can + engine_can.MetaModel.input_obj.poly_coeffs_flag = False + engine_can.start_engine() + engine_can.train_normal(parallel=False) + engine_can.MetaModel.fit(NewExpDesignX, NewExpDesignY) +# engine_can.train_norm_design(parallel=False) + + # Set the ExpDesign to its original values + engine_can.ExpDesign.X = oldExpDesignX + engine_can.ModelOutputDict = oldExpDesignY + engine_can.ExpDesign.Y = oldExpDesignY + + if var.lower() == 'mi': + # Mutual information based on Krause et al + # Adapted from Beck & Guillas (MICE) paper + _, std_PC_can = engine_can.MetaModel.eval_metamodel(samples=X_can) + std_can = {key: std_PC_can[key] for key in out_names} + + std_old = {key: Y_std_can[key] for key in out_names} + + varPCE = np.zeros((len(out_names))) + for i, key in enumerate(out_names): + varPCE[i] = np.mean(std_old[key]**2/std_can[key]**2) + score = np.mean(varPCE) + + return -1 * score + + elif var.lower() == 'alc': + # Active learning based on Gramyc and Lee + # Adaptive design and analysis of supercomputer experiments Techno- + # metrics, 51 (2009), pp. 130–145. + + # Evaluate the MetaModel at the given samples + Y_MC_can, Y_MC_std_can = engine_can.MetaModel.eval_metamodel(samples=X_MC) + + # Compute the score + score = [] + for i, key in enumerate(out_names): + pce_var = Y_MC_std_can[key]**2 + pce_var_can = Y_MC_std[key]**2 + score.append(np.mean(pce_var-pce_var_can, axis=0)) + score = np.mean(score) + + return -1 * score + + # ---------- Inner MC simulation for computing Utility Value ---------- + # Estimation of the integral via Monte Varlo integration + MCsize = X_MC.shape[0] + ESS = 0 + + while ((ESS > MCsize) or (ESS < 1)): + + # Enriching Monte Carlo samples if need be + if ESS != 0: + X_MC = self.ExpDesign.generate_samples( + MCsize, 'random' + ) + + # Evaluate the MetaModel at the given samples + Y_MC, std_MC = PCE_Model_can.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self._normpdf( + Y_MC, std_MC, self.observations, sigma2Dict + ) + + # Check the Effective Sample Size (1<ESS<MCsize) + ESS = 1 / np.sum(np.square(likelihoods/np.sum(likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + print("--- increasing MC size---") + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # -------------------- Utility functions -------------------- + # Utility function Eq.2 in Ref. (2) + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods, dtype=np.longdouble))#float128)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Haun et al implementation + U_J_d = np.mean(np.log(likelihoods[likelihoods != 0]) - logBME) + + # U_J_d = np.sum(G_n_m_all) + # Ryan et al (2014) implementation + # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0]) + # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME + + # U_J_d = postExpLikelihoods - logBME + + # Marginal likelihood + elif var == 'BME': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + U_J_d = logBME + + # Bayes risk likelihood + elif var == 'BayesRisk': + + U_J_d = -1 * np.var(likelihoods) + + # Entropy-based information gain + elif var == 'infEntropy': + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postLikelihoods /= np.nansum(likelihoods[accepted]) + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + infEntropy = logBME - postExpPrior - postExpLikelihoods + + U_J_d = infEntropy * -1 # -1 for minimization + + # D-Posterior-precision + elif var == 'DPP': + X_Posterior = X_MC[accepted] + # covariance of the posterior parameters + U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior))) + + # A-Posterior-precision + elif var == 'APP': + X_Posterior = X_MC[accepted] + # trace of the posterior parameters + U_J_d = -np.log(np.trace(np.cov(X_Posterior))) + + else: + print('The algorithm you requested has not been implemented yet!') + + # Clear memory + del likelihoods + del Y_MC + del std_MC + + return -1 * U_J_d # -1 is for minimization instead of maximization + + + # ------------------------------------------------------------------------- + def run_util_func(self, method, candidates, index, sigma2Dict=None, + var=None, X_MC=None): + """ + Runs the utility function based on the given method. + + Parameters + ---------- + method : string + Exploitation method: `VarOptDesign`, `BayesActDesign` and + `BayesOptDesign`. + candidates : array of shape (n_samples, n_params) + All candidate parameter sets. + index : int + ExpDesign index. + sigma2Dict : dict, optional + A dictionary containing the measurement errors (sigma^2). The + default is None. + var : string, optional + Utility function. The default is None. + X_MC : TYPE, optional + DESCRIPTION. The default is None. + + Returns + ------- + index : TYPE + DESCRIPTION. + List + Scores. + + """ + + if method.lower() == 'varoptdesign': + # U_J_d = self.util_VarBasedDesign(candidates, index, var) + U_J_d = np.zeros((candidates.shape[0])) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="varoptdesign"): + U_J_d[idx] = self.util_VarBasedDesign(X_can, index, var) + + elif method.lower() == 'bayesactdesign': + NCandidate = candidates.shape[0] + U_J_d = np.zeros((NCandidate)) + # Evaluate all candidates + y_can, std_can = self.MetaModel.eval_metamodel(samples=candidates) + # loop through candidates + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="BAL Design"): + y_hat = {key: items[idx] for key, items in y_can.items()} + std = {key: items[idx] for key, items in std_can.items()} + + # print(y_hat) + # print(std) + U_J_d[idx] = self.util_BayesianActiveDesign( + y_hat, std, sigma2Dict, var) + + elif method.lower() == 'bayesoptdesign': + NCandidate = candidates.shape[0] + U_J_d = np.zeros((NCandidate)) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="OptBayesianDesign"): + U_J_d[idx] = self.util_BayesianDesign(X_can, X_MC, sigma2Dict, + var) + return (index, -1 * U_J_d) + + # ------------------------------------------------------------------------- + def dual_annealing(self, method, Bounds, sigma2Dict, var, Run_No, + verbose=False): + """ + Exploration algorithm to find the optimum parameter space. + + Parameters + ---------- + method : string + Exploitation method: `VarOptDesign`, `BayesActDesign` and + `BayesOptDesign`. + Bounds : list of tuples + List of lower and upper boundaries of parameters. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + Run_No : int + Run number. + verbose : bool, optional + Print out a summary. The default is False. + + Returns + ------- + Run_No : int + Run number. + array + Optimial candidate. + + """ + + Model = self.Model + max_func_itr = self.ExpDesign.max_func_itr + + if method == 'VarOptDesign': + Res_Global = opt.dual_annealing(self.util_VarBasedDesign, + bounds=Bounds, + args=(Model, var), + maxfun=max_func_itr) + + elif method == 'BayesOptDesign': + Res_Global = opt.dual_annealing(self.util_BayesianDesign, + bounds=Bounds, + args=(Model, sigma2Dict, var), + maxfun=max_func_itr) + + if verbose: + print(f"Global minimum: xmin = {Res_Global.x}, " + f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}") + + return (Run_No, Res_Global.x) + + # ------------------------------------------------------------------------- + def tradeoff_weights(self, tradeoff_scheme, old_EDX, old_EDY): + """ + Calculates weights for exploration scores based on the requested + scheme: `None`, `equal`, `epsilon-decreasing` and `adaptive`. + + `None`: No exploration. + `equal`: Same weights for exploration and exploitation scores. + `epsilon-decreasing`: Start with more exploration and increase the + influence of exploitation along the way with a exponential decay + function + `adaptive`: An adaptive method based on: + Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. "An adaptive sampling + approach for Kriging metamodeling by maximizing expected prediction + error." Computers & Chemical Engineering 106 (2017): 171-182. + + Parameters + ---------- + tradeoff_scheme : string + Trade-off scheme for exloration and exploitation scores. + old_EDX : array (n_samples, n_params) + Old experimental design (training points). + old_EDY : dict + Old model responses (targets). + + Returns + ------- + exploration_weight : float + Exploration weight. + exploitation_weight: float + Exploitation weight. + + """ + if tradeoff_scheme is None: + exploration_weight = 0 + + elif tradeoff_scheme == 'equal': + exploration_weight = 0.5 + + elif tradeoff_scheme == 'epsilon-decreasing': + # epsilon-decreasing scheme + # Start with more exploration and increase the influence of + # exploitation along the way with a exponential decay function + initNSamples = self.ExpDesign.n_init_samples + n_max_samples = self.ExpDesign.n_max_samples + + itrNumber = (self.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.ExpDesign.n_new_samples + + tau2 = -(n_max_samples-initNSamples-1) / np.log(1e-8) + exploration_weight = signal.exponential(n_max_samples-initNSamples, + 0, tau2, False)[itrNumber] + + elif tradeoff_scheme == 'adaptive': + + # Extract itrNumber + initNSamples = self.ExpDesign.n_init_samples + n_max_samples = self.ExpDesign.n_max_samples + itrNumber = (self.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.ExpDesign.n_new_samples + + if itrNumber == 0: + exploration_weight = 0.5 + else: + # New adaptive trade-off according to Liu et al. (2017) + # Mean squared error for last design point + last_EDX = old_EDX[-1].reshape(1, -1) + lastPCEY, _ = self.MetaModel.eval_metamodel(samples=last_EDX) + pce_y = np.array(list(lastPCEY.values()))[:, 0] + y = np.array(list(old_EDY.values()))[:, -1, :] + mseError = mean_squared_error(pce_y, y) + + # Mean squared CV - error for last design point + pce_y_prev = np.array(list(self._y_hat_prev.values()))[:, 0] + mseCVError = mean_squared_error(pce_y_prev, y) + + exploration_weight = min([0.5*mseError/mseCVError, 1]) + + # Exploitation weight + exploitation_weight = 1 - exploration_weight + + return exploration_weight, exploitation_weight + + # ------------------------------------------------------------------------- + def choose_next_sample(self, sigma2=None, n_candidates=5, var='DKL'): + """ + Runs optimal sequential design. + + Parameters + ---------- + sigma2 : dict, optional + A dictionary containing the measurement errors (sigma^2). The + default is None. + n_candidates : int, optional + Number of candidate samples. The default is 5. + var : string, optional + Utility function. The default is None. # TODO: default is set to DKL, not none + + Raises + ------ + NameError + Wrong utility function. + + Returns + ------- + Xnew : array (n_samples, n_params) + Selected new training point(s). + """ + + # Initialization + Bounds = self.ExpDesign.bound_tuples + n_new_samples = self.ExpDesign.n_new_samples + explore_method = self.ExpDesign.explore_method + exploit_method = self.ExpDesign.exploit_method + n_cand_groups = self.ExpDesign.n_cand_groups + tradeoff_scheme = self.ExpDesign.tradeoff_scheme + + old_EDX = self.ExpDesign.X + old_EDY = self.ExpDesign.Y.copy() + ndim = self.ExpDesign.X.shape[1] + OutputNames = self.out_names + + # ----------------------------------------- + # ----------- CUSTOMIZED METHODS ---------- + # ----------------------------------------- + # Utility function exploit_method provided by user + if exploit_method.lower() == 'user': + if not hasattr(self.ExpDesign, 'ExploitFunction'): + raise AttributeError('Function `ExploitFunction` not given to the ExpDesign, thus cannor run user-defined sequential scheme') + # TODO: syntax does not fully match the rest - can test this?? + Xnew, filteredSamples = self.ExpDesign.ExploitFunction(self) + + print("\n") + print("\nXnew:\n", Xnew) + + return Xnew, filteredSamples + + + # Dual-Annealing works differently from the rest, so deal with this first + # Here exploration and exploitation are performed simulataneously + if explore_method == 'dual annealing': + # ------- EXPLORATION: OPTIMIZATION ------- + import time + start_time = time.time() + + # Divide the domain to subdomains + subdomains = subdomain(Bounds, n_new_samples) + + # Multiprocessing + if self.parallel: + args = [] + for i in range(n_new_samples): + args.append((exploit_method, subdomains[i], sigma2, var, i)) + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + + # With Pool.starmap_async() + results = pool.starmap_async(self.dual_annealing, args).get() + + # Close the pool + pool.close() + # Without multiprocessing + else: + results = [] + for i in range(n_new_samples): + results.append(self.dual_annealing(exploit_method, subdomains[i], sigma2, var, i)) + + # New sample + Xnew = np.array([results[i][1] for i in range(n_new_samples)]) + print("\nXnew:\n", Xnew) + + # Computational cost + elapsed_time = time.time() - start_time + print("\n") + print(f"Elapsed_time: {round(elapsed_time,2)} sec.") + print('-'*20) + + return Xnew, None + + # Generate needed Exploration class + explore = Exploration(self.ExpDesign, n_candidates) + explore.w = 100 # * ndim #500 # TODO: where does this value come from? + + # Select criterion (mc-intersite-proj-th, mc-intersite-proj) + explore.mc_criterion = 'mc-intersite-proj' + + # Generate the candidate samples + # TODO: here use the sampling method provided by the expdesign? + sampling_method = self.ExpDesign.sampling_method + + # TODO: changed this from 'random' for LOOCV + if explore_method == 'LOOCV': + allCandidates = self.ExpDesign.generate_samples(n_candidates, + sampling_method) + else: + allCandidates, scoreExploration = explore.get_exploration_samples() + + # ----------------------------------------- + # ---------- EXPLORATION METHODS ---------- + # ----------------------------------------- + if explore_method == 'LOOCV': + # ----------------------------------------------------------------- + # TODO: LOOCV model construnction based on Feng et al. (2020) + # 'LOOCV': + # Initilize the ExploitScore array + + # Generate random samples + allCandidates = self.ExpDesign.generate_samples(n_candidates, + 'random') + + # Construct error model based on LCerror + errorModel = self.MetaModel.create_ModelError(old_EDX, self.LCerror) + self.errorModel.append(copy(errorModel)) + + # Evaluate the error models for allCandidates + eLCAllCands, _ = errorModel.eval_errormodel(allCandidates) + # Select the maximum as the representative error + eLCAllCands = np.dstack(eLCAllCands.values()) + eLCAllCandidates = np.max(eLCAllCands, axis=1)[:, 0] + + # Normalize the error w.r.t the maximum error + scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates) + + else: + # ------- EXPLORATION: SPACE-FILLING DESIGN ------- + # Generate candidate samples from Exploration class + explore = Exploration(self.ExpDesign, n_candidates) + explore.w = 100 # * ndim #500 + # Select criterion (mc-intersite-proj-th, mc-intersite-proj) + explore.mc_criterion = 'mc-intersite-proj' + allCandidates, scoreExploration = explore.get_exploration_samples() + + # Temp: ---- Plot all candidates ----- + if ndim == 2: + def plotter(points, allCandidates, Method, + scoreExploration=None): + if Method == 'Voronoi': + from scipy.spatial import Voronoi, voronoi_plot_2d + vor = Voronoi(points) + fig = voronoi_plot_2d(vor) + ax1 = fig.axes[0] + else: + fig = plt.figure() + ax1 = fig.add_subplot(111) + ax1.scatter(points[:, 0], points[:, 1], s=10, c='r', + marker="s", label='Old Design Points') + ax1.scatter(allCandidates[:, 0], allCandidates[:, 1], s=10, + c='b', marker="o", label='Design candidates') + for i in range(points.shape[0]): + txt = 'p'+str(i+1) + ax1.annotate(txt, (points[i, 0], points[i, 1])) + if scoreExploration is not None: + for i in range(allCandidates.shape[0]): + txt = str(round(scoreExploration[i], 5)) + ax1.annotate(txt, (allCandidates[i, 0], + allCandidates[i, 1])) + + plt.xlim(self.bound_tuples[0]) + plt.ylim(self.bound_tuples[1]) + # plt.show() + plt.legend(loc='upper left') + + # ----------------------------------------- + # --------- EXPLOITATION METHODS ---------- + # ----------------------------------------- + if exploit_method == 'BayesOptDesign' or\ + exploit_method == 'BayesActDesign': + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + explore_w, exploit_w = self.tradeoff_weights(tradeoff_scheme, + old_EDX, + old_EDY) + print(f"\n Exploration weight={explore_w:0.3f} " + f"Exploitation weight={exploit_w:0.3f}\n") + + # ------- EXPLOITATION: BayesOptDesign & ActiveLearning ------- + if explore_w != 1.0: + # Check if all needed properties are set + if not hasattr(self.ExpDesign, 'max_func_itr'): + raise AttributeError('max_func_itr not given to the experimental design') + + # Create a sample pool for rejection sampling + MCsize = 15000 + X_MC = self.ExpDesign.generate_samples(MCsize, 'random') + candidates = self.ExpDesign.generate_samples( + n_candidates, 'latin_hypercube') + + # Split the candidates in groups for multiprocessing + split_cand = np.array_split( + candidates, n_cand_groups, axis=0 + ) + # print(candidates) + # print(split_cand) + if self.parallel: + results = Parallel(n_jobs=-1, backend='multiprocessing')( + delayed(self.run_util_func)( + exploit_method, split_cand[i], i, sigma2, var, X_MC) + for i in range(n_cand_groups)) + else: + results = [] + for i in range(n_cand_groups): + results.append(self.run_util_func(exploit_method, split_cand[i], i, sigma2, var, X_MC)) + + # Retrieve the results and append them + U_J_d = np.concatenate([results[NofE][1] for NofE in + range(n_cand_groups)]) + + # Check if all scores are inf + if np.isinf(U_J_d).all() or np.isnan(U_J_d).all(): + U_J_d = np.ones(len(U_J_d)) + + # Get the expected value (mean) of the Utility score + # for each cell + if explore_method == 'Voronoi': + U_J_d = np.mean(U_J_d.reshape(-1, n_candidates), axis=1) + + # Normalize U_J_d + norm_U_J_d = U_J_d / np.sum(U_J_d) + else: + norm_U_J_d = np.zeros((len(scoreExploration))) + + # ------- Calculate Total score ------- + # ------- Trade off between EXPLORATION & EXPLOITATION ------- + # Total score + totalScore = exploit_w * norm_U_J_d + totalScore += explore_w * scoreExploration + + # temp: Plot + # dim = self.ExpDesign.X.shape[1] + # if dim == 2: + # plotter(self.ExpDesign.X, allCandidates, explore_method) + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + bestIdx = sorted_idxtotalScore[:n_new_samples] + + # select the requested number of samples + if explore_method == 'Voronoi': + Xnew = np.zeros((n_new_samples, ndim)) + for i, idx in enumerate(bestIdx): + X_can = explore.closestPoints[idx] + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.get_mc_samples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + else: + Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]] + + elif exploit_method == 'VarOptDesign': + # ------- EXPLOITATION: VarOptDesign ------- + UtilMethod = var + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + explore_w, exploit_w = self.tradeoff_weights(tradeoff_scheme, + old_EDX, + old_EDY) + print(f"\nweightExploration={explore_w:0.3f} " + f"weightExploitation={exploit_w:0.3f}") + + # Generate candidate samples from Exploration class + nMeasurement = old_EDY[OutputNames[0]].shape[1] + + # print(UtilMethod) + + # Find sensitive region + if UtilMethod == 'LOOCV': + LCerror = self.MetaModel.LCerror + allModifiedLOO = np.zeros((len(old_EDX), len(OutputNames), + nMeasurement)) + for y_idx, y_key in enumerate(OutputNames): + for idx, key in enumerate(LCerror[y_key].keys()): + allModifiedLOO[:, y_idx, idx] = abs( + LCerror[y_key][key]) + + ExploitScore = np.max(np.max(allModifiedLOO, axis=1), axis=1) + # print(allModifiedLOO.shape) + + elif UtilMethod in ['EIGF', 'ALM']: + # ----- All other in ['EIGF', 'ALM'] ----- + # Initilize the ExploitScore array + ExploitScore = np.zeros((len(old_EDX), len(OutputNames))) + + # Split the candidates in groups for multiprocessing + if explore_method != 'Voronoi': + split_cand = np.array_split(allCandidates, + n_cand_groups, + axis=0) + goodSampleIdx = range(n_cand_groups) + else: + # Find indices of the Vornoi cells with samples + goodSampleIdx = [] + for idx in range(len(explore.closest_points)): + if len(explore.closest_points[idx]) != 0: + goodSampleIdx.append(idx) + split_cand = explore.closest_points + + # Split the candidates in groups for multiprocessing + args = [] + for index in goodSampleIdx: + args.append((exploit_method, split_cand[index], index, + sigma2, var)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + # With Pool.starmap_async() + results = pool.starmap_async(self.run_util_func, args).get() + + # Close the pool + pool.close() + + # Retrieve the results and append them + if explore_method == 'Voronoi': + ExploitScore = [np.mean(results[k][1]) for k in + range(len(goodSampleIdx))] + else: + ExploitScore = np.concatenate( + [results[k][1] for k in range(len(goodSampleIdx))]) + + else: + raise NameError('The requested utility function is not ' + 'available.') + + # print("ExploitScore:\n", ExploitScore) + + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + # Total score + # Normalize U_J_d + ExploitScore = ExploitScore / np.sum(ExploitScore) + totalScore = exploit_w * ExploitScore + # print(totalScore.shape) + # print(explore_w) + # print(scoreExploration.shape) + totalScore += explore_w * scoreExploration + + temp = totalScore.copy() + sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1] + bestIdx = sorted_idxtotalScore[:n_new_samples] + + Xnew = np.zeros((n_new_samples, ndim)) + if explore_method != 'Voronoi': + Xnew = allCandidates[bestIdx] + else: + for i, idx in enumerate(bestIdx.flatten()): + X_can = explore.closest_points[idx] + # plotter(self.ExpDesign.X, X_can, explore_method, + # scoreExploration=None) + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.get_mc_samples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + + elif exploit_method == 'alphabetic': + # ------- EXPLOITATION: ALPHABETIC ------- + Xnew = self.util_AlphOptDesign(allCandidates, var) + + elif exploit_method == 'Space-filling': + # ------- EXPLOITATION: SPACE-FILLING ------- + totalScore = scoreExploration + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + + # select the requested number of samples + Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]] + + else: + raise NameError('The requested design method is not available.') + + print("\n") + print("\nRun No. {}:".format(old_EDX.shape[0]+1)) + print("Xnew:\n", Xnew) + + # TODO: why does it also return None? + return Xnew, None + + # ------------------------------------------------------------------------- + def util_AlphOptDesign(self, candidates, var='D-Opt'): + """ + Enriches the Experimental design with the requested alphabetic + criterion based on exploring the space with number of sampling points. + + Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos + expansion: A review of sampling strategies., Computer Methods in + Applied Mechanics and Engineering, 332, 382-407. + + Arguments + --------- + NCandidate : int + Number of candidate points to be searched + + var : string + Alphabetic optimality criterion + + Returns + ------- + X_new : array of shape (1, n_params) + The new sampling location in the input space. + """ + MetaModelOrig = self # TODO: this doesn't fully seem correct? + n_new_samples = MetaModelOrig.ExpDesign.n_new_samples + NCandidate = candidates.shape[0] + + # TODO: Loop over outputs + OutputName = self.out_names[0] + + # To avoid changes ub original aPCE object + MetaModel = deepcopy(MetaModelOrig) + + # Old Experimental design + oldExpDesignX = self.ExpDesign.X + + # TODO: Only one psi can be selected. + # Suggestion: Go for the one with the highest LOO error + # TODO: this is just a patch, need to look at again! + Scores = list(self.MetaModel.score_dict['b_1'][OutputName].values()) + #print(Scores) + #print(self.MetaModel.score_dict) + #print(self.MetaModel.score_dict.values()) + #print(self.MetaModel.score_dict['b_1'].values()) + #print(self.MetaModel.score_dict['b_1'][OutputName].values()) + ModifiedLOO = [1-score for score in Scores] + outIdx = np.argmax(ModifiedLOO) + + # Initialize Phi to save the criterion's values + Phi = np.zeros((NCandidate)) + + # TODO: also patched here + BasisIndices = self.MetaModel.basis_dict['b_1'][OutputName]["y_"+str(outIdx+1)] + P = len(BasisIndices) + + # ------ Old Psi ------------ + univ_p_val = self.MetaModel.univ_basis_vals(oldExpDesignX) + Psi = self.MetaModel.create_psi(BasisIndices, univ_p_val) + + # ------ New candidates (Psi_c) ------------ + # Assemble Psi_c + univ_p_val_c = self.MetaModel.univ_basis_vals(candidates) + Psi_c = self.MetaModel.create_psi(BasisIndices, univ_p_val_c) + + for idx in range(NCandidate): + + # Include the new row to the original Psi + Psi_cand = np.vstack((Psi, Psi_c[idx])) + + # Information matrix + PsiTPsi = np.dot(Psi_cand.T, Psi_cand) + M = PsiTPsi / (len(oldExpDesignX)+1) + + if np.linalg.cond(PsiTPsi) > 1e-12 \ + and np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon: + # faster + invM = linalg.solve(M, sparse.eye(PsiTPsi.shape[0]).toarray()) + else: + # stabler + invM = np.linalg.pinv(M) + + # ---------- Calculate optimality criterion ---------- + # Optimality criteria according to Section 4.5.1 in Ref. + + # D-Opt + if var.lower() == 'd-opt': + Phi[idx] = (np.linalg.det(invM)) ** (1/P) + + # A-Opt + elif var.lower() == 'a-opt': + Phi[idx] = np.trace(invM) + + # K-Opt + elif var.lower() == 'k-opt': + Phi[idx] = np.linalg.cond(M) + + else: + # print(var.lower()) + raise Exception('The optimality criterion you requested has ' + 'not been implemented yet!') + + # find an optimal point subset to add to the initial design + # by minimization of the Phi + sorted_idxtotalScore = np.argsort(Phi) + + # select the requested number of samples + Xnew = candidates[sorted_idxtotalScore[:n_new_samples]] + + return Xnew + + # ------------------------------------------------------------------------- + def _normpdf(self, y_hat_pce, std_pce, obs_data, total_sigma2s, + rmse=None): + """ + Calculated gaussian likelihood for given y+std based on given obs+sigma + # TODO: is this understanding correct? + + Parameters + ---------- + y_hat_pce : dict of 2d np arrays + Mean output of the surrogate. + std_pce : dict of 2d np arrays + Standard deviation output of the surrogate. + obs_data : dict of 1d np arrays + Observed data. + total_sigma2s : pandas dataframe, matches obs_data + Estimated uncertainty for the observed data. + rmse : dict, optional + RMSE values from validation of the surrogate. The default is None. + + Returns + ------- + likelihoods : dict of float + The likelihood for each surrogate eval in y_hat_pce compared to the + observations (?). + + """ + + likelihoods = 1.0 + + # Loop over the outputs + for idx, out in enumerate(self.out_names): + + # (Meta)Model Output + # print(y_hat_pce[out]) + nsamples, nout = y_hat_pce[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout].values + + # Surrogate error if valid dataset is given. + if rmse is not None: + tot_sigma2s += rmse[out]**2 + else: + tot_sigma2s += np.mean(std_pce[out])**2 + + likelihoods *= stats.multivariate_normal.pdf( + y_hat_pce[out], data, np.diag(tot_sigma2s), + allow_singular=True) + + # TODO: remove this here + self.Likelihoods = likelihoods + + return likelihoods + + # ------------------------------------------------------------------------- + def _corr_factor_BME(self, obs_data, total_sigma2s, logBME): + """ + Calculates the correction factor for BMEs. + """ + MetaModel = self.MetaModel + samples = self.ExpDesign.X # valid_samples + model_outputs = self.ExpDesign.Y # valid_model_runs + n_samples = samples.shape[0] + + # Extract the requested model outputs for likelihood calulation + output_names = self.out_names + + # TODO: Evaluate MetaModel on the experimental design and ValidSet + OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples) + + logLik_data = np.zeros((n_samples)) + logLik_model = np.zeros((n_samples)) + # Loop over the outputs + for idx, out in enumerate(output_names): + + # (Meta)Model Output + nsamples, nout = model_outputs[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout] + + # Covariance Matrix + covMatrix_data = np.diag(tot_sigma2s) + + for i, sample in enumerate(samples): + + # Simulation run + y_m = model_outputs[out][i] + + # Surrogate prediction + y_m_hat = OutputRS[out][i] + + # CovMatrix with the surrogate error + # covMatrix = np.diag(stdOutputRS[out][i]**2) + covMatrix = np.diag((y_m-y_m_hat)**2) + covMatrix = np.diag( + np.mean((model_outputs[out]-OutputRS[out]), axis=0)**2 + ) + + # Compute likelilhood output vs data + logLik_data[i] += logpdf( + y_m_hat, data, covMatrix_data + ) + + # Compute likelilhood output vs surrogate + logLik_model[i] += logpdf(y_m_hat, y_m, covMatrix) + + # Weight + logLik_data -= logBME + weights = np.exp(logLik_model+logLik_data) + + return np.log(np.mean(weights)) + + # ------------------------------------------------------------------------- + def _posteriorPlot(self, posterior, par_names, key): + """ + Plot the posterior of a specific key as a corner plot + + Parameters + ---------- + posterior : 2d np.array + Samples of the posterior. + par_names : list of strings + List of the parameter names. + key : string + Output key that this posterior belongs to. + + Returns + ------- + figPosterior : corner.corner + Plot of the posterior. + + """ + + # Initialization + newpath = (r'Outputs_SeqPosteriorComparison/posterior') + os.makedirs(newpath, exist_ok=True) + + bound_tuples = self.ExpDesign.bound_tuples + n_params = len(par_names) + font_size = 40 + if n_params == 2: + + figPosterior, ax = plt.subplots(figsize=(15, 15)) + + sns.kdeplot(x=posterior[:, 0], y=posterior[:, 1], + fill=True, ax=ax, cmap=plt.cm.jet, + clip=bound_tuples) + # Axis labels + plt.xlabel(par_names[0], fontsize=font_size) + plt.ylabel(par_names[1], fontsize=font_size) + + # Set axis limit + plt.xlim(bound_tuples[0]) + plt.ylim(bound_tuples[1]) + + # Increase font size + plt.xticks(fontsize=font_size) + plt.yticks(fontsize=font_size) + + # Switch off the grids + plt.grid(False) + + else: + import corner + figPosterior = corner.corner(posterior, labels=par_names, + title_fmt='.2e', show_titles=True, + title_kwargs={"fontsize": 12}) + + figPosterior.savefig(f'./{newpath}/{key}.pdf', bbox_inches='tight') + plt.close() + + # Save the posterior as .npy + np.save(f'./{newpath}/{key}.npy', posterior) + + return figPosterior + + + # ------------------------------------------------------------------------- + def _BME_Calculator(self, obs_data, sigma2Dict, rmse=None): + """ + This function computes the Bayesian model evidence (BME) via Monte + Carlo integration. + + Parameters + ---------- + obs_data : dict of 1d np arrays + Observed data. + sigma2Dict : pandas dataframe, matches obs_data + Estimated uncertainty for the observed data. + rmse : dict of floats, optional + RMSE values for each output-key. The dafault is None. + + Returns + ------- + (logBME, KLD, X_Posterior, Likelihoods, distHellinger) + + """ + # Initializations + if hasattr(self, 'valid_likelihoods'): + valid_likelihoods = self.valid_likelihoods + else: + valid_likelihoods = [] + valid_likelihoods = np.array(valid_likelihoods) + + post_snapshot = self.ExpDesign.post_snapshot + if post_snapshot or valid_likelihoods.shape[0] != 0: + newpath = (r'Outputs_SeqPosteriorComparison/likelihood_vs_ref') + os.makedirs(newpath, exist_ok=True) + + SamplingMethod = 'random' + MCsize = 10000 + ESS = 0 + + # Estimation of the integral via Monte Varlo integration + while (ESS > MCsize) or (ESS < 1): + + # Generate samples for Monte Carlo simulation + X_MC = self.ExpDesign.generate_samples( + MCsize, SamplingMethod + ) + + # Monte Carlo simulation for the candidate design + Y_MC, std_MC = self.MetaModel.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and + # simulation results via PCE with candidate design) + Likelihoods = self._normpdf( + Y_MC, std_MC, obs_data, sigma2Dict, rmse + ) + + # Check the Effective Sample Size (1000<ESS<MCsize) + ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if (ESS > MCsize) or (ESS < 1): + print(f'ESS={ESS} MC size should be larger.') + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (Likelihoods/np.max(Likelihoods)) >= unif + X_Posterior = X_MC[accepted] + + # ------------------------------------------------------------ + # --- Kullback-Leibler Divergence & Information Entropy ------ + # ------------------------------------------------------------ + # Prior-based estimation of BME + logBME = np.log(np.nanmean(Likelihoods)) + + # TODO: Correction factor + # log_weight = self.__corr_factor_BME(obs_data, sigma2Dict, logBME) + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean( + np.log(self.ExpDesign.JDist.pdf(X_Posterior.T)) + ) + + # Calculate Kullback-Leibler Divergence + # KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + KLD = postExpLikelihoods - logBME + + # Information Entropy based on Entropy paper Eq. 38 + infEntropy = logBME - postExpPrior - postExpLikelihoods + + # If post_snapshot is True, plot likelihood vs refrence + if post_snapshot or valid_likelihoods: + # Hellinger distance + ref_like = np.log(valid_likelihoods[valid_likelihoods > 0]) + est_like = np.log(Likelihoods[Likelihoods > 0]) + distHellinger = hellinger_distance(ref_like, est_like) + + idx = len([name for name in os.listdir(newpath) if 'Likelihoods_' + in name and os.path.isfile(os.path.join(newpath, name))]) + + fig, ax = plt.subplots() + try: + sns.kdeplot(np.log(valid_likelihoods[valid_likelihoods > 0]), + shade=True, color="g", label='Ref. Likelihood') + sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), shade=True, + color="b", label='Likelihood with PCE') + except: + pass + + text = f"Hellinger Dist.={distHellinger:.3f}\n logBME={logBME:.3f}" + "\n DKL={KLD:.3f}" + + plt.text(0.05, 0.75, text, bbox=dict(facecolor='wheat', + edgecolor='black', + boxstyle='round,pad=1'), + transform=ax.transAxes) + + fig.savefig(f'./{newpath}/Likelihoods_{idx}.pdf', + bbox_inches='tight') + plt.close() + + else: + distHellinger = 0.0 + + # Bayesian inference with Emulator only for 2D problem + if post_snapshot and self.MetaModel.n_params == 2 and not idx % 5: + from bayesvalidrox.bayes_inference.bayes_inference import BayesInference + from bayesvalidrox.bayes_inference.discrepancy import Discrepancy + import pandas as pd + BayesOpts = BayesInference(self) + BayesOpts.emulator = True + BayesOpts.plot_post_pred = False + + # Select the inference method + import emcee + BayesOpts.inference_method = "MCMC" + # Set the MCMC parameters passed to self.mcmc_params + BayesOpts.mcmc_params = { + 'n_steps': 1e5, + 'n_walkers': 30, + 'moves': emcee.moves.KDEMove(), + 'verbose': False + } + + # ----- Define the discrepancy model ------- + # TODO: check with Farid if this first line is how it should be + BayesOpts.measured_data = obs_data + obs_data = pd.DataFrame(obs_data, columns=self.out_names) + BayesOpts.measurement_error = obs_data + # TODO: shouldn't the uncertainty be sigma2Dict instead of obs_data? + + # # -- (Option B) -- + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obs_data**2 + BayesOpts.Discrepancy = DiscrepancyOpts + # Start the calibration/inference + Bayes_PCE = BayesOpts.create_inference() + X_Posterior = Bayes_PCE.posterior_df.values + + return (logBME, KLD, X_Posterior, Likelihoods, distHellinger) + + # ------------------------------------------------------------------------- + def _validError(self): + """ + Evaluate the metamodel on the validation samples and calculate the + error against the corresponding model runs + + Returns + ------- + rms_error : dict + RMSE for each validation run. + valid_error : dict + Normed (?)RMSE for each validation run. + + """ + # Extract the original model with the generated samples + valid_model_runs = self.ExpDesign.valid_model_runs + + # Run the PCE model with the generated samples + valid_PCE_runs, _ = self.MetaModel.eval_metamodel(samples=self.ExpDesign.valid_samples) + + rms_error = {} + valid_error = {} + # Loop over the keys and compute RMSE error. + for key in self.out_names: + rms_error[key] = mean_squared_error( + valid_model_runs[key], valid_PCE_runs[key], + multioutput='raw_values', + sample_weight=None, + squared=False) + # Validation error + valid_error[key] = (rms_error[key]**2) + valid_error[key] /= np.var(valid_model_runs[key], ddof=1, axis=0) + + # Print a report table + print("\n>>>>> Updated Errors of {} <<<<<".format(key)) + print("\nIndex | RMSE | Validation Error") + print('-'*35) + print('\n'.join(f'{i+1} | {k:.3e} | {j:.3e}' for i, (k, j) + in enumerate(zip(rms_error[key], + valid_error[key])))) + + return rms_error, valid_error + + # ------------------------------------------------------------------------- + def _error_Mean_Std(self): + """ + Calculates the error in the overall mean and std approximation of the + surrogate against the mc-reference provided to the model. + This can only be applied to metamodels of polynomial type + + Returns + ------- + RMSE_Mean : float + RMSE of the means + RMSE_std : float + RMSE of the standard deviations + + """ + # Compute the mean and std based on the MetaModel + pce_means, pce_stds = self.MetaModel._compute_pce_moments() + + # Compute the root mean squared error + for output in self.out_names: + + # Compute the error between mean and std of MetaModel and OrigModel + RMSE_Mean = mean_squared_error( + self.Model.mc_reference['mean'], pce_means[output], squared=False + ) + RMSE_std = mean_squared_error( + self.Model.mc_reference['std'], pce_stds[output], squared=False + ) + + return RMSE_Mean, RMSE_std -- GitLab