From 92d98b86e844cf7dbbb14a4d5e81fa83520b17f9 Mon Sep 17 00:00:00 2001
From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com>
Date: Wed, 23 Oct 2024 09:29:58 +0200
Subject: [PATCH] Update PostProcessing tests

---
 .gitignore                                    |   5 +-
 .../post_processing/post_processing.py        | 286 +++++++++---------
 tests/test_PostProcessing.py                  |   9 +-
 3 files changed, 158 insertions(+), 142 deletions(-)

diff --git a/.gitignore b/.gitignore
index 9cbc5104e..3b43b0c9d 100644
--- a/.gitignore
+++ b/.gitignore
@@ -32,4 +32,7 @@ Outputs_*
 *_env/*
 
 # Ignore test results
-.coverage*
\ No newline at end of file
+.coverage*
+
+# Ignore files for vscode
+.vscode/*
\ No newline at end of file
diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py
index 652918026..9755d0dcc 100644
--- a/src/bayesvalidrox/post_processing/post_processing.py
+++ b/src/bayesvalidrox/post_processing/post_processing.py
@@ -1,27 +1,28 @@
 #!/usr/bin/env python3
 # -*- coding: utf-8 -*-
 
-import numpy as np
 import math
 import os
 from itertools import combinations, cycle
+import numpy as np
 import pandas as pd
-import scipy.stats as stats
+from scipy import stats
 from sklearn.linear_model import LinearRegression
 from sklearn.metrics import mean_squared_error, r2_score
 import matplotlib.pyplot as plt
-import matplotlib.ticker as ticker
+from matplotlib import ticker
 from matplotlib.offsetbox import AnchoredText
 from matplotlib.patches import Patch
 # Load the mplstyle
 plt.style.use(os.path.join(os.path.split(__file__)[0],
                            '../', 'bayesvalidrox.mplstyle'))
 
+
 class PostProcessing:
     """
     This class provides many helper functions to post-process the trained
     meta-model.
-    
+
     Parameters
     ----------
     engine : obj
@@ -31,22 +32,34 @@ class PostProcessing:
         The default is 'calib'.
     out_dir : string
         Output directory in which the images are placed. The default is ''.
-        
+
     """
 
-    def __init__(self, engine, name='calib', out_dir = ''):
+    def __init__(self, engine, name='calib', out_dir=''):
         self.engine = engine
         self.name = name
-        
-        self.out_dir = f'{out_dir}/Outputs_PostProcessing_{self.name}/'
-        
+
+        self.out_dir = f'./{out_dir}/Outputs_PostProcessing_{self.name}/'
+
         # Open a pdf for the plots
         if not os.path.exists(self.out_dir):
             os.makedirs(self.out_dir)
 
+        # Initialize attributes
+        self.mc_reference = None
+        self.total_sobol = None
+        self.valid_error = None
+        self.rmse = None
+        self.model_out_dict = {}
+        self.means = None
+        self.stds = None
+
+        # TODO: Check if these could be removed!
+        self.pce_out_mean = None
+        self.pce_out_std = None
 
     # -------------------------------------------------------------------------
-    def plot_moments(self, xlabel:str='Time [s]', plot_type:str=None):
+    def plot_moments(self, xlabel: str = 'Time [s]', plot_type: str = None):
         """
         Plots the moments in a pdf format in the directory
         `Outputs_PostProcessing`.
@@ -92,7 +105,7 @@ class PostProcessing:
             std_data = self.stds[key]
 
             # Extract a list of x values
-            if type(x_values_orig) is dict:
+            if isinstance(x_values_orig, dict):
                 x = x_values_orig[key]
             else:
                 x = x_values_orig
@@ -143,15 +156,15 @@ class PostProcessing:
 
             # save the current figure
             fig.savefig(
-                f'./{self.out_dir}Mean_Std_PCE_{key}.pdf',
+                f'{self.out_dir}Mean_Std_PCE_{key}.pdf',
                 bbox_inches='tight'
-                )
+            )
 
         return self.means, self.stds
 
     # -------------------------------------------------------------------------
     def valid_metamodel(self, n_samples=1, samples=None, model_out_dict=None,
-                        x_axis='Time [s]')-> None:
+                        x_axis='Time [s]') -> None:
         """
         Evaluates and plots the meta model and the PCEModel outputs for the
         given number of samples or the given samples.
@@ -170,10 +183,9 @@ class PostProcessing:
 
         """
         if samples is None:
-            self.n_samples = n_samples
-            samples = self._get_sample()
+            samples = self._get_sample(n_samples)
         else:
-            self.n_samples = samples.shape[0]
+            n_samples = samples.shape[0]
 
         # Extract x_values
         x_values = self.engine.ExpDesign.x_values
@@ -183,7 +195,6 @@ class PostProcessing:
         else:
             self.model_out_dict = self._eval_model(samples, key_str='valid')
         self.pce_out_mean, self.pce_out_std = self.engine.eval_metamodel(samples)
-        self.pce_out_mean, self.pce_out_std = self.engine.eval_metamodel(samples)
 
         try:
             key = self.engine.out_names[1]
@@ -195,15 +206,16 @@ class PostProcessing:
         n_obs = self.model_out_dict[key].shape[1]
 
         if n_obs == 1:
-            self._plot_validation()
+            self._plot_validation(samples)
         else:
             self._plot_validation_multi(x_values=x_values, x_axis=x_axis)
-        
+
             # Zip the subdirectories
-            self.engine.Model.zip_subdirs(f'{self.engine.Model.name}valid', f'{self.engine.Model.name}valid_')
+            self.engine.Model.zip_subdirs(
+                f'{self.engine.Model.name}valid', f'{self.engine.Model.name}valid_')
 
     # -------------------------------------------------------------------------
-    def check_accuracy(self, n_samples=None, samples=None, outputs=None)-> None:
+    def check_accuracy(self, n_samples=None, samples=None, outputs=None) -> None:
         """
         Checks accuracy of the metamodel by computing the root mean square
         error and validation error for all outputs.
@@ -220,29 +232,24 @@ class PostProcessing:
 
         Raises
         ------
-        Exception
+        AttributeError
             When neither n_samples nor samples are provided.
 
         """
         # Set the number of samples
-        if n_samples:
-            self.n_samples = n_samples
-        elif samples is not None:
-            self.n_samples = samples.shape[0]
-        else:
-            raise Exception("Please provide either samples or pass the number"
+        if samples is None and n_samples is None:
+            raise AttributeError("Please provide either samples or pass the number"
                             " of samples!")
+        n_samples = samples.shape[0] if samples is not None else n_samples
 
         # Generate random samples if necessary
-        samples = self._get_sample() if samples is None else samples
+        samples = self._get_sample(n_samples) if samples is None else samples
 
         # Run the original model with the generated samples
-        if outputs is None:
-            outputs = self._eval_model(samples, key_str='validSet')
+        outputs = self._eval_model(samples, key_str='validSet') if outputs is None else outputs
 
         # Run the PCE model with the generated samples
-        pce_outputs, _ = self.engine.eval_metamodel(samples)
-        pce_outputs, _ = self.engine.eval_metamodel(samples)
+        metamod_outputs, _ = self.engine.eval_metamodel(samples)
 
         self.rmse = {}
         self.valid_error = {}
@@ -250,7 +257,7 @@ class PostProcessing:
         for key in self.engine.out_names:
         for key in self.engine.out_names:
             # Root mena square
-            self.rmse[key] = mean_squared_error(outputs[key], pce_outputs[key],
+            self.rmse[key] = mean_squared_error(outputs[key], metamod_outputs[key],
                                                 squared=False,
                                                 multioutput='raw_values')
             # Validation error
@@ -258,7 +265,7 @@ class PostProcessing:
                 np.var(outputs[key], ddof=1, axis=0)
 
             # Print a report table
-            print("\n>>>>> Errors of {} <<<<<".format(key))
+            print(f"\n>>>>> Errors of {key} <<<<<")
             print("\nIndex  |  RMSE   |  Validation Error")
             print('-'*35)
             print('\n'.join(f'{i+1}  |  {k:.3e}  |  {j:.3e}' for i, (k, j)
@@ -270,9 +277,8 @@ class PostProcessing:
         self.engine.MetaModel.rmse = self.rmse
         self.engine.MetaModel.valid_error = self.valid_error
 
-
     # -------------------------------------------------------------------------
-    def plot_seq_design_diagnostics(self, ref_BME_KLD=None)->None:
+    def plot_seq_design_diagnostics(self, ref_BME_KLD=None) -> None:
         """
         Plots the Bayesian Model Evidence (BME) and Kullback-Leibler divergence
         (KLD) for the sequential design.
@@ -392,7 +398,8 @@ class PostProcessing:
                                         ls='--', lw=2)
 
                     # Plot each UtilFuncs
-                    labels = np.arange(n_init_samples, n_total_samples+1, step1)
+                    labels = np.arange(
+                        n_init_samples, n_total_samples+1, step1)
                     draw_plot(all_errors[:, ::step2], labels, edge_color,
                               fill_color, idx)
 
@@ -411,7 +418,7 @@ class PostProcessing:
                                                  label=util))
                 plt.legend(handles=legend_elements[::-1], loc='best')
 
-                if plot != 'BME' and plot != 'KLD':
+                if plot not in ['BME','KLD']:
                     plt.yscale('log')
                 plt.autoscale(True)
                 plt.xlabel('\\# of training samples')
@@ -423,7 +430,7 @@ class PostProcessing:
                 fig.savefig(
                     f'./{newpath}/seq_{plot_name}.pdf',
                     bbox_inches='tight'
-                    )
+                )
                 # Destroy the current plot
                 plt.close()
                 # Save arrays into files
@@ -441,7 +448,7 @@ class PostProcessing:
                     if n_total_samples not in x_idx:
                         x_idx = np.hstack((x_idx, n_total_samples))
 
-                    if plot == 'KLD' or plot == 'BME':
+                    if plot in ['KLD', 'BME']:
                         # BME convergence if refBME is provided
                         if ref_BME_KLD is not None:
                             if plot == 'BME':
@@ -482,8 +489,8 @@ class PostProcessing:
                         seq_values = np.nan_to_num(seq_values)
 
                         # Plot the error evolution for each output
-                        #print(x_idx.shape)
-                        #print(seq_values.mean(axis=1).shape)
+                        # print(x_idx.shape)
+                        # print(seq_values.mean(axis=1).shape)
                         plt.semilogy(x_idx, seq_values.mean(axis=1),
                                      marker=markers[idx], ls='--', lw=2,
                                      color=colors[idx],
@@ -509,17 +516,16 @@ class PostProcessing:
                 fig.savefig(
                     f'./{newpath}/seq_{plot_name}.pdf',
                     bbox_inches='tight'
-                    )
+                )
                 # Destroy the current plot
                 plt.close()
 
                 # ---------------- Saving arrays into files ---------------
                 np.save(f'./{newpath}/seq_{plot_name}.npy', seq_values)
 
-        return
 
     # -------------------------------------------------------------------------
-    def sobol_indices(self, xlabel:str='Time [s]', plot_type:str=None):
+    def sobol_indices(self, xlabel: str = 'Time [s]', plot_type: str = None):
         """
         Provides Sobol indices as a sensitivity measure to infer the importance
         of the input parameters. See Eq. 27 in [1] for more details. For the
@@ -547,7 +553,7 @@ class PostProcessing:
         ------
         AttributeError
             MetaModel in given Engine needs to be of type 'pce' or 'apce'.
-        
+
         Returns
         -------
         sobol_cell: dict
@@ -557,22 +563,22 @@ class PostProcessing:
 
         """
         # This function currently only supports PCE/aPCE
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
+        metamod = self.engine.MetaModel
+        if not hasattr(metamod, 'meta_model_type'):
             raise AttributeError('Sobol indices only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
+        if metamod.meta_model_type.lower() not in ['pce', 'apce']:
             raise AttributeError('Sobol indices only support PCE-type models!')
-            
+
         # Extract the necessary variables
-        basis_dict = PCEModel._basis_dict
-        coeffs_dict = PCEModel._coeffs_dict
-        n_params = PCEModel.ndim
-        max_order = np.max(PCEModel._pce_deg)
+        basis_dict = metamod._basis_dict
+        coeffs_dict = metamod._coeffs_dict
+        n_params = metamod.ndim
+        max_order = np.max(metamod._pce_deg)
         sobol_cell_b = {}
         total_sobol_b = {}
         cov_Z_p_q = np.zeros((n_params))
 
-        for b_i in range(PCEModel.n_bootstrap_itrs):
+        for b_i in range(metamod.n_bootstrap_itrs):
 
             sobol_cell_, total_sobol_ = {}, {}
 
@@ -588,7 +594,8 @@ class PostProcessing:
                 for i_order in range(1, max_order+1):
                     n_comb = math.comb(n_params, i_order)
 
-                    sobol_cell_array[i_order] = np.zeros((n_comb, n_meas_points))
+                    sobol_cell_array[i_order] = np.zeros(
+                        (n_comb, n_meas_points))
 
                 total_sobol_array = np.zeros((n_params, n_meas_points))
 
@@ -601,7 +608,7 @@ class PostProcessing:
                     Basis = basis_dict[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
 
                     try:
-                        clf_poly = PCEModel._clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
+                        clf_poly = metamod._clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
                         PCECoeffs = clf_poly.coef_
                     except:
                         PCECoeffs = coeffs_dict[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
@@ -621,9 +628,11 @@ class PostProcessing:
                     else:
                         nz_basis = Basis[nzidx]
                         for i_order in range(1, max_order+1):
-                            idx = np.where(np.sum(nz_basis > 0, axis=1) == i_order)
+                            idx = np.where(
+                                np.sum(nz_basis > 0, axis=1) == i_order)
                             subbasis = nz_basis[idx]
-                            Z = np.array(list(combinations(range(n_params), i_order)))
+                            Z = np.array(
+                                list(combinations(range(n_params), i_order)))
 
                             for q in range(Z.shape[0]):
                                 Zq = Z[q]
@@ -633,7 +642,8 @@ class PostProcessing:
                                 if TotalVariance[pIdx] == 0.0:
                                     sobol_cell_array[i_order][q, pIdx] = 0.0
                                 else:
-                                    sobol = np.sum(np.square(PCECoeffs[sum_ind]))
+                                    sobol = np.sum(
+                                        np.square(PCECoeffs[sum_ind]))
                                     sobol /= TotalVariance[pIdx]
                                     sobol_cell_array[i_order][q, pIdx] = sobol
 
@@ -650,20 +660,22 @@ class PostProcessing:
                                 total_sobol_array[ParIdx, pIdx] = sobol
 
                     # ----- if PCA selected: Compute covariance -----
-                    if PCEModel.dim_red_method.lower() == 'pca':
+                    if metamod.dim_red_method.lower() == 'pca':
                         # Extract the basis indices (alpha) and coefficients for
                         # next component
                         if pIdx < n_meas_points-1:
                             nextBasis = basis_dict[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
-                            if PCEModel.bootstrap_method != 'fast' or b_i == 0:
-                                clf_poly = PCEModel._clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
+                            if metamod.bootstrap_method != 'fast' or b_i == 0:
+                                clf_poly = metamod._clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
                                 nextPCECoeffs = clf_poly.coef_
                             else:
                                 nextPCECoeffs = coeffs_dict[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
 
                             # Choose the common non-zero basis
-                            mask = (Basis[:, None] == nextBasis).all(-1).any(-1)
-                            n_mask = (nextBasis[:, None] == Basis).all(-1).any(-1)
+                            mask = (Basis[:, None] ==
+                                    nextBasis).all(-1).any(-1)
+                            n_mask = (nextBasis[:, None] ==
+                                      Basis).all(-1).any(-1)
 
                             # Compute the covariance in Eq 17.
                             for ParIdx in range(n_params):
@@ -672,14 +684,14 @@ class PostProcessing:
                                 try:
                                     cov_Z_p_q[ParIdx] += np.sum(np.dot(
                                         PCECoeffs[idx], nextPCECoeffs[n_idx])
-                                        )
+                                    )
                                 except:
                                     pass
 
                 # Compute the sobol indices according to Ref. 2
-                if PCEModel.dim_red_method.lower() == 'pca':
+                if metamod.dim_red_method.lower() == 'pca':
                     n_c_points = self.engine.ExpDesign.Y[output].shape[1]
-                    PCA = PCEModel.pca[f'b_{b_i+1}'][output]
+                    PCA = metamod.pca[f'b_{b_i+1}'][output]
                     compPCA = PCA.components_
                     nComp = compPCA.shape[0]
                     var_Z_p = PCA.explained_variance_
@@ -688,7 +700,8 @@ class PostProcessing:
                     for i_order in range(1, max_order+1):
                         n_comb = math.comb(n_params, i_order)
                         sobol_array[i_order] = np.zeros((n_comb, n_c_points))
-                        Z = np.array(list(combinations(range(n_params), i_order)))
+                        Z = np.array(
+                            list(combinations(range(n_params), i_order)))
 
                         # Loop over parameters
                         for q in range(Z.shape[0]):
@@ -714,7 +727,8 @@ class PostProcessing:
                                     #     term2 *= compPCA[i+1, tIdx]
                                     # term2 *= 2
 
-                                sobol_array[i_order][q, tIdx] = term1 #+ term2
+                                sobol_array[i_order][q,
+                                                     tIdx] = term1  # + term2
 
                                 # Devide over total output variance Eq. 18
                                 sobol_array[i_order][q, tIdx] /= var_Y_t
@@ -725,7 +739,8 @@ class PostProcessing:
                         S_Z_i = total_sobol_array[ParIdx]
 
                         for tIdx in range(n_c_points):
-                            var_Y_t = np.var(self.engine.ExpDesign.Y[output][:, tIdx])
+                            var_Y_t = np.var(
+                                self.engine.ExpDesign.Y[output][:, tIdx])
                             if var_Y_t == 0.0:
                                 term1, term2 = 0.0, 0.0
                             else:
@@ -741,7 +756,7 @@ class PostProcessing:
                                         * compPCA[i+1, tIdx]
                                 term2 *= 2
 
-                            total_sobol[ParIdx, tIdx] = term1 #+ term2
+                            total_sobol[ParIdx, tIdx] = term1  # + term2
 
                             # Devide over total output variance Eq. 18
                             total_sobol[ParIdx, tIdx] /= var_Y_t
@@ -825,7 +840,7 @@ class PostProcessing:
             fig.savefig(
                 f'./{self.out_dir}Sobol_indices_{output}.pdf',
                 bbox_inches='tight'
-                )
+            )
 
             # Destroy the current plot
             plt.close()
@@ -833,7 +848,7 @@ class PostProcessing:
         return self.total_sobol
 
     # -------------------------------------------------------------------------
-    def check_reg_quality(self, n_samples:int=1000, samples=None, outputs:dict=None)->None:
+    def check_reg_quality(self, n_samples: int = 1000, samples=None, outputs: dict = None) -> None:
         """
         Checks the quality of the metamodel for single output models based on:
         https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
@@ -854,15 +869,14 @@ class PostProcessing:
 
         """
         if samples is None:
-            self.n_samples = n_samples
-            samples = self._get_sample()
+            samples = self._get_sample(n_samples)
         else:
-            self.n_samples = samples.shape[0]
+            n_samples = samples.shape[0]
 
         # Evaluate the original and the surrogate model
         if outputs is None:
             y_val = self._eval_model(samples, key_str='valid')
-        else: 
+        else:
             y_val = outputs
         y_pce_val, _ = self.engine.eval_metamodel(samples=samples)
 
@@ -954,11 +968,11 @@ class PostProcessing:
             plt.close()
 
     # -------------------------------------------------------------------------
-    def plot_metamodel_3d(self, n_samples = 10):
+    def plot_metamodel_3d(self, n_samples=10):
         """
         Visualize the results of a PCE MetaModel as a 3D surface over two input 
         parameters.
-        
+
         Parameters
         ----------
         n_samples : int
@@ -974,65 +988,67 @@ class PostProcessing:
         None.
 
         """
-        if self.engine.ExpDesign.ndim !=2:
-            raise AttributeError('This function is only applicable if the MetaModel input dimension is 2.')
+        if self.engine.ExpDesign.ndim != 2:
+            raise AttributeError(
+                'This function is only applicable if the MetaModel input dimension is 2.')
         samples = self.engine.ExpDesign.generate_samples(n_samples)
-        samples = np.sort(np.sort(samples, axis = 1), axis = 0)
-        mean, stdev = self.engine.eval_metamodel(samples = samples)
-        
+        samples = np.sort(np.sort(samples, axis=1), axis=0)
+        mean, stdev = self.engine.eval_metamodel(samples=samples)
+
         if self.engine.emulator:
             title = 'MetaModel'
         else:
             title = 'Model'
-        X,Y = np.meshgrid(samples[:,0],samples[:,1])
+        X, Y = np.meshgrid(samples[:, 0], samples[:, 1])
         for name in self.engine.out_names:
             for t in range(mean[name].shape[1]):
                 fig = plt.figure()
                 ax = plt.axes(projection='3d')
-                ax.plot_surface(X, Y, np.atleast_2d(mean[name][:,t]), rstride=1, cstride=1,
+                ax.plot_surface(X, Y, np.atleast_2d(mean[name][:, t]), rstride=1, cstride=1,
                                 cmap='viridis', edgecolor='none')
                 ax.set_title(title)
                 ax.set_xlabel('$x_1$')
                 ax.set_ylabel('$x_2$')
                 ax.set_zlabel('$f(x_1,x_2)$')
-        
+
                 plt.grid()
-        
+
                 # save the figure to file
                 fig.savefig(f'./{self.out_dir}/3DPlot_{title}_{name}{t}.pdf',
-                                bbox_inches='tight')
+                            bbox_inches='tight')
                 plt.close(fig)
-        
 
     # -------------------------------------------------------------------------
-    def _get_sample(self, n_samples=None):
+
+    def _get_sample(self, n_samples):
         """
         Generates random samples taken from the input parameter space.
 
+        Parameters
+        ----------
+        n_samples : int
+            Number of samples to generate.
+
         Returns
         -------
         samples : array of shape (n_samples, n_params)
             Generated samples.
 
         """
-        if n_samples is None:
-            n_samples = self.n_samples
-        self.samples = self.engine.ExpDesign.generate_samples(
-        self.samples = self.engine.ExpDesign.generate_samples(
+        samples = self.engine.ExpDesign.generate_samples(
             n_samples,
             sampling_method='random')
-        return self.samples
+        return samples
 
     # -------------------------------------------------------------------------
-    def _eval_model(self, samples=None, key_str='Valid'):
+    def _eval_model(self, samples, key_str='Valid'):
         """
-        Evaluates Forward Model for the given number of self.samples or given
-        samples.
+        Evaluates Forward Model on the given samples.
 
         Parameters
         ----------
-        samples : array of shape (n_samples, n_params), optional
-            Samples to evaluate the model at. The default is None.
+        samples : array of shape (n_samples, n_params)
+            Samples to evaluate the model at.
         key_str : str, optional
             Key string pass to the model. The default is 'Valid'.
 
@@ -1042,19 +1058,14 @@ class PostProcessing:
             Dictionary of results.
 
         """
-        if samples is None:
-            samples = self._get_sample()
-            self.samples = samples
-        else:
-            self.n_samples = len(samples)
-
-        model_outs, _ = self.engine.Model.run_model_parallel(samples, key_str=key_str)
-        model_outs, _ = self.engine.Model.run_model_parallel(samples, key_str=key_str)
+        samples = self._get_sample()
+        model_outs, _ = self.engine.Model.run_model_parallel(
+            samples, key_str=key_str)
 
         return model_outs
 
     # -------------------------------------------------------------------------
-    def _plot_validation(self):
+    def _plot_validation(self, samples):
         """
         Plots outputs for visual comparison of metamodel outputs with that of
         the (full) original model.
@@ -1065,15 +1076,15 @@ class PostProcessing:
 
         """
         # This function currently only supports PCE/aPCE
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
-            raise AttributeError('This evaluation only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
-            raise AttributeError('This evaluation only support PCE-type models!')
-
+        metamod = self.engine.MetaModel
+        if not hasattr(metamod, 'meta_model_type'):
+            raise AttributeError(
+                'This evaluation only support PCE-type models!')
+        if metamod.meta_model_type.lower() not in ['pce', 'apce']:
+            raise AttributeError(
+                'This evaluation only support PCE-type models!')
 
         # get the samples
-        x_val = self.samples
         y_pce_val = self.pce_out_mean
         y_val = self.model_out_dict
 
@@ -1098,7 +1109,7 @@ class PostProcessing:
             # the total number of explanatory variables in the model
             # (not including the constant term)
             length_list = []
-            for key, value in PCEModel._coeffs_dict['b_1'][key].items():
+            for key, value in metamod._coeffs_dict['b_1'][key].items():
                 length_list.append(len(value))
             n_predictors = min(length_list)
             n_samples = x_val.shape[0]
@@ -1114,7 +1125,7 @@ class PostProcessing:
             plt.ylabel("Original Model")
             plt.xlabel("PCE Model")
             plt.grid()
-            
+
             # save the current figure
             plot_name = key.replace(' ', '_')
             fig.savefig(f'./{self.out_dir}/Model_vs_PCEModel_{plot_name}.pdf',
@@ -1135,7 +1146,7 @@ class PostProcessing:
             List of x values. The default is [].
         x_axis : str, optional
             Label of the x axis. The default is "x [m]".
-            
+
         Raises
         ------
         AttributeError: This evaluation only support PCE-type models!
@@ -1146,11 +1157,13 @@ class PostProcessing:
 
         """
         # This function currently only supports PCE/aPCE
-        PCEModel = self.engine.MetaModel
-        if not hasattr(PCEModel, 'meta_model_type'):
-            raise AttributeError('This evaluation only support PCE-type models!')
-        if PCEModel.meta_model_type.lower() not in ['pce', 'apce']:
-            raise AttributeError('This evaluation only support PCE-type models!')
+        metamod = self.engine.MetaModel
+        if not hasattr(metamod, 'meta_model_type'):
+            raise AttributeError(
+                'This evaluation only support PCE-type models!')
+        if metamod.meta_model_type.lower() not in ['pce', 'apce']:
+            raise AttributeError(
+                'This evaluation only support PCE-type models!')
 
         # List of markers and colors
         color = cycle((['b', 'g', 'r', 'y', 'k']))
@@ -1158,8 +1171,7 @@ class PostProcessing:
 
         fig = plt.figure()
         # Plot the model vs PCE model
-        for keyIdx, key in enumerate(self.engine.out_names):
-        for keyIdx, key in enumerate(self.engine.out_names):
+        for _, key in enumerate(self.engine.out_names):
 
             y_pce_val = self.pce_out_mean[key]
             y_pce_val_std = self.pce_out_std[key]
@@ -1170,18 +1182,18 @@ class PostProcessing:
                 x = x_values
 
             for idx in range(y_val.shape[0]):
-                Color = next(color)
-                Marker = next(marker)
+                color_ = next(color)
+                marker_ = next(marker)
 
-                plt.plot(x, y_val[idx], color=Color, marker=Marker,
-                         label='$Y_{%s}^M$'%(idx+1))
+                plt.plot(x, y_val[idx], color=color_, marker=marker_,
+                         label='$Y_{%s}^M$' % (idx+1))
 
-                plt.plot(x, y_pce_val[idx], color=Color, marker=Marker,
+                plt.plot(x, y_pce_val[idx], color=color_, marker=marker_,
                          linestyle='--',
-                         label='$Y_{%s}^{PCE}$'%(idx+1))
+                         label='$Y_{%s}^{PCE}$' % (idx+1))
                 plt.fill_between(x, y_pce_val[idx]-1.96*y_pce_val_std[idx],
                                  y_pce_val[idx]+1.96*y_pce_val_std[idx],
-                                 color=Color, alpha=0.15)
+                                 color=color_, alpha=0.15)
 
             # Calculate the RMSE
             rmse = mean_squared_error(y_pce_val, y_val, squared=False)
diff --git a/tests/test_PostProcessing.py b/tests/test_PostProcessing.py
index ba905d647..5f63962be 100644
--- a/tests/test_PostProcessing.py
+++ b/tests/test_PostProcessing.py
@@ -158,16 +158,16 @@ def test_check_reg_quality_pce(pce_engine) -> None:
     post = PostProcessing(engine)
     post.check_reg_quality(samples=engine.ExpDesign.X, outputs=engine.ExpDesign.Y)
 
-#%% eval_pce_model_3d
+#%% eplot_metamodel_3d
 
-def test_eval_pce_model_3d_nopce(basic_engine) -> None:
+def test_plot_metamodel_3d_nopce(basic_engine) -> None:
     """
     3d eval of non-PCE metamodel
     """
     engine = basic_engine
     post = PostProcessing(engine)
     with pytest.raises(AttributeError) as excinfo:
-        post.eval_pce_model_3d()
+        post.plot_metamodel_3d()
     assert str(excinfo.value) == 'This evaluation only support PCE-type models!'
     
 
@@ -180,9 +180,10 @@ def test_plot_validation_nopce(basic_engine) -> None:
     Plot validation of non-PCE metamodel
     """
     engine = basic_engine
+    samples = engine.ExpDesign.generate_samples(10,'random')
     post = PostProcessing(engine)
     with pytest.raises(AttributeError) as excinfo:
-        post._plot_validation()
+        post._plot_validation(samples)
     assert str(excinfo.value) == 'This evaluation only support PCE-type models!'
     
 #%% _plot_validation_multi
-- 
GitLab