diff --git a/BayesValidRox/tests/PA-A/Benchmark_PAA.py b/BayesValidRox/tests/PA-A/Benchmark_PAA.py index 1083aa42ca0c1b22f4ff25a61066b3419e85ca7c..3ef7688f75a90c7b964adaa3e39be11ea3bf98af 100755 --- a/BayesValidRox/tests/PA-A/Benchmark_PAA.py +++ b/BayesValidRox/tests/PA-A/Benchmark_PAA.py @@ -6,7 +6,7 @@ Created on Thu Feb 6 14:59:50 2020 @author: mohammadi """ -import sys, os +import sys, os, joblib import numpy as np from scipy import stats import pandas as pd @@ -311,29 +311,29 @@ if __name__ == "__main__": # Perturbe data data = pd.read_csv('data/stokesDataValid.csv') perturbedDataAvg = perturbData(data,['velocity [m/s]', 'p'],nBootstrapItr,BootstrapNoise) - np.savetxt('./data/perturbedValidDataAvg.csv',perturbedDataAvg, delimiter=',') - #np.loadtxt('./data/perturbedDataAvg.csv',delimiter=',') + # np.savetxt('./data/perturbedValidDataAvg.csv',perturbedDataAvg, delimiter=',') + perturbedDataAvg = np.loadtxt('./data/perturbedValidDataAvg.csv',delimiter=',') paramsAvg = (nInitSamples,nTotalSamples,nBootstrapItr,perturbedDataAvg) # Perturbe non-averaged data for PNM data = pd.read_csv('data/stokesDataValid_without_averaging.csv') perturbedData = perturbData(data,['velocity [m/s]', 'p'],nBootstrapItr,BootstrapNoise) - np.savetxt('./data/perturbedValidData.csv',perturbedData, delimiter=',') - #np.loadtxt('./data/perturbedData.csv',delimiter=',') + # np.savetxt('./data/perturbedValidData.csv',perturbedData, delimiter=',') + perturbedData = np.loadtxt('./data/perturbedValidData.csv',delimiter=',') params = (nInitSamples,nTotalSamples,nBootstrapItr,perturbedData) #========================================================================== #==================== Run main scripts for PA-B ======================= #========================================================================== - # result_folder = './Results_22_06_2021' + result_folder = './' #'./Results_22_06_2021' # Model stokesdarcy-pnm with the averaged data - PCEModel_PNM, BayesCalib_PNM, BayesValid_PNM = stokespnm.run(paramsAvg, PCEEDMethod=PCEExpDesignMethod) + # PCEModel_PNM, BayesCalib_PNM, BayesValid_PNM = stokespnm.run(paramsAvg, PCEEDMethod=PCEExpDesignMethod) # Load the objects - # with open(result_folder+'/outputs_ffpm-stokespnm/PA_A_Bayesffpm-stokespnm-valid.pkl', 'rb') as input: - # BayesValid_PNM = joblib.load(input) + with open(result_folder+'/outputs_ffpm-stokespnm/PA_A_Bayesffpm-stokespnm-valid.pkl', 'rb') as input: + BayesValid_PNM = joblib.load(input) # Model stokesdarcy-pnm without the averaged data PCEModel_PNM_NA, BayesCalib_PNM_NA, BayesValid_PNM_NA = stokespnm.run(params, averaging=False, diff --git a/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py b/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py index 5bdf20fceb333e4831d7ddb7ac8efb42987bfe34..f10a2f2eb2a911fd9d9b111aa5b34650615ad3a9 100755 --- a/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py +++ b/BayesValidRox/tests/PA-A/ffpm_validation_stokesdarcy.py @@ -118,7 +118,7 @@ def run(params, errorPerc=0.05, couplingcond='BJ', PCEEDMethod='normal'): # Mu = np.log(params[0]**2 / np.sqrt(params[0]**2 + params[1]**2)) # Sigma = np.sqrt(np.log(1 + params[1]**2 / params[0]**2)) # Inputs.Marginals[2].InputValues = chaospy.LogNormal(mu=Mu,sigma=Sigma).sample(MCSize) - Inputs.Marginals[2].InputValues = stats.uniform(loc=1e-10, scale=1e-7-1e-10).rvs(size=MCSize) + Inputs.Marginals[2].InputValues = stats.uniform(loc=1e-10, scale=1e-8-1e-10).rvs(size=MCSize) # params = (1.0e-08, 1.5e-08) # Inputs.Marginals[2].DistType = 'lognorm' # Inputs.Marginals[2].Parameters = params diff --git a/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py b/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py index 0b00ac99396d6a30cba7dc35ffcf76f1e79f4b26..0e4de1017a5848b41160e5fffa85240130a7fba0 100755 --- a/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py +++ b/BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py @@ -253,7 +253,7 @@ def run(params, averaging=True,errorPerc=0.05, PCEEDMethod='normal'): # Load the objects saved_Dir = './outputs_ffpm-stokespnm/' with open(saved_Dir+'PCEModel_'+'ffpm-stokespnm'+'.pkl', 'rb') as input: - PCEModel = pickle.load(input) + PCEModel = joblib.load(input) PCEModel.ModelObj.Name = 'ffpm-stokespnmNA'