diff --git a/BayesValidRox/tests/PA-A/util/postDist_visualization.py b/BayesValidRox/tests/PA-A/util/postDist_visualization.py
index 752757c11770ba913839844e07a754ec56f84c00..e5843e284c0dbcc94dee6ec995add1bfeb0cb33f 100755
--- a/BayesValidRox/tests/PA-A/util/postDist_visualization.py
+++ b/BayesValidRox/tests/PA-A/util/postDist_visualization.py
@@ -5,27 +5,25 @@ Created on Thu Aug 13 09:53:11 2020
 
 @author: farid
 """
-import sys, os, joblib
+import sys
+import os
+import joblib
 import numpy as np
 import pandas as pd
 import h5py
 import corner
-try:
-    import cPickle as pickle
-except ModuleNotFoundError:
-    import _pickle as pickle
 
 # Local
-sys.path.insert(0,'./../../../../BayesValidRox/')
+sys.path.insert(0, './../../../../BayesValidRox/')
 
-inletLoc = 'top' # top or left
-inclusion = 'squared' # squared or circular
+inletLoc = 'top'  # top or left
+inclusion = 'squared'  # squared or circular
 
-Name = 'stokesdarcyER' #stokesdarcyER stokesdarcyBJ stokespnm stokespnmNA
-modelName = 'ffpm-{}_{}_inclusion_{}Inflow'.format(Name,inclusion,inletLoc)
+name = 'stokespnmNA'  # stokesdarcyER stokesdarcyBJ stokespnm stokespnmNA
+modelName = f'ffpm-{name}_{inclusion}_inclusion_{inletLoc}Inflow'
 
 # Load the pickle objects
-data_dir = '../Results_15_12_2021_topInflow/outputs_{}/'.format(modelName)
+data_dir = '../Results_19_01_2022_topInflow/outputs_{}/'.format(modelName)
 # data_dir = '../outputs_{}/'.format(modelName)
 
 # with open(data_dir+'PCEModel_ffpm-{}.pkl'.format(modelName), 'rb') as input:
@@ -44,10 +42,9 @@ lw = 3
 alpha = 0.45
 plt.rc('figure', figsize = (24, 16))
 plt.rc('font', family='serif', serif='Arial')
-plt.rc('axes', grid = True)
 # plt.rc('text', usetex=True)
 plt.rc('axes', linewidth=lw)
-plt.rc('axes', grid=True)
+plt.rc('axes', grid=False)
 plt.rc('grid', linestyle="-")
 plt.rc('font', size=BIGGER_SIZE)          # controls default text sizes
 plt.rc('axes', titlesize=BIGGER_SIZE)     # fontsize of the axes title
@@ -58,9 +55,9 @@ plt.rc('legend', fontsize=BIGGER_SIZE)    # legend fontsize
 plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title
 
 
-#=====================================================
-#==========  DEFINITION OF THE METAMODEL  ============
-#=====================================================
+# =====================================================
+# ==========  DEFINITION OF THE METAMODEL  ============
+# =====================================================
 PCEModel = Bayes.PCEModel
 # Update slicing index
 # Extract the experimental design
@@ -72,12 +69,16 @@ EDY = PCEModel.ExpDesign.Y
 Outputs = ['velocity [m/s]', 'p']
 # labels = [PCEModel.Inputs.Marginals[i].Name for i in range(PCEModel.NofPa)]
 labels = list(Bayes.Posterior_df.keys())
-#=====================================================
-#=================  Visualization  ===================
-#=====================================================
+if '$K$' in labels:
+    index = labels.index('$K$')
+    labels[index] = r"$\mathsf{K}$"
+# =====================================================
+# =================  Visualization  ===================
+# =====================================================
 # Make directory
 outDir = './posteriorPlot'
-if not os.path.exists(outDir): os.makedirs(outDir)
+if not os.path.exists(outDir):
+    os.makedirs(outDir)
 
 # ----- Posterior plot ---------
 # import emcee
@@ -126,11 +127,16 @@ goodpostSamples = postSamples#[goodIndices]
 figPosterior = corner.corner(goodpostSamples, labels=labels,
                              # range=PCEModel.ExpDesign.BoundTuples,
                              # color='grey',
-                             use_math_text = True,
+                             use_math_text=True,
                              quantiles=[0.15, 0.5, 0.85],
                              show_titles=True,
                              labelpad=0.2,
                              title_fmt='.2e',
+                             plot_datapoints=False,
+                             plot_density=False,
+                             fill_contours=True,
+                             smooth=0.5,
+                             smooth1d=0.5,
                              title_kwargs={"fontsize": SMALL_SIZE})
 
 # Loop over axes and set x limits
diff --git a/BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py b/BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py
index 83c172bf98993843467501d716dc973b52b9f764..c4fe87c30bca48c0072916383cf2a5865abd45cc 100644
--- a/BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py
+++ b/BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py
@@ -9,7 +9,6 @@ import numpy as np
 import os
 import sys
 import joblib
-import seaborn as sns
 import h5py
 import pandas as pd
 import matplotlib.pylab as plt
@@ -18,7 +17,8 @@ import matplotlib.pylab as plt
 sys.path.insert(0, "./../../../../BayesValidRox/")
 plt.rcParams.update({'lines.markeredgewidth': 1})
 
-def postPredictiveplot(modelNames, result_folder= ".", case="Calib",
+
+def postPredictiveplot(modelNames, result_folder=".", case="Calib",
                        inclusion="squared", inletLoc="top", bins="auto"):
 
     OutputDir = f"../{result_folder}/postPredPlots_{case}"
@@ -35,15 +35,19 @@ def postPredictiveplot(modelNames, result_folder= ".", case="Calib",
             modelName = f'ffpm-{name}_{inclusion}_inclusion_{inletLoc}Inflow'
 
             if case == 'calib':
-                directory = f"../{result_folder}/outputs_{modelName}/Outputs_Bayes_{modelName}_{case}"
+                directory = f"../{result_folder}/outputs_{modelName}/Outputs_"\
+                    f"Bayes_{modelName}_{case}"
             else:
-                directory = f"../{result_folder}/outputs_{modelName}/Outputs_Bayes_{modelName}-valid_{case}"
+                directory = f"../{result_folder}/outputs_{modelName}/Outputs_"\
+                    f"Bayes_{modelName}-valid_{case}"
 
             # Load Post pred file
             f = h5py.File(f"{directory}/postPredictive.hdf5", "r+")
 
             # Load PCEModel
-            with open(f"../{result_folder}/outputs_{modelName}/PCEModel_{modelName}.pkl", "rb") as input:
+            file_name = f"../{result_folder}/outputs_{modelName}/PCEModel_"\
+                f"{modelName}.pkl"
+            with open(file_name, "rb") as input:
                 PCEModel = joblib.load(input)
 
             if case == "Calib":
@@ -111,12 +115,12 @@ def postPredictiveplot(modelNames, result_folder= ".", case="Calib",
 
 
 modelNames = ['stokesdarcyBJ', 'stokesdarcyER', 'stokespnm']
-inletLoc = 'top' # top or left
-inclusion = 'squared' # squared or circular
-path = "Results_09_01_2022_topInflow"
+inletLoc = 'top'  # top or left
+inclusion = 'squared'  # squared or circular
+path = "Results_19_01_2022_topInflow"
 case = 'Valid'
 
-allMeanPred, allStdPred = postPredictiveplot(modelNames, inclusion=inclusion, 
+allMeanPred, allStdPred = postPredictiveplot(modelNames, inclusion=inclusion,
                                              inletLoc=inletLoc,
                                              result_folder=path,
                                              case='Valid')
diff --git a/BayesValidRox/tests/PA-A/util/sobol_indices.py b/BayesValidRox/tests/PA-A/util/sobol_indices.py
index 120f6067922fc731a3cd066d8c2d57e1869ffc87..20387ed483c6bcb7308ac73c55a79ee085a9c269 100644
--- a/BayesValidRox/tests/PA-A/util/sobol_indices.py
+++ b/BayesValidRox/tests/PA-A/util/sobol_indices.py
@@ -10,10 +10,10 @@ import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 SIZE = 60
-plt.rc('figure', figsize = (24, 16))
+plt.rc('figure', figsize=(24,16))
 plt.rc('font', family='serif', serif='Arial')
 plt.rc('font', size=SIZE)
-plt.rc('axes', grid = True)
+plt.rc('axes', grid=True)
 plt.rc('text', usetex=True)
 plt.rc('axes', linewidth=3)
 plt.rc('axes', grid=True)
@@ -25,36 +25,45 @@ plt.rc('ytick', labelsize=SIZE)    # fontsize of the tick labels
 plt.rc('legend', fontsize=SIZE)    # legend fontsize
 plt.rc('figure', titlesize=SIZE)  # fontsize of the figure title
 
-result_dir = '../Results_20_09_2021/'
-modelName = 'stokesdarcyER' #stokesdarcyBJ stokesdarcyER stokespnm
+result_dir = '../Results_09_01_2022_topInflow/'
+
+inletLoc = "top"  # top or left
+inclusion = "squared"  # squared or circular
 
+Name = "stokesdarcyBJ"  # stokesdarcyER stokesdarcyBJ stokespnm stokespnmNA
+modelName = "ffpm-{}_{}_inclusion_{}Inflow".format(Name, inclusion, inletLoc)
 
 fig = plt.figure()
 
 xlabel = 'Point ID'
-x_values = {'velocity [m_s]':[1,2,3,4,5,6,7,8,9,10], 'p': [1,2,3]}
-outNames = ['velocity [m_s]','p']
+x_values = {'velocity [m_s]': np.arange(1, 11), 'p': np.arange(1, 4)}
+outNames = ['velocity [m_s]', 'p']
 
 
 for outIdx, Output in enumerate(outNames):
-    
-    delimiter = ';' if 'pnm' in modelName else ','
-    
-    total_sobols = pd.read_csv(result_dir+'outputs_ffpm-{}/Outputs_PostProcessing_calib/totalsobol_{}.csv'.format(modelName,Output)
-                               ,delimiter=delimiter)
+
+    total_sobols = pd.read_csv(f'{result_dir}outputs_{modelName}/'\
+                               f'Outputs_PostProcessing_calib/totalsobol_'\
+                               f'{Output}.csv',
+                               delimiter=',')
     total_sobol = total_sobols.to_numpy()
-    parNames  = list(total_sobols.keys())
-    
-    ax = fig.add_axes([0,0,1,1])
+    parNames = list(total_sobols.keys())
+    if '$K$' in parNames:
+        index = parNames.index('$K$')
+        parNames[index] = r"$\mathsf{K}$"
+
+    ax = fig.add_axes([0, 0, 1, 1])
     dict1 = {xlabel: x_values[Output]}
-    dict2 = {param: sobolIndices for param, sobolIndices in zip(parNames,total_sobol.T)}
-    
+    dict2 = {param: sobolIndices for param, sobolIndices in zip(parNames,
+                                                                total_sobol.T)}
+
     df = pd.DataFrame({**dict1, **dict2})
-    df.plot(x=xlabel, y=parNames, kind="bar", ax=ax , rot=0, colormap='Dark2')
+    df.plot(x=xlabel, y=parNames, kind="bar", ax=ax, rot=0, colormap='Dark2',
+            edgecolor="black", lw=1)
     ax.set_ylabel('Total Sobol indices, $S^T$')
 
     # save the current figure
-    fig.savefig('Sobol_indices_{}_{}.pdf'.format(Output,modelName), bbox_inches='tight')
-    
+    fig.savefig(f'Sobol_indices_{Output}_{modelName}.pdf', bbox_inches='tight')
+
     # Destroy the current plot
     plt.clf()
diff --git a/configure.sh b/configure.sh
index 3300074ea449907c2d3ab89d9087c6cdb75a6186..f482ea2289144316876f0082ebe6519a7175370a 100755
--- a/configure.sh
+++ b/configure.sh
@@ -14,5 +14,8 @@ python3 -m pip install tables==3.6.1 --upgrade --user
 python3 -m pip install corner==2.2.1 --user
 python3 -m pip install h5py==3.2.1 --user
 # python3 -m pip install vtk --user
-sudo apt-get install python3-vtk7
 python3 -m pip install meshio==5.0.0 --user
+
+# Here you need super user rights
+sudo apt-get install python3-vtk7
+sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super