diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py index e61de97c74123a656312b39779f0dd2559c347d8..bed9851055ccd41df8d67fe17e5d99d96ab9b3f8 100644 --- a/src/bayesvalidrox/post_processing/post_processing.py +++ b/src/bayesvalidrox/post_processing/post_processing.py @@ -1,7 +1,9 @@ #!/usr/bin/env python3 # -*- coding: utf-8 -*- +""" +Collection of postprocessing functions into a class. +""" -import math import os from itertools import combinations, cycle import numpy as np @@ -377,10 +379,10 @@ class PostProcessing: # BME convergence if refBME is provided if ref_BME_KLD is not None: if plot == 'BME': - refValue = ref_BME_KLD[0] + ref_value = ref_BME_KLD[0] plot_label = r'BME/BME$^{Ref.}$' if plot == 'KLD': - refValue = ref_BME_KLD[1] + ref_value = ref_BME_KLD[1] plot_label = '$D_{KL}[p(\\theta|y_*),p(\\theta)]'\ ' / D_{KL}^{Ref.}[p(\\theta|y_*), '\ 'p(\\theta)]$' @@ -388,7 +390,7 @@ class PostProcessing: # Difference between BME/KLD and the ref. values all_errors = np.divide(all_errors, np.full((all_errors.shape), - refValue)) + ref_value)) # Plot baseline for zero, i.e. no difference plt.axhline(y=1.0, xmin=0, xmax=1, c='green', @@ -449,10 +451,10 @@ class PostProcessing: # BME convergence if refBME is provided if ref_BME_KLD is not None: if plot == 'BME': - refValue = ref_BME_KLD[0] + ref_value = ref_BME_KLD[0] plot_label = r'BME/BME$^{Ref.}$' if plot == 'KLD': - refValue = ref_BME_KLD[1] + ref_value = ref_BME_KLD[1] plot_label = '$D_{KL}[p(\\theta|y_*),p(\\theta)]'\ ' / D_{KL}^{Ref.}[p(\\theta|y_*), '\ 'p(\\theta)]$' @@ -460,7 +462,7 @@ class PostProcessing: # Difference between BME/KLD and the ref. values values = np.divide(seq_values, np.full((seq_values.shape), - refValue)) + ref_value)) # Plot baseline for zero, i.e. no difference plt.axhline(y=1.0, xmin=0, xmax=1, c='green', @@ -586,7 +588,7 @@ class PostProcessing: # Check if the x_values match the number of metamodel outputs # TODO: How relevant is this check? - if (np.array(x_values_orig).shape[0] != total_sobol_all[outputs[0]].shape[1]): + if np.array(x_values_orig).shape[0] != total_sobol_all[outputs[0]].shape[1]: print( "The number of MetaModel outputs does not match the x_values" " specified in ExpDesign. Images are created with " @@ -611,7 +613,7 @@ class PostProcessing: q_5 = np.quantile(sobol_all[i_order][output], q=0.05, axis=0) q_97_5 = np.quantile(sobol_all[i_order][output], q=0.975, axis=0) - if plot_type is "bar": + if plot_type == "bar": ax = fig.add_axes([0, 0, 1, 1]) dict1 = {xlabel: x} dict2 = { @@ -663,7 +665,7 @@ class PostProcessing: q_5 = np.quantile(total_sobol_all[output], q=0.05, axis=0) q_97_5 = np.quantile(total_sobol_all[output], q=0.975, axis=0) - if plot_type is "bar": + if plot_type == "bar": ax = fig.add_axes([0, 0, 1, 1]) dict1 = {xlabel: x} dict2 = {