diff --git a/src/bayesvalidrox/bayes_inference/bayes_inference.py b/src/bayesvalidrox/bayes_inference/bayes_inference.py
index c8073ba76ebeb3249646e17b7f395f8a2472e2f6..22af7eea1f4d06b4f1f4ce7d808e57c69fdd93ba 100644
--- a/src/bayesvalidrox/bayes_inference/bayes_inference.py
+++ b/src/bayesvalidrox/bayes_inference/bayes_inference.py
@@ -331,7 +331,7 @@ class BayesInference:
             for itr_idx, data in tqdm(
                     enumerate(self.perturbed_data),
                     total=self.n_bootstrap_itrs,
-                    desc="Boostraping the BME calculations", ascii=True
+                    desc="Bootstrapping the BME calculations", ascii=True
                     ):
 
                 # ---------------- Likelihood calculation ----------------
diff --git a/src/bayesvalidrox/bayes_inference/mcmc.py b/src/bayesvalidrox/bayes_inference/mcmc.py
index 6b9ca94823fb7064baa2f0588d0f97fb4c9d1d44..cc632c2de57140ab0ba4bd4c81a49316406dacd1 100755
--- a/src/bayesvalidrox/bayes_inference/mcmc.py
+++ b/src/bayesvalidrox/bayes_inference/mcmc.py
@@ -251,7 +251,7 @@ class MCMC:
 
                 # output current autocorrelation estimate
                 if self.verbose:
-                    print(f"Mean autocorr time estimate: {np.nanmean(tau):.3f}")
+                    print(f"Mean autocorr. time estimate: {np.nanmean(tau):.3f}")
                     list_gr = np.round(self.gelman_rubin(sampler.chain), 3)
                     print("Gelman-Rubin Test*: ", list_gr)
 
@@ -282,15 +282,15 @@ class MCMC:
         # Print summary
         print('\n')
         print('-'*15 + 'Posterior diagnostics' + '-'*15)
-        print(f"mean auto-correlation time: {np.nanmean(tau):.3f}")
-        print(f"thin: {thin}")
-        print(f"burn-in: {burnin}")
-        print(f"flat chain shape: {finalsamples.shape}")
-        print(f"Mean acceptance fraction: {acc_fr:.3f}")
-        print("Gelman-Rubin Test*: ", list_gr)
+        print(f"Mean auto-correlation time: {np.nanmean(tau):.3f}")
+        print(f"Thin: {thin}")
+        print(f"Burn-in: {burnin}")
+        print(f"Flat chain shape: {finalsamples.shape}")
+        print(f"Mean acceptance fraction*: {acc_fr:.3f}")
+        print("Gelman-Rubin Test**: ", list_gr)
 
         print("\n* This value must lay between 0.234 and 0.5.")
-        print("* These values must be smaller than 1.1.")
+        print("** These values must be smaller than 1.1.")
         print('-'*50)
 
         print(f"\n>>>> Bayesian inference with MCMC for {self.BayesOpts.name} "
@@ -777,7 +777,7 @@ class MCMC:
             )
         if ~np.isfinite(tmp['logml']):
             warnings.warn(
-                "logml could not be estimated within maxiter, rerunning with "
+                "Logml could not be estimated within maxiter, rerunning with "
                 "adjusted starting value. Estimate might be more variable than"
                 " usual.")
             # use geometric mean as starting value
diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py
index 4db354bbd541affdc50a8dce37eb293188091f73..e1795a74ce7a7b7a7c9519b30b53e1ea11d4eab8 100644
--- a/src/bayesvalidrox/post_processing/post_processing.py
+++ b/src/bayesvalidrox/post_processing/post_processing.py
@@ -237,8 +237,8 @@ class PostProcessing:
         elif samples is not None:
             self.n_samples = samples.shape[0]
         else:
-            raise Exception("Please provide either samples or pass number of "
-                            "samples!")
+            raise Exception("Please provide either samples or pass the number"
+                            " of samples!")
 
         # Generate random samples if necessary
         Samples = self._get_sample() if samples is None else samples
@@ -922,7 +922,7 @@ class PostProcessing:
             ax = plt.gca()
             _, p = stats.shapiro(residuals)
             if p < 0.01:
-                annText = "The residuals seem to come from Gaussian process."
+                annText = "The residuals seem to come from a Gaussian Process."
             else:
                 annText = "The normality assumption may not hold."
             at = AnchoredText(annText, prop=dict(size=30), frameon=True,
diff --git a/src/bayesvalidrox/pylink/pylink.py b/src/bayesvalidrox/pylink/pylink.py
index 7af4a14b8f8acb62c21862d5df4a527dc7fe57b9..011c692f1784b35b151d49ddaa5c6b31dce6124d 100644
--- a/src/bayesvalidrox/pylink/pylink.py
+++ b/src/bayesvalidrox/pylink/pylink.py
@@ -170,9 +170,9 @@ class PyLinkForwardModel(object):
                 obs = self.observations
             else:
                 raise Exception("Please provide the observation data as a "
-                                "dictionary via observations attribute or pass"
-                                " the csv-file path to MeasurementFile "
-                                "attribute")
+                                "dictionary via the observations attribute or "
+                                "pass the csv-file path to the MeasurementFile"
+                                " attribute")
         elif case.lower() == 'valid':
             if isinstance(self.observations_valid, dict) and \
               bool(self.observations_valid):
@@ -184,9 +184,9 @@ class PyLinkForwardModel(object):
                 obs = self.observations_valid
             else:
                 raise Exception("Please provide the observation data as a "
-                                "dictionary via Observations attribute or pass"
-                                " the csv-file path to MeasurementFile "
-                                "attribute")
+                                "dictionary via the observations attribute or "
+                                "pass the csv-file path to the MeasurementFile"
+                                " attribute")
 
         # Compute the number of observation
         n_obs = obs[self.Output.names].notnull().sum().values.sum()
@@ -316,8 +316,8 @@ class PyLinkForwardModel(object):
                 Process = os.system(f'./../{command}')
                 if Process != 0:
                     print('\nMessage 1:')
-                    print(f'\tIf value of \'{Process}\' is a non-zero value, '
-                          'then compilation problems \n' % Process)
+                    print(f'\tIf the value of \'{Process}\' is a non-zero value'
+                          ', then compilation problems \n' % Process)           # TODO: occur?
 
         os.chdir("..")
 
@@ -499,7 +499,7 @@ class PyLinkForwardModel(object):
         if len(NaN_idx) != 0:
             print('\n')
             print('*'*20)
-            print("\nThe following parametersets have been removed:\n",
+            print("\nThe following parameter sets have been removed:\n",
                   c_points[NaN_idx])
             print("\n")
             print('*'*20)
@@ -656,6 +656,6 @@ class PyLinkForwardModel(object):
                 shutil.rmtree(path)
 
             print("\n")
-            print(f'{dir_name}.zip file has been created successfully!\n')
+            print(f'{dir_name}.zip has been created successfully!\n')
 
         return
diff --git a/src/bayesvalidrox/surrogate_models/bayes_linear.py b/src/bayesvalidrox/surrogate_models/bayes_linear.py
index a7d6b5929a83fc89d15d7ab8f369187d0542923c..767e6fff73df0d524dcf94e620b0a67ae0742d83 100644
--- a/src/bayesvalidrox/surrogate_models/bayes_linear.py
+++ b/src/bayesvalidrox/surrogate_models/bayes_linear.py
@@ -138,7 +138,7 @@ class EBLinearRegression(BayesianLinearRegression):
                  normalize=True, perfect_fit_tol = 1e-6, alpha = 1, copy_X = True, verbose = False):
         super(EBLinearRegression,self).__init__(n_iter, tol, fit_intercept, copy_X, verbose)
         if optimizer not in ['em','fp']:
-            raise ValueError('Optimizer can be either "em" of "fp" ')
+            raise ValueError('Optimizer can be either "em" or "fp" ')
         self.optimizer     =  optimizer 
         self.alpha         =  alpha 
         self.perfect_fit   =  False
diff --git a/src/bayesvalidrox/surrogate_models/meta_model_engine.py b/src/bayesvalidrox/surrogate_models/meta_model_engine.py
index 2df2dee5390ae4e6dc7eb88343c2469dbd88aad6..fb13076e92876fffa2445f992cb65e31bedf883e 100644
--- a/src/bayesvalidrox/surrogate_models/meta_model_engine.py
+++ b/src/bayesvalidrox/surrogate_models/meta_model_engine.py
@@ -14,11 +14,16 @@ import scipy.optimize as opt
 from sklearn.metrics import mean_squared_error
 import multiprocessing
 import matplotlib.pyplot as plt
+import pandas as pd
 import sys
 import os
 import gc
 import seaborn as sns
 from joblib import Parallel, delayed
+
+
+from bayes_inference.bayes_inference import BayesInference
+from bayes_inference.discrepancy import Discrepancy
 from .exploration import Exploration
 
 
@@ -1067,7 +1072,7 @@ class MetaModelEngine():
                                             maxfun=max_func_itr)
 
         if verbose:
-            print(f"global minimum: xmin = {Res_Global.x}, "
+            print(f"Global minimum: xmin = {Res_Global.x}, "
                   f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}")
 
         return (Run_No, Res_Global.x)
@@ -1237,7 +1242,7 @@ class MetaModelEngine():
 
             elapsed_time = time.time() - start_time
             print("\n")
-            print(f"elapsed_time: {round(elapsed_time,2)} sec.")
+            print(f"Elapsed_time: {round(elapsed_time,2)} sec.")
             print('-'*20)
 
         elif explore_method == 'LOOCV':
@@ -1376,6 +1381,31 @@ class MetaModelEngine():
 
             # ------- Calculate Total score -------
             # ------- Trade off between EXPLORATION & EXPLOITATION -------
+            # Accumulate the samples
+            finalCandidates = np.concatenate((allCandidates, candidates), axis = 0)   
+            finalCandidates = np.unique(finalCandidates, axis = 0)
+            
+            # Calculations take into account both exploration and exploitation 
+            # samples without duplicates
+            totalScore = np.zeros(finalCandidates.shape[0])
+            #self.totalScore = totalScore
+            
+            for cand_idx in range(finalCandidates.shape[0]):
+                # find candidate indices
+                idx1 = np.where(allCandidates == finalCandidates[cand_idx])[0]
+                idx2 = np.where(candidates == finalCandidates[cand_idx])[0]
+                
+                # exploration 
+                if idx1 != []:
+                    idx1 = idx1[0]
+                    totalScore[cand_idx] += explore_w * scoreExploration[idx1]
+                    
+                # exploitation
+                if idx2 != []:
+                    idx2 = idx2[0]
+                    totalScore[cand_idx] += exploit_w * norm_U_J_d[idx2]
+                
+
             # Total score
             totalScore = exploit_w * norm_U_J_d
             totalScore += explore_w * scoreExploration
@@ -1405,7 +1435,10 @@ class MetaModelEngine():
                     # select the requested number of samples
                     Xnew[i] = newSamples[np.argmax(maxminScore)]
             else:
-                Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]]
+                # Changed this from allCandiates to full set of candidates 
+                # TODO: still not changed for e.g. 'Voronoi'
+                Xnew = finalCandidates[sorted_idxtotalScore[:n_new_samples]]
+
 
         elif exploit_method == 'VarOptDesign':
             # ------- EXPLOITATION: VarOptDesign -------
@@ -1944,7 +1977,8 @@ class MetaModelEngine():
         # If post_snapshot is True, plot likelihood vs refrence
         if post_snapshot or valid_likelihoods:
             # Hellinger distance
-            ref_like = np.log(valid_likelihoods[valid_likelihoods > 0])
+            valid_likelihoods = np.array(valid_likelihoods)
+            ref_like = np.log(valid_likelihoods[(valid_likelihoods > 0)])
             est_like = np.log(Likelihoods[Likelihoods > 0])
             distHellinger = self.__hellinger_distance(ref_like, est_like)
 
@@ -1976,9 +2010,6 @@ class MetaModelEngine():
 
         # Bayesian inference with Emulator only for 2D problem
         if post_snapshot and MetaModel.n_params == 2 and not idx % 5:
-            from bayes_inference.bayes_inference import BayesInference
-            from bayes_inference.discrepancy import Discrepancy
-            import pandas as pd
             BayesOpts = BayesInference(MetaModel)
             BayesOpts.emulator = True
             BayesOpts.plot_post_pred = False
diff --git a/src/bayesvalidrox/surrogate_models/reg_fast_ard.py b/src/bayesvalidrox/surrogate_models/reg_fast_ard.py
index 44073da8e78642ba3b3914f6ce55a2d01986b1f1..e6883a3edd6d247c219b8be328f5206b75780fbb 100755
--- a/src/bayesvalidrox/surrogate_models/reg_fast_ard.py
+++ b/src/bayesvalidrox/surrogate_models/reg_fast_ard.py
@@ -286,9 +286,9 @@ class RegressionFastARD(LinearModel, RegressorMixin):
             # raise warning in case cholesky fails
             if warning_flag == 1:
                 warnings.warn(("Cholesky decomposition failed! Algorithm uses "
-                               "pinvh, which is significantly slower, if you "
+                               "pinvh, which is significantly slower. If you "
                                "use RVR it is advised to change parameters of "
-                               "kernel"))
+                               "the kernel!"))
 
             # compute quality & sparsity parameters
             s, q, S, Q = self._sparsity_quality(XX, XXd, XY, XYa, Aa, Ri,
@@ -319,7 +319,7 @@ class RegressionFastARD(LinearModel, RegressorMixin):
 
             if converged or i == self.n_iter - 1:
                 if converged and self.verbose:
-                    print('Algorithm converged !')
+                    print('Algorithm converged!')
                 break
 
         # after last update of alpha & beta update parameters
diff --git a/src/bayesvalidrox/surrogate_models/reg_fast_laplace.py b/src/bayesvalidrox/surrogate_models/reg_fast_laplace.py
index bdff324ede818a42d226e9aa55aaf01666ca8fc8..84faa6026e18f9013ed04b1bb08e2740671d3af3 100644
--- a/src/bayesvalidrox/surrogate_models/reg_fast_laplace.py
+++ b/src/bayesvalidrox/surrogate_models/reg_fast_laplace.py
@@ -307,7 +307,7 @@ class RegressionFastLaplace():
                 # recomputation
                 # zero if regressor has not been chosen yet
                 if not ind_global_to_local[ind_L_max]:
-                    raise Exception('cannot recompute index{0} -- not yet\
+                    raise Exception('Cannot recompute index{0} -- not yet\
                                     part of the model!'.format(ind_L_max))
                 Sigma = np.atleast_2d(Sigma)
                 mu = np.atleast_2d(mu)
diff --git a/src/bayesvalidrox/surrogate_models/sequential_design.py b/src/bayesvalidrox/surrogate_models/sequential_design.py
index fc81dcd4529ca0708dfba47385aef4415992eb3e..1e0935deed32ad5c398a82879d65723b22f03080 100644
--- a/src/bayesvalidrox/surrogate_models/sequential_design.py
+++ b/src/bayesvalidrox/surrogate_models/sequential_design.py
@@ -1099,7 +1099,7 @@ class SeqDesign():
                                             maxfun=max_func_itr)
 
         if verbose:
-            print(f"global minimum: xmin = {Res_Global.x}, "
+            print(f"Global minimum: xmin = {Res_Global.x}, "
                   f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}")
 
         return (Run_No, Res_Global.x)
@@ -1269,7 +1269,7 @@ class SeqDesign():
 
             elapsed_time = time.time() - start_time
             print("\n")
-            print(f"elapsed_time: {round(elapsed_time,2)} sec.")
+            print(f"Elapsed_time: {round(elapsed_time,2)} sec.")
             print('-'*20)
 
         elif explore_method == 'LOOCV':
diff --git a/src/bayesvalidrox/surrogate_models/surrogate_models.py b/src/bayesvalidrox/surrogate_models/surrogate_models.py
index c51ea8c6679aaeec685da069154e8f460c7c4450..f71acbdc305feb146319c430f579cb5090daf64c 100644
--- a/src/bayesvalidrox/surrogate_models/surrogate_models.py
+++ b/src/bayesvalidrox/surrogate_models/surrogate_models.py
@@ -136,7 +136,7 @@ class MetaModel():
 
         if self.ExpDesign.method == 'sequential':
             raise Exception(
-                "Please use MetaModelEngine class for the sequential design!"
+                "Please use the MetaModelEngine class for sequential design!"
                 )
 
         elif self.ExpDesign.method == 'normal':
@@ -238,7 +238,7 @@ class MetaModel():
         if verbose and self.n_bootstrap_itrs > 1:
             enum_obj = tqdm(range(self.n_bootstrap_itrs),
                             total=self.n_bootstrap_itrs,
-                            desc="Boostraping the metamodel",
+                            desc="Bootstrapping the metamodel",
                             ascii=True)
         else:
             enum_obj = range(self.n_bootstrap_itrs)
@@ -516,7 +516,7 @@ class MetaModel():
                 self.ModelOutputDict = ExpDesign.Y
             else:
                 raise Exception('Please provide either a dictionary or a hdf5'
-                                'file to ExpDesign.hdf5_file argument.')
+                                'file as the ExpDesign.hdf5_file argument.')
 
         return ED_X_tr, self.ModelOutputDict
 
@@ -882,9 +882,9 @@ class MetaModel():
             print(' '*10 + ' Summary of results ')
             print('='*50)
 
-            print("scores:\n", scores)
-            print("Best score's degree:", self.deg_array[best_deg-1])
-            print("NO. of terms:", len(basis_indices))
+            print("Scores:\n", scores)
+            print("Degree of best score:", self.deg_array[best_deg-1])
+            print("No. of terms:", len(basis_indices))
             print("Sparsity index:", round(len(basis_indices)/P, 3))
             print("Best Indices:\n", basis_indices)