From bce706410b1970bb0b9c520b7791fa7d3f244a43 Mon Sep 17 00:00:00 2001 From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com> Date: Thu, 18 Jul 2024 17:23:54 +0200 Subject: [PATCH] [docs] Update user guide to match changed example code --- CHANGELOG.md | 28 +++++++++++++++- docs/source/bayes_description.rst | 6 +++- examples/user_guide/example_user_guide.py | 1 + public/.doctrees/bayes_description.doctree | Bin 25020 -> 25890 bytes public/.doctrees/bmc_description.doctree | Bin 14220 -> 14201 bytes public/.doctrees/environment.pickle | Bin 3054356 -> 3057524 bytes public/.doctrees/model_description.doctree | Bin 13067 -> 14616 bytes public/_sources/bayes_description.rst.txt | 8 +++-- public/_sources/bmc_description.rst.txt | 2 +- public/_sources/model_description.rst.txt | 14 ++++++-- public/bayes_description.html | 9 +++-- public/bmc_description.html | 2 +- public/model_description.html | 16 ++++++--- public/searchindex.js | 2 +- .../post_processing/post_processing.py | 31 +++++++----------- 15 files changed, 83 insertions(+), 36 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 42c974fb5..d1669ae56 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,32 @@ # CHANGELOG -## [Unreleased] +## [1.1.0] +### Requirements +* numpy now at 1.23.5 + +### Added +Features +* class `SeqDesign` for sequential training + +Examples +* Example `user_guide` to go along with the user guide on the website +* Example `principal_component_analysis` to show application of pca on metamodel outputs +* Example 'only_model' for use of inference and model comparison without a metamodel + +### Changed +* Moved functions for sequential training from `Engine` to `SeqDesign` +* Moved `hellinger_distance`, `logpdf`, `subdomain` into `surrogate_models/seq_design` +* Early stop in `BayesInf` for `BayesModelComp` + +Bug fixes +* Import of `ExpDesign` allowed +* Images in `PostProcessing` only saved, not opened + + +### Removed +* Disabled exploration with `voronoi` + +## [1.0.0] ### Requirements * numpy now at 1.23.3 * .... diff --git a/docs/source/bayes_description.rst b/docs/source/bayes_description.rst index 6dac51ad1..5017bceea 100644 --- a/docs/source/bayes_description.rst +++ b/docs/source/bayes_description.rst @@ -48,10 +48,14 @@ Next we define the uncertainty on the observation with the class :any:`bayesvali For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them. The ``parameters`` contain the variance for each point in the observation. +.. warning:: + For models with only a single uncertain input parameter, numerical issues can appear when the discrepancy is set only depending on the observed data. + To resolve this, a small value can be added to the variance of the discrepancy. + >>> obsData = pd.DataFrame(Model.observations, columns=Model.Output.names) >>> DiscrepancyOpts = Discrepancy('') >>> DiscrepancyOpts.type = 'Gaussian' ->>> DiscrepancyOpts.parameters = obsData**2 +>>> DiscrepancyOpts.parameters = obsData**2+0.01 Now we can initialize an object of class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference` with all the wanted properties. This object has to be given our ``Engine``. diff --git a/examples/user_guide/example_user_guide.py b/examples/user_guide/example_user_guide.py index aa583c5fa..aa573997e 100644 --- a/examples/user_guide/example_user_guide.py +++ b/examples/user_guide/example_user_guide.py @@ -168,6 +168,7 @@ if __name__ == '__main__': Model2.Output.names = ['A'] Model2.func_args = {'x_values': x_values} Model2.store = False + Model2.observations = Model.observations MetaMod2 = MetaModel(Inputs) MetaMod2.meta_model_type = 'aPCE' diff --git a/public/.doctrees/bayes_description.doctree b/public/.doctrees/bayes_description.doctree index 7ecf21c6be10ecf165c848a850df703d88514ba5..8ee53e9e3d382e1d5891222a58e230b40d00780e 100644 GIT binary patch delta 1630 zcmc(g&u<e)6vubgcGDP|CJ_Y7Ceau}2_$tK8WB4<NdqB}SP4{yl8BIY;+-(Na@J<o zo5%++6{;#Et5tbRFFo{^Qn>Vh_P`;nr~s)|rB(&0cO=LOMg65zZByFLuDyiv2c(yk z=JUSqeczjz-TnL)`uH2<JMX)^g<kWm#7eBTTr*EJRaQ@%VD5UuJZrWxUwLULr{US0 zM6)`cmkSK%)NBzGtaDwKVnfYPtw3ZI%WB>z;5^aDEG<y29jnGH)#MDxVp-P>s^bh% zG0EpC(eON@DlRaJC0WmCG*8r0rpR?zr-h1xMDtXYxCvi6%G|V0wK*zbi4;iGe=LVJ zs^_wElt*Q~-EL`?WV3jVWDV+gO;b!HiDwjYPK7z5$%OZdb2I<-&J?3&iPfAkS$y5+ zcE>LLPjfqCH<g!4>vYcUyibo?TBmb<)2!U=kb*pdz_v0EYaU}QWAJwZ!}pEPKGVfQ z$|Di-O<_@4g`<ZyHI5n6N>LPq$9Ll^sO`L2*A|P$I?d|-IjFvZDi*xVX83X6FzT@$ z?)d|u2rPA}-WRzkoT?iWl@9nh(G1<&TEsRFcWVJ-+jeil4);ADgu%U|z9cUZf%o<v z=eZvxg75|2fkt^&Ctpu>r>gXJ_b&8WmEw4yO4IQ$I#Z=r;!{<M6CLP+O>u-98Plw( z?2lriO3r&{uI-I&cm!Rxr5hhhJFpBlPBg(gT>+Tv@rw};3`_*z%iva&gnO+)>v~T& zLZ3N94?-e&2Q4~%@90gSTTU;F@NRFsN+0yLp&x7-Saf?q(I;A1T&q6hRKMESiO{lB zJ!Nfwc|Ss{Zh6t;g@!FL4weU!E^dr^l+7;xbpJq=uLdIGP8W|Kh>ELgMx(ZoSpEeD z`or+&ffO7bd>cKvdJDciSS$8>;ir9v(Kv*MUKK~}TJ84Lfh(yxSZ;j|z8*@8Co7ss zYv#}bg49So{L`@kUKmb@XDa40TpCWhflDJP@q)|Gjr{8HBNKjSbEmAUsqboh3tmCc z;gw(r{yOM~57V*wPdH)Ctev%_X82wC0Pdw<LhoCfj{PP!+_lvPYg6tcE($3(tk8)C z)Nuc440pzpJg06V=0Ury{>cZPKEWpl$|EjRezzYh{9%-9Rr|YM%v0U|F(|g?q7%Pp Ru&_<+1h!FGvB>Ku(Z5r+I<Ei# delta 812 zcmZ9KUr3Wt7{>RWZP;|PElX|U-ytnr+hn>wZmv1qbem(9wV@fJvG`iGYPz5z$P1~_ z2L|uF=+eLo?<U_(7e!$gk{3~Q6G+i8f-a0Aj3R>0`L-{mn-|XWzR&MGocBCjhsV!B zd0V-#GP$DMw&IpiL-<v^(6y?{a}{UuTy5#3&d=p%^SAO`L+UrdYWon_g@pYVfC`U0 z(@=xYoG0J_7Tt|#bv1zwW3GNhvs@-a?_NC?Tv4TyT2)ATP7#$HzgZ6Ala_X{QAa0b ztoKAD+3G$FfwIiI>m~WAyA={lu2fNKc8UfIW7-kcl!F-=z69ny7C2ufeDO3%ghRdE zaI-AW_x3Zn#n1&#{9x1z2CoAEQDYB*50{R<CW|H3)_@C^Mbjew@i`^=SYHQT^J(#` zyRCjv$^+(IS*V}U{UUw8zZ2k%NFNmL_xphqckrJ@d=W<j9!V|)EVvL5@s&jhe+12@ zTI>wANmJ>dfoK${tF!J5>2Y$PL0#GvdlGsNixFZm2)~WKp^L=OjfKH^*mbyD^>4fF z3URw9@lGgCY>aNgSNrxroDt9*9)UjW4aJ4G;Rirs3UQPCu!|(bAP~c!!y}S@E*il| zREy1ZZM5+*`kggcoH3y~_Ob%*;k)>#Hm8uuxJJ&zHASXq;yDZ^Y%nX_Nc<qWN3=Jc z<vLQEK!+MqOTz5f66jw1FQa4JLp?L&R(X|HDU<Ql$xP;Q2Cq)k2&)roa_=YVNNuw6 ro|O$+vb-uic_}$_{YrA0{%m84&E&*>F3Yttg&8<?YC~8%dm8=%Yhn*3 diff --git a/public/.doctrees/bmc_description.doctree b/public/.doctrees/bmc_description.doctree index 39a43554367329452939a1ea7af91b40a8f37bb5..3b984aa62b15d57cd00a7b209edc71cd6e9fa588 100644 GIT binary patch delta 165 zcmeCl|Cz_qz&bT=BTK(7qvPbex>}+M3I3%e1*Ij$@y_|V1&KwO#rb&&lP~H9O_o*R z5);EN9jd3!lEK8lFxgO0ck>3lL}teAn}v*?Fx&M41+%(9L@S7B0urS?oOy}4sU?*K hsl`)jr)Xq>)O3R7J4-VZK_Vax89Z4{n@!9j7y-TgHZ1@E delta 162 zcmeyF*OSlEz&f>YBTK(7qy6Ojx>}PB^+YCL(G8U6?BOrTEXhfYFG@{IElSNxPMtD& zie}@K+9?_ttUV%Nb#8iUELltp43iB7HCeMVfUM24^^%zxcW(Y~_=MT6A1IL310vc% tL<^88?cvNz%uOw+EJ!T|8I=W6(+QUEEX_~^iGVa@@MN`YRy2!X1ORqqGsFM@ diff --git a/public/.doctrees/environment.pickle b/public/.doctrees/environment.pickle index 8e2d9dff4dc84f1ba9465c97db6f1c82f63a406d..843d0427e670bb319e1d388bd972ea8d98897a99 100644 GIT binary patch delta 146602 zcmd442Ygh;`ajG$spK3Wl>lj*J!f}AdMKfXB=jD-^aQd%){umR&=f)u1q@O)Fm?g; z;<cmr%e7MM9j?8gV87~BuwK0?@AJ&e?wQ@>thDR@&F7QZ-8u7po@ZvBd1mIBa+?0{ z5$T6l9+86AgzOC4A3QN#N_CI#pDHzxJqMIY?zI);<i??7`_0J%NbbKK5$?S`liZPm z+LJZK;i@~Y?{M<n(a=#4+s7T3(TjZ7;E0hM3*32`nWXTkh!}VGZrLRFvy>>gvA28s z(BAH)J^Dt3&#kU?F08I}Hj$G@LI;p_k4N<+YdU6xk^4I-`R>=!i`_>SW|7=iQWHtn zTau@_^X3h7A6__;<aAd0yNkzWxepCVA=!QOj!}*6%PQxTJL~4vR@5x1sIF>)blK$S z577zk9qGxWWOTMQsxf%3vusgQV|Yc~!ioiDiz?ifoF4AFZqa1@<5Ah}!g7_|*Gb7C zHKoyEk&Tfx)pbh@lJ2$L^2muE@tw)G7h{shp*_KA<cvGGkGp7WHYxofGL@VxP3TKL z%+89YtWW)sp6Hf)WRv?3#H%rl?W-4-Ehwv+Utcwkiq|;A9o4hD`{>*l_s1Dy+~4PB zk?k+W3?`|E(z18`6xW$V&DP^cR2h_fRQaT~jp5GaWs7Pmo$jp60(Vf4T(bKg5#eD? zjUDDLnm5P&S#DQy^gw6_a_VR(WHvHJC-={eQKB0|Dyqtz%OT54>X%g4R+Lq`%d+N^ zZ8s;EkdKapCb}&%BX|8MMUtEXYbSU0rG;{1k$e2WJW~3W9Ob^W-!Nd+m%JVsLsOEY zo#bR<Ig~acB&e*WqRAaOC)@qc^lW$T;22Po6Qv1bpoX$Z&HYJH?rj;9+|id#B4v}p z3*6D&r@Kq~XGmQ@AG)~j%j`&s4_jm0@AYmcjU`3<(hJD8XVapvWV6YM=i=ju^iih* zREPfViUC=n@j-3cG<GE8XIMMMb;R#sz&^XSZb_4C5dMrKYmZptqsHO)aI9nYtc&~f zfG!O^Fjn<w8hfJ9I9{Z6EG`e@+S2l35xp=XuA-`@UQmPTD)w+JrQlH{7MDN)i>k|= zf-34BL?}Lup-<;kFRCf4t*G-nN^;*@&^a^>6LciISK2$dPYei&YFATTSy_+T!pN7n z|67m{YQa>UNnU|9E`i1O#~9U9!7Q$~`{Zy7)-KjrN+>O=BKMwwL!^H0KPIpzyT=7( zD)h-Hq%ee5{F?8e;<pusNCobrBP^)qjtEB53W>0pCXvExgHytrTpFT!11f{uKQUAZ z!RiQcmrk@`YfBAdsLt+ti~5EpV$y6(>OQnTM9M(vP+=o?sbO5YAdrs5k=@USMv{Y1 zg@%Nx440ahL4Qj<-KUC&hK|J8OtO7ccxG^uYjlwN!%-<-Q^fg7?z;zNhW;)?%4GM+ zt1Z$P_nAQ><sq0j7Zf&v<vapOP4-x+Xfke+62tSG1CN+Sg8hnCS$4u$`t3vexNC+a z%YVr3Z9^tYaqg`{3W(+X4l(W%Lqa6oy?<mLIdqK@&xIN2zJGKc*s6A{BHFr-4jmjk z3F)6c8k*!T>6PxDGb~i<3h}+s{)KXG?T}kO8VUwXfzpMx`A}3CIrU_8TXOT$(V<eb zJ8$@e&`wOSsGeD1$8?h2FD6vVg<_s0<wH2oos!vs3zH69x{;bcq9cQvT**+&W28)X z^2l*g){ap<$f1A6v}Mc+As1sMdB><?sXIKU#;+5nkqU*Gw<9AaoRvxkEY*QhFc8ag zmyAx7ChQo6UsQ7H!T1o#0oflUb%VMCh5ERYJ#-?=S6*g!RtxR%x0BXF&5q9b?h|7| zg8M)m7?EuEwyeZmISCQ+8QDE>?06~0y?yLtX(*N`DIJgyEyY4a0r_xnLKGLy=3YB) zmNWv(${ktKF?bkKO3g_k+dheig**>-&n}r3Iv#mWLgO<<8cy@K`<e7kyx@!RVG*@V ztS|;ZA?FdW=?R>PeaD3H!EKOoRCzYp{cNg7;rr5*&}Ai%(w9?1rATORWl|JKGpr#T z($_ae&MB{+S5>yiIcG`roSL#F3!7ForMb|?xu#-(7S44E258(|(=b5O=9-Q{7Yt@# zfQHRA69Y77u2~qM5p&JP0Iip64hCqdT%`~+xX?nm$}m7{<eG~?5(e`yKm+6|#~>R6 zCk7=L%*Ox?k81%2XmDH$G3bp!1qMYJxG?C4!KE0WS#ecjP=LXr1`N@RxT-Kf`{Am_ zAOwRN3_4@57y~pJu38K-FsQ>I2!kaUpkZ*;W6%?Wr5K=Da4o}NGzQBtkT6(*0hoe@ zHm;TUbqofVVK4-P%P~Mh;97+NwtLrV46w1gsL+3a9dWI}pK%zh#X!ek9R>q2SdT$l z46eWcTeoWi23;|@5`zY8&#tR5NWowu2GJO7!T_7FYcmG97+j4(J_d~#q+_rJgJcY@ z!5|ZZtr%osunmJk47Ot+W3U5*?ijd(8X!!?uT2<qz+fi^!5HkqU;+jN0|y4zV$cnP z>oCA(>$)C;_88oNK_3im#NZ5;(M|X*27{Y17>dCy7{o%*;M$E}Z5ZsqU<3wxF&Kuy ztr!f(;5H1fg}QFXU^oVU!=M<0eHaYD;0_Gz82lZBHW=KAL0=5+!XOfZyD^ATFuVtY z@Sq1XroI{PPOcu|zM?wT{ZRE4+1?>i)8?=~YYMt-ND5`6D{)l0Ic(-XKYH}aq)_+$ znXzp*hgoeO<1cc$!GS+-nZ<tMa4L3l*zXV1pS1OE4*UA8Zx21Vyk<fu^hG7hy166Q zCc1a88Q>0CHd5;C&a3b0zJF<S+n+(ctxai-K52yK{|WqD`o-O_bkKu`R@j2vry4>+ z=hW4d&2zd>U7q9q^zsf5X0NIX@?qaUXqzj>U9zUc-LQ77&yxY1sj?pWt95N3+_~=k zptfCunRM~QGFXofZrbL`a{qc&MpzDucQ<TIl^aXQ_<oKO_b(fp<h)?_)=k|aT-`V> zA0KJtSJf61)YO<nN{;DCNTs{`ovSQud+=0gByqeW&HdWOv<O;uSRNWV`LR_4&?QL1 zN>16deD^=EoVNbZrmGHZlHgy4{~-7ehW`-w4~73Q_z#Eww(uVT{|fx8@ZS#p+rxhc z_>YADDEN<t{}}j>h5tDC?+E|#@ZSmkJHvk$_)mcUMEFmF|77@2fqzT$p-riGt(JnD zE5ofj9wu|{(n86HS7=3KX}T8KTy(_xYp^t<x&O1)ondl$GAaAQ+KJrqH!YH!aHY+X ztCDwa)22%`r0`9v6~STl@yT+VS&--8<+aZFO^rciRV$jDu8B0(HJN=(O(sY8X>oF8 zGKsWh$2l0LMIt2B7z$*d&uN0fB!^Gx3DRX`@lk6M*?NuEj_mIw4<K`fXM}g&9nz-F z!g$v-VBpf>`=~IN6+T?$FtxMx<D#dLsmH8CrEP||@g}UPe5vI?t$wa62?#X?TdHd< zO&gll(jJe|rsa`F`v23KF6})_qEb0|{GZl2UWtajX6-K>ID7CruUTh$!E;`>_LiPG zd+;}}ThkG||AaM_Y`s?tOE<|s7Ja=d4@>ZR2(V<y$)nbIa^;&@UCG^VSo_N#CzC@d zjsz0&rnRs1#o5a6DcSX=HADVXkfHzC%iyhDmDTP^ra-2(*Z|rke~?U~MrFj3)o)pQ z$>AwX>VLjv&6V4wkfJxCBv5fpX`rS`5oFri)(rT#{{$#HmfZPB-Hu5ennKmyl%tQ- zMel(6W^t*nd&k;C?snEv=Meo}YnGIAVN$neQfHit)a~B`4Vl2DUhtkZTb_E>QcogZ zzh}*pCS91+9hlT5=OXpH?^|cf%ed5&k6Sb4%g<Ws73A&X)=~0`6tt0PWXuPEzUFMv z!7EbaHe~SuE#`dGDw1Wj{#>%U;zJPjPM+11A6g6L`_5Ka>29+8gtZrZTu@_(Vp896 zE>c&XwC2gLa;YCV2~GI*vzGc8Df-B2la5`O)X_}pm(N1#;19rD(Mla1z``|#&aJPk zbb|k(PXWxZn9cosfM0LM?OmydViBX*7+&d|zof3B+}TvtYWK<MO-I8?`>dJp4Z5@$ z$z=8?)}3VLC)Qh1ZVhV#=H6u{B>DQ7-j%$vLrWwlKCvnT8-wa=E1F!t!GNbRVqRHQ zc}02I5@#Lsi!=-LK^<rOOpJ$d8;i_3Xj0_X5(jYk+tyYrSa{AEpoN;lNrWz0Rz0t} z@=ptZRHtk4r1}eMMDwiAtequEBc)$hyOQ0XTZhUSmb2{%G&0}|tCfML$^*^;*ZyDD zDGb+{4WX`q2zk7P<UFb;lMW-Y9b{D)_>Ye^hJ?xBiSl+$I?HLAYb8`(;1Sh0%ejxJ z<XOOLoSqc4IawyVZwxMMIhg9glt&{qUs<iPW;wqB#Ajbwm&q%Ij14qXIb-zE5r-gD zbC-bvxitJ)1jRtddgS<1jzsd&*VfJQMuBX<KPT%M)L^@y!^LFIgdF>~^*(u*g*5Ed z;;dZ7!e9Uj8os0z9U~DpXqmCC$R?9^ySpSb%imgmlcarus@*3@YB~g<gN}XV>C@I) zd7n_+=aV(7khPTNN58X{%kr}<gO~7<+5=_Vx&d+Bj>Y~r2zZM=9vh%SJf)dMQa{jR zn)m!@Jt0YNVCF@Y|FCtHKPeQ<IjH>c^HKS)fLCCZ&tawZ2HEn9^>vnqt|aL<JzqW} z$Qif--yog-Yn>p!Ayi<)dFUn=#aGF|h+hxJwJV#Cw1;-l_~}rXqEIJ&on=|Yl7*J) zs>&6XGD}@W)q+Z=1(t7|wPfk;PO%M{ma6(i&f1E3WtEnSy1II2odpcJrL3mLSypRV zw$NE+S+dY+DX)MvDQ8Vt)w~su%u?rE!bp}oYn)*As}{gdny`9qowIhSv)lqbL0NXh zq-sm8v#z>wsS}=7)McU!i^?i1ElbNP>z$T)IlybK(^6Jm4v;0)l*Ce4Q~*X!OZ9wz z-r3~XmulyvfY~F}yE`TPzs}e6bIezhs{_;<biH(j`Tzg?X=jl?a@jq>UC8h-tuwj* zb!!BjTb<9Kwg+o}@u{>!JByy;I`2@!x1q3};?m`53DUFV@Nd>5u^GA9xp}^2@AHIB z@)`e}RN52#uMA~hW+<cou>L4X14vOQ6r0z*A`RQQRhuD=Ajcv!=3O}lvp9qm+&TGH z<cX=&EXtc<%KV@<F4}OX^k>B}fTYPF5|y+oxkuKrr3Hp~fvw>H(k)0E@5Kgb-J}&~ zkIfI(k{LEFY-gJ`QX5!-dTCHnmUQ*m(>N2Xm3#Pa3DJ5>H=R8;F;vqTc7b%?*~89+ zY9kn|6Dj!)+5`Fy&ZigW6|f8kD3<1z!?a!!Nm`K>E<gLf)zHD@bdD55NL%e?=mkMR zyOL`nv|{P_*_Oc@#Gz;f9_&^{>mhx6mRR|XRB~*Q-i3iLumFcL4dw;-h^qCG<S;93 z-QzCuFo?VoVM}bTZx7j)<E+dffQ2R}S&dPBz{Y~GWszEu7ml7jIp=KQ?c%J4=Q4{d zF0^(eojbtv=gugty_Y8SQ52mmO@z&l*1F@T*ME3Enmk6V2<bbL5~Ed;9kJR~<k!p6 z+6fVEc^a#qu@|>~NI^WzW&akZO_Uc1xj&!0Oc(P)R(I59$o2mto$7P5BcXYEytY@8 z*K?h+cLtrhTF62`os!m*gPpZ$UUYF6ZIXP`IiUaDMf(NO-r5i3*WlBI789-6yu^HF zbLf$1o|&l434+Cj$5OPaVEJ)YjJW~E%f{TKF=T#q?L24GriE!_rLLuP*}qQmT@IMf z*gkBf!-+yh_1xVj53zPNqdDBB4V3@Xb28tdjcxk}I7(bGkYCcpttCgj2_$@0Ds~Ol zV|S%#PyQ*jtJ~Q+lmDh^1N!{#A?fkCU_?uwOAA)a9d-WB7tB6&zVzk=c(%?L?;PH% zJfVFX!}um9m{$ALviQKeVq~mHEUYIr;L7Q23{H~j=Q>?B7)s-2gj>VN?sP37!XQcR zUX|7*r&UT!E6}0f=UR}-=}sZBBnf)!z(c6I>Uz{XSa~9SAJcx2Z5qjaT)Rw$-}gMO z{cBL12DGCwXoo=r1of^x;BiA)@!=-=U{gH^&LU~z!6*_Yb}h4z(^0lHq##?{q>R8A z>I4}?4wq`9qK6t0@NHpy<52hFCkvVv<!BE}$|c4_l9#6qPnwDm)ZY=raxTKj+GJZ? z^Idsbu%yg4NAiU=AEY$LTA?fxFjTfBMg)8Vou5ihb=MXt8;y9(#E_2o2;-<^+|{`O z7EOP)uatLbB=0I~skDpi?x}544hUGxQj7uQZt(pY8Sk_f$@gj`^#R*-<wbJ@cR@eL z5YoLQZ-~~L<VMI5@?9E<+H5TXwq?Dwoyrg9M7T%zG-vybMow2-v&qYSwB?GT8`b3} zZ49e`aGgpkePi&Jz9PB(v>TKRb8svJr!lZ>(~)NudG#f`RVg-y#WC1G1Gc{jO6n_( ztgW!#sFax_J2K>Kj+{XmW)tf`tx#ER4vS~7dIRQRC{<doSFSZjc4Ek#3@Pm(+lsXD z%6;a5&J1ujXSG8o9#)XI;p9wzTfXwDIh=bqU*hoRX$B`KpP3^P7{iYZ1Tuum10^a3 zy@3zdNcU=J7ij~2k0X&^Ykd`=O_1F+S|4)F*IK#~Z!`3yWs68+oMLUPMc8b#Mab}Z zc$l_b86<%Hlq{7Y3vH}P46u>14{hbjbaMoE7EWadn7JGq4P%VHHrg73Y&MxJeqSjg zr$%bsl=bFhG{$%hXS~YB8pYU&TCQ@vIZS6T!nv<v+*jIAKZlc9W3(R1Bj#uuLpO7# z2SldF%wcv0dxbMS;LG%-aZqcg&Cw2q{)RLCN@N;tH>%aIX3`ie#Lk-kSH4V(CTRIe znmM{FL)#cyw%Uc_9cT_qXR!VTjH>KPWZs*UW`;yaHvG=@HWt6fkwd?RbRdb7wTza^ z`(b@Z52Z$6*iv~j8P7#_ro5}|OnKpRPfu;Da-#tDE23P6ypBt|%g*figXV}lhPdBA zP#fU3Gwoe%=i2+hYHOkLzB!$4jLtip&YQe=2h7m2mG8}A-5KnZ0i*0+vorO*Wu`V% ziE)^!1owDFI#^?E=OAkzv*nP-XK4eJbaPlw#?@iKJY4sTvK7ft&?nbhN6JtE`&Yo` zoh@^;d{wYQ8ricH4jDWVte3PHOhAV{u2fr~%oDiNp1stFfR2&&?8#-?3T25A-%8Kk zmr1(V!Bk<LgQ)_1QdQV3fc;dVfFW<<dA#1iRH4}%F_0k+7zkP_#KBZyor9~wA5LiA zC(P*-GCIc@9qC<iV!k#}`Pm#$!~j2V#_u{<KlB!eJkfro5})Q<|Ix<yrI;aONnSN{ zAW>v-m6k&;uh9A{+2)`@43yykNvojso~mgZB?CulHNSR24#%2P7|bY)Viblmw!dGh z%~zb}pdk!2*8^(FcIzefZpsF83fvvDj!|epwlkC)&C?HK9Ix}F_u)u29rTE5I_MYG z^qO{|3OQP9&rk$)#ZGsb^0L6ErO6t}SiO+O^z^+nrl;^p_4F43jCv|m;aG<Ji3#~V zW-6DIJYdUEBD?z5yD)AY$3X46vaaBJ;?0_L3JLWlHLI-=GO%CsU;EukA9G42j8Z<Q z)Sc8U)h<;^%mL#WU<?Du-Mcbng%decbvi89#ws=D@CgjQi1TxiHJ3r-xXK(bkpZsY z{9FdVyal!<WuG~65<}j`S?yu0o-hYYW`IXIt33uQR2JzyEag$s3-}R7PW>1XOt$`P z%U1<e;g<1+d#poSvy92BHCOB)V_v`wp+;wph4NIb`ScWPu_R3;scW=P8-77if5KoE z8jtB1oW`HuKw!)WG1(@XWD|WX%nK=)PP-_W+HeHBsLUO3h_V62S%^JUEdHE`OcvqK zrz25m7vt~G5dyjmlgi1vI)#TepIWP>N=i~XMDv*?X!Q`X=IY>3xl1}Zy(_&B*-~SR zYuC9k)HB<i3bUNG=`mq<!}z#<ZW$TBFW4dtB4^fX%}RlnQg3qj3N7AUcy%8Vxj_r* z(ipO&VhNm>V^!17NS96;?ywCeH5<UkKcji;2JIFZK65r|R|P9GjAZ0+qqa$Ml2Kc< zg~|dk{tB&A_ArQmwX_lR!+!(nDE4p+`xuulyQ_9|9xxAng7{wFfe#5+3k;Aq_M_&J z)M!VdT$_$dCW*Kob++E9@`cekboVQCj1z!^&xX_)By6kJ;FGKETVYbX2@}%tr=`}Z z=by{MU2IDcNw-MMNT=>{RVcD_QWo!sZ#Y|Gjcws@SJ{HvvYLfWtw}#MP=Wcl(|iig z;erzPZt7@kJFmKGNm)gevzDvEL`oKXfEn9ibtx&JwB*(u+Waoxne9IMj@+1G?bP;8 zphz=7_IzrM^UZ&w&#ogML4D+O{T+y~l4SxKP9`4-8x1d*39-(&ZN;D_Xg>MItvQur z$VjOCVLtR*RYYF-<GmujV$gtZtn$d|dpjjGzulzOO3H`Ea{?NdLYC};>D1>!EHu_m zJ<gi5p>`jVGrP2YJ`A9trjYv@9Npyqrju(b^&I7QKSsV)lIB_r&pmsaOiB?8(ct<E z0M5JZ2Dc$vw4;k0mcjOctV@^4sWpzoE>{3mAH|Pl3h*IsT0$wZrZwiQ3v7=GX|dwS z;wK$(%`30drb@k2GvqdPX2z*e*puW}T%_#{uw1-ksT9e5A|eBxyIljUiOtR%(AC!+ z*m!jhtL<L{toibQ43b)4?XC<IpMri|aJBUVf)`wEBZO)z`$o5PZc%NCtlGMh@%L&8 zs*uMEt~E|sEL2u&58bSNEIH=|sx?<8JS}UrJ-c$Tr1P+J*dEYs_?wz_krk`I=HGW~ zYozMMki=9&E*3A)TGoL<3m9XKA!qh#zdIZL3eKeLHtlWamcNA6&9`fxD>q<~d(1El zHRRhf$mlIF0p2G*xEQVARv>u6tzbWE1=2b)`wneN%QnFM5jU_lAY|@>+W@C5Dkg0M zWYOQX_0=!_6*cBn%bsk5LhYT}3(7lw^>hKoxmU}!$FgX<TboK(stJ6X=luMy$SnEy z-P(1^k3#OY-=kG1zY7uP+j;-Uv_qhM!P>#SH7&K{P^Ke<{B*BY?u^U)3oKXj!TYow zlA-}Gp;f1_qib22cyvw45g%TRmYo3vFSKP#eaPttU@EkZL_VmEXgMa~o+2%i)IF$u zt_m5v;JV|aThv|ihX=H)rTG*8ih4^Yi!X;6)z|;0)hK0t^>YC&nmcD&WR09`)|#Ew ze?`v7@Bh$}q#}~=u$DnyjMv(dKKH;@l!}M7KFTT~r#L=WI+m7>t6u^)c+|}ykKdzp zA>Tf%r79bQWZ34<XP&q!lg$$amP~PcM|Z7`Q~2nl#bB2Eg2d9rhTuPC64&<GOr3L~ z4<_R^F|ZxLn5G+(#;`gkyMBflW?>HHKdz4PV@no4syV_v+{o@nwXWS-;o!O*i<XYK zdSmax1_EB<bVESapO5wpC&>iT=P_-7JNXWUq#g_%7~UA-tXfjLqKO>-Tpq19wyj?> zKdX0EUB!YX((ZBa!8}279@nx$8f9ly6N%~_K1P~A?tWbRa?o8U*c}+`#o!hQ437~$ z+(aJ;z9O2K77-?Py#j6=*h3)oCesgUP0Gg@N3(aFEPf3R`_^=_DiKCx^SDFW50dho z5rfHwC!WR#ar?jtBSrHAN3?~(N^q7B>ESU3hHo5blhvG>V6#a|XWyhn<dh{UJj%-= zf>lKvDSZR{;O{2dTuQnxVtBMcoTmo&{&8@ap4cWu$Z>EA;Y4ad%S6#EQOO)w=WmmR z+aB&|H_{-TDU-slqm#(}57>t)6O4E)gTBNPBZrW}2kqVEky*4ADFT%2c?q^87*g@Q z42($}i8x?yBuQ^-5wLp_3sgwS4_UI5vCWYW*~f(_D}9-Z>G@^{NDqaX-F$<?CP~Ux z-}L?^%4aTDV~N%U?}fyq>K`3Dl54u!a+TYBu{@(SZ-s?)#FV_*ySsW$f9z(3cxaRy zCX_H|aT71$SrLlVq850XjlQ)2Rn?1>EJzMZGK!CDjG$$iY?DgD+ghZg9Q74>xPaux zd3=y`lgde745)tF;E3oCj9Ab=nE#(9mG6R6?mHu%HI$OswlJaA_=@wlS!|`CO*UI8 zfKR$okeuz?7=(i2E4T^d<R`Gc-YJ_cX!SG)@U`1+UI46T72^-KJP_0-o3CgUeh5qR zv&{)*uy!?r5xOLsEgg?I0c)G}<|w|5TkA#9<+RC=;eOin%1(1&7Gt-A0k?8?uYaUj zl)KGQ*$nk}FUrFX)+KIKUNQ&rvog;!;4_Tfu0FQW%E#s)zS4Zc3-WNIyHtX5d}~pt zf4<<{CWkHA{+>;?7ilF*7jpz(T8=jm9$s|Cg>F;nYYyiVuU;J9BZuUD2@J=ZBYLos z9Lo?=4>JBoP&lYKx@HENO4rOlgAWhU#;RgNAbV;+x#<3sb-whAh+jL%XG|J$SUcDT zV!@s*89wO_m3w{Rq8;OF!guiu-I2p~s61_s=*M^+;TgJvW$5-Cwy?V`hc|<a)0(b) zV@{?&Bl8t!{6!8q_MUyZ5|Zm%*+P>Yzz{My{2y4K{etoRG>0vfUHLsIw9OpM=R{Tt zmQ!*WxBlh;zJT4w3qU=QKHYUj8%aL+QPY%}=Ga0e=`@C&!kN{X1NfqKjTay=>+>IA z<~GOj8N)V)-NKpOX%65^*898wfmze9!0ZKcEMKgK<2q0W@>87INpk>SsQ$nU@G=`s zPX7kuX(`XN!ub;Q9}N3n&a9IkKrjb<jXExmnFBz0xh+z9o8yMF`s&GXa9JbO#c}3{ z5exzMh|#@{fIv>NM;mXGbc<4L4(BV}l^kA?C+r`((i}F5ab0h~SpKjn@cl#E@Ou|| zXM1vgXeYQK1oyu+V4S#*NU$<EVoD~D2kYab#m<^{!j=$yfpXASAl_v^X2g2B>~BN# z70OW~zSS<9uaUo;$4u1+dCXM7C+)I-^M#A1Y7)!+FFf}@!2%%eFOBJDsz7`VI+Bz{ z>cuhuXeE80$4u1+dEy?F{^n$+FvfitnS2-mjJHoxCYl4LGC+wJK>2p>#<rl;nFB9j zz#0Zz)QzddCGGWmWwSYI8be*>MS0j6`%msPNAn{T`xyE*&NC!Rw~?8r?VZVok$Pux z&1ri(<*+%C8BByHyhMCNpnFkHnxkhj^al+69v9)Q4)#*zKjx@e4E3WI<>5(tR!}I~ zvx1@-`>sT##qM>f(zUyf_O$3(OBoY;cc!krx-)f!PpYnyec__ImNVo8SOUTA(Brx@ zb*(f<I2odXA*69+Z7Qhk=<ZZqWnfA7pX@Xzzz<pM;4HUxCySSAF6C}>!~(|h@0{gU z#<H=yu>a&GbM!)nexCDtraKP5a>#&WJyrSG99F?#Cpgn*yiDmPl%O6yH6j+Niviof zAPS50_wLv}a>(o#5;UcYIqXsfi)S$DcQ3!Fz1BOGzUIJ62JFT8_2_~8;7;L3Y*uBw zIcyPwjWu9YGd-oc#bqy6YRutP48DlNT|Lm=<dD)gC7W`UIjow&t}tLC*IkS3!<BvJ z=o*H;jidL_tY(v}H2n(Y33J$D27A<id6;gmw(n3rFh|xh<a-?XHfQ*2jlH+>qdBaO z!M-zK$WUs;I^|tpFZ|B8(8AWwRJaQ{@}95`Y%7{z0a(|Uo23tHt?S#ArPszDH~cHS zlLO}j984*cPiM02Mev2}KWP1^A<dQB6BIWKgNLyb`#%iQ@TUy|!(W8SHqj)T=wrca zM8UKhreNAlBiKcyUWtS0Z*fL^AChjspQ+f&UWT9Hu4GIIcFMc2=)Ec%>?@jt(T1;y z?JJVTlVjcV=_owiMidXUz-i955gjKByX)(edM~h=jK5MJrPdk|JxR$SZE*9p9(p%P zy+VxNEu~FY8jTpTzgQn7T|pZ1^+y#UCCPK@!;{uyLeZh+!voL5kb}MS`O0m+1d9l| zJrWIcDANi7O`3Y^E2K2izK{Ne<w=A;gTeC{yoAB482l51H+qskcH29W%)a`-K}Rs= zX$+pj;6)5x!QdDMuS4MEu9z%1E(D$mLx^xD!~rbYMDhYqixC6@Bu!1EZg9Qp=C?Zy zj;%(Lv}*7hqs6pqeNV1k>wBVheQf^{lYS0C9Y4F|!kA5U{Lm78<f<jf1^Qa4x_Nhj zZj<Dge6o1Gy)QWtDut4;LOn9NeZGeweuKkG!|<>YSx~6ItJ;NUWV_WmGDZ_(sCd?V za%YkLo7!7=Ko<9e&CNaX$sfh~cD0B21U5bmOR{1NtzlkABGu+IgFrb*@2;97PK@W= zz(2P3q4-YCHxJQ|NNTA_8`X^5G*XX{+e0ov1gVrH4cF6sQ*HknjBOKUS-VP?lN*NX z4t2FiWAO^xRB0uVM(O>eu5>e*w2>5!(={@BwzX5VAvyOVmXeo7=u=wZFnXlkRl1oh z9SIzEx8QK24~IJ$hgGBWRyph&rPsE?;ZSZ`cj*vWHd@b9kF?<MgvddDDW9C4tq*QZ z{>R3&Du4g6x-NZ0%Esze^^+FVPl(jvoD`H$eoV{4$!AL%KDFeh0lXZ=nkL)dO3fj~ zC3>2w^fHu_Dqv!`5aU$|rc9A!?PqEhX**tDB`5bH8^`O8b`~)?b0NPoUVmM62=V0b zJ*j<|4;fvn@m=9r3)iZp7diHUwLr*Z6l>avy~xRh8AUOj1&W@QQMT2dKwg`u50eIy zgh{%+-B2+R6X()NdZju>i1!y~Tx;SCZ6QuH6Q}sk#QA-)UanU9@f#-OD~1tT7=X}W zn`5ldig`(hRfFT}IC8^Oy`WW-k@vbIpM15_p092fC7~wf8X<-kWb@%m^!Ac^i|_<X zNwg&VY?=rr1E=fd@;$wn#hb5daUsET%jy=A)w*UC#OKG%e4teP0ekJE6GhGRQ@D7t zHYhZkyfOn?;ESScn2*@!gcuJH@1N?@ynd#hDyi=X&k40k*rMf+dy(a%^<4E+@iCeu z`6Sf&EV$Q`+of;GsoDAvp-HE*ihG9)o1>TdlJ{$LJf$ch`tW0$GfMTRB(-gCq18og zcBGQ~Wi3OE5~B|f1{2@5H@Ri5zR4GGc!D*VOqi$Vt6FP-6Z62{_;6UPXsIN0H56jc z)&O6Z>wSFze!1ZX)ckW3NA7a!SE*xsXrgR0=R@&M_KAkfNMp#+MS6m7dOuDMR>D4< zaC0D8zd(OYUeueU{%9Q^BR=*h@M8=0?<MszAEqcv;wD=+b-hnC%5oW*d#V14Z~E;G zjuMHGEtMesbs~cHSvyJUB5$81-`X3uP+G}Ni}X}ML-;boWh|#Y()i_+rxdfocG}cb z=}*g#o9C3=ayu-ZH&^RKeNhyWY6UI%*L<Qew=XhzeA4^L!+q>6<Y~TTu|8RnzcLr7 zd3v25EUCZvaK)nExCB&G>LaK+>a_F=iL2K~_@?(0hI_kxgxNkMEw1_Fdi`Np?%ap! zL8AEFV*vQLX9(N2m%KvXCp%d3*3^b%tkl0zd-}-eYxcO)P-MmG>E_GyMe-nX(#^1) zW1*yu7ik*}ahe!Si)B2yX0?95Z+gFC;d?n+$kO~|gI+Dki_L{0*RIv;<%T~mx2de$ zwyx7Zl(+nO@)>j+TJx#(daR`0;FBlcV&rZkAJJ(SuxW!nJWv;4A%`bLXOo00^$hiZ z4}&MWj*1o{xB`&Vx4`wxFI=gwP>%>t$+)XvGWCKOLkA@vUZro4ju7WY7z_EN_bd7` zW|;Pi1b*MBAL{Wg#=HjsAJFWF2?`r6&1(tq%D74IA9SjZOp2yNc4@W$p0!!8Q-2q^ z(XRVfA;x3*`dqDVlvJg!(9U3>o=U!H)cdG0Vl<sKD1Ax87X8t7B7m>`mtUjzQf(rF zmeDQMQQ_o^YxEAGnAyf9q-KX+AKzjCM+v@9Hf_}hwMP7>tx$t~TPI$%O>fJH!%JB< z=>_D`ZF+PlC-~Yn7$J+&;^7W)WWwEPV%ZSqcKwdFv~ETMOH%fuqf?BSz*7@NJM?c@ z9rlEDE$Wbag<3<N-URc_2Dfeta`j~u8Ay%ileHzmJxElOUZ5@$3jwP&b%_weC4<_e z6S&22OU#2k$*~+;JSpiHGC1@QPD;BH$4-4h)DFZoVXzB>Yy0AyI==92oTa+nq2ap_ zjsgv(KQcf$y;q#`skAYv;9i~$eQ^|&D4*y_Qoq(xl0E?_Q{`5~WE1NtyYxw|s`2By z^p|4&C%`UXNmBBndy?;o9!owWdbawIPy%cs{D2VSsjXGl>T{&$$iN%)gy84kIcXS} z)CnTuu7gS7Q2{`p%g)^OiP}?sndYW%EWQT;j=<ox`itNYPLu0hsI|4j5>rUcJ*q-Z z<yyl?`t^DzVVvH;a{WSIbbR)r-j9|~pXtkHCr=98J>t^YN!$%EPyLn2{Hs^yU&*o? zKxVlglr42e;EdWM^BFUl)qX8xZoJV)<~2;_-&&WMKmE_2$-L|)-63c8BZW8UU4k<~ zMq1Dq^Y%@;uJ&kE>b!n*^xU$f3tCG3<;{9Wp)A)jsk8gFTGIS!dO!1$_M0#9niExs z&6j%b)-OqHO&@t{Tjf4>Z8nMQ6&@j5^SL(&95CPwdY$~SS8v~dJxE!jibuI>E9TO7 zeKo=HJ2aYQjiC$RpkLWsj6g$IR`0rr-frW%g?^;D?n5QH8-uHH^05(vr!hE!!M$kQ z??MwBR#`F6SycyT2LFve4R#IqqCD3Eq%a$U85r!t;5G~vV8xU}U^qUJ<tEB*6J@oD zvf1QX1F1H;*3uA3ZKPy2Q4)f4lnP5{XjIsl;a+L!Y!0P$(N6tG{6@P+6xsDT2GuAN zwVhPX$y7uP$}pf3Q<H)cyB_H4b)u5Lm&NxcyWfzlB;j^_lIq6io>l@~(qMK>b6Y>M zzc4*d{x@tKzAC*7xqrPDMiTy}D^PdT!x|%Y*Pcc>_HX(_>b<Q~yo*y@0J3-~-nY-7 znAl2B0J2d_T}6(5*-=B+SmYi0QRP)Hi|0wyvwEk3Ki@>jyC36p+e-$G=AysrTV&+} zBZg9)c-B<;-qqtsKy>~JJm3+%lWg$a`d#<}lvDTX2SSt|1eT{y=_#c2VVIDexLZ#p z!OePS`41?xhaJiAvaU|4WOlROPHEHMQ(r9W)jmR=$Emm9sAOk-VwD_AbEL}={pl&U zU^wO0hOGIdQ(h`BUw&-LD2WJWetzgj4%xaU_-FW1+0vh!enB6hz}p?T9$ut;B?G~8 z*f!7dmC5oIgs1oRT-V-8EHCQq&Mt4UB>8haRQiD&enhX7ib?jP`XpuW#m-gX`Q&P> zn5*#E!UXeLl1b^hE=m5?ltSQU`8ZPeT|^XFb4rgV+p^%k`*O@9+(xh|GoI{z9CUO3 z#m?>A^T}<EZ*Hw9V6x}PLu-nO7lQiac)V)sG{~o2oyErW7L-r*V{WMx2lYoKWwTH= zt+n)~{{Ag}mw-Sccfl=v$N7}zZvU2UF>C4E8NQihJgMK}liy=!z?<{)le$AW;FqWK zIUKy1oPHWsKu@hn2=nKn!HY3<yYkG%;*ub3CWoHUJCdrW^-SgMi%wR1Mo(A1yvSsS zD!*N1iXF+;XCeRX2l$%k{IhN%#u;m92F${U?E&;7h0J(P&s8jbEY9aF%I5xT7rn^g z0$Vg!ZPudWnwLMX!`}Gbf~?S@F9n-_>IHqIGFXVeDDAco2%d9KHWqHw#`h7NT~F45 z_0qiukcBVlTYR#1fknqD^P(d)FY8;Cg+d9@y6^f5><6n6VzJ!L$2Ke^|M!Y+^Jics zue{jap{%<o46b}tpXb8>3+SAWIT^hLUw=A9hhhGQoA})$=J#Om>m|Byqx^RmkFl!! znh!XWN&Yc?E9r4ezb@rZ+AF@6XKL<`FqwBf4s<*>!D58xCfI{s`g@=-VS)d6zl(Dn z1{2pT`{#NchA{4Kw!Efqm6d0Ox;IqrRUsBt?tIM6vja%4U@gg?1J}8eejLt6sh=e| zZ|O&T7+heZ<co$+4xoo$Nafr5Y~>d}NiRU9lb8xV2^9Sf&Vh%Ft8{=7Rby~f^%7?y zzsW_YOHgU5axmv$+bG@v_m9%P!049f$cm0tOFq!kNcMX$hk|#f!~2jXDqVzh7sW1j z1cK*mm%#yR*ku@tw;Y(Ju+nQ^Kwf`ef6pg-SncP0Uez!)oU&M=Y>3+Z1HF^16bJ>> zT0suy1vyekcToy*==l`nB)@|6+*V*@*UAdAfK2^JA8nF5-zkmkqFKxl<}{TTJF^SV zC$md^Gt1^Q0djobC;BTsIi@ym-=})Eve_>~=VS8<3fOF3)ELU4_A|Xux$&ZL;B)E% zvi%Dfgr6856-)+xuBR#Y{*O4E`Wy=A(Eo(^Xyu>(6S^JA{D0~F$v0o?5fby9oPUM- z7I(&%dN<`KKcUZO%nw?^#{7QjV%_x>ObNpW8s;0V$@%n<1!VPCdQTsPzd%#TZHK?9 zj3d3j*8fkj2r^SkNpCnxAINSv$`qbn6#JM41kbsn$scHRG<c&?%Z|p*?4xBMn=gr( zy1>%olzmE%?u#3@)|RPE^edmCe=;sLmemaJZHYm{Gb$jkO(lT@pVB{4%8aK3r)Kh{ z1DTg`k?`Q6R80jCJm;!eCRB~r%V;(8tE97Pf;_QS<d?ZteRJ}bfjH<9JF=}8JL^}U zPu8y!vmPF6){%MgOwRnEXZcj;1!^WIEUFLNa<czNeTDNu$kIi={z~M;hOcDnPx?va zuuvVe>%9JFaIriu#G-zlk1anukSzYnn(D*h0!xh_o)+`MO6{rt=tG<*|B_Ox`bGaz z`Bo?&D76vF&qBoc7TC7~*=WX(cnTTuU%iLYw$QhKI-ed8D6_WPf(5?+QAzM)aXww( zx8%;>^a7s(y1+{32g_Sjdh?>+^)ZsOI|%*1Z!0Nh^nFT^P(HNQM+gyE>*rHoMLQSU zQv6A$?0f{?>M-MCkSD_=Tbd933#^YmtRHAuA3sR88PbBfzoI^1x50gulmv1t$W|=x z3?jROVq@tK^6Y(K?Uc2C1$O~+)k2fp5?ctooTO8TZGdy@Uy<YHM?!3xq}+7za>h@b zx2Q)lH_Z0l{JZ{&O!Xtv+QUZIgW<LrL~CoCr96D`vd0gSx6EEhgl(Sl*}o!t<mCw4 zEy^20o@fudOR*Iw$A#GQ?J(XbWFuyg!v!{O{t7#vQiHQZapXnSw&zbBx9}dXDSdzN zcidt`OUJFq!sEh)6I`*}-xv5gE%V#7guAZ9VZYa7$M!{ZZRrneOs}b}sIILe_qMk= zB0P6$!TS4$?QPxv<W{ZcVeHQ~ui!W48>F{tjsNp0g>kDE^%y+_$06|rTFvkYd;0!C zKkE6I{9!mGnR-Yr3VIB_6s?RHJMeLM?kdOqs88Ux`S|T1ep~2`tH5uEFz!<Pb{M}c z!f!|L$mPM%u`!hKWe_#ibvZtG5*{q>9iAEV6nt5GC^R+bY4{@jOI|%V%@th)_zoCE zU=Rj@u@ea&ZlVu_{Y5k}tqe@;Dj}z$Y-_<uP#bM)Qu|{R-S?AUL^lPheZ&}g8uIQK zTeGB&660Zq(6FSD7$fd;5uwem#o0)(TIP?6F;HR5w$CbJThj23rsx(=r!`v=Y<5Y# zTqLyrIc=Dbly5FsPNc3jcB7ZNMNE#;3VeC;%|#^dwe%u+c@e$Nt7U?Ek6>`0mo$y6 zNw(eF?jC`zaGjU>kPt5%exmnz-BZMlkcn8j!B)ruUs|MGI@0^R)K~pTiaBo2ijF3a zW0!iV#{;D2w|Y$@P?$OFQZMy8F}+`j@~gDI!4j<t4k-p#yZ1&fH4J`wbq2~-ICs_& zlk(PLT<H}=4(Hi=)7_mymN}0$>|v=4SEjV637+OFp(f;MG!?tkE3t*X2s(&0*0K4q z3|pe4cK4H6)Lwq4mw+rHc&C>-SOnoN;^-nFhFY4Dq;s}ykvdt3hqt2IM0L|xT}^;X zweY=j^NQI`3-F0IEvRcnC~B%uL=FaBjYU)p2Wq4|+YI&E0092>r=1iaUslZSiCNBy z7~l30G_P2=&PzQUfEK?=><PyFQDmM&@H#K`?Eok~vwnj~@F<f&{s&|l?(<Ur69CDN z>-@<0eaHB%&9_<94ugCZPAsBKRzxb<-v`E`-x>VyLN7HZ0FqxI2FKhH*>w=TlLT+{ zQildW@j37yFN)p^0Qti!z0~;uko*R*c??-Ph+gTXt_pzQ*N3h2B0RjjS9+;81%T(V zqPd>I$sl^AmwF%og3tB#dl4Rn^yU%JSbFmaXfnOiOKc3ronGpvA_Kp+z%LE^Xb@`) z--AqepBH@MeO_wRVDpOZ&2rP8lnsIEQU=reywtP+2tHGSchhkM=0*y~pZspS?+5Y5 z@b+Mvu8t2ti(e-;meCqDm|mo$E)0O+2dtc41TD+qgNbxT8$o&uvuWza0Py}SyBipM z9cOq;00h5A>_#ubhvC){!0=!IIKN2jF$RB_Gkh}uVjvUoH7|me?{Knv6jTsYDODDz zYB+>6R`pdD&zr$wM5D_LY7t3Z1qW*jHdu4j4nqWepaxhKVz>c*XN+xyY7yf74KSZ+ zB@JOpmpz0j9eh#)JX(bM4HftWS|f(Ai&=&ap?BS=^8!Hl#HW-&q@kp2CKSh@A?$9Z z>><M4Olo5QIwM)>ZsM%31nJ>+CiT_;kWmb>o3p->v0e{C!yCfXCj%fyGvp!8?C~M& zf~G!G;LSzv2Eg(8%3GY{<6e&58=BN#1Hi{Jwm);WKXA72k}#DVy2LhJjT$N_fM4B= zW8n5fY2Cn%TUyYNTgn@+W>WJ4!1;Y$*$ggc3}soKI>R<s9UcHTp0OQb;HcWKNA~=p zmTdgaFKS7`@35CUIIROIxx$*EiW*F>YEoB--24nCzZ-1nP^P<A4Q09upHz2m7omRT z!|&YM%LTn<DAV1?0zmkMTMru$YC~=u%5G``u6R?E`e^_X{MN0HIEfF3(yN-(-vU7R z9b3N`5X$xap~huRYT__+MVQHIr1LP=NIMS0n#>_LEd-0#Jphg$n9MbBv?kvtxeIJN z)rkR+vl+({jvOO$bOpf8VYmeb&XZHx!9w{`n+dfIHnS7)zG%)*Y0!Gow}-W~o<zCS zRvViy4DGp9<=6X+EaFFQMizOl_qiPf-itw7Y^tFc+=M@`hrpOyVzNy%$tL<(m|;>d zm4$+-sYkGj>iTgU4@|&;-x=&oKEj`iQ5}+iQ@G2G2_eV6*ZZi?W3*>t3YyIiq&x#f z&EFelks%NCmY<bC5?0^nEkB`{_xicybb}+7Tp#WjOolDCrK?|h$$c^m=V$Q)|J*ge z=P|}=<L4rg0Y|KZNqnu%0;f27*V;b77mLN$+pY>yq~RXXKOy7y*yw4Fak4TTcXp3f z+Zj)pB)&VW&g1AtTcCIji;u95YP@W$JG`){@KShTQT%XYo%o4|9o<N~M;&3F#p3^9 z#_3F--vuNMC%abK8dV{y!{`ga&UwFl3(~(2qr1_XZ@SF(uB7G#F0BCD$6Wk0j=?}- zt?zfpOiTaM`ERlOh0=4)NG6}Gw%tcw->yZH?^fIX{-^G`M;dGmxj*~6>oB6FyKX3y z130$+GwkB*vt%-#_dd%mzONngX&2wRwQ}`R|7sg|9?fl`K!oSsqlR%L^#eU7I5VgX zoSTf&I+1U$u;n*TSZ9M1_z@%KTb4O3%gU;jSe8^<>YVVg&}k_xT|Q@NS!KPmuC&xr z4KF{aD0f<_=hJ74s>_{~nU;zrmU(4Wma@vaYRg=wWkJPKC;Y0jU|e~5#S%CfSXODl z7uhXxF2Q%qb%1i11>V9W_-q_Iw7M3kk>gj`rl>0f*~#`1aCR$qgBnhp8(=!SR(yuG z=&aWg8-o{>Em_ESM6Mw3Z?NSk0w-o|;O%H(<kU__hP-PyIlR`9qh9OJ@PbWF6HvTh zle3qZoM1dX=Dt5OmJB40Fwbr_quKIT#IGQCU1eMBlimHhz_<?GXv<Xp&p(IfvlO_3 zJipP_wIv67zsYkKhr{igY;`R;6mNzbRNlQf9A4ZEcgKoKK}%`e)iA;R`r>eS;c8pY zmK?e^0*5~?4u{(sZT(wvm^shUO^qDk?Oa*+S$Ni##W;R~#RJDMX|w&9+_J^?QhQ&k zLALI)#hXZA^_Rf6H3jODT9;tx1)8H&k3HJZw6+NsFX*dA1QlRi^Et1=wrGN)L8co& zq?h4M#IQQG{W>jfY+V^H3t0wO*q6E)xwFzeCO4v>pumEEb&KoEYB5n&O?FN7GG}dC zE2%Rr-MW&Ox7wzV&0B5l{>Mz_&hHBqdXcv<h$ZFexVL6G63PB;w%3*6h6V`(#0ewV z0CAG>^db!qOMv19TkF{)&T4?jFR~gwf~<1ex~oD~FIWpXX|ZhC_M@InwpG>3|B_nt z3_$G7sXJ{OB;`t@vIrR3iRv{*1gpLC>4~l+Gl*@TKk*cj`*UP4X@A&}rCb~?)z{ia zw&Zf^4BR*Qz{TNEejPaHghIMtCE(Vrg%U_RiF$*rDH2YWuu&Pa?ku)pRui+0%rw3L zdHdftc#o>&!fbTqFM3qN{Y6zPjL~Bq4o-1kN(Y~o`Sn%wEmWBhSGL50MiP#{&;;B< zX41haj7xDuyR@Q=J}WIn;GDAB1vspQkNQRME~xB?5moTGq7EQ+FcfxL%ANBY;JwJc zqhK7`LJXMVvfA3R6-c0}+)`0Bud*J-#uZDlJ!Q#9xDziZ15tJUIUspjaE$V{p=sEJ ztcs8$l6PsiT|Hr>Xw4#?U5|@wJbk`3a7kf7afRXPCddf0y@lkVUA6>5$0OhQ%XU8F z5mB~KQt~frtbeJb5IRN-9_cswah=ELN8}dSqRM>+5n{gS{Qd$45qxo}Ma#_`gM$Ol zNP!IvV2V|>z?qhtnU|THo!6BPAI9J$jf~r^bspqN3}+L?#(vI(8Vo|BeMp2-{!8pb zDD|npO)5E3Omoj0ZB|K5_pjj#C~>}I)}qA8`#0IHp5OZ~$tB5t3oeWM;%3`Fl%Yn} z*surh7nVy#l4T=xyE?&m+FBz&55L%0pm@Q<o|z-*uqPKMsg2>z<#do+*W|lP-xw+L zMYy3OiG7dF;-BTga_vY$_SmfIl8c_(nv0R!)hxG}G`GQXon?#8BBzJ;+WM+O<+48h z>}N$S9Cf@9MZLwE^mkVU-lNuVR-4pB*OkAIsTGc)w6m^*H%S^h)Tlqz8}EJpV^`TY zuwuLb@)Pu=QnxmKqaHo#nU6iEt!h-?{$FfWqm0jLtJ;t>*X^j|doj2PgX>X2`7Q74 zAuJ?7oVbvH>1dT;V%NgqxGJ!wJr-5{+{O;HkYWGCSMpf$@;+OM@+zjHrTIL``<IQq z!AE(?h;3ed2i%3Od|<?2y5UL3F+$wBCSXP~|MT=aZU2;%ul<mT29n?VE+EMbciT2g zzY+UAwiU`Be#jUD$sN(Zj$|9(+Up%6Vgxb(#6657$@VAhJ;^oq+6tA}QLSV&G0KSb zU_9A^Z4zH=S!B_Dw%&@(NXANuzGTf1hi?wEj$&(!-AA!CM);(!f*J1%A1-7hmW`*! zj$$isqeih;!7MaK#4&`^K+qMi;iK5{c=u7l?j&WqIUVj4yoS@cdK6o|J@l1LA(n^0 zKXr#WHlE3FyMd)LY=nH{I|rXLNAe50pXSIToa+P4VCp|KhjnHQ-#1_$hPX*dIb)9G zC-i^g$X_T!{-TzSqkVKjtd|7FFlIEX7l3&f(iac*G)M9ccil#lyx(EV*=Vx%F<YfF z+8mI?SdH)kJe<6Hl$1(ybTUI%a6#t-6@2aBdUFInyuQXjco@<pR8U&FgbK=xdz2KR ziIAf|+nmY)U()=&NJeAe*NX2S%^JfIkO+4u!6$v=;0a&2Sm^wnoyWOk?~Z0~9Q@fF z!OutjU?6B--Wtss!;#Uj>vw-lDf#cyHeIod@vZJ?LuS5BFo|q`4Yrze8N=E_$w#(H zN-uL1pW5{BqL8^1k3ZQy2Fx@qOehSxhes&Pkz^09LJxS}Hn~;Pb!K7LeDdD&Hh3YB zuLR6SCoVE#{Y_VfV7k^C$yzmCd=KC1F|4+>j$yS0pVV~S;|m`ylo{U~cPGpJzA?;l zJ!KBy)0e|u04=WDSaH#<m0QP%#_Qkar1(YPUoujk^ZF`33eK3|vA(q|7+bz~P8v(3 z@9f2J)jL&|Paw-^wRCe}Pu9p%$5Lw`C6m;TY}vBwBvD@jyVcJe$lt!%n*rtIv0j$c zZcR5w_F^oja+Z@QOZI-L#pWnJU#a5!CK>#w+1h4~<Xio=aDJPSUk<tNF*xb5&m6@! z_1(t#Z8rEB#_L&gIN#y-6lZ#vF`e_JW>r2gNAZn)?{TJw4W`t9f$GvW2P#eXfNYtg z<tsvKVOFfeI3G1>VZ{nq`K#k-yO5Gd-siS5IcXd-V*Py4Vzb~c-Rw=GzO?mr-+wSd z>PfbL1!Y<Ijy+$QU=HLj-yG)!%00)i-N)T9syHZVoM_E1GpEG2>n-<ElIocV)S&G! z2l7{PZuJ7?dM-jOjUuI)ArV*zw1A;({5IJLrOeISzs|sLV(%xm(a|l3XS+UyLEekL z((qSEK4-*o<3>(?YO7Y>H{x5hW_-)vJG|DuWVQC?IA+YkOML2FtTn!mE`*f*1Ra1} z!i-spIe_n-OQZk^4zv6Ko&6bBQC~tuEq-4qBlLyO!_A45FeMwpxE7aqhhT-u9CH-k zKR1)HE~c#IfhEj}HJIZjFm9JKZYwCaEb{70cB`_>95s=l+>F}_FE?ty9x})AeRmHq zZufC+^aXh@nWH8%ZqGAr_j$Qd^YxWEj=zZW3&!o!5;p3R$D39-e-Y;y#^_ToBg1Z4 z&B1(QU<x_;2W#VU;&?Xh>SGS#TLbgGAPE+;qU>?x=;c9K5*+9M!82+AeWeWy)R;D~ ztv|zATA@iW3+D1=)xv`DO@Rx>vz~o9NQmPw_@v{oUA}O!G4M@xZm*>Bw()Ezc8@uz zl-1mwUXZj+$lewjO=vH_d_1*dL&J7TZKO7^|77ucIg#x94TflMn$zbmH+YQ^DjjH7 z;8k_7O);BLtM+em<Xk4%mj+T0>}8BCmX`A<hmu4r!^1mE3oxQH+19;_LjL=PJwp}B z->_{{6I+@!Fj#D2Je;I<*RpqRw)au&6MPhrTRF{$^;o$K$^N|3!-%Jo?G$66I-ljm z7s-Zukz--3IK&s)LMaw9eDMUP6cZ<qJyWzY2|nN?jk4GmEso7A8L(;sn-E<(fmz6n z=7>cMvB5yl;nu<lWbHI~L-Yh;8@ICGoJ<uXb1x@z7f6op*nQ3%QOyuf8wkqy4iFi3 zaVuY#BWoD)Q;z&-0&cy{A<snE`zdG4VT&2;Hv{HjNUh1&F0HSUGSNo^#G<Wb@WhF% zXgg12YCW_aWHa9!#@~d{-GKRUrEk`qVh&%zxK8Bo63&&rT6d8-te(MK2F$~i4!%I4 zsObU)qo%8{Zv<~YqRO%t?B49lrG>68XRL0R$aMAYiOhh(Cso!LeBok=Ue1uuav`6Z z$dvV@Ibsz<d|)7Gwhm8Z`?i56eZy|VB-2`4%_xLTVzn4NiM?Sr)f~~l5XlCD@{}eS zyS9}gb2xubLIH>O1K4HS1mzNQ1b;`tWCP)0NMEnJ+#I=%iCWK*wVc;hbHsXvXfzNW zUQ|z@K&hTU<x)M#-5RNo_mjcS`sxWzk@HgQC4ua$lkBMtjv@D_*qyP@qxEI}Om0#~ z@_pOKNAi8!;1=YsWqkp~e-;B5PBj-`@HCDvk6>WI2A_n%5lnIr0>k-=&`lHuZ!Cb+ zn`rV)G^yZ@rNn6$L5b7pKPA3sOu2_T?O2eyi)Q_9^mbU$p;e0V?8l#BD9>vA`6zx< zF_?=T-aGiMBg(h{f9^sBFUFt$KzdNPo;~5@Rn49SN0xur>~|<XP-eIT^&4_{lzmk6 zX(Ix@!P`Ge@a><?qipu$k`go-NYNtwhU695hbPJyA-aAAcr$U>t+Ep5hlw#T;Y=~2 zCNn2-k97N+lA@WX=Vy&Q={IEB`%6lmU;1c+etS-zL>1e66Fd?v2+Wy_0<X=sFPD@d zegu;Yf>Dg1fSE)Ow<=Qv3>IU|L?eP0qf4Gl`sLXxl?BEFEbt*6!8>g*;6Bmv$;{5x zPiA%wKB=8^3t%jNA+Oxm2m`Ht_F{R<WM<~>GzV~B<30+Iwy-kFjeyhHn=y(X>Z_kD z&R<?LC&!(SM;ZT@C$o+VPq->ynxnV_@^dD{%Z3p03y^hm#Y9Z;RXIU@EUY%drf@Sm zg}qq();{)BCDk0pos!80jG7~0Nary{=16{lT>(e-n}V6-4&+PBVf@VUWCP}5NT)K( z%#nPP))J0fOmkSGTw{*le$%TBgol?go4MB<&Yh@tarhlm*i`0ea|Cyn9x)KeP<jEY zvKX8V@WBsnmE(7K%l6k=UsY@##%WjOCxK7P#?h74_xDp+;|QM08V7vRS&Vh6sittx zX3A8iDT!0r6sC_kBAfBbHxRTOJ5Oca<lw2?|MKcEyIq-UPKTdUp2O+PoXXn8OT+Ei z$_jH>E@QvcfKm3-=<i<4_X7E*{U($L^qXV-%G7%(R5Vs}EetGC$te4L<pF^`wORKW z5nh{>GTOdedD3{$ip}C4(L*2(9?3t(s|7x(&H7dVqs<Z;Fn2V5&2#y$smy4FUSe92 z+{qYp39Cpz&~o{VSIaS|7V2&J!wKW;9CJF{+nCAebiIVlB!-$JxTkTDfuNl2m#~?{ zd~+mUfS<>arI#=jSUt(!O<83Q<6g&=2F%0Im`U7Z4j;%g=z0z(oGU#I+GDD{3rU!2 zFH{bg6DVW^_8SCz_|rMX>*nwx20zB(uRu9H0G`k5rr9%;ugqcGW%`8y^KhkOMNlfL z^Pp^WtcVU>Rn%KHok*N!Xi!T#!d;u4r!j?1pT_J6d{TuSE`a?y*%2&LaOSxZI@#iB zOkd}i1Gp1%CI!ID3?vsA#ew*X^{+B8rL&2R<}~<0<PD7Jx@l}Oaf>;CpFh5lF<nQQ z$_>+msl-8ZFh7L+7~}RZpl~Mfra6GSOJ8H$9`<sh^N63!aolVAJ!5og8n%iYa>snT zrnH-GRG**8;BL~0>C^y7r@ZW<_FC^$vdn?pQ<~0zvSYf?cMmp)aYt#90i*ipDa|cV zpUOOQIQN*Aa`>$2XlHUr>6?;GS!oXA4%1}@Oys(2k$t#wy*ZjYP6<ahK~@*p4=DT1 z5!_{ZuYvIJ+g@$op&T<ua^LAI9Qh(G)@<@?jlH+>g*l9SO+PhY$WUs)>g4CX)A2hW zI&{YGFm$*ltOGe(3o}FCChs}I8`D}}x4O>W5c`eatOkeNc&SyPEKlZhLFg9wTu_?< z>Sw{=ZtT1MjzI$c>;!=^@55x9Xp&9zu`t)8U@8m+)6ousT~zLGaFkPygW|nN`g{Bt ziw)%v{0w(RVL~uYp7~nydsVhnNg0OG#@uTNIaJgkOoA8M;tAe%E9@4?3Om7jH4ucY zdh7%*<{b7+N6m(lCG-UEb1UF1|3WXZxii>JRZcOc-3&O6yL+X5t-4Z-#!Dk&mI*O* zJh5~}^XAL!H%sb9;R$;i`%;Xd(?h<$M+CD;-#x4BOC@zz04SfR`9R@C?s4Rf2K#pD zHd3?R-ha@ey|6MKgRqgl(!I&`1bkoB#J3h6UMJx;AVVI$YsiNvyzo4Zyt2l=S3Mw# z11~|glAG7sbJfShX!;W51H`t@zSK88ecP+SiO(5*IN^KfrPt3-@>tdf`Ou@12VY^o zUj4*JM7&tckc3YzeUP*uwGH;~rSHy99KNZ>hbX<4`spj}*=op4kJ55Ii;;yGu0CYu zRrU|m7~z4x_V9_9h$ZwUzk?g?C&}VZt&TYH8K=u$Y0;VdxXJ#cn&(4)f;E+Vy4gNZ z?c);-ulttsW|GUVw!3`+es#)cA|g++_RXwpa!;eZmpo-A`K;02SG~lCHeQ=%)CIq3 zY0^ygj?nQ!QctPSx3T`X#Xdz|G?R?E#y(xG7E;k75(x4s&ZU6~mdjVnB+qWOk5R7- zK#Na))&-`O(EP7$_C`s)DF7ut{kbjxCHgAV76s#5wAe83bK9>_n?+txn;og7v<bR{ zgJLvon9by)CcDiyy<a8fv4+%wQ*+}^`}LCgmJdzemc;j*_(Nlx?<DqzW%W~ksBYws z&z3|e8faH^e)GH6+h<7f_cLJ;%-)xr2$jMzQuCqx&=ZKh03Tb{hrw^X(H<tr(kug> z6cA3nxm!zYw%=^el++Hhgm#Kop9m83`HQarz_R6Ap0h~$Zu<dCIugsoARB{R47y>^ z1B3io^rg=O&*`PlM)~o1O%iP8vM06j&SzgSX*scXKEJTXKDf2ci=^(gFN_ttKacq! zk#)gcNb_F%h}gM;S@k}q;|J*dPEWBGOY+hgbo?+U%{3XbIRS$)7>vYV2nNLv7~=;_ zwuvU$L>~*|2MVSlQ7|>G2zJRc=_Xzotm&-3*>|Z87)b{OD`wGtJo<7W1|@AAMg6ze z?Xz!_)N6!?%*JlP7}0?%;+wDgyM1M_y4xQWW1x7ye&ej>)C8MNQXdl2;ys8$+O|xS z_s=3_Z)n-%-9(#9eMU@=iWhCr=INirsxFoRmU<$!pyl&>@j1A6;bKYo##uP3xToD` z0$K59$!~;sEC7DnBE4DivsvtBNfAqLmK3tUhYgHP9J^XFe6~;rm<1tyJC<dZK9=7t z*)ag1gBJkhnN7Zb#QwdSA*S~$Q@%OXF`Jd?%E#>aa=~o!z+=$=6pA<_vo&vpg~S)Y zvldrN_MeTjD)#1Z#i)k_vh_LpK$1JNog&R<*Lw;NnZP=SdTIfxid`z1WF+OfB5D{L z1Ah60{Xddg=_l?m0m_}#KF|q=?JoK9+2o1C_CD%r5llM<{Rngn8^mbr806Kn$-W~n zmh%B%&mhzq_Ykk-d7@j&Mb^{;Y=H*%q`g}Go5+HWkZ%=YJV`5_vRA6j!UJ}%no&61 z^Lk)5b4oltn>i)m6P*(3$0F2E$<kRBoS@<sNyo{am+aZZvdWsJ{u%(5!C*f#n0$OT z^QFBzo4Gijo-KI(Rc(%+k_+vSk7X>R>|J~BU5hk@M7;x(Tzb1@-vBs1Wa;I_NpqM8 zUFJ~VzdAhtn2%AwlM77g-nvQ1Hk)o@QWpn6@-a!37b#CN_~H_Px-9^jduF$I(Xd=X z`QmmabzcA^A8*{|Mar8EzPJ*gJ`(`Vcg#NNMN5ZRF~4%mo~a%WfaHUfcfCmYkiplx zDxm%zfJ6_bD!+P3NIx^?xIa^kE%nn4p(*j<PE;v#*#2yArv5xoZ|ctjwWqgWicQB@ z7f^?Y9O$KPM#JH|V~a~!!<kshwy~7bMFDlOi1ceW+zDL8WxKSL-GaF>0EByiH!z5F zDM|eVx*l9LlNXk<%`By~*_4vd_v}`6e*jv1Ty-y}br(7Mo_&V;Yybpz2|wjU7~Jmw z?iJQyWcG33`gs5veEjqYr*V>T{XGDJJA!}pB3f__ayfFz!ynpH)TA<VRp1`sF5sAO zT8rfPGIs4}_W%&?4bEi{*iJwGOBe}2Ug@=;kssMLbz%TG-$q-)Iga5RT>&6`zw83e zaSY`s-GTL7EWzH9PdqNEV*DOQ4*eR^fh11WGE`sH^)A1()^9X^YM-y(DoR27jom_w zr{9?InSHr>KzQKaZ*Z6N{xYWiN6J{g0iU$rI3Ys)^q;$WkMrVrw~V^8)t>`ExU=^M zUOexz3VExHpRp(tmS0rMTt8h9x(x38g+ms<L4|gi%dX?>6#&5<zi_|;5K<SiKghwh zOUm(c*_E7A1E9J0cM{__9&WV5-GYyNWACk21%Pqy@1>0CcweU8Wf=9E03^5v_-e*^ zBj?=fw7p!tJphb*fcG-a8(ZN_@8o<s0155}KEgO3<ecCB-o8P7Uxd-o(&isvwDgG> zO{dZC6ZJ>C?wcM5OF~t0-|;(4(u0Pi&|I;S+@&{bbiq<Og4)78y8H3Fc$257{B#jV zO_?X?kDt-!8)y^fF|E&<$Fv?ksn(AYp{VtOyt7zeHhgEQqgWm?kLmo}0D##HFvkO+ zp6X)w#g}k^DZR+^YJVCjMkh6g(bxz{z%#qE4cqKG{+Wy{cgb~8@`icrV$Z$)Bm}uj z8Hrn{7yzIi`gQY+RUP$60CX8cAEfBV0Cky`ORhfyoy9u=P;(jTO%KY$6W4asUjhK< zG2l-W_`S$35;r?}W~_b&shpwOm9riKa2|$qumA;32MbW^bn(x)(bHFXJj(%zt=L{* zPG`Gt^&f5&yCv8$HFkwCDdcvSFAi*(#V7YL*yoD_qfq|g7~F(*@_Gyg;m<+{jLAJF zgA=*%bQ66nOztU|iblb--$1a7=3)T$#0PNL?nctZ_%j|$dO!ROclE)9Pyn9A0RoEy z?a6?z<P;e^0PDjYJJotjLQA;1ocRQ5g&53W;{@~xkZ0REQsAD=&)Yg)#QQcMR2^Rh zsf|Kfvi)ybGCAQ&i*pYw&L&C}Ty43leCIZZtciBykllO2+NsxyfW<3pQ{|>|a%`5h zuarYlqaBIz-f}$jZzWX|(?-Xv$JDe2_zNo<%gLc=N0~2QIv;D1bYnSlvOW~!SRx%J z2UFk*sG+frLiHI@1ZuaQB*$YNrRtO713#jCGugp%>VcIXgY7A!GGfWEagN#2XN-7# zM@NDBl}LjU|AIusJ4UHrh!6aTb3ef+2JyVUsd=REV{5!n1Y88j7d%ZMujrbC-2JgN zI{XSC4IZ``&G&Y4{6``qhv<&B@lL9n>&x-d%28@Z_{o~f6&yb1a)-U65iM3a8TXkr znFJ>~CX=5N9Mx(c1bb8j8)1@B*fET%51jh8gOeOJ@@OYHlmd59?7k$euR7j`49>2{ zI*FF-n5~W#pZJwc9Ahxj$z0#VgruGvQrGvC6vsk&G37T^T`Hs^bRu8pB-IwjbhS== z;>W5ZV^#epteS65bv!JoH;R-fk87ReKFzUGz1HW+1Z$~!uTKnQJqXf}58{(M`zH1i zD4q$_6hI*A4>ziVmzGa;cwhUez9EW12a*32Vm!rp%I<iMT+`hVA)`gWHhpciBS-$X zlRRJT$W*@-AcVHyube(D_!lQ@!6{uG$<c;re9Pg-WL#IcW8Om_b1bM6Pb7-P?iq^= zPYWR((m|(U=9APPt>Y8LG+cC#u}EgOx=0z0zLJ_c-&}hwtbj#QjNPG3M}?fjIK_yM zJ%t1}%6+L0@F6_`8VxltLwusKwjm*X`(P^wYBi?%Bjf?|nS0TPg<oOu{eGf&O!|N1 zI-ZoP&82TXndj&#sjGarqWC?!LlfEH6OHY3)qL_<cgHwi01BfS)yo&TL}9p9x~qp{ zDE1iN<vT75l5d}nD-Qj72}`hY&5G6+U=8Zr3$q7GWtNrNzO-n=c-;gNQv;aa&+)yK z`##?5`&JAt=(_q8z;}%B-0S-e#Iss|3{c?lZ)qZLn$Ik(pNSN+#*Sb&+-fV15!;%F z;K~9=Wo)%z@jVL4b`h*E=L3cRkGS^^jG}n|$K6dxLUvOxl=OrIZtwOI2u*rdKuQ8A z2nZxd4J8S^htMPtA=C$?1q&h~Ma2`9W<x~<#4ad^3Q`0_MHJ!tOu5_Hy@U7rt^Pj0 zf0E~Bo_RgbJTvpmGqba^D4PTdcwxtRV)V1*&uQ}KB>pkN1Cm)vGlal^GE?D%Isc=< zbgw^%NW~}kwOimN=JW}EX&ZZvT4gA*P!}FCl<Z_zyXU{Yyvn$PJ6ZrC6)NjR9~Kn1 zwZ9~(=|U!z@IPOkltvK5hYO-Svh^F|-hGdKsHD~vMbQg>?`v-#tu_&pNge<DPq!{6 zcc;<^XLW}{WCy#`j|_T=@W>AK6t%Ne(0_mLm?(($S$YrZe8{@jJ|8A_w1@i$&R6?e z#r@5C9UYY(XNJciT<sq;Qzd3HYco}G|9qdlp`=a_^``U4klFS=^30)d`GUQdI!nwZ z%~fFPl7HjUsTqj)KU_M6XFu&uxooKSZq1c@Tyc=|U~&ye?rIP5T)=L0OMbLu0+#5C zp`LI3X4J0HCGc_70*Y2eWx$R-QQ^>{iXH@!b!r5wPyXu_uJ}6@-ey!7^2k<PPL6Tg zyuZrQeq*ZaKkPT$j;4M?&u2t-v#(Az^#b4f1>v1;_P$N7Td!^>2_6@}&*>S>q6q4O z(}uE}eU^5|g}_(V25J8vWE;0i8BXzY0fdW?p?^e3oV#Zad*uN2M<M^8`bB;?NEFHZ z;_06D7iIODNfepS5A?QoS8th;aiIO3Yf-O3ejj@qKO#QuW7pKEVV3FT?}>Pzuf35U z5$?VyBJJN1(eNRA13w~GJcK^K!M`J-YCn5JKO!dd!&<cecSQW!&)(FJh(7)8b=2Pf zj)+tJ?alm%Xg>gJG2-75@%8|Fb3Y<7a#6(ee@DdDT>C1sh=1t2_yWs11gp5;&9e`e z)D<SR$q=MBm98@-|4*Tbac}vGVerGl_(=hijDJ|2ST=?GR_C!n_WgK1!>V`x|Jp-t zL??{VwK1XarJX2>OxLEH1>vh9_E_-?v^Vj0miJyizt{Tt^YK|9;}UbmP<vPPLu(E0 z{jY0a`1nHth-VtXQ;6~IoMHBbl6qXoW(#H-2>gJ_eglECBLBY<`Fw|n|8wN?^DuAZ zV*~=8Z$KFB#!piohxbR=Pnhfa4?7=67Ol%pcw~;U<8`d+aB)&0V`<8047*}X$$xV! zsly?%0C%2DGK{?rZ8+QOa9U;k;~2FTBL2@URe!kAQi%?GtZ!(_U*yAT(P+(7Ez(Lo z{_9@vGj2Jw*h-`dxZSw2$o_(a3;X-V+KVN%r`1;f^Y@61KF809bRQ12$J=Mg!-vBQ z<8jF_!YZQp?^lbT2pRgnwTCwXEUP?n_}Fm}f=55)LBrW*@WBc84sr?pn27tmv;Re1 z`R+&Y-_$jK2GJ#$u5UfM#!j+#lvfRhL6h*iSdaaSy7Ch*EB}$M^|`J-69n4deEn;_ zF*(5WHIiN_|A9f$U9feHl=NVCs)K2QG0K;Pj2t|Keu-##p6@Ed+s^sVco!30DIEFO zRK*ng5?DXQzUDtJRvw&c?@{Lu>tcl@_%2rVAwHck$(DT;bJs4bJZAXNVShv2+tog3 z+{A*13r60)?w0RNiNl}XMxMcjURm{VWAcWN9zJ?##>C;{hGpQb`Wb^q55;TT5!$$@ z7e1I~Px%`YIew3Hpn3rfW7@p>J9GGt0*J@Xea5E8y8~y~OC<FVAsdzy+jHc=d{{Ix zy|x;ZZ;}3w=KvWI|K~X%GT)d3F3+?l_)gUPZP!1bW(iJ{)(X{R-=(UR&%R5g{p+<# z|2ws+%WCESJ5<Je;H_G~Y<pu%)yM-1y0O$DpKUDN_pev&-oI0|`;7)OZ!E>naauxS zPxXfLrv&D<BNe0pWj?CmH=rE(uh)3k->LBgqsB%+=^LwfYs+F4Q)T~QM9HDWu}&jO z2%L}4<;tyQ`UiWT{5YPEBzHimU6$1Kq9{Bv(^=glru=Wa)5a2TeLn13fM4P=!T&>> z@gshwniRc($E8LtwD%pd7uEikzsDd-;se2*QD*NitM6NF^bZ<{pXL*V(T8L1$i;Y$ zVaS*NC-s64Lu--`PuX{>XH9h@tC_MT=%z25lK<xB+*wFnYHw#2@eg|iKkesZJ~+43 zK43`5i2svbv3;36QdX;?Fz@t_Q!}5*Qbw?utcIBVudJq%5b=MWpIsy9{A`}de4QUZ zT3B@i<br*!xo%egcUW6ltMlJK?J@iW!qau2$#nm)M{v!3dxUef{e^-DQSJZl{RDOd z`hXCx(jlL18Sof+&NM`{*v2*X2i4JH%HQ?1Lq<TiwdlA_@c+<;{6%(O8`fB7-#KL7 z|A`Hu@p}6Vb-C3<|G?GqBagndYPP|iJ>>EKlUlj2Y_N}()gAw0wFa`iQQvBP_qcuG zkiGvW)q=(g)8nDtllBf!)=mq9d!Dr4ufG2;R&v<wDw*_@eOd9B|0k97jOu*LZtz|B z?YKLCXy(8A&WxW8Vvj_87uLE!E{pXpXvf0#P4;MUJNnQjdum-{$HCYoFupPqAv|sK zg!$yu$N%<~8M^fO|Klq&RPcZGm6>8K|5wrxe<pw4AzRvSkv~6>h4g9i=OW2ChkuNN zETljwWiF+RrIblH)Iz~%gHbU0uz-Tm{RaY;PsZc;{1<}ZT2##`G9G6s*<vqIlSg6} zJ>U{Ml3h`eAg1K(PiyDi{H#4tRx`!)3Q6muHWX8e8sLGa%#o14&ED3`OSgyj*U^IE z>uq+IeBVge{uMrN>uf5GCtC3X?Rl@*n@V-qf!3ZQ;Y$DXG}wRKo@&b=%;Fgrl+<m9 zy^C2A)hgeF%e8uFr+t)}muhu&r@gm4V<dEa-rhr<X(~9mroL>)n#yqMdAly*4c@4k ztq$%#;f~VaA%hA=;pWZq`~@SS?+f<Xe$}Iagvn?)3ARu4sfo$n^vvOw7xC%yGom)+ z%wfVNA%%_*11bcLcBx^5ebHJa_q<*9KuLCwq^JFCehR_mm+W(5M6n(;7@e5h0QR`? zP|y)U80{A^9|$Sl0{Fl_9(KHJpQnB;WW$mrHAhKjVaIN4p>tveIroU?e#LhFWh4mz zYru(D>@A{=D)DFbUqi;L_*mG4Zm}ch6!l}r`CfZKOM$Rq=}{2-nthQRK8l${WaJfb zhwZUnmehn%!eBT+)*AMGxN1x{C6j}F38V1*nZ2W*0_pqlA#6i`1)kiG4~Bguc)pM7 zQaku7we)~}q`8!(_WbazSShx2pLuU+C7A!ZeX^Qs0w(8>4KwoxnPPD_u402EdGsC3 zb>dBXGfACx2i#;fKZ>}lQP#hWLvF$Cu>ntr#=9pSw9k;$RVD$XJyPDole874WYQk1 zM!}Qs;i}NLfO-fEJnyH#)8&WklDPoJz^Sn3ef!<&n|=zgm4Qiur78HiQlC1z&wpUw zC&|ZeUuk#b5qplLo->IxHxz&F;tT%$QF}c}{{8mgFyolL!schZ13vCu4!6F;6U*HB z+rmd1BY=+$NV%1s0QY@@{V-X`C1-NPj?{=XxCp=+yy>U*N8#bK_8$Jg-T0}+ELm+T z0#h&ER!pIDOViQr#4oX`W@gLe(rYxETzZ>|lh-947|jk_^V#L$(SBzazCG1+H2iWL zeV0iu>JUbp!2UE*M5jmCvB0Gh_H=UrOZVW|CJWIkg;srSU#Bh;F=>StkA_FT!E?on z#T*M}8$VWGa*tNUJ@Taek}N$7S(okI{TUt(oVGuy?h&DhP-!>3_8m^(yTuHPO#Y6b zsUB43obT=5$kHdbm-+5ld%53^IPypPBK0RxCOu_;UP$ruMqIDN!;EwGpVb>eF3?UB zSYY&Cpw+nn85i)djER+Y8M^aby@2g}$C=8J-cq%|)LYUE*c^3zj=iHWNAcIaZosUc z>|@MAEH>kuVuje~n0(3ZmRl6CnMus{)R!(~c3!q0Qag)U($@)}xnkGV`^9A189Nt% z>t}lna{=0WC;g1a_lEc@K%*6t1WOJ0f=5)5)nNNodyzcj4mFtfi+w}TmyPkxum<ql zFL=Nt?^k<un+W8Yh0A`mza*>cMEz*HJ|(8mv9YdT<#qc2Gb^oO>2(~RZjqmuBmgnl ziv%Wc!-(%%OUUaA;Hy9EX}1&cmA?X8|Fq|Zi4ypwC=GAe?THtK5~RXiX*|0^W-lp5 zy`NSWDhi@PYSpb%r|$B6Vz2yFSj6Z05Q={sj^4nw7iHng!8m=<E+G{P<A8Pvtj*TH z?DzXq&Uw>rS8b*e<i?f_1yPk@!%ce-Yr5<eky;M?dD9-HFa=P*P7+LiCN9>j1?e_I zJY2vW)an9u=Lx;!!%x%0xm)&^>(ff7p(?!6JA?5h1RC{^Wib9qwyLBhtoT`bTx})R zf%cmYVhZgytqP&Ltj!1$d3huKA!~NEk5~d{IBti60FB$B9onHjY!A?CC=}zkU<VPD zUTGu5SrdFK0D}Xyr&*oz{ndGrZxPQx!8&)5)Dlryygx4$UJ25&)KW2-wth(=v<=oe zm<w3O_Y_}gY<%MzMB}B6&^lS`?r+e-`4DXt9Gt9#!RpFdsk+@H-5etn-%iHUq1q^z z9jEp1C&4{M(SDQELw5k4eLLV^!?cH`FK(~=-f(Tc-x;ZQgtkEaSrkcUq)S4Ir!hK5 zYClQpT}9%UGuL||Q%@{RZR^GbTV+WOFJkUr%;(^c8Kcch@DsbCFgh?6KuJJQ2K*JH z4OGz&o7eKTbRor~?mJbqrzEw3kRzPEYl+EzAC<Ni`RUth&5KM^WTzrFMMlPI&4ls4 zoK?L6GLzRROkyoPkh6+9vmSUeR+}pi=0*~;JyrTKPCF>6V?`BdEPo<FyIY+qCez_C zwg^ThYVVs1Sd>}K^cJNtW%eX#v*l$>nFKMLE8}UHb#$v8UQgCuQ8$`YF!zlOw-bb8 zA{-)8wE^<>|151IlXf{(`$pX(N~3=8Eir}0MSGwuO`Bk5rSqpNUDMRhM1Ep2X%9S` zuH~BfEf#y?b`>eFseLbBx_$G(SGBa|ck1KISRa4cuC-G`##s7zLM0)^(gx2$>euNu zcZsIe#K&O*9}5?g#1uL`R2}0Uq-#ATGqa_lTUkX#xvXon%+L<W4acy-EM|N9X<?>T zOIF*7Vm<4ZdUDq>FsXBT9W_VHrX#KM7}H4WGlnc(+6jYf7t^TS7<ZGpS`W!A!J<9q z71aY8y$^1n-77(M*BYvOPy<Af$K9bOiFa!sO6n|8Rm*ztpdTyI)lOk!ZKqmpDoIxM zotkJab(JZZtnACjz~LrZy19U*O7Hp+MW4jacrq;rW;E4y$vf^)m(|TkUG|zpo5$#f zw-MmJ&_a`B`F#d{r=IvR8=nQOwXN!xcaZeyZ6rZO8|{*O_CE{yl0D&zYNtg?>Th?D zblg{x8~Z^YSq>a~`ySk_gQiMq^jL8ade7M;V6xxIBT3|^T{>>8sY`2P{Z1a=F&(4F zLUt#uu30R4t6a622uyuD^3sXMq@tz2a9Gn2p#9~$&f04EepdZEwdNUit;MY_S|7i` z!^p1M7<H7W8{NRo7g8*q>H_mr4`*w=C3UL6$2`?+F@<`nsbgVEHw^YnywsVPFOq<< zmWw1-o1n;AcZInvp5SdkFOtY0o3}L3xX9W9<$lmZ%QwrVGe_S2+91^}qSFS!0<=L) zidq_kV~h4-9u;?R_sNHOe-yJl9`#gDZH1(s5T(+Ye|aMA;(aeB(`oDkWcAi&nfWcc zTxInXg)v<k_0hV?f89ZsOMNs&Qk8MS*r0}?@3z}a$;7iM<KVT2wEgA+7G-|Foib8? zZIrB!qXRWT)Ya0j{$%dpa(^vCQX89eAWqkjt94ado05rYjmN>^T&<tEfJL>xZl~JL zJZ-w%`#-C8i*@-O1GR>-I@F{CQ7v+?)=DifB@@+#j)TpEwUOomM71PuSM4H6x6|#h zA=+5^k^iV$mrAg6lx%~=L$w}v3QR7rz(gOWwNWcXRmpHqTqmTMo25%-iOmOBhiS*v zZ2}(~?k|ZcG+x^VW%-)Z%<38K{p9z?;UMp$zHcf<hW0z-Om6nmam>x)(2jup)#XeW z&_NG@2ste{#xP$fH{Uiaj4?axn5fYWVvChMY+^OpNSQoJdjl#@*LvK^1Yyhs?tP=R z6iK})s!m7Ea{*~})u8d>V8Zs7Zo<++ZLJ^v2aB{8YIQ&S7mKiuoABvbsF7ndU3QI! z)nl~UYNl9@PEgMACd)M%&n&ljtd=U6DuSEpCNq^;jKy9aUeR9eVdJ#-@f8qJJk~xH z@+N34)&8br())Xkhu<e?FPjSxIf70xT&M2ig)J9RDDR6fVv_a>KH0odiVJ&x`3om& zSJee39WX2s##tPfBo?MUz#TYMt0YUSZjW6sT^oOgk=3O#ESZPhGjoP^zq(UYfv&>0 z2`QeL;QS2jBT3yS<gl@HP)wm?X`g#ai56nvwKSII83STz8oq|i)~2ba#bgTl4SY2l z@9OzR%&=g({9)3#W6d0`KtfkdTEb7=pl~k6Wy%D2f3DVA4Vxg232YIe?X$Ru$`e@I zKRZtgt>Om}<Ft}p)neiFJlwHK7Xe9S)D%p?H<joe3vgwg=7K*S(ZXo5_pE@Wa`kRk zIrpRUaSKLnHi6DniGG!#5k{9r+$oM-psiE8T9uOTn*hTWVt2St%&}<E<aSy>n=<V= zdB}fOqM3vrI<VW|M$c*??kSIIr(}5?E9I|c+y~0FpCx(L9XMi_Y0dz-{0<z?tkmAb zlh0zcs1JB-75acprexv+)=z+})mnv5fh72IwU(p4Y%LH*kUg!r9m+x50sYrtbDAVt z40-?U4C%hIMr$s~M_7Fl?$DfgQ9GGKcdXM!_zjXX*K2t(vBKd1&m76_ddV2c?|R7? zN$z_282+lzlwz`po>vxFw@y~w<@iby*|ugsv&c`fdz&{te;sZc;}td==s&z7hFIh* z`STu;c98s0$g`sm^5-o1^F8@<f$Z)5NdBxKTlGuHpXTIe6Y^&U`BOZV{7og>BT3|s zOcq$T2sM<%nuExn$H-I$<j=Fj8EhthP7~=TNjv0k6tpU(8kJIQN~tELREtuo!F(!x zK9xM53N0<B5=*JHQYxvGO2JER5L`G9M5{};4QX}hDG*v+`uvzymp;Fv)up@Yw7O-a z&a}GqNkwUG#}kUy_EKS8Bx!Z&#uu$FT}9FA(lC@(mre+zy7}A2liPJ3SXn(J2%?|R zGRTAG)=y}M)wqe6OV1s}Ok~&RRTEN3S12on)^4pBu05$;2s33uNo;f<h+Gie9ez5h z1wnAj_!!7;8XXJ~FGO`y8wo)4DRt7_B!#YGc(*pg9cU5KPQBMssuiT%2nvlcagx`} zw23n8tf>rF#T@wNm^KRvcWQBP<d;C3yW2C`vywb`BJ6yr#*l!)ScHBr@6yfqQ0TK& z>kax=ZKJ$!B7C@2tD`<DipJ=J96YKomBP^%w9Wy5g|l9;Wx3Bir`3_<xf3B_yOylZ z70Zyp8@<I^$yo#-i{5-$Jds_++I72gk-AqbnmWkY9$LAz4brP7c6ue`w2AEA%U9mg zLSf|d+A-;SX!U|tQ#~U>cr`xFG`@lwZ;X?(0yiTUEPBD_f{M4Dv9NAnMlftXsLh8P z+q5L<8|bhL_Zq(up=d<{CRthwA9i^v@&&I*MGHqL^#9PgR;@<3Jsrtg8#!hYyWJ8C zn5we<W$kKU3oHX`estDUTZyGT6_J}wqQM`iFKST%_f2Be3Bc+=<{zOMaQUV)0Rmpd z38m2_c>Yyv!A2qssf6tzk|K7w223HTE@Zu{)rQ@#X>-&<u^8Duv-Km^5Q~lC^{6|^ zTMv3mC-yCJOQ$rD*d`Hj-m0!k{i&TGQkSA2GO&`L&WrGnx<07@4)4=`vh6_e^Okqb z-^u?!k2S5>kW^QG0)@45wuV-Fqe82Q{hYdJq9bH|Dc_^+wdl{rOoC4d95cLDam%{B zkmrBs1VWv6w5nwM#JC&1p;eRQ6Q~9mKPONxX{Rk0)K1Bv?)0~`a49fgGAePRbw*9t z@P!tvR>Gg&Uf^v<X|m9c5tCUv;x*IR2en($Uy%I{Mr?nHb)Zd`O0dK>_=7jyHPUp) z)CQs~+G?K=46#Jr$*lKX<E{1!Mc`i)#cI(DR==DCS6;2rUjCF@+kcZGHk|rS9t|tr z#~^V0WVrIaR!<%_*=Qk~kG(&cL_Wq67oz1iK+BiafdeU3li`~Q&M5fw1MT6M7}6em z%+Mw!PK|zNMVrWHT@A<0z8a@9=a9;l;GeO4=E^52rDOA-;PV*C%cmNkEGTLm;*=Xq zgvg^lPW$qvz!Djqec4Ca73F18ifZsYWc{MGhQi8$p~@~J)&2D`Z6jW!VWdn3X-#S) zc;gdoXV`He8Qo)o+CurxNFs=}pdvxl<>Qmdm2^#@)z-kMu+I$^><jA-#`l5p@3axn z<a2GA^1G1<JHOEEaAa^qlNeJG;{LB;$tA~Z@i6QQt%VXa#i#}r%Cq_5hmzk?6W~Ps z)DT#BPFtiT2xYRyIl4*JVaZQgXE|mHZ0zo+0%eDy+AH;~Om)mmCqIq4Pw8xB>R@Kd z>{#hOWssFA*UU6(WOOfOnuRG~(iC}F>+21a1!4wTby?v}on%7M)QDyZ2)W%tox|iw zQ<%APi({iDN_X>Xk|m+33G%VYkb2Qs*eQgd<VE76{+9_we$HE-|1e1)G(QV42!AvC zn}^ybM!R9tWOWP9gu>H7E!8~)i}kR{>;Y%QgOywX2T}LDkCM`qca41L*3^*&kq0BQ zq_>E1vY;^45g%|2S(hA)tgjNzgXH7ws1B4IOG<<$-)RTsJyYQ5*EL!seoykn(f^78 zJ(-=w%zamTQn_Fx!_m7P9pF}hd=Ff1<`@S<UC!_@u^5i|^yEIU>WucPDyFkB0B5zO zO5{{;1xbg^Q&c0tUGbwfSyJpq3XrZQr%fepqm!IGRp@Iitz1nlT(q<GvU2sXaM9jY zVC5QN;iBE`5erwq?5V7~tq?Oj-3>EYcY9pOrQL1zRMy?_BVJLYPB_%N*#t9S*T625 zG!<xn3!Vx^4>*R)AydHdv*wWBm<mxn9aSO!XRUcs62TT5v9ckI^{a$sDdjpwQ^9a@ zNMNYVly8XXQtcB`@MI!(mrn_Gic^p`G_YCN^Q5=ZOB%3M;Y!1Rj>?yYAmX?>#fa@q zEATcdkoTD~+|omesycpP;pVMhwcVBE>u746E~V>`dPD11d4)tz7TtB1d&UjTDFq}? zli~7!$~BeLX{ZDDz1Z_}r9_B|!~sA%y^dTYcnhOr(c9|>46AB)U%siOOLFYA6;&Or zlvo30MV_NWbaV1sG+<SN+D5kF4ikR9eOdYHd!(-3BpQ=NPGjNaa}Nb5?#{BKp(Kx) z26F-&b(C=iIvJh0QlX&Z46dUp>ge7Y=;$fQBd0-NkfWh8(g2|9m0Q)r>qdxrL#TS0 z@McfPL&}pzAvccDx)Ppy@o<?mo>JMd0`gBNv9R~gh)`%6>X<4W0(Yn*L;1kKV4A-x zX#SaB&5tXN?h?A5+F_2S%3DTxs`!sq#b0MC?c<79ndVrk{ACp4ivQu|5*2r!jKo^W z>C+)5+Mz48rki_$Tw^+<20A(g)S2$D7p$mAutVfoEe$F<WmEyJo#Tp}G#wVipxQ|W z6j9sOhWr-0L;Q3a65(tor8{cF+A5BDN>8H@Q(NxAxa8{7S-8u)h`V-mM-?e>I`YH2 z@1y3$MoDUAc`DbulxuG88zbTzJ*0q%m?xc&h*Oa8i~y?a8uD9Ib{to>h$(yIQq&e@ zyHSWMyOk?j<W<(4n(UY*1%8UG(6UL5s<0=;QC0ceD9M!lm@E6OUu6%aI_{UGBao8j zXsjGD%2HK-A-_dcKj5mq=SI6$k(7`b-nv0*O-FkrQb;(u&Cy8?nF0H2I^wOI$?(-l zhf}HHpFIYW&ZGyCvXf6adMouUTmdMS9<cO9U4I_O^Su^+0z@7zi0oLu_E4@l&dZf% zu<-dkuVJa9aCdS#8c2Z?5et5(<jhni3#i0P$m3_Q{yQ7BAzsYX3jjStC&=xd5eE?& z*ma9$fSl=YDMbbfs?af-{1h!bnrVZdAu4KtJ@<s_YzgoEuC<4?&MG0$(p4o0R@Zhc zSDrC&cn8_U>oH=6xi>edi>?Y=cu74+BjqEb80#G$@=6@{R|)rl`i_2*^d2NPbktSe zGs@E5@sm~egIxDFneN)%j`fOM?Cl|3&s$v2Hw`_pBX@V7XiR*vqZq1SfTZX~Ii{$+ zm|43)u^(%@TQqa@lH{~vfaa)ano*c)+MfItt(;QK+B~tCZB^h3f0NSJD8*HMkg?&M zwefzOvo04_j*>m|Nb!=`P<Ox9jwVvzEG!6WA7^c4jsd~6p2@Xd<WFlrt#e>>8%H># zv~ygSrxio|J&yXyGy{dIUqOD0>QCnCPvGju4s_~}-QMvwB>bs`xRcvE0wm={0|m0m z(Mw(-bH50)lUHwoxq5WTkMlcSH~u!2ts8%)p;c?P)b|M*5E}9v3AympeU8I^V#t>} zIW{Xd1cgWp8TPx8fI&w=FURMQ7+lE)Z+3AkQEW549fyXK0TDA<*p@10c)~W!guJ6t z6D3o~rD0pdOd)JjX0lMU`B_^q<mNaYRN4#tBx((4%f&n(W_ZM4CJ_?@`?@(&lz{>Z zmDSc)RzGE`z(plY<Pu873@$;QI1?`Sa5Ps|3YioeGw9-yhM!mu8h)BANaDiKnKb;A zu0r7hj(ie*9)G}5PjW+KPsgyNPy#CUfL~25K-V)gHrX#or>lpBBdYd<++Vc`(DFe? zxVp#4$Mw!<sd>srMvAe<jyY_kvhesrG~mV&wg%9<x8qsmjFAnec41tH*<8UO7Py{< z$o?2L-zvhU{Z-)JSk>97@@Y)KI)6BmeJJzZzK&Ovpc0|mkY4Wt8BhXQ$DFO@(=+LJ zFJpWdPNI%Q9kG!k`Z?Ar=>j0pQ2-2KI;NE1r`R1`l)3^Z)h`7T1pUtUcT7>*3QTlV z8sho4QCo5S5SDx#HNjxu@=!ldKmmEX&^j}69ZxBF0<c9-{^gQ>RL?4~KF`rYDG=DH zvi;1;4j+idoGCC_l;xPyxw42&lub00<qU$dxB{nN5XFzW+Wd43_DSE%Z&vOQEp{(v zLbyE0F-&<@)W@@t6TR6;<(&-n4|Y7E>^IVB?-E)rlC|7xC9LOM8{+7!92M9tmF4Uo z^2%Z{QdwWT-6dpN!H=Y375%AIKFsluzslVl=6G1SA<FkuF6O$CYK)*!bwbl1xn@KZ z+#2qftwhZ-I)tU^V^~GQX5o7<j^RqOz)4#@3=@Pd`t=B0nA8!NEQYAU;4)^hA%w6N zLvVSavkXJn{8WLpb;@tCZDM@e8i(KFCZSzzCg)^0w=UK4h=O#{JCIOx(Tfya^eV!l z7o<au!H{3zIOu0e8eizxs!SECN~ffWMgmSrAAXzM7YZ9W9)=wynUOGTjN?URslmav zITp=g+Z+pKvAN~=SjT<J7Aw~#gX`!x#|Y(hE5lxcf$q%R%5{W+zN}ItAeF9sY32Xa z!vEI<6#KK4>n97>%rD~aS3+kS{e{j*L3qfVY`|3)GjK+N@{*7YiEoJ16f)_I6f~R7 zNGTsAMoZWu$bN{)ex%JxXR-Z|F|)k;A&sXxYRmV|X8R#Cr#d<&l@hhZd1;(c54InY z33Tb1E$Be!r9Y-QK2<v#seCrdGg5@vsK1fQ#!|o8G8`S2QXjsW;iyn17}?BUV77TS z8Z#SC6+2oga|BL0jK*LBR<_@4=1-oR=_poK2u!#(N`^(-FaTdCq|yb_irH*|<inow zQ9v-{Z+A3Mw)-iwZ<Zs;R|G8+J{!v%@Kc7afdn}uxQzCx<Wk66=x78d%cW2mD@+Es zFH-?wYE#9ZMfquuq`8jol=FfX#FZo%()eU1AVASPM;@L`IX2Icqx@wlDX73dv2~s4 znKLvgIMIORnF1_MJLI$5(eoXvlxlN~o=-icQIOA9wmD=n$B%%z18ONX1$NrbHcSxO z`SVgoxzbQzqVCebRGGW1H;1`P#HQ}jVBkU{=NRttPBuNd(9vD#X^|(`G>pj;Do<=$ z6-F+{8to}_M9M?vz~M57Lm6fPu^Bo=FpxnWoy_*-xq=98-!qRo7Ams@Sc`r6#R)UG zeJ?I@G*QY0c52@lnBcW<ZP>NgQKW1Xm@M|?nCrQH5!+&4&M?(e7ZQ4is(Ym21FU$+ z-5Zc7m&nk%XJnjB^eG;$D}x-(VdiStr5qA<^32t?cZ^hze}U(gI+iIXjSQ=2;WO%S zZkEW8qtlh21a@kc<Cx$zOD1W~`pPYV$zm3MOT!Ir7Q`lIi7}d(3;kja4|KP$z-d2m z?rp~g|HN7BTqs)U7^7qgoEFj5S?AH`vL25mh-hJaawrt-iDAXC(4Pfq+w90rNC@bO zb3AFB1V4@A@zgP}v4?!G%`|}!+p&45OSS$)cN#kkAQX)qkh)Fm5c8PhEkChC;u^>E z$|S)GG<FzgB;cfV>S#<KvSJ!U_AkR><<H@9kh#wBq_WsxV*$j%xh#NqWG-N6P!$db zJ8iHx*x5#T+RFNb!AgUKZMz&15H}()5|GlAeOCTgE&SUnu%SP*a7o8N+T^%f`Cd%- ztay(R+mMCz&q6Mp{*PfBlc$|@L5jLlg(9B7O+aOyw{h9hJ$N3AFJi?Ej|9wQ5^4## zR6_7P9|={V?^BMBN=t#2Mlemegf3!+M*?Ot34MfIDxs-G0*zrz?MV90ytyofDZu{E zpXtop?8ua-&SNpm+nXKjljafoh%ro&VK7e&L-(QQ2ujcxX4DTcbZyOh${$-CVQPuN z#6y~uMv4&9EHhG>%UOzbr3-8t(mZQqGslD3=8)#;c`T&aEpSqw^E4)4-IvZ2LYnsk zCL^TzNJyn2&3p4$NaMq9gf!pzDMLdV|7B=M^P8VCG^7#A(ET!>N*=^!CQE*-EcJvw z3{Rrf=#u}&PF(UQJ!14<I*S?nJZg!11f=_%Qx%uMNv#%#34+yvUc@b?<^mIOm(d0s zU-CDBqF3?p5TX+G5{!H<4%PE`OS0l0uk;llEgJFwsMjMbj-eCEaDknw*~_e^?8Y5| zDFTy4O&+F9WNIR`MNKZ#qGna-{j$TYtP*f7y7G8sIoFl$@@x{=sjkb-y3$=9x4>l4 zm1DlhbVX>3t~}pI*P5?6rYWBYxE5V`;B%DgN;gqX3+z<aqh?*t>~Z8PzX(hgUHQJk z6{agfTXf|zeRR#==a{TS&o?@SMb~IH3y05VeW3q-jI~k(cB*SQCJ0@%<^e~pk|i(^ zU2R5J<d~WG89XwS5Su8Q=))i=E6(hG92MIH$XOAb0IhNYYuZGg=TXfFxgHW#^M+i# zjZ}~SgQPd{A!U(~VfB1GJQ~HVlhZG#mQpORQ|pYv1i?DFy@MJm<pPt%Iy|g-lv@X} ziFINO>u{m@^SPr*JBT}m+XO&M6Y@Z6%Y5d31K+`CNBabJi+p~w)@xio7PGVt$3yuZ zPa?LCKQq#}D<>a6MP2cEK%E#rt%DCZ8%KAwnI<}7G&Wy$sdkwNqp{W%LeW?YDW6!& zjr%m2lAkzh?E8)qCA8G5GCg_{7Gxyg#JcDs$0zV;UksUQFAVM$W6C7TR4<j`z|RTs zu(&9?rD8YAl35hbYSoU)wv$KuWg&%=n>;)+Z|vCR;z^+Q$Wa`6h9a$$oq~%z;s~|* z5yN5xJW1<`5nejts3W&8Wii6dBaTi<sEav92r$&~#0d29Z;p`;G)7qZk>fM9i;+r$ zg4%2`GSEmCB7*@&DjOO7(Ga5x1LIe2s!>ZRG;-;~p+wB(s__p-isjk2*>A-K#X|0r zat)iP2puN<OQG8*j%=H$KFs>WEM2NCCh)W?loN_}1*Cks0^72C<5R~WKi%P@&m8NN zX9Ue@*!`4|Kx|kug>Tul_}UST$0h<|;pi8Rjmmz5jfLH>(e~^lzg)^f*WBZdVCeG| z9`$t&3W~zBF8JjCb8DfGeG5fF&T&UGaGr65N_f7IoP4@qaM6g;q#`kkyOi~o3f5bK z>8Z5bNa)r9k2;{@)#S(ptly0K+R-J+P1F!$%f}79JpHClx}!C;{|27~#4bQ?e&mKe zlus2BXn+>GfCXq4PX187o_}`!P#(+Dhw}GWxB?K2J(TxBr4QwMS@>lHqS2ecj?r6t zs2mg5i!GdJ3&!;eRMo0RVb3AA?;OXKaYi!GiWM$^<=<nw6$%+NP^G60<_W1D_7Oig zy7{s%I^}4mtn$M?>kO`M1auN_CKM1x+B|{GRS4?R4H$RVvyQ6xL{<Q#{@W-R%nI&U zz&C=(ri)Lm0LwOA+&#|WSs>+@fJ^En9fq10aIf*Ok&b${h9gB%u+2c_yHkf2&?&}! z<$`0gr2J%*VNZ<>ejeqWUqB-OJc88vlB1<B-aDQ;kj)lRW$Gyk7O-!7)+r3Ht3)j{ zdaCzeZcMn5$~+gU09W=^O<UPcj)seu@lkRugN4oRhL$|0s<Du*Yw8P}bYic82{-~# zkGxOPGU4FQjz!8n0+Xd-_zqH=g)HnrSUR!$$V*<xC-y<VI6!$=0HhPU!O!EU0Snm^ znIeIc>Nh~tuQojR8*YKk5|}Ld*;vOZ=K3Kl(NE}-TpsG@bqaapq2agJa2-)0q+0ak zdqis&3j3kk1a_+IT1*g(IrqAwkFrl-vM9?jU*pOmHjPpY<8TH+SuslS(=k{KnR_!4 zFNS?7vQ~_r{wBkpZ&e+poD<dZ#E;H1Myj{3@v&STUt@a(&jGKvi(Q&_U~fQm6cT`Y zEjMth^OjN4+68$q_9r)8ZhU~Igq0cgr>6T8%QMsAo?2}<a;T~b6K>)*Op?H9v0of( z?D#U)8Bu_xGjhqldphH5w{SVzOaQbray$cUR7MBGiVMzrl`aCeMLhpF<b7N`ma;S- zhePq6z9u%GA6v8LOBz(Ah5wcteP2*ln`yE$X3s9wW)M|rP*F@M8dM;4o1kJ?pwr*c zl&O`RtCdwkrD;&H+(^I)7LTUvC1<&8&_CGuxU${IWb^&AWo!rU=`t2d><@9?ryR6! z1-wzlcELUoGdz1#m<d;|1yv1hmyumK4sS|L3w5R`-wLdB!|DyRy?4_M#nJG>q%1Me zrZN^@EH3i~qj(G?j#eRroqi8^l*AX+;8-P$obOki&673}Sz?f}#1PJd3^yJ}(<DWG z)Z4x+I`y0m8RRumFci3)L26}#lg-=i9udw(k`iyE(^)1VjwFavs8AAeqMW&kODy6U zzcCIYm5pBn0_o`hHdkavJ4=<;1`8XghAh6X(Hw0-p852!Icq7|0y`b3%`pLO8uuuh zFoI&7g-Wi#L<flvX1_<-7)5L{NNhd~O&*29D$WvRh5$uJr@<M{M(31A*;H00a8k{t zm^DkQ=6pz5Cooww<8Y60%@CFjUmtl*3<z=f`Y|;dzL`s^#(^5^blHSP^RxzZiggZD z-Z3DJC5r7WBh|~ksL0s>I>k9xC?||uYrF9|?F-&+edC=ymGc5SwayoqAhcVH1m`5> zhQMU84xdP`bL$|srQNvDPaid&)%mRfT{kBuIa~NOM`4mP+h!VB#(?coEn^W51M1N- z2}L~`Qn&GF-zGax_*o_eq&i<#+LQ8p5kNg!TO$ESbGh#PhOC-nz@FxurSvy4sYjFg zKvV-KzNVr}@p8{a%&QGgceYk0SUJa-Iq?a`2xXC#2^TXKxPHne3sb=3i<p0WQOrR9 z2s`G7xTHnwT-*U6lX}F*7YQB_Riz%$R9Rx+2Np4p*kTd&h~5QP;rrxSufv%leG8`? z&Iw5m5PZ=KwlV~ImRj^+>v<!cIl<++^OSPdNOjM2IscH9Ka3Q%(!Nd-sDuDEzJ)S; zuU}bgG@cO`hZw1BxF8a&E3Fa_M`}B#DX~U2^Qnd)9=QtuP|^iIo9kE%7rHomDY~Vo z%_z#ZOYMt=g^5qD0L&I9FtRT8s(S=j>e`Hgd}p)uV&-}2ZfXyKosQtvn1F3}eG&7# z_3PsZ9wac)5$uDRx0tO@T0>qt?7}-<4G9<O!v(kS)Q2omMD;xq=_tOOAJ;lYY#yGA z2b4C24^tM4x_G7}TbYsSX(kBEOl<&#cRRC{CyiX@)eQZ)2dY@is_S^b=~Q+J?3U{C zqgK!J>Q?xzF2`IaR@a|`Slwip`Be(v;PF#u7+p6t+h!UK#=z=Q?FXVL^;~BNMLic% zxA9yvA9M!6j;2n3yFB}vIiFVUDmO*|bze6OL*Oth+8f-Fyv#Npa+;wJo7dMF2ZvfX z=P1>La&#-kR?b4Rh;sgbvX!%)QrpU<8(h?ZwYM^~H5l+YXFp|tg(0ACIdfj4#0(zX z$$iV2^O_=LQs;#kMmUEmQs-r=DzR~RIdfju7JI|F?0cN`<u&DOk7&(3&K`l`hz(K) zXSD!40moiVq^H`S6lBt^#9@P+`{3|B&hV8ToZ;$5Bbz&)my8r+u8w)ZNM*hH`Eq`C zDtibH^+QHB?bgwl&AlAoPdvEtK6FxF2z+#mAH)Q#;`3OQVHjAQ6Y^<)H*olg;4^3? z@&MvsIh&vj1}^B$a$|z7;!kaUK<UNK&i+d15~H6Hc?kv_-;xm!nA40~!klJ;rKrs) z${*`hUm`e7pIiZ$JI%V;&PSAn0xWf!MnN8~)?Fev&2|DiF=$9#Odtk@BRS5U$^$~S z#hx6k`x0hPM5O_bkGR^NS`b$$D(z`F>N_q&Tnn4nnLN416P%f%E*^IoJ>5v<9Sb7w zcg|H-80pMW8j5irzGR8uC^rf0mWuKnp(l7nv6!Wz9B+|OQGaSx^mO)(@l!?ez`c4` z+jY@H8N;?qwa<uZ)HQxiDC!!Ky1i>W>L;jM(c8I6xgu1Odc})Ig2^kk>YYKo;yNW{ zsnEg6-gMwn<`C~%${eEQ2uX^SKf%I(t{)DYMi#Ds`b(MnyI0KctZgxqy)}_Nz*$G> zA+S&<SbwSD1W_&O1Wh#~*1WZZIl;3_L?@U`U!SSGoGog{EoBaIN}jVv(k)^eF_JrH zG8TE+!HqA@+>n&%f<_(}`IS1wNadb!v5_Kp#xf(7b>M|q-BHV;8vyl;Pa4_GGh#N^ zi@S*mC>iCf3VSD~*q|c1QVJYtU!77mNEu}dQ=S(PsL!mx1hmLPtS#}GZwUFc>l+ey z;I|)*N_=L;Qrh)n3<j>kI#ijSe<&Z0tF==CAaOy_20wQiCz#6gaKR;ko2qxhs~+9i zN*>{CtK79r=!WFMvH{7rq5tAKo?tpA7z|t{>gZk3<dGfBsUw{ml_UX}x=W)RU+=~( z6WpasV5iE)VFI%y-3}f&+PPF|E-+aP$}yWPV+KWRx`y@<Dkv+iq5bp~vW89u*H0LF z(Wl^IxAUm>TA_2eGECHpxX&HmB`VQIqNno#E}`cr(~S(~J`EN5LU!^p!F?_g*ezA& zA>=|{Wh_SBrw`tQWyZW~8*Jct^`aHMxh1@*&0ihq!q_xKjZxpF+CG9uedvBdQ6GvF z^`WY8<bMkJ6hbTZ(!A-i1_E{s$8l(?11i3$npW)tFXD$@M5L@<c^5u8NrJr-obDJZ zhF|hPTZX(UPcJfgdosVs<ZZkuWnYbN@vD2E5zvqEPg!VT-k7{mgU1aXGZwGE`Hj5K zaTWiR1&<j#Zv2?hB=L2!EwK;(7&ms2@}>Fb=wDK%H2*xM39E4R7Lkxo?=3locFw0a zf&@<`Z*|d|39b@~z9jZIkxSpYA;R<NJ2TzMDSP^M#u!4;v-@w5gPHV*Yz{fUMh|2b z5Q?6P>p`C5)1w@x2t|(#NaR^0eI7oOP~^FBaef6M>0{4RWHXrV+!v7jM7jyQm{4@r zl2kgM?kpvdWij0mYC$Nvf}cmGRJuC*j8Jspa*a?lM4m|eISokOAruWH&JyZk74mlg zF%2DXI|wy+nQ=MT*HfJ@Du0nwzC%*<h_jRY$1*ZAW=U_r<wu<90eD;%N~R~q`#msR zG~IbrslMEdAXR|_k2;$`MPj8YVIgHfV++QQd3f-0@>;-^5~nT3&&gwSyVH{DLr$@? zvr^9rhga!5>g+}pIoc^A-hcU$YGL)E)x*`6D_yPSI~nT0YmxDad`CsL4XRcTI?Zyf zRfb!Eh6q59&USi%{F-L}Y~0nHV}&R&>hj#&z}wWNXjUk%%LZ%twSo$z^9&XI8->=T z;uCp-@`@G64S8kGx^m83xblcItqD04T^2ZU_~^mQJH_zZU)&DQnGZkbk+I2XP!R*C zrUq?RKC$9|#PEB}r}zPQ0*Lh@e+Qtj7c~H?=4C6)MFw+<!N_<Fv(7?ig3aGSodFA- z&nn6aOJ59uZWYd~fc%-IOc8SYgLY@}U<Y+$czA;<LOWqCD^420X##r(R;w0(59;7Z zY<#@`hc(h1PwTa|g0vtY*<qE9F@eut>6q~Qz>YRw<j3+f<smClZ(gla3t6>@O0+{! z7bALSl5>1+V0~ubiB_O-9H^j-0?DY*;ib-m7(Y*`@YMPIAda)tii0~V)XqtZ7*5=y z(0jQvA;Hh)wx{bvv99x+6>1BInzxwM4Y!8i%7WDR7(W|S*qCJC(>8m@3iK8M;%!Di zwx!3%NBe?65jfvdPFqW#B&D;%!i~nl9XQ%pz7PbQ_zl{LZ(5Q5<Q4jiRR}MO8TFVm zG1_+n3f4a6d|ruNY3{>v)s@sE%M+I{gWwX7^<jU@Q0kKFTOqPm!j+ZI#>^)N8&$#$ z2U;aRNcaGW^kiz<Y%5-8ikBlj57Gv#if?hKvjL5oZ!I@e&;u$e(1G1i1H-6utw^)D zQQi@Z(sD}m_!!@nG@1)t>JFvCim{GiNCP1CDV*vsmV=We(eXBa@oClukCS@U3iC3D z*+F4sT#(SN?<e>(y8e-KRnzE8n)rA<9zSurtlN%u(0G@U3frI1q9J{gbE5K<SI{RA zwFmD8q!+e*Zlt<zY;taq6d?t6ZgyT!ZW%0)^_;UNlrIfx7WSu+x)N{MY7|ND^L$+i z2Ty;)&j=Fk9arUMHWN1q8^Zv0K8st=X=e6ratdaU3$7A?ETv;$@5<;f_+nnwNZ7YB zI#p?G<!@;4w|+ded$gz)7ew!l`fVk>t1LQ_0MNV29wZe0gkg)KGm^r{FL7o2yNJa0 z{>bH<N`FBEv}1cn2@3B;?lK+4*8qJDhL!a4F!$E-=y{Sd%19>-&>?Z8S0sOEVJb;) z0Kf}QcswOETFg`<6_rG5A`)30mn+MR9M;J6c#<KgGJ86*7})Zy;%cm>R9MTDzZk8A zU?K%(>zRxd(H)eXX2uRS1DCIfw*gziAwF5p#25@*a2YB}*Ti#HMn9w+HUsj*R7N4s zVJcDE<CZcjd&XFmja-GwUNrNG%5vCqT-ifRS)n;N11jq=K6W1Zn*GfbC0a=J*a%l) z@lZHb=@26}p|@%1N15q6Zq-+LA&o&8Q^iO%+7l0F)rVSZqKlLaBinDI^1V36D%Mu| z+UU_r3v-zc(S}v|>8qwt=a{pNjHT$()5zy=wN?pBPd^&6=hTs(Rd18vuhM)lML@~W z#FjSGU^0fK1CAurs8y|iC`%Wjg@mFDQKZ;H^b;};>0#l|SHi{#&LlX$&-qFWO{Sp< zp|Gp|h;E239DiKN7mh!oC&h*1a4ml_ft^79M3X-e<j=$8PcHs3)`x_xl(Ll4Y++4E z3scwl8_|dQGYUh;B7w=Tg16;I)trf+PgUM@eyu)E(x`%KSF!K1ZxB-4o!)ZJl~gf_ z-3+*RQ*>?U^0_useOq9MqQj}VVXq4*xIy}K^zZ5?LK0!B1u45LH?f&GiFH0+#cr`Y z{H}A5dQL2q*VU0DpIJq{u5=ns9l~w1>K{A9;e20bB%x}l(rTe9l>aZ0zn2>8!%$^4 zbK|F1v8_jc3Q@nj2m2r1AsPJ{(TV!y#smz1LaXPZQ<FX>>7rlWCn#?`li_y>w-gnj zcL{en?A)U^6O)N!RlAu|@M9mgu0jg!P+eBT$s^83)FDC!?0hG!y{!vLp*r!$BLi16 ze@b3^P{)e=sXJ5et2_`>uniE9?uU{09@IG^7rlelK;=(mN>(#(is;mv8Vp?QfYsca zet8UA^>Go=q9=duvYzX?`(tNab%)4L^;~b(bJ8cyR_Xzf%c3WLlWH&56VZvDNrs+W zEb8eU3S497OVQ)iZ-jKKW%-Qq71ub<9i6FO6#1#fUtx-1*=e6U^VORomqlZa`X|>I z(TT>1hQ^#h)R?fa>qq?d5wGvJiM`CD*2!zmfvV#%qyE$t#MBZ}I4drQp1}w??A7QY zY6~ITY8cOM>0_+Rk%N$GXOW*8rU|A9hDo?yshQeO<RXTNHtNkE*YtsI7x4Lh`Dk0T z^cb~`z{4fq&3G<96BT9iQx9Wa@N1CEFWKXl<*rX-+li*Z%>5MIPNeg~BBC&z7ZwwW z&I?Gfd0{Q_19V>4u!_wKBThOWkD<xj?NSr$Ku<#Fg&nK-ys!hE7n>JW5!e;fEaXoL z`7?|BDaJp>yg=AW^V8^Gk}b>&v@rGJdx$>N%~2TYP6$kXt;guRpb*W-R~$U?`Pf6% zt3#cs)hn|g{g>~Y4=V>q0jmA0(CsWn&#jh))(YEeq+;!JtK0Ca*EgN<?sh*o1Ms_d zLN1#_4!<4Ul+Gc__eLJU%TrDn3GO{-vAFV!kwRGPYyuJZFduu;)yLQb()XNmiW0iU zqGrmXN-jBQ4fFZ(8uk>d-?8XwP-k(KNI<HQQp0bdB%=_0M&(a1nJA>=kaE#k6!{xb zm(CMy2;Oh7@uIU<(p8cw&Jtf6wL+88OSs5|?Mer$68o#lX%O~d^nUdoBkM7C|5hI( z#b^y%FC&$irso=%c^Q}51x5yAKk`;!nyn{E6(@@kYuLy=awNKmGTmCHe34YE@(4^t zn<FrtFyJT#%Zsd>g+B&}=zP*xxQ0y{D1}ZMKH`V1;V$@_tIlQ0Rx7GSXYS%RbDinK zsaLFJsLq?sI<NoLIZiob<+SL`(cj@ZqZI0n4V^gy>g*X7)GKj!?5`yZcPzH2$DG6+ zE58|NMzh9THBvpzijE@)gYc8TJ6~0lwO$qcHZET?1g{0@4;;v`R(5KmU`!R-HRj9c zZHm*%X|a*#u-IDGt|)-mD8aCix}pldCz!dzz_mi)?x$9UgO2fIBHRo*9^Kw%8b5se z8;-dz(V05thX_R-Gg8bkze<K4b<BGoV~+XD`nD8udA$wXH=W~SC<AkH%+iN(h!Phq z9d?)8a<-M^!;g79^k9NNko>t!+UFwqlTChh#y^IKCTyjYrIcn19-0=WKJqwGjQSS} zLwgT_$-laWMeeV{Qdu7>Er!;L-V*K!(6gnrjQ%)4&y}8G^teF1KzfPMX_fS0_-upn zAF8BJ$16c8JwHhAE1lpx!TM0?9HZY0*6)|DF}i<<-dhTU*6}FoT8KUnzxhDv)s<0h z5~H(1QLfJDqoF9b5u;}+`aRM;jIN~Wou%%KUZUy)a080s)Ctr3Ncgc9g8yEao`c^~ zpmd*bOrOW-U&8f4(lSP`ia@%8(aj?DNz!wiCsOY(y~60FQTjybAfr1*>qXMXjQ)er zrx^XLP0yEpV)O$sdM~_vh|0YXgE%3uu_o%Xpo%^MpX^Y&K~+qz!RTXE^*pIIqsLXl zx;JBVOm)3b>d5FftLsyxo{TPz)yGH=Gde2{=|V=Ij??=|(-}Q89@}UEqqPK-i#tn1 zhhqu)L(-FsE=WY4os6!Qg!b9X=$%PemqU#1n~e7PoYA+E5&wHeuT8<SKQp>rD%STF zqrXbk`^oACXdSD!fJrs<TsfBisGg>emTU1JZ>Q<=<$C<bqI7+%+=~BbT~i+*ci}%y z*3^sSKK#d$TKX7yDF4ycu0Je~<3E0|>yzb@4Unhl8|6hjv5i9?C$Hf@esky(<<0!Z zb51>9-o=0P()CgD>-<NcOCKm7=07&M^pWy${-b+_K3@Kj{|L^+s{F=(?8?+<NCA-5 z5Uo45Hd-Z;(eZWkE_mN7P2XHcuP-?nosgxc!E5hi#7lR>&PIAGsL0Z5K&!fXveb@o zB-TZa*X!z4rEV-?14(FF5Api5gzEJ$0gHsf<>;CbP*GnG!h3$HsCP)#%m%t$n#2+Y z)yISx>9tZ|+n$Ud3GZ4Vn*KmiV{c?sm+-U%N$A%A6N=@`6lnuXI71Sq2WKY0v{rgu z*xy%HU{piB7M$N=kK}8d-Hi2oLu74~mYLD|?F#(l#=yM%n)tHw^yON9d#8LCe&MPk z``3y6>%#tJ(|`O)SvUNFabjI4iAQUkuctR|ee54%)nix>72%8L8_s70wLbX|0qZls z$VR%o^~HaPl?^2dR<vc7o+AALtsCoAt947Fw(7zDJ;46;N`ldib**?YaoOJl;N!%# zggQy6X9#tQP%jbcTSC1-sMCZxLa6Tub%Ide6Y3nHejwB}LY*O0;5wwv5-N&NKN2d5 zQ0EAx6Y6|GF_Mi4d4VL}L#T^{>Q1Pi2sMCEmk2eIP?rfcnNU{<HIGm~6KWZut`e$( zP`?oBIYRwPs8<N}8=(#o>KdUwMyfdfcS4>biPs7B6QTYf)Sra<lTab+k-9;sDunur zP&Ej3lTft@b&F8V2z3{(Nb)-pN+MKGLdk@Bm{0+PDkM}Op{5rTvJxQ|5GsgJK&W6s zJxQn#LhU3}WkT&GR4Abi5lSJ{=Y&!T^*y1&2=z0e!U=VYP!WVuHy{;Bs8~Wp1>RMR zD=I=plf-(2vJt8kp<)Qtg-}%p)rU}32{n{Z)d)3?P}K=lLa10mEh1DLq1F(JJVD9d zOsE7x?IILewdKD~sNy6-9wuZmp^g(Og-|~dDwR;b5vm5E0&sBTrx7ZWQ0at9Bveg8 zISEyZP<Io`PN;T-(g@X!P!2-%CzO*=Bj~-=Iw2>KL>Hmv5-NjGO9_=ps11awO{lGe zsza#VgvufmaZdSl2}N8>emz1FpO9alP-H~sXOsT%2U6q90>>3RJa##8VqXW`1rg2l zby8K>*-6iWlVy5U_@%j?F4<sbXPtbjEC_O1=y7uRMreISFM<;-^cGSE&4k?jdKAe> zZKJoA6mOaWU$@ko%F!D^dd1ZMa$4yw>3#wK%~put&4VATx;CPEG{Ef2g{*IlLh`+U zQ8H#wA)UNw3T$X22r1vJM?gwjJyTjDNLtwzB`xwNX(5+X*bXH<?M01}F@s8)?@d#n z=pIATvcxm@!lD42l|B>%&Frm5tvsXKFt*@k6RY*kMmTjkqhX+yk2cBbq<4k>I~+kU zx;@T=mkCN636C=5=)IxhIXx0)=3^sV{vAKefFA>n#!wR>vjr=i*$5?{W;7xOreF_r z#3?Zja=If<H7I#Nue<UYy$YaC(U7ytWdO!PonNKOaPDhY6yDs7jM<7|`zVrt_qSJ0 z#5R2#qB`kGTtczbo`JWsfG0-?;5w}DjM}!g;<mUgZdcgTMXxQ5W8g&=@cy?1Q>4J* zu6n#Q+6q464&c|a^;-D35Nek77VwHm9?ehY=yjzvR$Sa&_h*cw-7p~fkU<_YL#}L; z!3~|eSk|F=4?RkH#|rzFe^}{|o(&J(uRAfcrt1D~#)c2=9(4<2<v7^BPF7adkVD|g zLwYlq*+Wkf+VN-qGH6eEw5MKM)}DZF-SyUT%_l(WrSFz&JOKwnTwMi-WH>oYZ)52N zUE$z^dZzpUFWvnK$m*&;2m?Yqs-^6f9k8RejGyD_s)x$iKCqp=uuJ-&eC)<_q<!Zd zX;Ctc6q@#yH%)=h`x>JU%D1>8U_dME8g<(0Auy^E_R@+cV97%m_pU?L@MdXYq&)Tn zb6Pw5=`G}!o`90)Gg`}-NMy)>nH^m%U{`;gjwR}>eyXJRkxyXV?$z&w@+oXo%U}8+ zfA)lRNcX#n&$tJqWd_N&xQT916H%CGZxc3!t(((A;H$qfLgnksM1sP<p^kiLZ~WDj z4KEKw-|2wVu{gAA!GY1}B7SPe4BiY5CkODsoJO+hLgW}dQE0{#lFCPP;*;Wt?g|}7 zqmL<E5fBCOgY|G+eo+xUNQtK)cOt&PpV1*81e`<kP$|bRdY3z(FPMnvM|uTRTKQZ+ z7z`h(M@V={E~&&!QmQxfpQLy8FoeT5*?5cZ)L|%Ux?fRK?jUOEaGZPaYy|;-j)52E z>r<pHevzKO1Cm#1i1-S%P9BL`pJ2dWGGMRPgd-gGOu{k#nO`{{-$4$VzJU}92TE{= z1wTbb5$_^hW#&Sf!GOWo022!IXgTmHIyi+cB0UAChGF-$w&;pNy)mx4C~SQZc0>^_ zF0*`aGJSEPVl%Sg{1{Yk5W~q6arTVW3*`PjIDLI_sINhD#;?3LFfwfJ@)C?S*aW|X z;Vu$!(W>1bX9k*l!~~qNq#4+gXQEFN>OBAUGVaEuJ+1Sr7R*BVWglI4-3I5Y$>@8} zGn}&q&UpEIABb-a2<pXf#8Pi^m3tR-4D|QM+`IfVP4F)3FNAXMHEp^cD>a0pb3H-V ziRpT}TyK-rgVou@JeYe1da%x$m<Pi|DkB3ki3fYNSdihIskf8H3do&iaW7WrgFb4L z)r;*Z!*7c$o{r(o3IfqaUb>0(P(<k~FWzMBjb*5k7>g{JjS<&AR`fNaXf$MJF}D>7 zh1UZ$SYOW-D)07zdkGaHo%@ANW_Pt^F3#l_80?Q6w(mTBi2Q>O#AyS9HV|q^jaABx zhjpgE^SSZ1%omK8xiknrY4N$NLRbjKws$|xCW57<*f{l{wl+@I)1>mruzrrK2aH;P zEz|`I%ym5ol@_ueR0CwA5;LD>%~iQfkT|JKZzxaaa<)Iln`(-Wtcg!so9fJ?=pQy9 zBbm(CA_8$Fh!71c7vYS#8hss3>%u5nN!2yt#$Ai`MEP9~@U{q0P_DO=-|zw0k2+xM zNPD2$5<S@)f9@wge&aY-MVx6%^?T*ZJ~$VBa7vcpZdlr8S{Eq=@}AJ!v#Km!uHT1S zO_<;_y~W{yI=vB;KdCEbeSTP>*N}5KSQi1TcB!Wio~#lS0he!7sthMqq7%Q*uYmTq z6YwWs)G?h4z_%&9+P<_3w{a)>1siueu#m^}1bNG5xN=l)<Ar(v8a&S3pfI6haO6|t zyeb$beB3R_29v<0%AawqKK4Rk=&@FBFCF!()rWo%srRn2UautwKEoPBf-BGQMFs6& z5B2rfvAncWC`4?~)1;ez@&7dNag{|!1NK5X8kS*iB;go#Z2Ef~A06=<h0*co=UN0r zcFL^82IWJwDk*SJWj#jDeuj<A%}?-!S7)LlS+9x<ua3`<L36jar%F$tt&4cAMjN$4 zlm~E^5fQ`{(J%^0S47faMw1n<)DeodV6<_sH%WnhPYE$9E_fqg`x`-#uz#~2Chy>? zw%vrT@i|(^qUIKS5<%A1iBIEV^ldL}6b3O=($n4~1(G%kl5o}AT)xQht2~4F=ltQH z;rN%HL9Z0Bh1y*@!?3>-urF^huyLJBE0GFoKf{_-Yzz*9pAs>;b#7snzw`q4Rdzg* zZ4SHBxA^#~t!Vhp$cVlQ?U(xsTkGb?_hOu8_EK$8KXFF+c$;pQC-9<USy8&G-SM2B z3EL|LN3qGI&<AN0szD}`{4L(ega*~OcIYno365C75J#tBm!^n2S_MZye<e5s5}(Iq z%sL;~$9!RNU6>6GUcklG5f1wSg{6x^ih4OZI8I&WeP`l5AJl`ssB|C}?$YbZe{s}5 zn6fDyF;FD1D;EY=f#ihXU|9P#t|zYfp#I{Eii^!0c;2l$WaqPN?yx@#d9UD7j;=DP zwvqPWFxaM{4JdB<v(`pReb&dcts~J9o!+fCmV0sB`zh|5F!6QYh_0(I0Ilwue+Eb5 zdLT0lvR~69<T)Iwgsb??4o@?Eot+s09roZPJ;O)4skZ?ivKJSyJ2~Vw4oMfVwALqE z23Lm>y)ZC&)(3L40ZF|W_EPG#TCve2W0$ADQ@5}=e#!yCi~V>2C!`zCvT@Vnb&Msh zqY~yZ^V_q`2V}f~J^-WOPcSf~`)im%k*^{H3HGwy6p$<4#CB}Fl_5vHg$|%0EoyNv z^|lIu%7wSk3uI#%5~$31oBg1bLN+2ws^b-}z}$m|Pk>B!dITKaZMXC1_{Cgu#mC$W zPxB{z@>ane(D`cAyBINS+{)a+dQzq?Tt1}R!SNnC)-@zS-0)gO)n|+JL-;)G5HI<T zx8xZ7SSu+cOqQ>c1it#+x7F(bQa?a|-#Ngq3?TADeH=dVvjAN34<LnOKM(&@kAdV- zl`FxFmn$pq(qUXf*M!!eqV_dl$yc80wD^Qflqd95sM9?&2-Xj&91SNv&j^*036rR8 z0;GP8(YBx{9S&!X;YQx2LzTl!t0;UpOeAFslGcBNbwwd6y!#POQJt;$9dC=DDHSug zX;!$IKUWTfTgUWZ_~~QZ*~1q@%{ou;!SvXsuC$e5J|kcn#z5dGNd64<++@YX)ssIv zH2)kIrC%`2PX)|~FL2^MW(7Io4<sALe5u!wgSJ7*0#_T@c*(Q!!p<8FEx*D==$UVQ zW3In^u;?mz{c*j4TyGoe!F8-?g(vi$xJgcBkfp59EuAE_5#)Xr9_p{PW8m;Nx)P;1 zmW#{gTrQ}eSx{TToQU^O`4iO3EQk(p97uG4uV7u9`WGCXG;M-6O@WV2c?W$v*uFG0 z2L4<c8qNp(v)h=v>GK^Q^qZ+9VWIKVHgnkZ!fBlSKj3wEPpAVzbj9Nb{?vcdP+vMg zXx!*rs0Yc2P1Svzq_qU)2f-U&4AV0t6_#Aa)x)J9&>2>SD_8VJg7t%-)fIgVyn6<n zYz>mxMh@D}00YR+X7JuwZ`FIk`f%K#@5lgO{Sg5%<}(AfWq>QrA>aT8*p>sfVt^~p zdjavbgUk42bVE4qT$VRb6li`ySMlfuRk-F)+?@C#EXokfIdi+&oFx}=?_e`2g(o}1 z5~6TN2utvXHwg2f^f*hfbiEA}n07rp2ZKf0$OuiXIi37$1}83=b#0ANB8nLyVU%dD z_bF2E9nxP6<`jqdn!&vAvj8(7Qhz{B-@*FKfM0pgn7YF{0VeG**YeGLr7FC9SXbqH zk(aD-+ad^A<044D+-iq4CTWfUB;0GVg9W%ruru1#MvmXX=1tc%p{GPtL7%*Rmx9}T zk0`-#<Qn#@xm?Gj-*JMT<)dFQ!g?3`*MG-pa}5?CbLf)m*!XztG1}D#TAjsR%wi^a z8kfA{4?*&xT}oFdjBy3Yhq%0oKT+O0KJwn8_7EQ$U7rz=WaBrjk~0WwOYI`J&N*(K z$RJlV;PZ`CIC)Q423#70f#De+V|_<!<Jk+iA6DMfb-CJ3=Fei_Xp{>#;X++@z{fCo zc#;Vd#OW%WB=E@<-y@1L9u{?7@xIF?x7!IvtDu)Pa7HI&q(b>6r54nFE=+;=YpzhK zg%!5x?P1}j>}oC-aScZc$e#zeM&aVkqTw+AP&h*kgOhiw3Jgech0E(X-WmZ9pK7&- zT*C6rD`CN~qZhX5Dl7a7|M0jFxF1#pyPWbNj{J^*jG<;O1}YX!U-u71=l}OByBf&9 zbEsdvP-PgcSWqtA0VP&-Wy&?5hoh%)iy^8yR*!ZP45m{d5|5ifoiOY(-^P$OH_uiH zgx$BD(TXK<_vcw}$@W6_hLbzcY=5=E=Zl?5s?VNHNB?-Zc9<_0bG&I@yl9A6h`pv& zgv$w+dS`~iz9>YV>=${08JSFX=(VT^IK>?TK2#zO;dMSNciUXXbDu<;UK?uH42xxB z^S$SpzuFt)O2-L`7{L-!zxlj5s2wd|;QIea*n5)=&rCS^Tv#+L&T>UdKNwmIuKo1$ z-o@^z<*pofvYN{wSABu`JKGD)-=Pvw(7B$gHdOS%GfUfU;i4z<1*`iDdx5#X&=*X@ z5k87_)sowC$W|g`!3jMIc1%L>%SXb};2X&mEjRbUZE_pj-{W0(%Y__wl!&|SZd4U( zZiCBrqwIVi$f3TFbYWh}?y?Dka~%hNOa$N2#sh91qB8i1S?()_4yqLw!eU^5zet>f zQ_u&z$Hg2J#UwWKh`IbQGHwfTMaggaNH}mC36Ixs)t0Yu++Rf8oE9G3lWoFP_~s_Q z>_{H6$ya>9f4U9$m+3A|N{5|wU2UXPC~Ab`lOEfk-K6kW3^4ZBblr_7PHC29K*y8R zHnPx3JeGHnBN+s<s}+-)yu5FC3`A<KczCO}ub=4P152ai#tv5l2|r;^V5eGPXFlxd zes#VJONSh%D-{p+`BQql4?1nf8M>>!^ejW)Y(-D*m{9`?U9Pqm9r?q2+>1$F#cAl4 zfzvk$%cYadmC(JuH-+>A-gE_4XS$3NF6cbEO1}|BvLL5{%T7;%TqOd;Fz)h;W{;5# z+pb13e}hLox-~`{Re_x?T<r8lVJmdW=tH{WW&kFN%i)M!UZ+7%4$Q0Ta!PF&LQ4xm zmwK+gc<7cO2w`wzlEB@1!(C>7v8%qTmQ=vdMq1EtU4t7>#AD?C5Wzf#G~5b4<PP9p zHN>8Y=h;bR@r^=LWw+n$8Y<x{o@Q0?z8Qb2(q4PEwdgOTcNy;67F^uc%7pTtA`;>2 zSHeQreEx=2%zpo3Xg}-K6z%&P1HWnkPip4sL(cG+mA-ffw7JdEH>AD9=FSwj(w=o1 z4R8xG6Y5NgOo5X(F(##t-V<5AWe~@a)HbrU<@U66X>txn?jj)5XfP!%G8HNU)j&Gi z<0B6$*@E2O2iaq2mpq*#PZ5x*ZFAeZs==++t{^Ckz)rjIK41SZ&IgzJhlF+*-fVe^ zJ^L^$fkzyM;7M+O3U2fPqD_={udBZN8CURQK|$OqO$Dra7VM3}&f*X9LoXy<Bjf0z zOCpuEAzdTm(4}b?>6nK7yIsLh+))T0jyQ2Wamj|yOlr7U<S_j{j2x0-XE&1%NN}4M zIiotc;^cO27Azw#cjZ_(3KlK*_{aT=lw{a)1mn;a1Tf1Qr8T8unDc4`QF+)mP!QEP zmi%l6A9fMkRjaOOtl3=8*SeyfGp%|~ceCBdmD#QqI8Z4hrcuZ#3=(n#NL)`fmG^VV zI=x-&Fx(z1>?^eT;+kgtyHVlLq8l!UzIC%9@eQjYozf5~8ZvvhTH)Jb-iiz1(-&^9 zC#2n=`~9wDS$&xSRfg1l7>D6QzZy{I0he70f}?{>ZZLpwa5s3@%Vsw?sHdx@+?Yc( zWKgwwxw55tR+KvaQSgywHmvJ|J!Qdzu6TI}hkBSn;UhE*=UU@k7&FjXQmz%W-<?5g z$jdlhxfibsTp#E=@)r09qUQR%KX$X6>ruh*;X|$nc|V8TLyBy{S41r4!uG$dxe&@O zU*rJi2;&l{&}sz39yvM$`h0<X_ly<qI|EO;3w93X%V!x|m3FjGS--<hLw~wizdM#E z^t<P(=pE!ncvhbr*ZO3jD_w4|+q$t(cei=Wb?lc>L+*oYWKW?NmL+=%ST+h~4{~*p z@84~Wth*rq*;wehn?12aK%$UbdpFxzs5eCL1plwJD-WouXy4tVDWW2a>>wa6DEA!P zOEXc-)Ch1FMFkXGt|*A&E?}0Wq2k7vnOS|dSf-WRmm8+JD{i^tQeT;+KefejDSywr zGu(UbIpCLm_m4Ao&YXGXnRniKXFX?76Czl?Po$UfhNQJ&xTp?Fk%`(u1GTlOs*kc+ zQrje{A$|{Ky@}Q5lGPf?3RuLdP_i0n)3KVi%kycb`C^viu4I)m62kh!#OOBzqiz{i ze@hTPz=j4Jwq!z?g+g=>R*dZmygT5zFlC54dwLWU*+)EMXjZ)VUD>;GXVY_Gk!Ugx zsS)Q}lJh5{b)0ES?~!l)JlPRnuUhPeuNU+bS+FE=I?__E$b|VyBzT=&=#AH#_=4)> zESN8BEVU<y0Mex%{9ZK69ivO{`WR~*2Ko-{fN|1}EjHpW_|jRWvd3D3QC~<(P*b~< zfRJKYCvF%-f=Ls*NH8UBX9#FwI8QJv&CxNu(Auj9TRz@e1s{oW(433@81*=B8)^P( zpm}}*Drq3zMCO|Bw^?XDqT3Yj%|@m7+$@y7)@Gsfz#?8Z1+S#ZI$lwEyf}Qls<1Qu zk$y^lAoKcoZ>m)MzDN?QUAhivFMO-Y`cx(Re&}ssSYGZs)#|TImGmY_dH@-$j5pC6 zE9qrPdc8IaP3pc`)XCypXMPFFX2~jLx@5J<#A>~P)rNdDC#90mSxE@-2P>ycgic68 zM<t>4lF;XpQ2iM?LMy(;%uD`3uNt+Srul=m2*LThjJoN+#c0TUw%BJN=PS+d>?_tH z?ozh}fmD^ewg>^tnW;+;yJqXL&{wTt%3zs9lQ~if$);omY|)KVsGXSnn$=Hv84q&3 znGOVQF@fO88`rK%?iQo+Od+N;yF$(2z}eQi%BK?GV?6*yIGBUFUE7y!8Lm}h17F8D z`$H4nN>Jh!_}wkejr5cP%(R`u<1eT&76<G|<r@>kF*5{pZ9kfe=}H&uXhPmBPqL#+ z$}CIDJnLu+KHtu7@VcurFAvOEB&R{xfy3H{dYjg7T1xz8I((8J)~~QYxXc<+w8&bG zU7T;NjkhK3N$M($mEVog3jp&){aI;SZ!Z?I5F396Z)MZFtC(@MXMhsG_#}*Fwe*f) zOV-0Y4=5MBUwPn@lzEbMLAjt*Xi-Jhx;V|VJjOFkpk*>@plp%I|287q<-vkSd)HvA z&)2TXwk^X{@rH8K_@ewYX1oDAcXcaEO*9LHhOk`XEM+8i85AsqRK6=0{8IVgtKQ^O zblZf&U_`MJeXb*mF;kwk3~K?Q|1x*MYO>Td&SgiE08mY~<wotA?8aN@eRY(OST@o_ zwq{W)z1`RlH_gNHEDzF;<J**rT(kn_BTK@K(!pT`mMU8)Q{KUpq|FF7%nnB;1+|z= z%0$#=zEcZ^f&BfXiTUeYorytDtS+1T9_ITtZxdGR{(ESeH?gpPIgNnUZ*y)sul>s! zq?AgsXNfGmy@J>t?3wM>x<$9W{n^EpD5g_JzS!gj!D4G0PeUxdtY=5x$F0xBEgGox z{6I(3&BLcTD_Mo{M$mRav*U-L>Cbk2Zkpot*)F$beS}^_GkSuyWbjVT79`?jzlCjC zt8~3mnA=WDKZ&2YQ8v$g%1fi?cB8R%`vk4vl<h*lCh|D_7<NIrvy}Bv+R^|Y7qNvP zhX;uXcAaU;-tIIaf+|#Iw^v(3m6a0lU4cldP+a2U$F6;94Zw@Bb}*gMS;p_m@zERG zolURTT1;aclb|I66blN2EC<Vl+E+dlZ5W6}K9mO%>OOyPGduI8xgOmvAA>5>taWG! zti?iVjo6MoWo8`Wr?;T`@%JbAT|++%uTJcdT~o!F#|;~>ZqiSJqWJWnnU<dA;^Ae9 zGCV$T-cqKRI0B06Os2>K%`Ns6w-AF%8MmslUH`VLQHJubVxghyzl4UqL%6z<US2G; zbKYiX=a)QGcB&CTJ+(Lay=b-&6!->6dcB3_Dc%l=bS-+|^CYVr66vd4mZ>z}F7@<+ zF{N|G&Q&&koUa?3x6SIVRN5f~{sar#S0-@a48*!H3CkesyM!#}DgNO9C1WH&j8F4> z(d?&U9b>GRhcPe?RbqAsag5(7iAM8O^)sw(cQ_M0_7$p9n&g-&IHv4Gvpz`tH_%HW zJeHqgtuFrY#asoTM6R{CM<%7|*E)vi%(YS8ljQ2|Mp><(M|EZO)(%lt_jjYLFy;Ym zGFJ)$2z;pnylAfu8<qs?xS?1ez9bVU+%I#FS5usGf0lBupIo`V5B)afD^W%d`15kq z1dt@leR0Fkx4E;!Za}6Vu#QozGI}F6=D3`iMr<r<9mLdh1AbHAAcgZA(qe>u<!mwj z?+~hJKMB{z0EZo&Xqv`o4cWZAzE!I`c1rd%Cef|@B&ahNbOfEbnKFqPh9vk3^ulg0 z`m(haKb(ZL37;64b=quYrj?IRGwlh-kcBTK{#pY*?`jc#{Bd-OR`XE3Xt0;JLeWe+ zffoCc#4R=8!c_OPoHfFoa=>B3{Ejna8in#Bjk+x~ic}byLHACHd!)jXPwCVQGlHaM ze48~^#3FZ!nwEYVv?6vI$07CcffPQvjy_{;r*zmUItRGP(@^RnkZ)7$cvgpxD$;-* zp6BPnE}cbRb-2Xea7pO0l5R?4@J?g9c;QXInsNuyY&_0~BCi664@H3E$-X&njaFXX zX&j172S5FG;y+8Rb(D1y;4?kI7Z<Euluu0nAA<=WdwjUluFj|!y_nl2Yp`-z0$p$b zB`fDl7^fW=)UyI95>~Dh9&$_mWGTGAztst^Y#t;+=H9wXl+Lg#QhJTBNaehlw81W; z^alOt=Pu*NBXB;p4+4e@4=|p5-=$pGY5$~uEw=l6ECqMjWt3$nf^}@C-~0ncloOFU zFN_=q-asYW6gLxbxfnBck-p$#H>uak+T9p=uYvAf_%5MGtFP)r5%iNaR@o`@zvd@s zXR#^oTLEU@r!)I!sOT9);QMsyUW4^L!_$btD=d!Wzm!QexUNfT>NEby@>3wy*qA?I z)Y|_hR`!%C_;k3lyeoZel=t;-0>WhUNFF`Lf&s^EbmcBS4=Yrtwqo%&G1RU9wNb`( z@s6-wUn@5Z2xNn9S$!?N1x^ov<M|7WbAl=Qi(taV-1Td_wo?D7@K@_ImX`!Vo<P8B zlCsQie(T?bMi|Oe6W}B>AWZEP%Nl|83CH?c`N$OSeRDh_((F$Z!g&$-j383;j&+)H z(u8ol0)%~))IgTsFrX&eeiz21+HTRlRbd?}t800HEAx-Q@TL;KVcLQ61ivd=C}$zn zsfJIpTb|%QRyaSh3H$NBwYkzt!Z+vf`Z2srDTS7`z`qr%^|v(;+oj7(NUboT1ord; zYZGONL{1UNcnwmIoH8`Ph0SWCdRPXQ3*Wy&_;~h`MU7GlCHx!#kC#hFvstbXh@sc> z>O+7a>K4jY34}S-%IZN2R))$E>$-=aK=%UKmahXm*=BdNE<Z`UD?Ca+=1{}J693M8 zna&d%cgjoSvU3__Nl{(Ma)zMV@G&ZCBKe>AT9}XC)x?JqsQ23`F2s)&x2#@`z4eTL z9d@%Gb|AOJVK~qST5d{rRqH9u_84n-)E?(<W$)^0ZA)JsFGlILM_5rr#eDb*YhBds zprWY2%Iti&zY9yKp}H#F_ZTaAJP>&;jol-RVH8VsSLLQ)>mI>;OHCbfY`mAu=U7!Y zmftq8s<bXeI{s_iz<;5Me<4zFSj1XtJLMCwCX48<w!>C!Bpzca)Nz<2IW+LlalkHz zFoxvu;#_K=pG^L|F8R;^l_sK<GbRcrNrd{oX^@v1!e1KWLcAx12msoN?athvRs-0j z{{(t7-`c9D@~26Hzf+#d_Akb>n%-(-nAi@X$Vq)RzdqOVI%-2k^Is`0K_M*ETXkVU zKB_0*p<iFscg?UHKMXX2_Bz|lXMENAu)2iVLx)L|RKzgU8Wg}rT??!#_A_EbzB4ek z;TwRl?ENzAFk$BDFtOwv#)xO}tw8KfY9H*v^6y~c3%l~2F|iHbfJt_BWIdd`?tVAW zm2J6etp)Q;NqnM90{!0s_~xAf4m<D-a5N@A9jrEknI@1kc97YYlg9Yid~b+PbbLeA zMoKm8$l%keRoL{VWp#|on0ot^+nW=Es<Q1>gRmE?4c?2WB%U;wC>%!Fw5)m<3#nsW zwV~2VCWP-|IVa>Yh%f(p1%<LM;i?ZTHH91C)rY`CtX5@+gikTTL!|9laY>LX%dHR9 zZK#^fYyXFUztuo(sT4}^IY#izhH5&#b5|bYSIY-2D>+ZjsWOYs#RTV<?wDKLD%1GV zm<IN`l6=DX!*YKm*3`KW4MJMyoFq5Cmfv+I;}>blPU`L*muBRzNSztMViB1UO>x;T zI<jwT(r!Gt-)MT3{m!O$b%Lu4yQixDN@G0ByPXXI!n?5m8KTtNZ?v>w0N|Fk&VJE8 z0Fbv2_@*B+`Lx){k={f{@6}I(aX3{&tdx$B^aeDARUK-gHe|mT1+{7hgPJGdag&;# z6a?~7P@CpDXxE*=-I!ZbwTkloer9Q*+LZT9s4FPL(ooXcN$ZwauHFkSLD)}ysWn<m zsy!>#1vg;PtzaC#GG%%@*y#I^EuT^~<rg6^%MAj-n~8&!Yo?f2rMQ0BZ#RWut<@<? z$N?ekpabl3YxUoX{{f?*eGtM0jhNIhg9Axoi<As9M*g>?WM;J0Nd`g>V>jQ6@Mm@K zy+6fvKq$uKXCe7vNZNVvFpZ^lQ0uT|FI#(8Uo(+^JE|%^ZS@69X{UzxY{ZQm`aW;` zaNl^bMLr*RXzpr^n^gAj_(?3aom$6dBJPy)H02=efMA?@K$PXJXdUB}_G))!t>o#} zRVwgm6W3LoYis)p$UlL&a!d-d1i*1>BBS=CNmmso1nr4%VK-yYXE-PXtecG8Cvx57 z8#TbOZhE03%<O%McSqvUzV4fUM>H2N#@;rS)vvOwZXU3g@{UgGbfwWjVXqso_HocN z3{{3J;h4{LenB_%peSiwY%=-1x}ewDM?&-z5ZHc|rgSqw#8m(>{{<-O3<;4hAjm|y z{}>U@R>Z0y$}|($WHT7Ok9+7v@L4OtR&%gz$|_Ur56rQVn*>%PL2aUx%GhUFeuBDP zIc17{!W<itOkpWK&>UoSS8FM*heXY(dPo#Dg!&v0uBTK!WR$GskV&%iR_%hGP@$(J zPzwo!&#~YmNL|$ythf<Q_TJqK9nfh5WCNs|d(_OJR9umXsxLp{+Jn{Tqt;N;Bz&rb zzn`dfr4z7OjlM84gG^+TD#mT0%$I0$9cUwz*G(9&IWVZo?UPk*H$JY#d-JQL{{vYC z<CAn%5O30u(ePw9lhiQf{2^g9`VD|=&metgqj8e$7$723?r9Uy-;(7$MCEM=qI$5Z zgVaRjPZQPOCDmUJ32G+~3F~kiIpmi9t7IKDOtW`Zo;@rG6{o26ELf=<rt0UapE~T^ zveDL`<inx@4&YDAK?$OZg)p{acVmC{)?f??`-yNv6Wxd3jlsGEPf9F@J;gjm%AS*@ zg}6_%e;#Q%w)tu53(9iI_Why4mf?ja1LGwI#(Zm#QY;x`K7}(b9IB4TVg&s+u)~>x zoZUKt73`Mi*ew?KiQS0dI(GO3gde*(9KE~;l49}*2=qQZuha88hjpWzHa0ZM-X&s` zb4+@u&vHkX=51Y?Cm|>MGD$`Uf265J2C`2-tK-hP4X;-P6IQpTB8OSoD(&x9VoHpi zmFN=VEYQ@nde~scV-Mr8W0bTKHvK)Ad~E;2glo5u02UJ8(1mRq4U?aWRWxTyI|xtf z+wo5_)w=k;AtB9`NVJ{}GvLYE$A;8pYqC&TUpFDW25P)@ex<~2@oB=mWQ=OX2b2hL zvqZ!jUl@vP3W;KG{)IP9HkrWIo583~HCduoXZ|H29@qmBQUl*pBG?}#EWH4REC;jK z`-jwK!8yqC_a^Lbov?#-pG+*A5A^oq(SG_J5hm69h!7?=PKU8>7eZ9lb%N@lcpfpz zu@)Y5$T5LMPlRocktop;1>J4z$+-oT(LaP#VJVXU)z$>n`iKx@t0Q(nQe%@h8I4V* zgv^kTX#MK4Q2$UXYyWe|lWh4EK#nj$4mCrPIJZp2<jXP%`G$l<^C2O%S=cZ0pJ{+B zGC?k^2=Wy*n1$p)MfOSD-4d5tS;~FrUm=xQXg+XvnsAHD#f3npL!h@M<ga>xu5b-) z&Qe|i+D#MMbu*ff<qXI&{HQ48(4(S|9kP7mWo(iRK58uFfTO085n_A=Xx$`QoJ6DS zHt`E>%FfONw--!koy}-8y1MhK+Dw@y(I!hYyt#lk{QW|kF#lQLHo=58&WuL;-=Ce0 z0pO~mwErF37|1l>l{cI6FB8N&W(dmO-nl5!TG63Z*hdBEZk&?TPDnJGSD<pmGgaBD zImqo%6ZqkZ!J8?SkBLSJUjbT%UZDf=`+2IL^0x`>o&$^;b<{rU`Ri;CF-L`Nq&zFZ z+X!&HPe67t5M88Dcb3){+diJ+L8f`!7W}T9$2B4sFGM%eCXr!zK^x<pFm@y>G>Bas z7FwH~UxZdPtz6*LhXCJQjM)Gtffo@l{{SW-Yiz=5fWkbN!xm?QR>&4+GeX%VL3apH zGM1rpwZ^Rd8vuocE(dh;LqG>DRU0d}B<TMMP#PEHPYH=+<5y!E4EDJk&>tTHTDVLN zR_YuV6*KU-&{uppf%>7?W$|)IeVPbU{Ei!Ir}uGF14K%IqN>hHzYq0g`<J5^8Y{uO z2yiMjv>8x`S!gppeLcj5Rlkf6v~)5h5K}<{D6;D8`U-RqCra!bNt_Cfz;6_Wc(Ob1 zz$|8)a5F2w^?MK9%#{-IU4mT8KK|I;|6W!B0JUdRo(c10Nh^`_V-l)FvZI>NEiNpG z%~>Ae#uDBKyMrcn`^@09P@VY!ivNLxye}a|I~f;-m%={?smfme5H0W>6Xb0NBvoH@ zLa6#Cp&jRaa`bY@-?l__d~;XnI!@PDsXg#&(U|q9nlz>U>c<dM=M%=>_;al3zcGYQ zIi~v4V3xiLGw~Bl31{%gG0KP&qDzkW9xP)f_L);3r^$jk9;{?J`ee&z*Qv^KS0f8U z@v%+ke$$W>q-=PrBL8z>J$FJd?tsHBcvt=BPj!s3q!`BBKE~wfAT81tuM;}BUta_6 zADX!1`;boDNsmj{ssR|j5%>L)JK}q=w=U|q*VTOjYLAKbE=hZbpuJMkepk}&^o5T0 zX$=RG)L^%^sh!!q^|H&3H(s_m4Kk{H<2=adyk2c&(ReKR<%mcgLlzZaGBJftHw=CE z`UEUC?$j0k=|cxq*gHGWr>`V#QQ!U0Mjgwxo77Gg>_Fr!gTIt4ZS=IR=RWKkd-sf% zX@)hctKlm{IMD&ePRppV*k#Hyr<)L&DN>~`sm#D}s`48I1d;F`)f;o*Ww9|KT1yMW zN{0dBBL@UNP>a0CVbd^?uQU-%`3l^s%U8Q5_+IE04xdOn@9`#!v*0fqvb4RD7KCYV zj}i#t{#K~Pkw4XNzCwA}DN9(K#0`?O@|Ph?NA9S;_!O`MqWxX94tC%eAi^CG*oEcD z(q)mQ3%V?Yf2GUPfhLh2mQ(@%^H&&P4I&_2F(sW86P{o1#G=szkql`;65DYUT97Di zk+k;h(m~USAj<{ximw6vrV)C{NoNfpac#B7kmAAuq_eoN6loXNI=n5U*8mb1-sI&H zN1`5##Dyb#oFUFSATTtYeh~RsBC@ksgiv<k_Uf`j=b8Ai=|_MZvJWQ0`;^hVd9wVI zV%Cqek+SoYJ%-4R(n3VjNx11L(MW2i%E=2B5@d=ZFG^oi{9YnHYWVyUWvcAS|Hmk` zP6^xh{2`H(R1d8c+u1DA8;7I-m(*C9XF@DMv|EuGfyFH`b4rI8&|K>d?hWFzuBTeE zTMty9)~9i2mhB8(&*B>UgzX%8BKcG2@mEZ<#=79VtQqi%nb{9dQKN#2PAq3hmK~3w zQ;V6-Ap3}%j)*}E#6{qK96~>668b)8q2D~Idg0ijvKSt0z$rCA`Pr1kAEnU0HwgXN z#Co;mBBuvy`khGEgY7<zu7ulZ<JiCYX;E}Wlpm7nc}kQPI+T`YF_qcWgrZe|()1k6 zSzlfJx6eT~y-e}DR}g>6d9+TGb@8j0A{P@(@y9vEm!oe|Vb=>VHgD+=re9F&D@#oX z>@+D%04WTebwLU<zfGCKEM;RZs=oh4U*5#yQeVbGU+T6h)0cIpMJEKw@J<MhY;tJ& zKA}Uq9p&ipEB4v^#_IXY61bq_|K?@PD4jF$KP@DHuW%AD)qbyUppEFN1lqOHa6XYM zYkC9vk##||aO~Tk)YiIcUHMEo)~%5}jwc(nAM-j5SkqfhjX^lS5u=2jDaRPRsEb{C zKn=!6stmE8r`XsUc=>nOw94F(FW_0|QL*&(+PA_S9Cd{`aJ`{6u)HjgKlzVrt*6t| zy4>U%a?|Z5dTsC7V|lWDH`RLV#C5f`uC0dV@VqQ_<OOBZfw}Cj?<UJ;w+^BBSG5M~ z_KWIo!L~YQp<uJJ8K}4As&nl6_}q#i;&-NqT(1|u-@r$1i>q-~OxGgkp6u!0vFKLq ztg)6?IV(DrONCT(byA%|2@0v!|3TMW*w3d@p2O=6SJb||$DnjDVYfSL))Hk1MVYLm zm>wS}s3`r<n$<&@d6uPKRdbXXrfB(&Xw<t$s??i*1`Q$a8`u3=N1Y#{rEHUOx&AY( z?q(C<CIH&cHX&2N4X2c8sUxnmoM%k{r}O~SES1h|P)h>*r3Y|%fZ^v|6Tly!Zf~RL z)EqK7jRuyPoTmp;8};<V+o;xfUfP^!*qrf6Wi|(2!?I{{r#jLias7tE;)5ZOC;tiQ zhcw8)UW#++{|RxDCCXQ{5T)liHs+>K0vxOWWPO)5j$OWwVUc}}&)$1bvME}kFcq1` zco}p<^czQ<D@P#~%jje)78s+?bB<1m5qFMqg25a(Mzi;COG6P=zjoEd!<N%7xzDzt zrsr1G0+mDOMCIB3r!*V;jcH&5(0x_B@kzPjJ#^)oBbw}@Up2=2!NHBcr)4jRJ(Axp zelMD>x+nNSfnt?<_*%f<LdLAGtERWbb<R82vV)#lgwm0oPh|04n#T54bBgfndC{=9 zIqxjiezmn$%1{~cYHh8pGUU9`T%=SGx9CK}vdz4+B*JVTt%WkvgfOE5gu_=G)@Q}O z_#E>m5+Kx1i&8!^0lZ%UfYo1Xq?E|GYy1)SpegRY3gT+s5slgCc)UaPiv;Kt2w~hX z0bHv9;B3Q)Kxy{9SyLaaGn;fDJ@jKiC=1V0qZDhEmR|y=g0*0rpXrDnS4YG9|EBoO z%<-u@wr?6)jU|R?K6s(r0kS7VYp5ieKzf@&NR1DKYK`!PBS-uYKh2f(4bvJZQ%oQe z9UxT4pp0ZK0<qDG8(()tbF4w}LkFWals?j-gKS5SNPl)k(fm6URLf2unx36LdPutb zP~aE9%K7I97_!doBEyxnpe(<jZm+gcryi4)2ismt^UT|g=%V|7;?XGKyhVAY;vqZ4 z(MN{JlNh-p%4i&ZWDEgOP<?PtMn?L$<ctwx$4M!#C9L#^91}Shr$)w=b55j#&+5nI zW4lWcZFpBP7awOUd+CcGIT_`C;W0GHyPC##bXH4n6j@E+Jc1ULS7fdi%F(H)$K)5T z>@H=W)Y1I%{_%mF4&`a|xS4U3Rf95!yhlA3loyt$2CjthFrE3YDpU1B^kbHb)S2ea zI%7XtG-}x66wIf!Op23MCa6c1lcTs&%Tt`0kI64wXNP9|@7(eq8NzIbradx-G-VD| zN+pPYq)Pp4PRG<bRC>_=LIWq=wy>)bhLr=NwgK)D4$c*An46zTfi^!bEr$Yay5QXV zi>sl9M3p`!KTo#1h8C#PqO<=y!BdY6;bm&gPF!&AsqU?*HHdoR;^P&9C+p&-)zxM4 zuSaGm2|7yQ?ju9|_e}EPL{#`=XA;W;9=c410_cBi<bod=!fX#tkf8oiWp=L14tuca zpF>n=57s|&dFjj&>_GxcT^UK;k+Obwh>~=X<-Hs3?N`Cc&<a@rO9Ff6UZj7G>GpF| z5-&3M`kJ>^Q8Y()!^3{4Z10Qa?uIh?pQNuORAOsuX<<476CQ)WI1#79Q?T=pBV~+u zsL6lN*_CH8qfW==_J)qJG3&y;9uD2(;puPe(m<=P<W-{MieoF$G=Hpx4l0gyp;L-+ zlb=u=`y?Gt3?H9mfx{0bhQm)Kj#cPL;@IkR9x;6UFk(3TBw{%H7~<H<bOv#(l2hP@ z1BjEyrVkmNGiq>pHb08EVB@t2EkN;D%lC7C#xI}qOU@+b8>wk|eCc5z&MV%@R}Oab z%RYWN$S)=Qa*SWT!6luD^Jf?EIp;<EQp7Jya7icTJh1UV+_LhE#xG6yr5V4p;Fngo zq~{d44;_(_J~nw==Ehx-T4W_FCpQm~`61JV#M0s8bR9nM4vf-z<Z-_IF6UoJ#2r4K z1BZ`i#o^<5a`<@W96p{)hmYry`}kaYA!XO$E6Q^U<PvZMatUxBFUvv_g~P{X;_z|d zIDA}64j&hn!^h=j_vIAS+&Hp{w%DRPe~Bs0v^LyrC*8@?-5}jxq^mU-&)J%5GZgD3 zcB8o#8mL`To>;i35kE#Uf;2zg)(p4eZOt#S#x1nwVJ*qmimvt0zl^s%h5xf`PveTN zbDK*Wb6aRfp3G}CL3tvTP6p>XaDu-M;4%f5-|}!7`w}i$ui&E0!sQ))DJ;MxdM+-1 z&co&Ee6B<MJaM4@QN+Rck>c=dTf#m3RB?DpmvRq3R~(*x=PdB>qs0eqJk&;OV)5c9 zabqN#Q=r(yDco%@G55AwxYG90#+Gfh+ZL>KTia=k0$-yFGb_jT8DhlZ;BF;r63GA& zvf62JSpL}7POAf_w4Ig+r&Y9;3TH{QHWE(d_Sy(IquXmKa7x;1HaKlMXz6fPbf7TT z7;Sjy_mEPA?J_?f{7G(U6L6U|4ySh7CPc#fJzEe%asG_aMkDI5j@o!Q7dmPa;q-k@ zdkN0j=g8Ny6NT;Xq)o=nPS0x-;B0-K!di7EXH91!7ubb}x9OsF$0G$@wEl3ebkPP# zI^T0TFT9A$fVeU`{o{$wkgi%sJp4gd?L|1hb=BhGbbLYU0jKB%!u#<Bl1{5wEfzOl ziq#U}9E;U@!-;rNi;Wg}{*fp0OByaShn6Ms^e~<XiR3B|K7kP1K=-oX*x@{wef}Z| zym}l7d{mq^49MTak%-&JYZ>sZjwh*kC1~T|do4j53g<?GHXKf3H_H74;S_b#Uck-E z-L#%?T6QOzuXopy;JeaY>jS4<4{{dwpqsaPXajLGp{Ldl&PP49L2z7p(Id&dwC7~@ zZgBp6R^k%*K^gy2{FB+c$%7|xzax9sR`X!?Z7&jP)80h0TW`{!&xG%Y@HOp28uVr# zEzR<MQC}?w6vp?Zvi-I%WimEV8-<(yPNbZN_M@<Zep)teKIlgU-oL*#1io$kDF?wx zS|)sRl1OmBCTWA=>ob64yKMk*2pLFWuM8wr{B0mfI&~0%Z5c#hp~(c6mrP(ck|{#( z6aw3nLSUh(1U5aD!mgweSf9ZJwsSBklFtyzddneN7m&yuLTYtnh}IXrh%_ppT;ZHZ zqf*e)$$2eZ>xD;3(<xqqp<1j|=)bwN57)OmVT*5Qk@YJn0$!|P4yBU&aVW9sI*e57 zUE$mtMmz$B6M>B3l+!)KN$nbq;Ie0PN02sL8$nr2u#xjQ8a9Nvk0fDajwI+K!fBd8 zS~Mqv^zCv6PoZcOWxMAn3R*LY%FJgpDfINwl-zftNnBksiP7*(ioGS1G^KhL-E5pi zG^b_}%~M$vuk{$BxqJ)}vt&~W1G6c@)NHLYXzt3^y20@tOM)Famg>WXv6O=AIC`?t zI4uj0EFGs!f>S$(%nr+;%2i{$_6lw;7_Uu%<2He;&#Vb#Z<L8-k|s^0u-_+Ayor;v zBv~$Au*|kO@1r0d;3Dka;SZ=>ew{=`8aJ7UuboU1b(=!kGHnWF>f0%#)$vm)r)#Hb z$spi9jly!Kk^X--jUGwJ6_quYa<ey=A~en;0WZ#@y7VAV^Y{D^ZIrB_yq{rfIe|6K z*SdQNlN7*j9p??#;f3fVkJ1`4yc=cpk})W_DsR$GPGNyFv{-hjRwGaEMf%`hd1E*D zC54T8O^aAq*sU&GJ6&_v<7e}hF!>eWch-DZ{?bM<o_c^x-bUVH&%UG$)W@<=gE>oK zmtU8-?JhL(^wjZQ!Jo)0;KY*k_vi6eR-4NTW@tnGbkDcr4eu2+yu4J{<;2D>&>Kks zPTBc`H_WHeFqb{l&tFgWM}*jl7s}vv#f>}HmchIkx7|h~Zp&Jtu(vZH%B)wk0GTD; zuG_YvRkzJss<3W7Ac%{9H&(-BWZu%-&ZC{T4Ok|y7ugP=rAKYH%p@i5JCkbOhM82f zp|6rkyz(m9pX;xZW+c5v7H98kT9y<C?<Uwr-UN>27Mnj?>&>to|4FFS%2^b{Yc|Em zpG_)tZ8n*>0k4xuEqR?3vt0o>s|%>Idd(pP%bi0O`N|w(@#0*n-CxWljjTD39+^0g z9=SY^EJaKqMgOpn_`1*627tt<`DCYd&8M)&3$y^YGiWGzuWUDZUAFI7j|G~l%=(T^ zU!VnX_igEJmF_v|-hn${)_1($VQ*xIM-7h>)sNa(5&9Finpe;yJ3`k@!z~edjfZxF z-w}E)mqOW?g@VC6>8_UU0qI_aD;eD7C>v^9bSPw)MH&xy=rWjWM;aTNqku$cWnN$% z;dg}I>rbI9b&+6@C*8NCyIHzt;7SIyIZ7Oijss=UVS5_BJhTb?j!-fZf`K#=iY}BC z5z_Cz7>j)9D^6XkH3(@-B~?%*BXw|k2K74&T!y8O9x*yCec~e9UbbVgW^+4$B0)df zb_lNRFl$|;g?XRG|KU+KLr`XsHmJ#7{usXukD9s2c8vRum-%=!n~00BQtrFJ{wmTY z$Dcxe_$YyfELcNH%}B*6m6kPn*djc6MuyV3q@ecD%#5`3?BucIvU7%v%gMGsc1}JP z#lBpk1ywt5_g-A0h1dE;dYi&6EC^=z=Z6R9arED103V(f7I=&pos}~#c}Pa;*s<wj z%NYFT^i0jH>=BvS$@LQJm4*Ky!}-{@u%Ozg%(V23vamZcj1PDV3xY<ak4r^(^0@5O z5iIx(t#-A$We>16Z)jnz_oWvz4bzzx>iW0C|1r}VyZ+_yUu2p!F^3E8Z!XN=`Q;aW zsrnyWD)UQCe(~WKSAMbZ%b)y_d;D^PU)=dUFI)--7gSBlpb_pO+fN(6eM4(z`G0Vj B|ET}~ delta 126654 zcmb?^2Ygh;_CNO~BqaAHB-tdC^u2d?6VfRG0;EwBASCn-0Rm(N5~}hPAr>SUnj07e z5n>lXK-4@t*einVsaU}BP#-GjQ=eG)pEEPNcedR4p1*%SpUm#go$onkX3m_MIaBVx zk3S~0Jo1<nysqQ+u*1RQdbl3UPIS$FJ4I@7MK3OPo#>xKQl&28<WP?;;jV>Q{mAXD z!HKRDqvFYlZ(^gR7Sj2(^zp8w-lJT-v$M(GH}nX(xhFaNXmrn*mgdNsMYHDBE}y%s zu3<%8{gM_}R70$5cHe4OS!K3sZ%wM)T;r<A$s#98x)sRH9bLO}`na}MMZ3;dhq)fi z8cgQCmY$95yM;9e&#A3h+|u0BbzxvnvbQxj*>%3$;rjNqUakv;6J4K<gmgz^BIV`+ zS9NiwD{s0=PR3g*<mT?cpgUxyby|`ub*z=FdnUWPE3HqwYiU8EYwy%3ax%)2<T`Oz zXIE5K8f1P@_sIH%H4AE%%wM@=E)}}D)13NcwF~PP)shoYmSk7M>0G6`(~6ZV>X+5k zENUV7#n!H_e`n>mqN<`G&z%?7&#PTDw|;R$&9b`X^-D<2Yw6`ICx_JdZXn2%nC8xN z7SHuAnWYsu<Y+{<&T30@r@G|}>lV~3u4{3f8JR=2&dQ1;a#tn)rvBkj$jdF!b81%C zF86|yGrP1{S6)_<D{62gxw@>A3R%vdTkMLSmqQM{q}p7$S%r}0>>Xb@VqGzXm9B=% ziaRw2)il(#H1~7W6!zIsl+ckJ*_S**ZXSx&*UNQcj>YwT&q~*_ibSBAN~EqzuB&R4 z0+dTDbI6Gi5veHFfR0fO^~+bdN(Od!ow-YQJ+rXf)mS$M%XJ_*zdR?3MCU4HWScF1 z7|qU!Gcl2*wKaIC>-PS+uH~-{ac%53EWA_g6*Y?+7S%3Cv6IN5$vIY(eMhZgAyqYs zMQ%=aot&9Y@}evgUAN~{NR_VAUPWZ<Pw7#vg@bZJLV`MUXpSdirdhiV>Vw}yA!|9y zmak}W_QRiXer3iU=HSCls9WrJXV-;6-PbxWR&`f9dy-7!++wo0N{kDuTQaZq3KpSY zL|omHhLtPC`e6@4DFt`svbYQipekbk^!g?2X)Zps_$U;6q`4j_>Lw+*UMfn8?}o`D z8tNA<T8SFV5|p`qElLO}#Yf#pTB{aE4vukz#HC?`>egPCG}U!xL@MZYPAL1G;%Y4( zD*rCKE{#pu@xJUJ4JAQw<j^;A#}GThhe8|6CtJUjqg`7|I!dElC(2V@snZk4(JzA| z!f2saKswjqY-n@S6I>~!At7-H>_<+Pbu5%RxMq(_#X3&o49B=0C@l<$!6Z4f{jPhv zqXg;%QbEfk=R1X_hETEzAQ_E=)*7wQs6>h)XPybkWNCW4&X)}f8HCYUpfedPw%Yaa z$W%}3;C%C3`v+%*4929%u9};ZgIb(jT$ct{NW&p@zAJA?IOCCxDJGEU8l^g%6;Tz$ zpcaGa$kJ367r|1sKBQE;J{cM!_Y87v9XdfS#*aZH>P%;g>-5l$Qkd&-MLs#YBRWYM z?K(6n-*t3o1d}n#bz<0%;2uaCT2HQP_S_I?g)y#K!$YJ2@T?y>dPhtM=N60H3b3gb zxaO8>r0RtjcX8&s@<)sfiRa>UwG4Ni7!f6nh4LIPK_eVdOwO;j#7RLwvL~4xYKek; zmqR6vmZDwB6=NjZO(T1gqtC~Nk-YmY9i>bVxKbK%)5tQZ1fJ)kMefQ=FcON3M$jH2 ztP?AVOS0>ek;M|&kn(&m8Hti~6BK9FD3#^22(mp`3Wj=ux*XM&G$`HFPA$%Knj<jq zy;!M7;qO}7L2TXCt-y79bjOfzjH_~Y8j0kOoP=;`DC9REJCQ_2e~4>a<pik!3zw9X zC1CdYLsSt-9grQ(1s~{Y95X|*fF|aH;f@cnBH>(;_Fi}{Bp>OTSv4hOJjRVD(XXXf z(K?W6?zg^{-j&yZjtNT1winY&0n``8aFr~If&Qzrq~0{PI=B!LP#c`OE;*WPy*n+6 zv+qPj##q<soNzMp^|TOaoa>LVHBwg)Y53Yd<PIHHHb>2xS3h@2&EncwE9z%8)T~(8 zvZf{7iMGx;2?Mlr&dC^{k#kPL04<txDh8b~n1%t`Gv{;+(26-{V1TyEITHgkTFzM* zpoMbIhG4A|4U@A512jU;IT&ad%*7xHgLxRB?Qzy(P=>*L4AAH}7hr(a#<>uKR1E4c zNWs8~!S9es=VkZ}&5Cmo2BR=oycR>WA<iWjpz(0lW6%ME1`NhvuoMHd8_s1IbjM&h z1_>CfzyR%ob0r47F<6BG8VBd)7*u0$1qOK-ti}NB!P*Yazv0&|7+i_La15@(0F8lj z4F+fgoL6IjP2Wj{?up;lVNi@gBL-m@T!X=A46el>3xn%0!1nIE9)kfGtjAz2wr=MQ z7<9y70|xmRG+}^E+qn^gu^8Nl!7vP(F$lt769(lNY{noOgDn`?FxZMgCI;Iu7=gh} z7?fb(3R(+cBz|qd;1br;cKp^0gB=)17!VAKFt{0mU<_`-0GqONCk9a%?7|=%gIh5e ziotFShG1|T1_c=G!Jt0`Yn^-X>p%=zF|c58I|fz^?!aIq26tjG9)r6ukTJL$1092V zFzAcHy%?w%+=oFS2KzARgu(q7jKg3*23-{l4`A?zd?a(yyIr~j7<6q6&HK#t>yk09 z=!Uq2{y!CVzdk8M7`$x^y>{^cjH83I;EkbmdtH<3H<F&k)-Let?7v+f)^}5A+uRr` zXOs^(vZ`Thi0g*N9<B#gMY+aZKGN0mih-_AFCP=U)%kOftFbYUKFGgf5Rd#%pvYg` zkugV}T5St*?Y*kA>-(!RU5D0o44JjOp=NIFk@Pi}2f1knZFO2)mFucpYZ@zgT$SsZ z)jeF#UlVi0b<KxCVfNq-9k#TjH%}&=GqiprSJP5mwM|pxW{qt9+^Pk)Y<2c<HLSOW zX0n8?(hV@MFTm7RSJs9&WverrlZYehuC>J}fXL%9<l`25nhFs;c|;Y(k<G&$IYBMW z$t0_*BN<ura$Ub+va9fhn`B3j>-Y^luYJ1dhNqh(_?O{72>yfNza#vIz<((GcY^;g z_z#DF1^!j|kAVM3`0ot=QScuP|1t1yf&W<ekAwes`0oP$UE#kQ{C9`{1o%&c|0MWN zhW`}!Pi=d;DQ(}?(zZ5dC+kg*lJjFCdy)8a*2uQ%XRN;kOOx6vU$kxym1dLbx2@gC zmR(vDiFm_0Lv|*U)JL?b(jt7&m7M?58cy~;?kJHKlA0&2`K0QP;Bd)KPHuK2%Bzye z$!gt74$eyNO!7tt#lsZK+HFUO7D_H%kscZ|Az21h@7STk$WW&hKAf{j#7XM_#x#R0 zJ82yzZ4~%yU9a|nhn?TFCcD#2dehoNy463;dv982xzp6VWgRFz;GgE-Z&|0aG&Ryu z|HonP0BM^4uB2$Bwb0@x?(}4GA>ENnUV6tmK>jG1Y|C&Y6YX7VU+Gg{a-WdH?^-jZ zPgp#X6LPPz+@InlcsMg!dXJp`&>By6{=-@z$>iietfQn*a`=?hN@yVjlNIj)xnPX) zlP-dh>ySdycG*kaq-MNtEtDKcDv><&zO}cMCD6+t#UEI+rHp{|A{jlKH@zOGpr%GK zde@w?=1A27y-E`Lp*3Hs3`nmtqgNr)TP`hSq#8c5W=X3IQW48j<PIz6IFmp>n)7#j z1S*#Iu{Ba!&PZ3iWsN2u#A#X51_L86Pa)A^X?<O@p9>XgEsF827x~7M?VngHq&pe& z-#)RHNcS0pq`QghG*su^jG2!XL^FD~d(+!+#+oO+jPz2-duO0fj|=o(CDT8(+N4(l z(u-mAUS#y-_dua8rR9_QJM}J#p?fNc`X^{cN?2M1*`Pc6cbW{X2nuLY+sB_-`$*)( zU9v`^GOb}`s@<WGiZ86i<e}|$N7zLu$c0^;6F_P0j*;pw@RKo|oQ$QFK>k_oum@u_ zi8^PEB{Sc)s%>ljY3(LSi6sAmwO-Om>jk$4CXyLnTCMC!2D$G`P=Erj$2nhFC$h)g zNby<S=9>LP6iM9`+=YDom9@KEkxC9ettXR%w+5%XvYv?mRiebfmXu1Vq$UTnm79@? zsmzRgm}BjX>HAn96K>1Vo#i2sZ2gy89M&MD2_)p4^>R=YN*4{Br6Cny8d{oCAixSE z`J^L}$lq8uN{uXK-apkmp>ZZN1`XuGH`aslmQ)fw%32*8fRap>-l-<E_5RNKn<VXK zC3crkB)iGa7p%+J6DFd-#VT+~Y5V4T>pWS0lJQCm#EaX_Y?Ah!)zbFXkJi%?Xcg2_ zz`}mVx3K@=DeMyYE$`Ak(_U%kGBIBzPyb?ln=#DTzQ<M|{U~JgRZ{V*bu4@8mr+iE z7H6vT49Ojp{!Hf<XJ@FC87-`pyCbh}X@n^Q;~0@f%ROKXX5VW|XbY3IpCr=h5){DZ zU0O8jtZZqtvyvTYr1d>(7o)e5wKOjk%TN1nd#Zj+o&=H_qD^D`s13pvAP*J!P(z(S zdW34#Lb{5p(tFC20;J37q$LaKa!%<z<U0R!JHoViLbA<aT0i+p|70X7T+@YgmxXIZ z@+SXuI~1*)CG+W%cs^M@wH;TqzLI5oa0jUa{<&-AE><h;X=n*)94lMMmI&>2`A8aR z{L-3E)<<e(^5cHO93d&4K}vV38#-&f<=1^v;p6IMdUyPUI!$v`?G{^Wnb3|>+a8S4 z`b+W`?dVQUge|dcag0_Z$v=qF{p!aT9@ocerJiJed)wMiiXew$H9iW$`o^cuIBl3G z744c*0;HN5uhG;2@=z}30a{j7G-zx8uG&aRBM)y#Zz3N*szvz6Z<qU8X(MT`I>xi= zxTTvmRsvV4M|dBjH&GOUG<4Ud$>SLD7=LR-uIi>Gwv9^AZkMDQq?tjwCTV3-oj{*9 z26&jHO>w8`ove+QuJljyNwW3}OT&zZW*GaaTr4j$PW!&fRBcuej9MSiv?amvE-R_- zoS8>TX6Y$Ga>HseZ<cNqMgnsf9bzThen?HgZq#9M8Xcm`%6rrc=~}UD^r$<^p+jAe zsTJhD2LpcRKP)n~g#JbF9V3>nbmn8<@;<~f1`h)v>}AMnnc8U|I-g}}Mdaaf-O<UD zsw!KHcir|%1OY}FLI>@FqIY-DiXmnL+Iw0?QKY!SF_@0ugDJlyIa)kfqXvhP*PGHO zTd=qD?e}WF=}{U4Mca1lKuD=1!?57wH))>_{x^v1ynw+u48DS3rL#2@+kCncA2!hk zO)H&u@JO0?2y(#0&W2Qywk&M|*&A=kBolgSO-ix`(X`j?O3qBthLYKL$RSFC5!+VW zOZ!7ovW*yWvOpV=l!Xy=eh|dUQ^06s>4)GJ9#WvKB$pkMBk<cb$^df`e2U>kLh5PF zB{{RKg~})a=#ep|+=zv5P_kJhw4b(EnPJ3Zjz(AvN%>fQsz%a^?0=Il137~ov+;A= z4c0A6lYqoL3P?UYU9XWwr?phRRwEa#vQAa@nj`oCbhm-1-UG;Wfc!UDD&To0QlA5B zOSYcM%jRVGxbp>0=2^-(hkQOryFxi_4zsX2`N)7#?nkj^?B(RPXKd9<2i>T8pX|mm z`0pHk5x9PA%OStC#HJ}-d|)v~`NlC=EIC#Lod}@ZOfS4|zf~zP2gWmCF9yuhv2=4t z|G`>`GTI!~g`p}aO3EW?Lx3yG;!b6;Ij$?iIT^PFI!QZi&m~zUwlw8Bb5u8mYGm9N zc(_Tsts_WOy|qBO(;Uo4!mW(uZ8|x*7qmOM!Kx{bo1+pK%fB<0w|Q7LPG%akbcwA( z25oNKj<fx8tw0eP1<9|_<|^j|>OQR@iBbOw@{g_IqRv_ae4aUO+op82d8>y|&uI)9 zM`|jyey-Wu!=)G!JzA?(a?LS(5S``0$T2pmA5v$G0(Akt*djv5Xg!t5=7coHe1eCN zG?tthqs>z4%`rN|Eb?IFv5dJq#ztrbuBg^}D_hJd*cgRo4+W`-alP9dV`rE<JQ%r2 z;Mx`1;pgMD{>lsH6da7gvmOfI3!!=a$Q+Z-Fduj@@=<{+D(mElpeetbQ^;TxE_x_P zKQpeec2kw;!7$MzdIr?x&%A2Kkad$`uyGMJH=mr&R=P`H;rBRlR0X%wN1gOcUzP1o z#*FM3=Q{mE2-z~SV>e}}z|%*8vl!1ZJ5%6scBa7aNzM6E0g3iaP~bd<TtcOlE+f^` zwQ0%*^Yr;F{q-z&mjR;~dl~-dM^67_50`-@)!jie!D1aYr_+<sd4Tb~ANl5z@w2oX z<t1}aF9v#^F~8r=tm?gXrnryH)`lrxnxlI&^cRdJ_`Z<kTQypda>*Rjhk<@$EI&0^ zQp<w{jg|)ro?4z+(^Q2VoU3K3g89)%{zz-mj!E|FM6p|EJvDY*bnFmLs&A3A$?kbt zp3=`@XqTs(PwZpF0t&l%54azR?x$swLy`6}rQAs7+v^vy%nWldHJRj~Y9dV{7v^hQ zm6Za}M@xzra2cto0iCXQus*-p98k;vO%x#2ljs$o^{GV}(cqB<8eCaG08o}&m50p< zl`ujNGR_CVGl<=V<1$TCUNc9PGSthA{Xv7hydU!Xi+#Ov&K%4qXJ0Xv|D>7CA+E*R zKqV;Ms2HCj8q8RBAZd%Co&VFDrPS4ajiQ-@hcGaVNdYV;rL$f?Y_44;sSVmxrO+HY zltKG?pmd}G*`&tr1eO*KakW9Uf?J)SboB?oHlnaWag)NqDc;z1!#X+O(zUPw$d zs1(%rNNE^;#E~dlWM^`Ei7itRbQpW({^a}$Xn(g0tb8n61!J`*ovG}hbf&V0$kJ7y zvd0CWPkmG};Hyl=muSwWDqolb#xTIA9steM^Z1jiD=??F?VI_w3MDebTNQ*MauuVb zWUwJ}rwmq|sbP+Rip?BW&0tmoMys-823F+`WvDrFEJK!YWN`+zl01@^VYe#N&0*sh zY>ELB7>*#nYx*eVDs%XF24BtLt3<9YbJzq1+iJkvT&YRL8b*_fHGaTasR|my3@Q1r zQ5)W#CGAI+s=*dA_8M(;Ojl!Kz-=Zue2rEX1g4YED6=#=qg;C&C4Loyo@g3!F?a!g zJ_~^{x5Q*kG)WVEEX*(|m|A!Wrab_Hoiq!d<M4ATiZcj%o3HR^Ix;E4pF5*aF^A#r zClG?UUzRqF>|53~qV1|{?Xi;bJ;w9-Dd_r8a{6UCME))VJ%ssW&*3heNavNdICA_3 zO_3p2`73P}a29`egJzeylK2f;n`-IdCK1ttNVleSAxGb`h7kD~YiUfB@C<vG=4x{6 zIjxv9H)%=WvDnw7?UCWLqFK8kSjjOGlXbha6!Pm<%_;ZmL2B;T7N~{BQ-e*YJqe;` zz#?bx70YVpx4_1@C97L%ohdZdnZ`b}9^}F)Yn)urgXEpD#yJ?qFA)-I4goT-ccTTC zcge9Sjs$sV4|I<vl7lyCGrK$Yf|CO}NgE0yuHNO4e3!P?D+^n9LKZ%7X_e|!Oic?} zD520UCSovIb9zu$pBKf(+ri&f6{Up^G=X9cxFcq#iJ(1L8I&>#&7Bt2&R?;-ZeDFm zO~CTt)Fz^fgDz9rAus54N+wH3=;`FP&#j?k&<<@iQFmw$lDtgKJYSWWS~v3J4sDe5 z2WiZNDb)j+T71}QAV^D;9Q(qWIEc#?wybW!!v9$?a^|$vGMJMHS#f#&-1<fTZN|J* zm3)&J+?Ui1v}UP$0#;thpVvS<`on0M-71janU%?R4|Gjvv)rOBlavF-a{^j3PJP&j z5Olp=g^>=B!d=<`FIv!us^yn^kjSNauKH>~nmWrzx^oCTZol=s_*YubJGAvAN#jZG zCP#92zvja|AqTj&izVUF_Mv}X)_&T~=?W!JE*#Y2+aBJnO_JpAdXUZ$TAY<@N+>k= z6}7PC)V~do_rJAf#Rz1em{42WHt*5WB&9>9r)4vf)ldeD*5M?oRqL&)#zUbN|A!Lq zl=;8gD=D5xw`<8z;Ag(qt^Ng`$W*dJCNnQ$2L4Y4&glvz#R~k_+qKUmIWLnIcm}V@ zi%^RGWsTO$`3I`$r5<G4k5)^fK#i9>KBab7Cx`FVEN!#z(&kEX(O)7Ts9MwS(Yj0W zsQ+K|$UXOJ@5xjD5;;qN+>?YA&=pDhv{#gchISdfrL>I9zF%9Yt}q_{HPvhQE2?)j zRlSh$P)W_@<nRT#B8~SSe(j!5x)*Xa6f^UGQbSHxC_1W!<i`VAA2NEI)`^@y083Oi z|D_rUpfF_D1KL^j?tsPpSL{|_za9hS|44r5F9{q_g_8H#6G_!!?JDINLu~AKQpit- zwF>nWBUaFzb~_*W8D5Vf#s5=1a^HYhk7-A=weqKbsT|rfBqeMcf%PG6rKFrU^3EC+ z-S>4dlP;yJzZp-3lKCGD`hWgHtCB;qZ~&SlkMBXA?x>Bi7-LWFQ#hYV9&OXkdI|r3 zDtt~?EPUE|+8)(zl;qT`zhcV+s^W!pV9k0yt~IDRS)PtmDB8c$g7_3&6h8V1Sb!h+ zm&9&QbE@civQ!LP*R;&2F)LTV;gRLD2J-_%B>IAGA%~yT`l}UU<_<rWksKa7+nt=0 zZqs7XD0L+LpVHFQv0_^HY$`PS&xb(u(eB}91v&hbmY@h+iANnq{5c`Nu@rX%2qg*z zo`mOU$+NtuHHY#;HZYFz%)E>#$-<S)ws{S-y(d$am2+yHHW)YKf-9`Cl4qaR98um( zQs$7>4O&WGyF4OroWN&X?&$?A`o@tp?^;9Cy$E`X+8naHe&w>cwJkWsbDg<o09lr+ z{awBxi)7_#SIV{?<i0%ZtHGCJEv>+y9)m>?7_)hN*hC))^LUz=W*rkdZ|z~M6vIx6 z=bzPDl>6}k75Xl+^nI<ARJ{`vuH0+HwmtTo_HRjf%!nbaA88|!AH@i9tysWh$)xn^ zF0pOBUev}0E3f%L;|wTYBYp`|khI%_vdH6)*?(5f2mp|2gv9`av+DdPi?lwQmP4ke z*_`Bo7qoB*HhzIr{wcr9B1_ZKN@YO6l75kYf)8NzYIjDd^b%?K5Z3T#zoFe65tHpH z6v#^c>d++efo2<~bT{I$unI}Zp!jf7uiJ9um~1+>RYfRz%ZJAp!t<qS&MEn*y;<ok zQ1r<F-v#;-Wc5=$u5EzbR@qT0Gf&T#vtP<;`!3U#D=CwNq&}s{$IauiSt(w8UmGGh zVMnS~t}OCK6_SQ7q2aPKn{3OmS>%P;Sek5~r;#sCu9iM5mBx|AQ(Cc5()@W<HZ5rx za)g^j$%*F@Iwg3th^vC2MQu<ac1gKekO+$?$zaU43JRDkVr((EPXKyUJMnHK7I?$7 z${?rV+QVGsF(U<Q5=Z-Kp+a`}vSAzS1;jPhmmu4?;{ZPC64gHixKEYxMYzwhnLG7# zHd}r8-5k+_>H9^7kWORK_9KTz1%=BW0UCE50AK3MrMnL7IUddRZ4jA^l$OJor{*wU z?$KInjxxv`#uwxY84Pxc=6{2Z{TyM_!3=YBHe))KqbHH5v)UMCg*hOH0hW3IZgzCL zL5n$%?{nP7v$vUN@2Rh}QOf=1FurPdFXy*e%-&ArRdXO;K75Judp<|laqy`*jIS1c z!udV#;b&|)kaJDzkk2$Oai+gfrd3KeAB13Y_)=j!ss0WYbAF@jq$K?4N2=cH7!Gz1 zREn?Tw&C}<9iQ3@6``4sqvxSjR0uq1Yw~Fo1+3zR!>KrI6_ayWtAJ0s^I(+#$5tVT z$k+0gGZ7oe-XCDs!6x(c0~jYbsDN2&AZeX+)+D6G7{!-3kTGsO*zu#LE035{8_1{~ zq15C<xuh{zpQ^lW4j9A$uQ2w94EFMYT((qo;b$#X`No_ApJ#l{Sf1r9gY&$rT__>G z1}Tw~7a_-I4VK`5i<0yTQhpIu5p{C{B}``6bPELJ<UE$i0p<X{><CA2Ie;!9ac+11 z2Hd8ZgZWT?G6PTG+?JUG_=;n_2Ox60^apUe$sEjA9JerVGv{`nIe@P--t7Sx+!iY@ zo8$Nj;|mP;EN67u9KaVBKk@(!Mx#huke;S=$TzL?5v<C7XW)yRTNfXI&@J&@tg-pb zz5@c;d6cqqh@PtSHHTL)e!V$7Kc7^O)n+P{=7^CDF;YO_;^_fY&oXH;esH@o9KQ?u zLsY@KWEp!3#D3hbYc}>2+#rZ#^y}9dvA+F!rLd>qW+R!=xeHB=uXt`JrHX!~e0M&x zV(>}(_U8n&Pv6eh5RdWFcq$*e*X+>k9q1NrlAomKDyPihd@b=k15Ru2aUcVoJRFEQ z9jWhDf_s|k3*SL3k?I(|O#UOE<p0M$UP&+qOk&m7)dQdme}x?5u7UyPz{w2Qj{*Di zWaEfuWAp-LtT}25Lye&*sSjzjfSACIZYWr0j^kU9>lwF2oLf<xK2K>fM@?hg)-!I4 z3~snrif$#i&m26Rf$wJEJIJ9f`WEG=dHNYF{gdwW?yS*OU{oPo1>O!di(C3U8*3Cn zW3h|nI|wcad;;~evl+8*d$NA^QctF#@JTf^sh78g2nJ#vLw4^)4TRK%T+sDgvTnMT zrSvvO)iPAR2enj#ii_>V2A{yz*hnzLoXUJgWh$ov`*e^u-AAy(9JPR<mU>W>_xN6H z8$pXXa3KS3<G{^~-91*_s@!jms$-~oJt%=4-$d}LIoiq4FLCtq$a9?XsX5>>2KdAS z@M3qMN324|tgv?@x7zh0Mec1{uZtL+OPtPc$QbT%aX@Cf`Je<tx0s>gNn<ux>)(hM z^N<X^OzCG1Uc$hA7`P`npP^4s#+awCXX!_|(^uyK&+)Kwt8Y{4&0!4;wur*yy57vv z+?=Ifr>r+eEoG={8M8Wq%w(oCBS=+_UZLD=4qnE<cQBTFIm^g3_I}Ef=BVWi^%!Hh zm$HQXL7DPV_9e7Hyf^$7zYAN5RKXCi-jHq#Noc1#Bxg3tu_U^uKEZOA;Vg0YdxRb} zfO#$781g7MbK$7L+W%k%e#D>=JEE&GIFCQSfxvJjVX`Kgq=`Nj97+^S<)UEPjU(7e zvrvXZ-Zq@fUXG-P<Ik_qoNdRS{|v!|Xt!WHNL&52c38?x>;qBU`vm<d-wD#KkMB;9 z8~f^t4B5b)ATrFI&flQfz~%E+U;P?&kcUQJ=v4+<D`E<T7#v45SGZblENc6;pWaha zM+px}T7fm090*PysE!w-OCN$Gs-wu)h5F;(>CvH+G!m1Fo-dIfJ0<bPi@}}AqJerB zQZ-O7Q5T8C({8m6Pc&$RFx3%gkV^yg)o?U;^&tJrlp7Jc8G~&Yv|vCm*onbzvaU#< zIAkM!--N+d3|tuOz~B}PZiS$huZd;D84~b$80<SS_E+^`Cv*A~>%|s97J$;^MEU{_ ztZsO(>kvy{q)F=xzp<xO;eaStxRHHO;XciDK8R@#La>}4X`wMq%lTOr`pAjwmXoDZ zI<1lVwkd;kn<Ss=L(dbrqRvDmHiyFXSc_|yz~xMIW5c^hlk$JJPuu1pda|T`D@0Kh zu>4Dip+bJ$hun4ptU=`u(@(1%3JekiD_j1p52+ijZ&QC0aMXR5^fkuN+U7MSl5TU3 z&__z-m>teDiSe9e+jr&qhmx8uvNKdJPmHE2mrgc}(tCKPZ`=jP6hFS-7D`fQz=7K# zBxJPiP=|@wv^?u12`<eVtq+i3>jT^bAXSkQ)w)I^D)p{0Mh>_GGM)6T)F%dJlOfF~ zXDWfiLO%}kyf`dl9KIZ*cTM)^0ASd#L(h;;CQn!BlgX+oJu(2x2dea5@`eIZFep7w z-RQ@2y%*0G<T*4@h8$x9X6T-=x-RV_uZ`8M>V7}s_j(b3gk|XXINf3ikRj&Y^{Ps0 z4g8XddceGq2gd8^>RTdvG*gxnLX2BSizett<bM{BA13IIh%dzi%ndzcqW-q}oe)pX zJe}5`IcYBxFemMo1=PQahw+7?ie|0nbIdc`8Uc46#GVo8Z~<g;EGVfvDVnSgmsGNT zvTl!v>}xa@?hJo-vc5=-6XFFay7XmIMD`6NMGTW7oa9f_%i0lO;Z%K|+FRs+W>d(H zg%Qf5ge(Daf)=a$j$%29p63^uF)s+Q^vQ*3`nXuJ;ylIi%9TnVa%sK2K%F8=gB2J% zQHb#X9$1*1Kt{~azgHIsj|qw|2*Hmli4;i67W+JTWnXIfc5IWC!S~VAfBPVW3k_?Q zFKlt{hwp3LyX}r$Bcb^<6p$ZC@*)azjyUr7S^B8NK-uG#tqaND(<z5k&erqQt)kR4 zo126fPd4G`efPGY8a+)?ZxfyqYOZLbzPB%H)ceH8)KuM#mBw!_VfIRXs4uQJ4-qPu zpGUflyf{~%?ajld-SL#7m~6>p|2+L!Nj)y|-?kI1DIOhH-xZ@v-*;5V$NQ3$1$vVg zV0$ARX@6&d-b?*5Q2N;m!R+`lNF(d7fr7jk2(YM5FZ2fZWJYIt?UfmN@G{e>-=N0y zGuk4ddHK+(=c(PrXv_<o-KtuqCwQm#;p7Owsj&*QC1{cUmfRB#V!*u%7Eush`E3Ii z>pw_piO4j13zXCJdf4(eLX4)el#oyB_2b^@K~1Wp=_Fz)NIz3VPz9MvT9<nIGI=3* zA@Nq5q-A=VpdfrbqlD$uOB$b?@|0p$2+isFW%~2-HRd_Roli&9t)hHJq2DY<(~NFq zqIjkE5rsSO{X}U?S*1^q<U{7Nw0&^79xSO(30$diDyu;`Ul3vmmE|e2eYIZhmE3nc z!~N*Kvc$H{`J4WjEPu>oNfe*En?JW3aG)Lb!;#z8==aFy%ta^nU#)+uUKC~YF^Amw zD6(QTl)O$~EO+W}u8XjnW1*zR_xElWya^_Y(X?3NN#wOU+^i}-@Tnrcm%~q%w!zow z^^#m*E)40qUSBB>VF}tRw@IwrI^UpwB9Hy^<kRS$kG6&ldaR_*7De|dM(&9679Bf) zu#NhN_Bw!6JhGKTc5T!%)zu;cI#5|9#BdEDxi{)95jThr*Z}358})2;ixAI-2D6tW zbs`Iz^)=EB<cnq)4vA1-#jIhLNn}e7My1D*n>Ok9_uhlV_d>v@G>2hI!v^Sc{c&z_ zmu}Vv20h##u8hf#>mF#RPCnYKFDDV3^l<rIHjT7AE#$&&`X1e)Z;;dz!V@-!ylk63 zP<>B~rqhZO{mG?m`r{EIfRCX*ze(?_ek~&CNN%=E?-GJpY+gam@6cD0x1Pz24x#u~ z64s&*4n%8J3)I^se_BhD!pL_mdM8G(i0s{@7m)$m^%yt7aob^FEDGma72E?S76q${ zi`#V<tBTHr0jh%gq(q#%Dvs^Yzh%gaAhBO1a@SHIBvfJ|xkPkZP;Mcs$@X*_<}r&x zdXsH8>qY87kkLJ7q!Yxn{z43w43f}!-cp#kT-k@DP1E24n<qksglxbmU=MQ7E&AB# zNr;<*!88nJ6q3dwJwDF47t%C2TWNSZgd^eFK{Duoy_+zX;9jDNLY!+S%J=pmhv#Z3 zN&AsJo!SNvicP%V-KmccsI`N3>91MD8L_*Rk9M&Zkma}Pv1CC|_Xzx!rv6RHGn*z~ zF2uNzzu&6Qk~Wd2_vi`1o8UQFH!QI$L~P#;v%>8HfIwfJMM|>NKJrb4^md=v9&js1 za~M6%vbd&hNsDt2RMg4%?kVKZi%|+GE=mt2`)<>_3Wc(kWqnJbv9rV&(ej5k7Sfy5 zVmAof-Ic~BEZg_!8Pd~C=%+nGKTUq#146$jzyzV6GZXrxztC!{m(c5&(8mG_%^yDb zr$YbSsyn0$Oy~=4q2&vOWb*C0uKp5O>YvP{4jSNB)XqEfc%i5pnbbc7l$t;Mj!A6^ zP}HU~Dqc&XGT~YW%scMXCnpBbPSAJS($<jDAh@OB{8J%eK~U-3djzf;@E*NQuD(Z) zT#H>vO|v?;e#weub#v&A)h)1N9}Q<sbI5|a6^m--U<6vfnw8Go^o|tg9)4BI3M|8= z7>vWwcoha4F}MMP<$!TEK+qhzsBUiUlI5@i??L=&uv?24(L1wfRbY^c!6FRmFvuDJ zK?Ved_Y_$+QFcv~RTE{?<QxjAHaLgTP=hoZD48ZoLh!IsVd+$j3Ok)nQ>nCcT8Gj) zY5)EhexqF^itOBvL2s0aT23lwcPb(Vb_}S*)Wo2~&dZ^u@nGIPHC@0-eRZ&v?7B}M zuTI8i+`UFF6zCQ5gaK%;^5qBnlYElao#b9`4<)<yfkzf<3O%wGv8Q&Mk>mUHht=hN z#2PrUtU`fU?tX(<VgSnz5>b6wLbj!J)Ubozx?ew`w0Nj*Cfi=s;kpdCb57Z2#DYTU zn`Gq<BZj5J%a^p<F_w}IV(mfz!XrFy*7n>X{eHZgv*BU=p^oaK2Au(HqFed6K1O<$ z-1fLWT6x}h%DCVyo$|2(?B26Xc0=bI1K3<9`9()(vi6Ct^g8QK<erUPBV(P0MBz-L zM+bldDI*~OW9<!nl>Eg2vh)qTTsa$%^Jm_iFL2Jao0U}h<^}gLiC5U6y+F)M&*|Nz zM@i|^`Xaau^MR-J@k-c0w|ek0r@8Dn&?}d4mp`4c!3Bb;aFI8>{o#o&Ci$xjNl#XU zf+cxp^_AfK24;CXj>f{hi_hqhN@hT=4sWh~46Z{hfwF_wn0c2a4*g^Nl0HoKeyYc} zU3^x5Oj5@ftc6OKrwk-}9*0xK(~QSLtxxintd>g_pw=xyt#kM67;^uM`W{7KOlE%v z&fF_r((TG>Uw-tWuQ6olE3l-L_oN=`i?foVmvx77qd6`?8beB6)#J&xFY8&#?*Ag; z9k1v;l!JeoaF}xJPt(N1D?xzkTY(bFV+In`5AQmlGw@Td>3PZ*W*}P8Lir7#!&*Tn zcu7AD4G1o^YWvUYx+JN;8{~LRV=Dv2Z+HXN48sNmRQy5Sia&@c{+~Cp&a8$1K9GEQ zLf_=g8?{mpmM7)HlJh5FH$t`{&GvORE7||1-b?9YL^55Zx{*x^-qLL%0@cY%P7F?R zD8o%4A#dw*Re_0L334wg2t{v7!yDaVg&W-ta|@bG9(hOKLN2#CqR4aa=uO6*Y@XXv zqe=0@x}$G%(8^_XEzXa8FM7iW|BK${gWTZzynTT0-KvMVKzO%moN;xVVB6dF{zKm) zE6qmEjS_4zB8?K1n+K8HPFj)(5sL8cKp3f+96Y5zqY7O7ijcc&Hw<EHhUY%iXDUzm z62q=a(1j$XHh`g9sH+~cg<FKYL8-G+frY1pwzQA+bV+$rAPL5GC^g6jKY<$^KOBTt z!j4lu7E;iDl-l$UyjA;4uG*$HJ%x$(<{&chjDAWL*s`1_8g`Z^6$Ebsi<>Pga*@%< zyk%93n5>aP3PaZLBClrHwJ1RUBU)N3lT{|~{}XJu57(7)4rP{W^gnq4xn_BDEi||e z6*?6Uul%pT3o7t}kq~;LGrrbyluBO)^m0qNi1q*epnrd@mngFXf#CM)l5={34A|0F zans$GYA`wWFFjpZ_TMC5b`GSu?!QTy@eOSF+VS6{{PG)ppmOhjlk&i~dQauCKq)al zbgUqh1vbKR<+VV`C3(kry^nWkQ$L@fguGq^C1kw;dF;IYi2Aufm3Ibs%3A)mh(xz) zy_ECDW1-tW=dBPIxk5ZX*lH8nu$?L2=S6Hu(TkIhj6A8AjP!s5-V&g6DK=V*XZ&l4 zHDW#H06g{yWc|POPgR@nl#OBOP%^ie4JGr9$3nic;kX&z56uU$1B(CKUakkrs;!vS zoxq%q^W^GcY}G<T8yArO7;pYFIDarjVncH?BaOd+4^rUeXMcD~p`^&tNLxJVbx~g} zUtUbT%`w7LUXCRCSN)87y&)oR!HK`Y2xgNJEp#2%7n5!OvZi^1u#yF9$d5b-{FpSu ze%FV}cbQ9b{&)Rr<%qzRcI%;+V6^wR5KA?Knv)~N%$x`qnu9cQ{F0upylw`f?M?te ze>p+<Bv5MU2+5LcMXHe4ukiT^2;c0seJ9yQOY+a=`E3od-J^6YF?8O@Z-fwQ<hNr9 zQ#%1eyZYjewq8m~Ac)kFyxh^2t_lc0`TH}S_LF~Ah;5oA_bs8?6DvG+w?dg5NKHu~ z<2u>O$ilN-Bgp-oY-5z6zH(rXFK9<eV0L6}n5{-0$G9a1;>IVpW$XgtFT!oB$bmcK zBM5xER;l?Du6$FyK$q#{H;V0)T+g@$Y9ZMXwkty6<u7<`H5ndZ8%t(yiHT6w{0Tev z-gQBzph2#dZ)BVT+O+BzjUFivCJmi!SF5)eEO@i*8f7a|T8(I-S>95@Y_Au{r&*5n zFZjOEwl-q~OK&H(#n_4pKlUB8Vub&oRVYojPB8awNrj^<Q8e;=7ze6O9TXYt9;gfp z+}FA<H9eBlT5P%G=4*Q-TQ&nF=B~kSZ16{SV?js9{b?{r#_fND-^HSM3xneryb6Kg zw!()^^nu`vqKT<onAjOxESw+RO#U5jYf(Ft!UO6qx>!Pe$}zuVQXYd6@!fYhU2ScW z+F4AFt5?a97$dr2yzuNCsk6K7nqbxDi;Xd`p{%mts`3<DahzX#5<raurfP{u>CA^| z!z~7ayIuyC8YfKEYB4=ZEpX=PE0HrCJzCK*Tn21SX<BhKqG--|n*J<JRBA}LoK(t2 z{q(%)Qh~m3-c(&J#ItoY<G|_CQl`QpmQ8bwyzptRn-`uqRb3)Y%!`osNLGrF-Z*lq zw)z5u%=0s+Np0U|+VUjz5izMxx$;Ax5At%wGpF*)rKIEoZG`%&7tXVx2_ECAQ|U!o zZgfABkvC57IicKvws*PnGzY!Qoz9#Zs=9<G8PvG`h`PsI14VhZL`nTw6p${u8c==+ z)eGu5gsOHbGg<>{A034l+F~QguAa8VYBwRCH2%%2Vl-AU@nvk&zoU$8`iD>4^sf#T zp+5TQU{FX|Xe*P8%Wx0%RCRhgh;)XS;z7`3O9SyIKU)WUJx5N}>)Rp454>K(NUf#J z;mxIR<W#-29T*><-Qs~!39cgB`rCG?PqYK%J3Ss{z(?RZ*RyalYVZJCiuzVNuq>A2 z6CRksubf1dY2(!&+ClR(uICy08=gr#c&dgE7HZ$8vGHMF=wNnU3vdS43R3(pty=BT z4m_9147bq3%1x=P4>r!9s-^AV_<`3VhJ#nk9Ik?^_GT}GcO4wskfLB2m(#1S)tYvw z<TLIwIrnLldzE@cI}kqZTge$u^I;4dSm}8g)NMR31G-Mn%itB*s@P`8vGdv-^*)i4 zPix_4Uhf8>@F;5AVAfjT6OW>*?}$*JO5tzec$4Srjlrb#2W_5ut{n&;4}Qh-^@f-) zJg5EIV0Kgn+2euKspU3ZjT_>l7=lsd=V4<=+HhML+@#$&$~H~SY6rkK@?^LHOGiLU zSBH>jNiQdljI?R$sCLi;Syh%Z^f1P5ZaaWM3^3ab@M0HT3GA+I2h9(^u4CvmjNQ(5 z0L6?QaRZPY>`jFaezu~GmbmNamLyX3M07WNc~q5cjJM9f*pA*?Y!S^gv%aNdR+FQE zURSKXCCY(&Ut&%OG2B{D8*5vwelEoOT5CRdJ~M>r-}gh9{=p};)=@)!>R#x9`Kix{ zp{!Mh4`t@s(GG-<opl3(c0>*ZC|(Z$TtV$_Rjb+|QNfCMG$&CplpY>b7qkNz$sqF# z2<19_C_O%?-p~$o6oX#Jp^Y?;Ipp!FwgUCGc5r+^zRSS5S>hQ&^{IBCm5k-%9Qt?8 zl3q)^a)zxtY53h9K?dS2#qiUizS9n^F^txm1}%>m?!$%ZkL}?33DfU6{yQ$q`?G9w zRCSn-Y6xbbn(+-I(oAUH0CTfNvnhR#4T2vqI)mTi$lkeHp(^SxTF!p-o?>;7$jHZh z@{_EE!<hPx9LCfaKB@ZFiBO-x20t1)pUNoBB~mSzu66AI_^Hq}EK_rbu|9A%{^Vl~ zVCy+ysNUBODSlA&ZpQl#<jqbPsz=*F@q?mIG6C*j0?2!Z(IbZH>2{FQS$%xO_<g|m zB`*f!{&PDhzD4ifjNb=d{MZ>owaajGC78*W#*%y|C_(gac8Pe(VlcWn?Z9R+Sf&R? zbq8`ub!Q}LSYjI~Lxn?+Tj{MbXgKL{G{1SBGm>now=Ijg=riAg_~-^(SrCkn`2;kw zl$}4TLkZ_&@H$%0S1_o-pEDsarlOdvi6&{HkA(>-1yd7F!E{)FU?)}cR_vwYaisPv zlD->%_QAS1gFh#A#Ds-y(sJ7xN!^4$-1Ao4<^V6ggfh)1hqm+x!|R7rrAU&u(iSVj zNC}Ud$uPfNywbK_eZYgfcQ_r<tM`jBW1g`NA-Ajo{G_(WR@pwrtA=k`ZMz{zeO^pP z_sPTdfjBa2jjb^F4R}UQei)KO)-4Z9A$c!2BGr>(db%(AbtWQx<!3hAP;d%V05?a& z(sGgI2}IBtCqLHp{BY8Bt*zOcHTpUHlO7w+COj$YY#&JKk6yfSmT1scm@)w%;L_id z0L9G{$z=Yuwu5ZxZ^gB?`wYhkDZkFPEbp|h(*z^@ohIQUXt(>saNm`_Cpmvy>FZ*w z^of-r3s>sq0v%T2yxJ18gc#1lU3_u$em=7IJtdedEwRS7?Obm=D3b@9Y>U)E0*us* zci2hQMq8>nRE&nLoF!!4b&=uHAoB7?Tdp?<>fS~&ZnR~}Q$~=Pw>xsxX(AY_TAnn5 zx!id**N)&W_Zw{%vhEH?D5)y8hQ=6`!r!(th}_(4TdD{$lA1m6B2jqDXGhX+lg&Xs z*<=fsp$O=9=t1O>O|}gG<WuVPp6ZRFP(1lfn{CVeljm-+^;CBUNdEUNwyFNf2W|x; zc`!iowym~4{>kIFLGoh(l5g8)8|a_>=WQU&TfWI7ut?lT(q1ELHrQV4-ojpZ$mhF4 znGI*#VEsy0)EK%y9gN0>WqNE{MqzkSQBf-XEnm8_W?60Opw#6xiyIcz_Fx}m^LE?Z z|0(sv9eXrY{?`cRP8K=4broNK*`16gws+KD#O(T*mY{Nf)6x;*JdJ_sn^f+lZ=K5n znialg_R9#;eW$ILH(N9-Nk)<Jq@v(#OaGfYZEN5K)-+%3wLy4=5x#2k<SrZBR^8VS zm?`w)-L~Fpu@TD^x-a?9Zrfb{<W(Wj!DP(qjx4o007l&duR-u(QLfGnkW$(UV}Bu~ zpQi8?JHKp8J9o6&TH>-&9c2#Kt|-2K)9Z=&4$dq8ypZ4`D0tgrTlu{<tE4uG0^`U` zs182u_mhj9zt47~O#Yk`+%ACcmHd65txdg4WJJ{s4yb0x2g^y=ew$rAEIy{%b--J@ z9_QMHhew5ug}<TZu5wa%04%CMm+KDLZ1Tx+a{mFFRej5k%NyQYK4M%P!E<VB7P}A4 z@!f8Qo*GQwe!y1f&D2Mwc~b8(#C@*RfA7`tpeNqo5l8*^-9i@E&#PUu9B!)2fIWAh z1)21tIfU#@P#l(fg+ABa=TTQa5aJ^#=mn`OKez(guY|#GSPH*DV2q#eVH15IjGSm< zDk3I!W{nVB`S+6bM{M^iIY^HViPA}HvYov)FecN8g>U#a1$vnN9}n4LBxR8CkX(4y zHX>;tMu^^g5zYn}OCGVkDJdg;kckG8pR*Q_<lx_J8>MNa@KM`pWrh#ZVj%g*WJ(3y zOHOciOsqf#fKV-voTNP+-<#b2n5{%vE>JTv-C)FW5UF_FR<B%V#A6YS5O{M}cw+^d zHQfX<;H`l0iL)l<kbuOJ5|FWMJawRg&H49L&^f>IqB$atA)Yf3bUc3#AaTkMJU#AN z<-9o=K4$oallhu5&LJ7cpj<*n8p?q3#u%l{U(pv#E<6cy5I|ApXCcF$*AP0)(fs5q zybci2X(O47_QhvyDN2z!svFBOZ1)0`1n-x92Ef3Q-U>L=9LM)qO=H|9k0eXaz?$ny zb3g)Pw2U#D>|q3X+o`me<M>j;HpXc4NK$&qwn(|(9Kd&S-OCtl_AoN;0esaQ%-0-V zV%(k|iN4<|<x_J&3d`0fj2pamjF%sExuUM3%N2CjaJh<2fH@A5g6&y~Wt5>8J}n@P z@rWA5T0q(;+5(`mP9L}3q!bH4ABEx<Y7QjTFF~#LhZmEB&sCXd4&a^aI1d0d5MGB4 zc<wa-=FkL^NYrCphLFy0+H_^DIXS*Waup-DdKB3f1~0kVVGiIUMwbUb`LAO9@m56{ zGmk|Ig+Yt-;PdeceKnryRjzb)UG<J_q9uTtA|)#`3dncw*vgbQ1X<ixDm2=Ngf@<r zjok7s7^%}nyswesOBEmSD*BdHkqn>INU5WZ%Jnf)+~FTKni;8((acC`<_PZZPc;zK zP6PoGjTG=SjMOM|GW^7BIVUrWGR`4ad<a9fx#lpw1~A)zQSO6B3s&k{b2#tn*Kzn7 z;0iBGl}bqJC$>~&r#X;cg9*cOx-0`gH(zS19yLeuTlgR0$Ri*r+Nu-g2)<bHx`A-> zqSop=b0lB0ILDD+jb`R5q|&th`JzNnCCe8e+`J5fWjBZOB?^thQ!AOp8f1>(%MyhK z!p)G{EL2@=V4%vhfqAY~Q(rUGAKoI19#3kxmI$nT3>ROLxD15C^`fgPS=SAp^y<=` z0@9~dlrfV>xR5QC%yb<#M+|0&2Mh$w*0xI4Dv+nQ-TJ_s7GG!h2dDLRB{N(X%n|(R z%Wn+?<$kh~<o_eRl;#`@6-ojMwbHvNsjb>~-ZnWgfUN?(p`$){B?G?u5sa2fCS9-< zC_Tm)D&@9ZA&CwnmYXgdrBDhm;l&p~o_H5b`D<U>!X-Kw6~{|_wW8k`R$b+A_yI>+ z@JWr>0)sXklL{jjz6>yr<o^pgnwl}phFxtA;J*GVDFEJ)-gpj1A2ab6?`MFiVa4t- zC&ZopcQVeclrtS^Dddx%!RhgoIh6bTA7?VOQW@miAk&`F*2m`Hu}s}gF~08sU(Y+A ze>6vpW2o;L%lAAisR@g%GHTSPIq;Q(=qhF;BCD7Q%QQz!V4Tto1XW0uy`4&hIg;OZ zIh-NkUZj#sw#7<~Ie_1HIg_&*QpGG7ure%IqdA-}ZCuUaS5`3#cC$HxuWf8M5STaV zHY`rQbXkty`KnDn{2oUReI3-9JP>5hRK-Rj7_yfIjy{HrFJ`;|vY{dS2b4dy4EUsm z>_-9VQ*(TQ;Cn9XcU8=gsnw=+J)6~BST(C_K+u{ySH%n&^7I(8=Q`PSrH?tS8b+%p zqb22%tzq_Sl~Lw^ISf$l0hB6s_EuIotD4y|%skpMC=A*`R5d3m<kxa|p{-ZBx~-Z@ zqE-7Szu7K~sp?hxQssI<7LOT=xyFcfkHAJm*k4v$Mm#k^!sK>7lUzWOb&>XE%AEql zr&bp-NNY8#)d#Ctt->d@cP9j-PpvLu$k%xty;98#-dS_RVutvf7wju=4X(RjUj#G` z+<-6C?5#@FSX13t!l*=yWx5eQmR&~cFh|rggw7C=;gHh(T8`~OWLuCWo4#{b4js#` zryXuis)3Oj!kL$j#Z2dr_v7sYm6_(Sr3^OBfYH_(x}z(o;??H3Wej&E$6YZNJK<b1 zt($$EvfUiU?*h2VfYIgy`J>i|UQzq7IeZ1<`XGlN97_&&(KjovnIl#*#LEW4&5*7E zK8Q6vQfkGII8rq<q%&(Qf}--#6n)R_?*bzqb-jWyx;U1pt1^zMD|}LQ%^2scHbVD& z6+_y|$uxTz>_>`Dvrkh>%+s%7>EU1!q?a|A4x)Wc#h<);2Bx%orti6}GpBSlqcop! zo{OCM?X>I6L2DUk4P!r-v6p9$W4F`pH3#ww0(LWQI~li<2C$KB<{+3(fVa^35aYJf ziyOb3_8;cxYZ&@%#`2`V@>_GzwG8wx#`2`Wl8(T!V$r}tMN<PiW=f<&&i8<h%S&gd zfgO?wuMBTz*jURpI6s$ZueGG(P>{JH-D5*`p(%KvxEpj}1zS+g7!OJ97`%*w{ueON zaafav!CEwPS7DHbNs=KjoTLbCqOc|kX`;!SXi~v#N{Lg!DRDY^r^IoVF^5s7{RvWc z(u^x8MI&b7Y5W$2!F(K&e}vz<qhy!i&tupd_rsqnQN|bW=a1N|TJdKWq=#(?kLZ7v zYtM#paCDyiUS%9Upv41o(t-AoN|h1O);-^Dm6bV045_ZRk4Ub;2+=DmV8-)z^&IPE zS7l{|57c5n`I2%2Tx*MGW=9m*-<6bW%+rT6?Qy5SrJsGEq--@$AL&VNY|!=NE(*@% zxWCXoM^f(ep_^nNqZwT<q-TGw@~{BJ;<P+yM8G%js?>}pV+Pq5DK8igu;7Qr(`W92 z<!;Sq$1|(<Hk1+$z2K8tz3&AuR!NK@ANL%7M@sEr#m<dqeRS9aqnZ&QR0Q`NhD>0+ zD<G)d`w9tgy9aEIX-Q9WQrwT2%SmNTV0|ThCrr6HjC&J@F_;7|-5CO+XG{?0Bz5NK zR8}GLIn%il*v{3qq4qRoojHuV7uRs6u(^mcrL&T~=0Gdsx100Z31XsSrOh0{w_88N zS?%<&qJEWk&4D^&^%iG!f@dwO#FnOfV-DjE(62ea6CQrX%p_u>sXlOTX!t~?51|v; z%tSXwaEE7_fuI@$uV)_u8blqKsK995L7}O2r`vGFwt+K}Im!fqiGQQu+rP(xL^vOr zJCQXC_@wiZMgi=j<J?hsHJ9+piEKV{vpFJ%75#PtLB}^&Ok|^0<ms7@d^XN*SB{y} z;(M!~;<O$I8aRYJJ>H(9yk`#MYpm}WFe<{|C$bp{W*>_bih~xZ;S=^MSL`r%OoIMW zv{>8{xvdSn&IjEryXR?nO7tW{Gth!1Mj8=r3+Bf465fOXn@q%x#K)d-2WZM9R&{xk zSk=KNwP%$A*r)2aZ*k-#s*chKa(Fxprs!)1YRysHzc`1X<PnqDbaE)XDF7xNQXXj> zXHO<otKp9D%Aeu=M4Qb?abM$&T!0NsfLZ^6I={;t#r=)9a{)GR0j`IP<NGk4H%AU) zn)l2k65Tzc47ueI*KB*f@}W6~yByzV7|CEpUx)FVIk1>9`-NxjCzd(b$U0xKOg1Xi zr;p)>2&2g18DOY?64<%7tSY_C(WQ)M9z$nO#@3Ka4%FH+l?rnd_l*vxC@Gs<m<g<* zIO*UK^$FVo=of7ZhWl33Ugq_n6OJndM*fC|`!%nCm(HM}X`0Nm6+Wr9-Xnm0N`~*A zzLVvxmF8`#@{~D%dmkTX*=nWP0-p{PEbn`PsWIm`Yfgyop#Ge3K0`U@uvcRIVUFUP zr+;Pa&#+Sccru%FBv0|y0AbL;H%})_VXd+&?9qe?Y9Dg|_m%ea09r4D`eU5<d}D$+ znmbO%a`YHvmq(shX4jNO<|ytZt@EI~c>25%quHDecbPVEI_r@;e<Q{n<|ytf-RnVl zai_1uc*Y#feWp)y^b^Q4m&}^b(XPC2j^ZBEcReUK&-_e%tMZFEkULI);=msmyIy|- zQx!GUTMLA-CU=@fkYlT1hW!I^bED%7`f7|kb1-+HW>c`-V=C(u>8mk@o1?hjbO>YF zgVbCJoIggr<v!3R{LX!#SKxQ?)fisZfKDYpY}AHZ0(6b!=}#Pq<bk#Jxt7t!VB6gR zvKb@{y7>$e2KBg+X6-d7_*x7Uw7H!y_#6Jb90Fsuh{>90k|z3Cm?2Uym4||9SB_vO z6@4_07M?|UBqTi+e=f(?oq|6bLNFm(E#s9KcViTv-+`@Suf&k<z~VDDC&xwDjF-kj zUg&!<VE9Pii!qv9eZ76F`l5%>F}P0|&a$Y_i7^f9?a!<4i!t=B*LQ^&I_P+3Y8$*b z;WkM<D?B09@1~DP#0Wa83}GFFh-H(rV@>u|u$kB#$tRUwNVo?*jy!RreVZIK?SH)t z{T+`?d@qm}WqOhJr_J`;Rm(JYDMR7FH7sf5@Fsh{njl8gEw2{Rf3tm+cY4sn;YkK3 zKEd?jMDKF%^?wjQ)}%;D*RA%Q>R?e$@4Da<QD14|NZ)PtALQ!)gGhWYjTdD)k$(Rs zdyYC!6p5-*jS$0Ci8Q$EAFIoR2R@p_=V~I9Jk?_VY2c^6yTviWf48^@<UC>b>#_Zo zZX|4n{aJOZ$hz^G^fdCz4tueBvlxx_E^nPiwi3I`8{kv%e0n4DBp1>hx#XFf?FI6~ z)5yh}?S*QaNE_=a#-pSB-06{N?0VBfLQ1#r?0VC%o%V_HYtu;0PWx2#xR8t%pFxmM zn_l@-f?Idl%jM6ekyE?uqt!3W3G!LhnLi`g_WP~&W=Z|coD!c?{fAMq1jwt;{h~$# z<Hh7v&a^2%yT^W=8b95;DJPSqdqE$Q#c0};<H=8Z?Kbc9J~f)pTAd%Kw!N+PoswE0 z()4b2e4C0Fk{+Ue`VRZw;V`BzQu8PQpJ|CmT>Nl;(5LO&yX|nL$k^%bm*GTbe$@vu zOC7=9>A@FelvjU-ZoAhWD#^1AbW*$Mw&Z>G5t6#ZTv9&K@#YM?{4Yz+BSrh|52ZFC zts61eguxaJwqfAHVEgnxy*t^+6QB27HQns)WN)cxd9cehK0aU{k|-K2chlmXR~qv@ z<2y1eVh`yyS%)65&$Ap8x-j<xx;Gaj<U@*grqUtBjE699hcVcX!F?Fqi9ss_#*hM& zHPIwZ^sz9cpkOKr1yk7(?5u&tvn*`_*&A=kl%eBV`k;M>`Y}GC1BUmevl|9Z2{9;a z^GLd7_rMYRR!RLvcu3z$l6($hMDMT{p54Il%)|EDVD*wOHqOBEF~F~oM7U`qc7`Av zy%EAdgfT^qnjze@VH4BSv)O*>tut_UZ>bD8a1<9={1QaWVDB0Kbvhk{uvfYd6$p!0 zY>XD-eXrOUI)h!YA!6AT8wO84%y9FfS8Oa0Y5HU$f@K=g3s-Ec^aTjz+Sv_omuu*Y z_8-)ZBEqL!`4-moyj(ZG1f9|D8RUhRpflRzh4b9B0gvhX-FMNlW$$-4^2iC^%nKd} z`xHD+aII1Bh6~>y!!<<IE;dU1;}!dVB=uEMG<tf$fO40&7xd8IVYkGUuiGccr)H2h zU$^&HKN2a>yY>1Uho0bbF`9PnAI%_-AGhau1F$O)l!?2W-)AMl_L7VIsTBYT*<SLT zS=K_e<4i%>=@3X3VmN@TIbmO<#tRSF@o^)w+@EWi$($MbOy<mhPjqIeWg-;IDaL^I zV9Emb^t=U=^?@^SiZ)f9(hee%A;3e+5$Lic55H{hPfq`250`<fXC*<srX51OlU~aR zT}4^*t3GaN2gXM%J3KJzGF=UMc5iP|A8iND$0v_4_z~dh-ruC2Xa~jzBd>d4ZmzhN zpnlg5lKXhiG2~YuC#)r?A+v;<_i6EbOc6ATx#t1mW`?T?s;wO;-$HBU(3Dxs^Y+<C zu*f>F9ULEw^fz#BmYxL#b$UDa-b^W`FuXL8q@K1{tIOL#@Ig!i=QweeCzI6OhdPYz zKG11nH9>3~bTvV}Q{+HTr5mcvx5u{5Vy)uAS*%sSC%x3;gb4Mi0qzifoeTHMEV`JW zo^1!hy}_Rw5L$vSLJiP8Fu*lZuOZ#f+O2BTY@f;(8YCYwMUd9B&>+KS(-*I+_I425 zGpu<KlyN8=iQjD<PQLx9n^hgw4xEpZ;NB8sSi%`jZwJAB!&5v6kztVYyIk`6zw9aM zRqc@A4&v2}#4678rgjkAIlRS#a5JTMmgwKwHTA)E;CvVDK?dK?8NS>Og71}m!Gmx! zr22{4g!&2E<+C*7rKHeBuv<g|bOdDY1^awet`T&Bb^(_Jq1;_S{rC1OREwC@N7=bo zI;w^#ds+=scKD=SK(Pq*=>oW;7Y<XL0|n?`!@7Wp?I5_P7q)kB1QrdRra0$zX#-zS z_gmGq?NH$!UpPd8R94rpD@1m*gW%p?mj^+sWEJEU7F^Uv+Cf$``*egM579j4kmDEa z{nXdnfpG`#D;}7eA-zB3n|6@gx%)Lkp5+YTCFCk;`W;@;4A+MgtHE=Gy7w_b+|Mh` zVVwX_@bGr8z^HmVc<$~^<M`w`%=vomlKpyhfQX~Ro`$gW;O%=HJ=DSCBRUBlKvE@# z?v3#o`EVz3KZBQBR@zoj8L_Q^a{4UYh^lTZ-KbZKLii{;-y?hF9H!{abC{yTCsp)) zBGjiyXD}tWhl_b9Et09~v34Lc8RRJgLUYy%P_*j6)w6P=e%%h8S&YtEPUmx88~8eN zRhnzA1+y9M4+Dq%C0NDz)m~1vhC3?NG+(&Tnba_NGC3CJD3cP16zLeJ_G<?)hXMMy z0gWo)IJe(5eUv)69q?QRp1{DcFA=%bw*#2R0E^rJ<R+hiyu$r7ShiGapr%1<DpfCC zLAy#X8L<R3tWl2TmiL6Ir`wFu2{?=p_yqjibmr6Fhce!S!Eb1Lf5G5({J94LV*-xJ z;Fv5tZK98b2{;8)Q7D-90SI<dsc*$`g9XQk-y`W({J9FXB?>Lb%^{c&6&iPL!E3G~ z$=X;)iVTzUy|Iq%iEra$I$b{w-xhYMq*L$8m2+ygk01v+Ir@{TcY?xWPWmKk9*c8$ zaw^V|0vC$>8s~TwFBW;RtK(lm>c51v>`v#1H{ewA(MLj3$eyUs&Lkzt(Ov#=E=hev zOD5~0LUYLO*3d}xXAzf%FA@F$>yEvdlRSA^Pm-m1>>hxFv(iT;e~Rg;qac)3H8OVJ zsQ~9Tx;RFVulG43y#=Dy#SeORE_0Q>lHyn{r_Lj1K7luJ&q#F)Qf>2$0%EsRSjmM{ z$86OqKJcN+H=8BTqn=bb0SJC*?Mh;-j;ZocN<D$xHo#G&R)|EXMI26&HOEMGxcI<_ zI-leZX4IkOMeC087$Z-d`&j}ipGfds2o~X82%oW1n$!mG;rNe~_l2(~8zcNZ*(*UF z@M3)m<z#n^RE!HwK4V<)+LL%AR@4`=$Km)?C1Qrqb|x7DTUh;hfxvTpo4gNR@|@wA zpdJ*#bk4kg9x3YKn5pg;pZJth93y)#E2r4Igrqz({Qbg9GaU=%H+a1qO79#@E@nFV zsc#DaTJ`eDd1PajW2$;meB#43o^gHs&$zZdn(cU0QZI_6Xx4t3M_$Qw{7wByd_oro zPLH(~t7@%}LIy!X@?n?cZr%tVvAQs^zGq@t0u+Xi!`rAHUXEVX<GJ=-?Ip@X$C!CS zj9Y7zUXGX4QsDu!48Qks<Vqt+c5g?vI$C^6+kZKcGQHaWq*~Vg3;Q^d1%>B(7E6h< zkE6hw3zmYQX*{JUA-e{|R^V7EFRi85fLO%GJOhvPbxf4hwO%56D{(3-U=hnmpX%qR zlQ)@@CbzxiNFdMmcf6tQ66w>i(^G|x67>!-n(D}|TJ|a$e*iTr4+jF!*U)$Yd<ute z7xd3TpFxfZBz=%$iTt{GHrjq0<j9cJQzGm9V#gKgXJQPM{!}fIN*rT+(n3vXhSKrX zEKwM0-6yrZP~sSdy-mbm$CW{H(0tFLY=Q8GYPn%`;P+D-9Jtrz5-OR$nfw)`hR$SC zTlH|q4^rOezGf05{LN(d`EG?rGpQN|@mDCgu(Sl?V<*Mzp)WUy6jwL~CyGtYZK`-* zm%!Es4p%s;EZAj>oj00iItqbI@=*xH;Ld`wauCcp41-b(iXbq?9{8|{J`hG7G%*zf z6Fc+BvC)pk5M;S>4#_Wu?re6YqeWeg59t76@qFg*ZxCWo_~uE}-@kK=;}J={MtI2H zLf(imqQ76nGq?0R)sFd+x>bb2O;^dJcAR60db1eqx#>#YI-g{YhdGBYYM8pu6mV(0 zqty?POkSDb7^Oa8ilXhxiw$j8M!q^S%ixtSx@kRPlA}OU-xev;>uVNIhH=8j^GW_M zj!Eii@iCf3`NR42awKwmzb#4r8cvDejcW@pI?62uPrj4k?fGQ-R2XOY^GIFgfCJeJ zNc}2Dg(@!)Dv|Q|L*$_@U_1&QjUEu|48(+%ffo~>GH`F#7c&z-!|{M{4cqw{j>-XN zecKsE__s5$ENKG)p_uFYz)Uch{l)xXpA=gl#CQPHJ9p~dwse*wEJz(LJonYhXjXqB z38t5q<~WYX>I4x=jrNDNj<M<tF&fRDG=W?{-%%DI{e}6CbhSP}`i2EC4DqM`<^o9H z7$AN1LPsC(^flk<Y2?U4heLG*NS|K^{iQ$sZFNBZt^nzyoQ?qj(yw$n^3=8f>3?&= z6x5&ooXddz%K_4#xeP|!{^>_7a-@@QW;()Uura(SUtHw4**mF^#_>^$SFO=j_xWN+ zouvLCvZwEhzqk!<#`{%_rk&Lf3y9PJm*RN=e0X&Wpdpmk!wrt3l4@BfHZL4D7;T7; zNW8>^DQR3(^y1nTHS~(6?D~ckb@k-r9Ttlao62IBhGlB80h_}sS1NtTEz4mRpC$6A zL$nMbhBt?{suhmACACm^!p3N5Dd0f!l2y>54HKVILs7O+Fh*4i4MSlO3<cjuQ%KHU z?)b=?g-=QHl%jlWRjz!s1MU=aiu`F?+x|B&Z_C7JT5HaQB=bs`A9w+%am690ynZ3c z=?&MfZ4iMpKi7%*xryfo$D4w2<p(5y2eo@%JTO0+QN28=m>)i_IK0MjM1o;V?OMlL zNqxvm5KxhB1`WQJbqJEch~zy|Ix4dp$&2V5MOHUD#>p=(B*z<}qj=eugdj0rn0kI8 zn~*-U5GSN?+2>c$ok+#C4hM-^WC<my*E*u*j~9|&*FsgFZigHnI(_IvZs2u}5%P}< z$@=S{!~D4&JYTl@!N703l$K8t&L_urnJ`a+p-DcTF6`O`0=m8A(89pCd+ujt0=Ijf zS?}0JK3VVBCG;qF-{2UQ_oZ)-f)V~bN|!p`4ty{6+|OD2jNHT;Wh1w<8yrdD##L%0 zvdNK3?s_sQ*%F|6;w|5E)FHssYw%<#6=K{Cv&Tlqt&%!cc!CYHN}gUvBA4p9>P+zo zRpP02LZe(*#~NkQGCeKE&?<h!VJw-y30jaZb$%o0)phJf&~<(+t`b>n<Sc5v?*k3M zY{(Wze?Ml)gpPRj*0B-K?S9N|6PfMj%zQ>X?)=oTnUQaXk_jF0JX6O;JkR;@I4bfu z&UyHbcnl`A<$E#lv1B}{SfOkK$j}y;+<)oC-@8lTt8{+IwjtXcvZVebLYaeoha*S* zLyV?2@TWTR(+)>ZZ-9@Ke1Xo3S7Q~JhKBB1NAe(XOqAoDY*s9$ajWK%n;kP{Rd)(% zOno~>&GWS}5lpAWZPmNLcPRHXCr;=qmA=2#aab)88PF`hz8jQwgcyxkj=+R&7hn&P zx7(3PPL+j5coX=4gk5)F6h#+zH$8hH$z2MNo&dLdduj9<Ac!C(Bvb{20D>55LX+Nm z3oVbP1eIQcKm?ScC@M%1MMb38P!SDQM1}87x$NBD!S_!xH}mHA-n@D9=1tjMlM46| zm4}3&Z?N~3^B*o?dBp~Mm~0s?N`V8D4ISwPkd|OrG(jw-gL7<wFgRxwu)*m*as<!K z50{1)z{XeXv)!3dP2|3c2PmsWF0}Kp0yR-L=}ax>*q$vPvIzs*y{zT2VlnS`>~6YZ z!$-%+`#wuIlXc8dQ3fJf$yR$~%e!JO?IS|x>LYxO=Ttj>DR_%Lp_<$4Z{5I5V)Hxv zqFijJWxzIjnSAx(9R`^(DKW5WyM2J=Cs8bu$?|g<PyER{@ZsuvkHAk~h~GKwxDzL3 zOW=@)j|qMd;>iHte(DE~J@z?r)R2b`IykfxKcASn*S^hC;}J{-vzgPAN#8R23b{7J ze^lodu$>0_Hc>A#n9BwlF|u#>+2df{x*Am=>@`f?T2~|9HcVLUxn@_oKY{Ln?@vs} z<tusep(ANYJMyO%jT^|HEaK6ckUy<SK{oy|_AE$+`ILA*CB#qKlbkUHuLL~y*yNQe z17mU%FdAS}FgkM+umYl+F$J$-1<;C;I?{`bVMORL{TBs}9y5AG(ewR=f>h?;8Y0Wl z#f~GD=w3(R5VqGbTF4<S<X;#2q1^5(TjmIbkW?Q}6n6QlO)X2r?3VkJ+sSi=z>dTA zR_+yOu(~_9MgSxnu{-6Lhd{+m^e3;1wW&WT9m4#{zrF17(h%ZKQlQTp_N4gPgjC#F zAp*HZUR`{Psl6_gyc<}>ov$J2TOuo$pfA2@ALd?x3R?H5{b~8q5LkK?kL5lSD`rM( zbs_nfU6(&L1P${k_-Y8OKW3k4^CBhlTyE;4F2I9SR6l-95+4J+bsU%8(oj=B#oiYr zqLyet1wz@@6kADx>Q{d1gxyz?Lx-}V=cNv0zHOfsA#!zr!O*ybdT{@3+>lbu+#_lV zIh7S~^C1TAoV3re)EA1`lB@Df{P>E$JMY*#TCznF((6(d+&E%y0@&$sa)+U85+QHh zw;C;T?OVX`Q@G4`<6=@LrxfL69`(O|Y9cHiS|c2KzGq(|58|p333-FcbKbXCNS4u} zpmbS1<TNgxCyCi~ei}U#em!k}(!Bzm&<38t-GL?EDtvnew-ekruo<xOZQ7;YYF+%$ zKGeOIsrCHCMr;&|)J~qYPqDl%V$zwy&@f;3yVa!8)2VazJMz1a&{q5fdsE!{djxg@ z^WUD>*FM6b_SGY>@jPLTY^e~jsh;{>!WHjbF`M>8#ZdV65=K*=6*_*36@rHegNawz za^X|E<fXztpV=Ej^Ru{7gAS6=N)?cK+#cgjYEnNxcJOFux%0C9m?YO7#)hL<?y|YO zEB0K;k}XPT>LI@H6)TsAU$wWD<lKkjl85(7y$^G`sj~Gt?kqena;2LpgM=I|A&j_T zpJy2-6tK-j!-N{LZWimZp*QI(`(k-E7g8*CLEqS3Gp2mO*Y+scvcio)<xI0q%%%=} z#jx@|-`VR(?lnwP&7NUwswoqz)2U|Hu*#_>PChcsm}>+t&Q~uhhC#g_&~v$oM$Hhd zDga*l!CupHPGmq$3u|Tki1DmjEt9=)2BJ#XaQ*y8`-_%aZkS|ty*Uid-oiuMn_`Ix zGuwMFM3nFR$zCDLKEtUE#)v$5H@K!)xbc)D0^%#MyCa8-BL+o~!r{LPoZrL60+R&% z`kBaq*g-`3$vgJzG6a2X?_v`RT~-kMhrQV5Wk!Nsf7q8;o)9@wBW)$*xG*qmjfLZX z+V5Dp3Z+8G(p$_Xh9q@`;dgPb){UN;5naiT9L`qqMPfZ_LBod&7Bp!%o43eHUYNJ| z#iFk8_C0%%I}4N2IHlMoHh99eU?6?$ANxMJgms-wq;a*I2GYO&Yd>vyRTPw3DPCGj zv+NYJse!&a9ERPuCwr-I=sq4i9Q9U#uEX3on3};ubx}mtjEV>LLirMFL9AG8GQI*R z3sY^YzE)@YZ)hYxwy55!pVj*CvZPk^*6#8TCH0_e`9qY|i2D8$v#HbgV>q<*Q~SDC zpi26{Pjy;CM~LQ5o>s&P<Rjf)Dp0K^d8-f`pr&}KKsnU$R^fJlnja#zfj>txE>N{w zT8lOCP_Pl?504A1;#)f-qxQ-IqN9R};q)OBe+sb?VuDoN3x6u`(;^x*18m`+L26fT z{6_~P{~=<HO8$Y!Ka=o>iePn+i*r(#SyjY51dlp`Ij1|rjqeD=Jlq&^s4YMzi~3?+ z+R%w83*S&J!=(;e5sYG(USJ?GL_KO*EjGX~j#4q38prApu)c~qB}A;id*bm>)Wklq zhPx&*i6)MRs=fSa<&8i!Ap)@v-x!nSSWl^8PnfzTfHw545%5g7THTw;lSajsZw^;8 zCClfcL}<oI;A>MeEjPq$+R2}ffW<bot$PL2(4F8#A{qhqj8MnOe~+N^#-oNVesYq0 z$RsaPofNccCjC-5E=NC%R7)%YBZYxwifg7mjPLhR>M%KSB#W86bZ_~QX!TFYlJW@b znO?Ays;e)^nGc7B2i4ViUgx2;G3o+KJCPlohuR1^+?$mzj#Yn_EKdm~=4fdl6HTm4 zJ>|g!HAs>Narwkzm#-g@sLt^!Utp5D+A>w-N#&a)<hbMuN>(@Fx7vgf<Ah9xk!)vq zjaW?Qyj3HGIq#K`Y|djl%Z6#MWG!1fk}ZDSn3!yilZq0u>7scpbvAU1R=e25GMDrY zyLt+rYZJwzPCQ0a8(S`l+0^<^kAz*Cdd9tiNs={8XptL}<i10lDc@q<5i1sRVbHMY z#>9)v`hA@0Vawm52qtsi@GwSb?o}W+RqZPW6tc1Q2yXbcYBJU`)6{F0$U<>&Rff!Q zVm6I*BH_byb*wu*)!VQPRkftM(UTQVB>a@2=DX9I)b`55TJv~qbr3YDtxlEOu-16% zNQkYYu8j2(^0}0Xk1&weas6FKecX~S%0~=4_8B3^)Ehh4H?H2QtJcJAZGlb*1;>in zbOsn+SiY%&+8v+O7K=<x-pQIQGG~@Dt&w_KUcy@|7Q4*0tg%{4wyYPiUF(%P^5#OQ z-%QQ0Y!!>?pnJ7Y7<Bsz$)I~&m{SihdDa(}Ps~!gNbdM1**UE!9FaYuymJe6vn-!^ zgz$Y@sb?k2WjE=_VUIEHPkB)ceVag8YqiYsy;zf4-J&Nj<f;&}>1h4F5W?E1HQXzh z+VQ>@R&=g9)J8ob1;T|+YG<3+N>>+LZi}see;TTEU2htiXT6|G(J9rTP6zdu@}v%G zh=iZ@CfJWMy^q<@+}lyzX{lW#4o!D;UGm1QYjO<S%u#>9-Ln73=Q8C}-Z@tdlPo!p zV06U`BiiZT<*9i65HI)tpB8<^TC}^XT45;=8Byz{hmoU;*px9=ET-05R3upMv?A|Q z#y3pFf+8sHq1HArAuki5_k~xA;M7*I0=u^$mY8gXV~f_n#%s-|)iu)2|J(YT{P3Ws z+SBW-yQ`;KWO+vvfX=#a2{|t7o7YPnBUvsAC4xKpLd>S_=wcBZc?RP-w+d9}-X25v zrO5mk!W|KjcE)Y7GydV7K^{R6{K;+B7s$LyzFOeUoQ~U<^VMf9p`!%LrhS1GXkWNV zYw8P*E$W8#1@6uslkKC}yeAf${Q4bc^jQPc@sg#UC<7I3r-tWr&BSaXS_mO@ofZs+ z;{(*^;pRX!#2vsS>TgU9qAX0*@q^Snxf>JJCKkJTIpaB1kt_p5DX4Jt0`w3uo9b=A zDEM!%dfdH&NtnA26DGR=W8|6tUvK{~y=4wjLnX^HQ3fhn!B8~^&h=qlkxI2}6od^^ zpK+%(N%h~ur22K3I$19J|580*v-F+eYJJ&q%tNZYLbZkEl$cFLJ2nb_C{%~KS0JJp z$3z_^>0z>cQKXKNul--yI{Lwl?LIa*KT7TLs0igJ7NHCst!7*9ilR~{@Q0AY%>$yx zsDE4hM+?KpSd>-~vuVuc4<C+I9q#ll7x0XnJerL8o|YP7Jv!18M+<H@Z8UScIMPEQ zqoYq0l%7kjR^p!$01sYJ10pKt@Q%S;Z~mj%V0M$!q+=JY*hn@+4v$ygmfMb|qd872 zb|1|hLnLaJ2PdkDlBK)Y272DoagvHxg2Zgn|5A6jI7waaPEW0P&15ypGSUlu+7va% zogP(K6Lw8eb$QlkxI6{<%n|ER70wV<Sj<)U!&Eg%&{rteS9h*2w?>%s<)Rf80_0^I z<wvKf<r0LAW#bPYkjb|k6vd%tzk4(^nyJ2S*)5h37J@htT%7HrjSUu?$j@bjJ7=kf z<&Rkpc_lbATm8-QmB@+&OTq}N&RL1*wD-$f&sF_om^=X&Z(^Z~_1^jF7_Sp)!v*R> zOVAi$V9+t-FXV8Ha_2(zBgqmiln4`Pf|yMQQFQr{#cH6bf~j{@m*tDKY54l&QgxE0 ziI`168$fI^E;k#91tv_VH%uC*UMW^b$X&*;y$vrdgtBF7PkF!?2wASSv<wt^kbV%l zJd^Y2H->fjPs`QdNH2)4x3$$+q0YBV5&>zf@xmDJTdB6PydajCnp5YY&B@<{SFC2Q zQcGdfD)p$m@(~S#5?ml}7P(OVFOPw3pmw#qES8w~H-0GpnXA=Z^3jKLEiYN4`uoUd z7)6{{_0VN}$Hyglh+dxXqWXy>Uw#B+&kd@>NB;g16hFSKp2SOTVvFd*Z(qEsHn-dt zv&jGtA%w0dWiF(@qRxfup*5?x15iiTbhDak2^%Yn6c2zsc*$Db3mdjznByjaNvB;O zrqlA;Th(R~ejFil4X$?{p|M_UqP(+B9pZIZkJzsEvlV*YT42xj;MBwK&&<XPAGeb} zhOAwxGL`Il_glm^neltRWD}bG%v^~-$xdv)F$FKu`!NL@_%)eUL?JE6pJZ|}oIw5z zASY${<WCE77|@LTd7SLdv?PCSlb=75KdZ==>2mVt68SUrBKbR>(2OO2dXiOY5Ax?2 ziK*Wpe|{x%`!D2=59!Ls$e$*JdqezV-0mS#&8HI0r_#))lFX-4%%>8}qul3F&hseK z`BN#!`IOsy%4t63GM{n~t_IQO(hU^aTzb)iHkTd~)8^8nHriaehf16K4QVrN?jq7q z+S(6Eing}R$l92s&81sVw7GQsM4L-vUfNvh-br%{{Kv4zvb*e2Qx($LXvo#@b}|(H z7Wp`w+oR5~6cIXl<!I<wcI9Y<kV8ECqN#A_qB<2CmZ?8k#KQ87eQE+eHYL#0?bP_C zB!_OlaWfWc$spBK9*5np;<Sn^=>t{AFU!FZZbZnpVA@!uP4Ro)jVZpHN1XxZPN~)5 zdhe)+@)ZZv?UMZFSn?u;wvhNuOg#BP-)j(-92*R_*VTLS*JB~{5bol9D~gKuhWg4k z#<GB{<8d`y{$(t*Y^!CKI}YPEzWn7_c;<+jVENLm5;-}M$C=u9c`SR+#iwK0dn&Fi zu`aPh5h|Bvae8<HroF9}N;bS#qh`xUN?*qC@mTf+q-$>k2g9zT>P4v;Oh2a9v@{p1 z6IrDuq-G|xxTwa+PmUv^*7ki2sbJA-HYXIHQLDk#;i&=e!$ox-G&`ckOATQD3EV?$ z;0A>)u=XN3Vh`12Qe}=~4cM{Ey4f;9tY$P|XeFsz11e6czxkFBajyK~sA*X(R;J>w z6vTg-iSL8rmn@G@TTz@FzM>*82wI&|cgw}&;I~uQTg7e=MC|<}M-+Q8lVt%H``&x% zEX#XhH8L$*518%ooyuyiCeW8Q5Gx|D`Zzq6zI72wef)I!ApOx2TBP~~+dORaz}WKA z(`p|nJn#kiu{kSq3WE6mU<mzCtt<TlEl;c2FfB34i-DtDkXai4ge3|qRhr8G84)*1 z<GqcDVISj&m^Q6yMEUr0YP2NPgJtK{=j3`Xkg>o%3|!vpf?8Gb?S;%BJ}0#%T>n-L zuskF3rXBS(B%O5G*>f*YJCh!R;*077e8Q~wV~no4xz!;(GoIv#J%gX}If-W8314wd zz9q5$j{2%)u~?1vOscusg34<2RU!D{-jgc-L<cs7^o~@U<i*j>k<v&y6Ed{e7*GF! z;BcdD;BdI~ncCCmL;RJWuGE%}(>g1{Zp3(YXDVK*{x+$4pjxmPZDvshB=uGj@Uay~ zI7DAo2iS%RzJNx()6jq1cC_?CU&SX(%)trstMq~^q-~$$pHT%H*_23f=8vkpKuXFA zs6`<&=+{?q$cxb{e5w8v;$~;C>_psj;wwMAs@_q;#=C4K7^L%BdnLrkC{MVqZj{6v zINn2R1ioLXWlCLx4vv4NwosZ185?_Qwcz?ILAqRbJm9l3E#dqjCD@u_kYEbug4f}W zro9fMzERgHxke#i{hAOqG`eYoxk^E&@%YIlXH*Pq`&P|T`j{&fr}#Iud8q`_OG&YC z@=vuy8SP#t51+jz1GK$7bUd8+%Ml3+PKUQq7MZE$nW(OPueMWOHB*(EsGLvwwNu_O zQ@w7YDvq%BP(C(M`JBh57M_W(A1oB)b#mm%=f^{4z7_=|fA_H~zX+vN@A>{xHX%X1 z(>CG%#!yk_6YW(mnI9*`%KCUHYm84cW!zUAK$Xjm!1nnBwO<&XzlTl06!|%4Wx)WF zLDKwy{#pEuQ!Dm~`*2Mq8FaEj*&%a-55CK=+_$+BNw8QxRQ#;A_eq$5#dV`nlq8{q z_WtpmmS%F?1el(xwfE7HEWBP+oe(O_De|xtN&$KGqT*m;g?dVkoIoD9qOabJZAPF( z=V2AFPc(EyQTL%dF68D_ci>kUM#!z<c!fHnickR?0^zOvo`%nVQ;#S@0UHXR{jM%o z1`9}3c4CCevqo<DjX!WJQ<-Yy5DU+fCr)67H*SJpcwnYlVWOgjx5rGi!$d_5@06M9 zZ4(tWylW;ZpD#$S#7Om&+d>Joye}pQmUmAmH7pNFsO4d!h~=$n;a^oy8|o7cW-P)G zyX!ll((W3{`QxGBzN*PF6XDK&wC)}E)n@Ty2@kO|`x#8h@VMvyl+7)R!xuhKJ4U5W z#LCy>&|1<+>IO?eW}T#FA#_mDhxJf8xY0A}Nu@R+;?`L<L~98&kn|8f9{HZw7V&(D zTM10Bs(r_T$d<D9x}TgkQ3xXO2MHpjVz_WcsSU-~)f6}vqy<A-kap5%+(a2)su*2U z881k{EGbQHB9EC!M}a(ZBAq==gJ9a^1QjEmWH@(U4TR@kiwK30x!R9%;Y7%{Xf2dN z0W&;FYinCYGDMXQNBn~1mhuo({G{YmD0M2W<;^S;Z|E=Urtz=C4xUJ(%kqU)w3d?m z!9+M4s%0o=1O|rC?{T3oF`+Hu$c0-Cwe~PFMYBSeaP4pT<V47^YW0<q0umMVd$Xt~ zxTr^|sA<s4ruA0-6{^vZT%lq6|K<%i>e&D|8L6!bS|z)#uWbCww;DVMRf1tslr|B+ zoq0D(OI2!4GR&c}T~ZP(i`F{G>62(*xHYRhuBz5qlHy=wHLZyfCsZemv9=@`qTZ_$ zsLYaD)xzcINi4AGK2KY&bQ5Y;wnxHGqYBi8R{RhM?~bH6t+pgjngreAHC>q^)HcM% z!AQiO$HX?7(20~-dwFSsrb+VHNpLz5r5`JxQ0dp2r5|O;Gm=aHWs){W*)7yGq~GC2 zElNMKh88LLeuA|i_;Zy1Q=z^g|3xPM4R31SSxf68$>%14q-rtBIiWt4{5O&z>ivu% z%llmNv%iFIR{|y*9d1bO3ma3kY#Av9sp0$;w3dNRZ4gv<Y9C<a_^ne*S26?yLv|-Y z$SkSAg;wLqUd+alrgbHoF#XcCMhYIPR5~Fleg~2vieHlnlsuW4Oq*Nisaj-eL2x8P zTd(8`_4~b{B|wY5lBx_Aa`SF$?dAN*_y7uO%Y!`jw&qYKcp-23Q;q6=gd97*Pe26x zQ(Mbc7I`5gcPTw_ul<Ft;w3NS<UG-h99!K6jyKhAN%#(KqIztpp!)Jf^|gAE?>U5m z467qexgdZVO8?MM`WN1mjxMOXB)>lyS~b?3%KHKa)%tCcA!;4peM)3`n`=G3nxi== zekkdgCfdu2G{xvO!*uRf))D2On1!5uRjdK0QXTaahftTwU(qkBsWgT8{JK-9!9<Gg z6Is27A<&{;a3{^t8v^XwT`3vzv$fhvvVcX}VS9pPi0w!~VB+j!r!ez*zLoZp(o?8b zDZbppAQj}Nre7ZagjQdYr%!?IZL~~frcl4K3*@Q14U1VD+<oQLwptHKo;U?QdlKcI zC;(8oH<;yqfeSN+%RRBPW3%#_P|c8guR$uxJ$YHR;PRI`YK<k|%UBOO4sxU`R|Et@ z^3S;B-+7T7Q1V>ZlcQAue>+ZIA5Vead0JiNV*!aa;V#J#ReyoYb(S}w=WvG(#a*;_ z;h6v}uspwu<|8SVsfHzC5YpE6q<Ibun#y_*VMz1X^p@do4VUnn=G|~?=S&nf9NN(z zY{MbKEn*>&5`x3VucPzfyYAXKb9j40=_&}rw1bgtNUo8Kq0rs|+Gh|G;AaEBp4u{H zh*3y`T%YHr@?dhjP(p*r=cdAq`$<idIYI$)sReWegQYZ%959sy$9v{S1i;4L+EdB~ zcltb^buJdWgc8bP9c2+&(nm{F4hw|_8>Db!Q;_3mt6X#^&GR|u;&4MKp&ZUlB@uBm z<!7P5K*v%SIthl^GR#eXq!;=l28P4<X1TI{S^)`!<N9lLq)^D~uMLjxPmo1B>S(Y+ z{nOPIjf1LAt2CW*91XI>Lab@eYE_g-qYReCIWl0{VE@{RL&znof1BONV3B&QX^`}# zqdu%1sO?ai8>MjLKeWwSB!i0P&yM1oOoP1iBz$}3Ag!^|Q6N9@mexL~31(n(5p(0) zNog?mIqk60M<Am1?t$5B8vA4gV$&}tcn~y1rtfL^-Sy{j{+lG=nPd!PGQPlNJUUZq zs4Ni3sf;hU%jg`UO;FYeL?#)780Km&BVrR7V+|QO(}n^>?t8epIW|<=q#P1*O~UfG zW**?eUK^%mDW?Q-D(nHw5EQz7I4blrfyg8*$NYo~i`YciI73)YAP74iTE3Ii(&}j! zaAC9-3wsY)V@m!BNwo_0#SI5C3$?+D&-6;0r29+O$BYaYp;V;3qEt2V&9)WBbR03A znN7n{S_efF$W5)}<h7<Vv%zX6v*85c)9IH^yh(&@>+P*c&Btg1l&%76GH4?5j11SH zks-IhF9kCC2ZTe5vD!@Kd4q;F&uS<=f;Dd-<Q1S@R3sz?z){K3Q5h#xA-x?q5Hm<` zL&Z34p)yY>HfeyrOKLXPz(5ZTaF+eK20R-;d$;5zYgMRND?1`Qdv}@)iyH^$*xY;( z_hoeLeTaxh*WQOoimts6Pp4~dMOb@7#U^ba?3k#XGS5DZ;NT=}r*ctfX5|!QJ!j-n zl`lF)b`lRk*pjp`*fvGmul#6Gu+5h5rnAkKucov4ByO74PLXFA=85Qe@_iFk!aG_7 z9LscME7i@UQ8U~DGa?-!&~65X0=3PgX(rOFnaI1Hnd%8QswkNHc}y3jzlqAH&kR1F zjucAhRMcmNusJhXC^hCIB%$*WD#4hK%*rgdf&E0bXFizjzCANxu9hypG=pu=oS3UU z8GnOlS)7~B7;4A4Y5E}lbm%b;!-6e>I5bjgGGDu-yei}xv(h0Um(EHDjSM!x4$L64 zQVlk~Vi#(q%2|VixsL-RL!6pEn8Bu|5r=Srb44Jhp7aCEz_EqEbZYu}kv3JiEfCSA z)Vaf2L*)-4moBAl&tOX_6L~GzaYU=91k5xnjFXov)#A<Iy_9O6g!For8zl`aJ(~98 z4Cd;viPY735S*GpU0tLXMPeXKKk(Ognf8s+N|1s0lz0P)&tq-~<m*;8IJI2sAa#L= z6<V&+%>-aG0QhU3^JcOuEF*KH0}?z+-QfABu)3_&Rx2X}U@}u$jjDXo8Ujg+(0^t$ z@vWsy7N}|W4#5ned#jab#mW+ah&oUM(!yNwLMkh6jLkIbmGc}t^Z)AAx?1b3>^89y z^cuogxiy^Wb!RCy=l*IfOg=gj!q#Y-a@+(XXg8F>yy0EDywr^e*RHx2=aS0;ut~f8 zT??0(cGK2jT=%^|O|^RoGX(Aau}&*e{uYQ#+U1aca_wI7&@Lyq$h2#77n?D{bF~;a z|DqP_b04Ro!pz9(5rQ*uc?mo!`X^+tk}}H}gLKADG%^g*euDz)L5&UCGfG3F*z8RB z)LM5Ib0&N9B5Ej42;@{BbumNG$F5SG6M6_lCVlW1I&_^yN3m2F@<3}Y^eyL^i9AV| zTd@)MJjV!dG;%bIm%lo@a28~abEJdMD>#Gw@iOjC%@OLDM5xNlXC@b+kctrJfthI_ zu)xsfMU(8qfi0Rx$NKD^{;0l@h6Uu<+$Id7HJp5C0CAA;q5(uXNznkJ9NUDO_hJB1 zjsb*2@(dpOY|-{9=M8z;nIbuv2{~irlJ(QMh@Oxip*;&Dw`d{Ib(?lfxoJ?a;Nk08 zY_7jHiv<r=Bk<|@_U-(_08_P<2WI+zO!U8;&_dzzRi7}xl&VC}HVl%69k$u-_!T>` zkJC+5KKg7v^*0kr=+v*zW=rXILV+>sV=0~WUDD_7(b^~j+)49%`nu2yg%XP1m!nS+ z3Ji2CbwgiQhQSTEljixXaG`G!N+|jYj=oPQFwn7-pi9??NoJNTlap+2{YOmZDw+j} zS5D1xk5^9Y*V5#Rvq`-2O#D^SM`Eb*zR_u}Wi;Kuz9Ps$LY0y?BDxC((zqO#)1M18 zM&R<ZkV^xXTSf-+Ge6E|%V`?3_{=e^fR5oG3Aq@vJeV!SEa3t<aWjDrkQ`h8Bb4Fj z1{$&?3p7T^;t+Ca43a#Dg)Am=9<ns`B&Q*ZiMp4P<4MRu7Lk&MEFLXOn8QLAY#|L< zJP7{9rW0@1>?khk#|n&0n&NRu(Hy3!76HkFlvx5f)l?B?7@BHx95<0x2{hCh8WQj| z{c<iMLK6{V4Fb;dU!!+{uIXPtq4iZ>6M#*!@(^ebmz7Q)Cj@dT>mD~*TfL3z{*MG2 zldL=tImcy1Xp^j*r-!U-Pio~#g#c`lmB%GNaarkx&V7NL%KDR=taLvobgp64CRsV8 zWiIP_gf_{_2~4ssS5gH`lbAfR(dM%5r`se=1ac~-h8afps~>0uN(X_)BqrY;c#?~W z&?YfCPm`E<V0~H}uM`NtCRwd)k{!fl-EanDsTTxtD(fIOSqFWn<ty_A8k4LXat@aj zp^2<<hN*G_K~_F-dvi@Rs7mY}76a1)eQQMsPR`}MctEvZkcc|EG9$x93VqMxS?2pj z0Sl!J(RkSN4pm1Kbb7|Wrt+ykPSx=aW*A+U@DZL8e=pFO)WJiaZ@D@UnyAC(!SgNT zNu0~G7qyOx|2)HDO+CiLB6%KL6}J8ukBXuNaua+0eyxak%)qglsW&*@TSg0bZ+O!m z?TzBke6qZE#Dj*`9Glx5MihlpA&s8e5-Dl)^dw2q=;_IM9?=uqe%bP=_P%EXwf{41 zy3${0El$ccfkse$j9i>LrS^%vprX2C03<w}8Vc*LX@Ri2r_~1e8|1tQH(Da%$a#3* zBCTpqWvYP!sL95#_h6Myc5>3SC~)NX#sh}-8#QXBc-`m&a`A`W*_b$w#7lUpQ8hBy z=7j@`2cDj1!~+5JMpJ$moa>$%$plUOQVWnb%wyXb&A-&z$D?TOF+wjxL|2SJkBYY% z`9QZb{Msk>aMwW<Ws^WegM{30Kc{k7$fb*sawCI{or6R{7ZPHiZ#TbM%6mpJ(Nfzu zEapP`F=dDVkhCi~1;XYgW<&_=4czPba*oZdRjf;x)!Zb|)M~ybDQY#}Kg?=;zt&EB zT8-@+?L|eJkG1(t8pCS-Gg^YmOt0y(nyEkHMUcP0#l7pQ?)CEIi1{oo4x7*7?rGm^ z0kG~SUYw!9wCiV0CBt0P=~=U*($-A%xItC9A7*uvlc*;YHikOl<hz17Dcqd!7&Zy= zDzuaUdRcDpd}d9%f7Ck0hZ1gL#Cgw60rcPoPw&4|3I(x@GyCyEE{)m>=d-BIgPfk( zFZ4oA&+G}gcxL~i7eabw?}1Ct?Du#fr)TyeIR<%cV9PJs=gM$_oL;uuSfO1}&Iq}* zE$_{TPwwDtkN1QE+H~5Mt3s}eeCMxPo+tUa+uGys;rCjw6bvrPw|~RsjR;Ia(D+jX zllF!$8#aQZXpUqnt9;4tS~MQPE-<W@dU&HM|8!g60^;Et;6*Fk#PTS017_PS<tzWh zi$#hqAQNdNI}Eyudx~};ABAmM(laU0S}8BzjY?TSXQA@ie`{MM<q4sRNk|^@wW30{ zl(8P21r0elVB!M0dllg>FWNg&vagfSL&E0;PSjxyGBTKBA@mh%ttl|=hMyJE{?oQ9 zQw$n5?;G5Cd^KT#u(nwwkdt{oXaZ(XN!ZLA_&{5tyeJTvn#^~M*77DJwyDXS={RJH z6aT7B4p5E=aCF``MC4IZITz75lX+jLL**=Ymvgo3C{iv9L?$`;r{g~5av}pFXRHV3 zaRLNgTBP_o#wd4%T$99nkLY)lcokmX@?U6}FqQLncRAnnbM#cA1tOE294=xZi)0X% zMlyz+oIsG1M>1ZFgKY?v{^S!2r9=H|#(J|iJ~Tt&#!&x!C0me;np|@u!!Ws}PgmzA zcQ??nQ0ZaNP?NJ7((=Hp3v86|`ftTne^nVMP*V+c!3<_`bla@&mM9Ax4|X(A#tM`s zHC1PxWE59ZmxWYKo{V#$LUHU<RtiX_{)=Hq#S59e*AH<#p==V!O^o?xSYGCgv6`uW zI9{#+!TZOHCRzXFzL=P0^U^iYBGl2z>Na&%&WSlumk0wIF?>o=G-CL4;X~rgePIrd zOD2urop8q*rNR(Y*s1%;$VC^8H%*R0ZdKfQ+h%iYR00+mHjY6?p5y~JLL8Ye@)s#a zez1@Q48f6(c1nVoG6u>bv1e0-e7Y4Cvxsb?MMAGAM^MlzU)TN6XQLb`N@Ic8*q*`~ zbn^@ORR$0?H?fJb?xRM?2Gz}lMnKB1c~mDYswVeZ!~%zp8sKj2s;Z7=@%KsF#pvM& zH)W9Mp&W0asgm-nAsM;%kt`|wj2s}7aQVs@#}Y{yC1ewWiY+1;;+!Z}#E>;#nI%-A zBXPQs!A2rtz=htC^`JQ3F<)6@6f?hXu;5!2s}>Qz9|fxt95t0K0y!Opt1tr<R<wwX zgEondk;>}=5fR(!fq8)Re720x)a`qeFJA;@Nsj5tB>{;JK!dUh8-O2C=^}xi5`H6) zQ|Ugcl<v+r+;SV3;^?LPArP6Q<CwoP=@6O@QV*WX4Fo<&y(pOtQs=U$>d>*K!)X(G z%GD3BsHUU8lDOCy7No~)aYjZZ<+;g@da$ULW0g|RC^dH&p9M1)vx$1W-O*iXC6H5< zWMT&EusjuS<aHIwsn0T6%jdql#cWPNSW{<lerbzoSmIS~x+czdII_I9zs%w2WOExP zeDKjF@oXX*byagnin^*fiyz{uQk;%2Jr_5Rr#fC&HV92L7B}mRTy#|z8aS@O9-G4k z&!szNDhG{1cAl_rF<aN{Ud-H7#t=CKzW6vi3@}wgIcui>z(j9cOZd)A`jv^4UTC{- zqVl=7m>(rrmKf$jec(M*3AxZ#O(-z@9hOpmhk_ga&aLf4<+~7r_`8zDhQF&^fR}wn z?rK$a_(51_M<BFFcT{1Er^ZW|4{TK5(Kmh<kyvzptBoe0g6ZOk-d$}a$Vr#tpEPjX zP+Azd<>&$LNlIrUhpwYz^GF8e;KRngP)E2UH$bRIJz&0(!NwB;LH_MT{IGFT$0ViD zD5iYk4L&?DcLQK&y;Vza8S~FFHB6qq1X6oCdMGnZFg62*Z<9`4Vk|<0#_&>s2~5dy zlqoL?fYkRHfP6!9%@Sb~b%#Js2l^V!z^=_(0%ek(4r5z5#wl+IM0B)!U>>4Ewv-W@ zj&=`%k|k`k3-Y?O%3NN?#7Gu5Mzk=vxk&I9(&j3Im77KhyJhx`k-<q}Vk^gN<zFM8 zc{@WM?w;;0VKYxbKZipJS!xUpQ~UT8s^F!}n_)Fm`#9boynUV$E#Yx-U;pMdFHM7? zwUav8+^n7tE$Yp(h-lQCH76<R&6+QLh&Q{{#&N;Jo0UB2*rGfow6M~dDP4`+^7wX+ zB1sux<S-95WGVAt&n;yhEVqN>ab>QVYNm<G@LL<qr0Yzi)NhrWsC-^qD#NlRA@zfW z0_wJ2!?qK*^^s6O-B$6^kX906lcyn3Si@@xjbt`52qB2q>a^7GS|my<&U4h2e_P6& z)0I3&m-s=1iRhg246f*$3hj~UFsZX+lk%^TU*2z|BLH6j)Y(x5#uhrND1RGeg1f0w zY?vIKz7->bi5XlhTz)Dpa?DUt3=+2T2__j-KE6em04=+tZ^{%1$)FBQzziJJ!4Uoo zUKN-&8t=Jf3p6yIF~ImG-{x?q2S!^7#nj}jMmc8|OUfHUSfYP$q!;O3H;(>z%F##Z zZ{ikjpz*yHHw3e{EGlN+a<mCX5Q?AXjbuX69UFrOFLdL<FUE}O<(R815papq6mWSs zyMSmm3h2SpdV!j%cL8R&)LW+P5{gZl<zU;HW*2y9mY2^pG;4L2nR2<&-;oGmEq${h z1lw{M4L`d1Ob~+Dm-Q1PgOfsDKDx@=M!wmo_<ZpLvl{9t?+etXwuQ0T^&i%@A3WN| z(Y_Pf=0zrKTQBd;Dy|61vAGREqH`R~)K8`_!=XU^WClr5Kbf)YA%612vtIlpTpEah z?USUoc}rVqE##u3e1|<3vc=|zfg8_Z;Fm9yqc_TvdoN>d^QmRbZJI8IykMpuZKBr; zaL^Q+sC*VJ!^b$fN7WA&3aD3Hw2Uoii-$NelpR8;5z!$D^^GWz;Twf^F{9{#DkHwJ z#WD}ym_QpHw30n8er6f-lShW3pX@<6iheTN5P=7A<@glLzmoEaQ9vAJillsG<OuHZ zrjSeB<2ObIll1Fl(6b1`^nZ;4Hr0PkGN>?o)Zbmk;vITtAb7dazck*ti{xlW2uE*( zQr{RO5K${PFnMfO6;2GsJ&5a_BEn_Fr!j#+#2NpAjLGrig)z8ZYb0ROxXd8uqrTp9 zCMUfw&_*Dqa@NBPCMWJ&6)8^%<t7pNwr@8>M0~Hu^r0wj{?>phu^xQ?5Hv_PA>Vib zw_U~x3{3L!^==WDm-@t60y&kps8U|4*H<PumMg0SB9qV@bGaaNks)-PAv7lxgyxHB zZx%w=k)?h8ePQP$TuchKR%t~4O>#W192W$m=JuwMQAvr5=~>DrMgen|hGcwQdjaxB z<0MPn<#z(LslhyM{90)61*5@M57@JeaN0e;aGN*jXj3cpM&dh8EWXKJn@ZQsZbOq; z6b^anL8DjT$e<pyDoIffT6G2WpcdgKKR(jmKDh-Hzaa<P+}{5{usV$=SQ_NdaHK@l ztOTr830R8(3OD;g;KmHcCpOA~`CX>)`0?x=Dfk#Ze@6=D(2w$^6Er9OSrk07Ur|5& zAoakaQTP&_9C9bUJ^on~P&9D#n4;k%vpQK$M&lpjEncMl{DN%ym(-bG(2AxBsqi{3 z!l57pg(=X<ANsP9zIbRowSd0zp*?vzi$3CYk35M(pPV7g3+R(C+ewN(Z}9<1(X00{ z<RTiq<hqrl=#|P-Bt<W}?I4#0=xvQg<oJ-@6nL7X=&|=_Bt;K^@6zLRdUn}}>=e?C z_){cBw|sAs)KBCOX><YIVH!(PbbF|Tr06pKDp?`X#aKFtPwBFy6G_o<`5c+%Y2=Ye zoCBSwTaXk^7&a7ym^B@5fka7fE@v+cOPJ@_uXH0hd;-0(-qBv}yn;-HnQ{!?-h-qR zAG~b}nKP4Oyx#Y{u{^0B<ern)D<jP~!&Z=&Ze_xTvgkO_7CIF9zzoP7Q_~jV<>Igm zBPPYyg=_tyJ17gyNb?M&Kp4Kr5lv+(OAd_j4mCA8q%M@sj$5g0HbcE)K*hn~u$W4r zyteMY<&L_nbtlX~M@68sOO4if1(J$!m-C7l<8uRpwTo!Txy%vky;&n>1oLM7Wk&kl zK#GG8mj54Vuvyy`>q=9<hpuG(zLoWRV{*%Qk?+vwhYwuYK7zkkrd)H~^zd@Q81d*d z9swJxhinTr<2yM1j=9XP@b(Y0D{ohx(5`kUZOss^8HCgbPONg&knz@LAvj`f-froX zf@6m=zzmSj0Y0MuKIBFRHEr>#2A#GK&I4-N)F7vrVJ5DuG;MB>c%}s{CdJ2iKeT-? z)75ip%upo;R9r~VBL7h%#uN=0xDwBL=~(f4@<Yw?_=oZ&WxpA&j4Qbjo@_u;4QW2J zCoiXeGF+bRi`G5GcdT;G40DFVoT`Kg+kj^2<&X*$m>9!hel)|}<S=7#-w|DjjK>FS zOR>YeZGFFAiko46`0@|Y8A-T0Ds|MBuP$LWgWE!o8yyl8;bmJ&20HF(k0qLM;vn-C zN1hL<zq3Y6jLl1Zz(HD%xs4{~>J3Tt#?T_cFEXTx(Mh=JMjV<~G&;z-n}NEp_N3#M z1}X%f4Bx%k5ohzZ36-}jsZ1#}*T-*Y5q+F1X8OPtGc#b%RcA3XVCtI}nPJelNPEt2 zb0p#gjXT>M5fNSxWT1viHM+$N@ha0Ok%07ww{>sf4#x+|Tjq+#3|(4+4P7!ZY+l3w zs>(0TIG33!5^)7YrYRywiy6T&5uS@wEJ5G7SGjA3_=7=|FJ}-K!$HzVa!iDm&=gzw zk-S~8mAD(I99F`-W*`Pi#Kdu3LQFi?OUUQ)kKwQ^!7qh|RQRUOn94VGHaMUpLB$@` z3Iq4yCT^WdR;kePl%u_pVPupyd(E+3vIsdPaH5CS5MG*RtpiKGQKu<A3~C5}$HCs) z7ShGYEy1;END{pv*cq<Bj%=gK9nUC(3<_3{+$^-Y)gzJPz!LWAwkoeXdMgv%>(qkM zvjI+tYNowBx&+EX@$mM|5~~H8#M#0~DoI&ps<R^FcU@j$)G-#l-gwhRZw?~6y&f%g zFaf1EzV?z7`N?08wkQHl%(X_Ou5^Dz+CV}ku7q<*1`UT&Q9)%(tZyg>jVz*(HgIgI z^#jXmMs5lHaAf)RV(T19dB?~n)NSKVk_^g%pJ%w$q@Nq6_jxV}6-j?bTr@H;g*rzh z7_!1ztlTn62oJn(IYADv8I1UP_GSr$pKvr&?wZNNno7YzH(j7?A+4{nwpD_lvh`GW z0h2GJ{ef+)6Krya*MsRdC2SErqr}=<vAg3jL9Ip|*A*%VJK@Mu>YAykoGF+~8_(o? z@Of+?G+u2Dg%1_~5U9P{T0?2=Ua_qp73Yx6#Kw0>g&*b%YoTK}(Km*kO6c?THZNVk zP6zM-`?e8cM^<(a{em;SQ94qPigxHQBg3V8dO>TGGTSKe+M#@}ZaNShq=RF<b(m7( zUPo*+zjn2PHyWQacQsnj49A=T?4ZYsaI~rTw0U-{x0Z6F4uw0P`82n=jT`PD=+d%c zS8%PUQ$$v}R(+48=vwtXU~5$zXZ-eXMhRJ~#({pual}TmT?3H-wk%-_%$6mt1t#W@ z1?F=X2<BPxr-1x<j{G@7{=ANVjCCX-n@>sR(_&%mNGnrsnnR@NLjF(~Y5)YLU>J}^ zQ#bl`cPSM*oOfKc+#>~4#^14L@UvK!zl5CfMHd{iCATc*q!(|trc)<viC--MNb8gG zL#hioGL-JN9)X@)t<5Z{LOy;IS<AP%Q4$3?S2LF!cFFOqC0nG={3|I}Y7Q4JIXcKq zRs(&T=7`s<Rlqse5eAs5WqI0zzMDJ!(>ts!ErlLb`1M|nYB+3fl2L~px!UBgt?2}i zI_za6g+K8f<kqBkC;27%<!FI3Kgrp-%eu(|LOyvf^%Jo83&&B*N-?|A$6B_D+4Kts zn}r-YhBvJy$2fB>M}-2oaV4pZZ4=3%GVueI!>h>#AbUi@a@vjlSW>&7!<d8Jf`E4} zXwO=%hy?V#xCS6U!TFphlkZX@ICZcF5$9TtT*)qF%ysPMdm^YwN`6rDCzUc1!uDHh zTLRZ$8(bEP?;vg$^k=1%bl>mXerpR$HId3BDu2i-3JR~`VH1KADdP+&IoEPgFe<Nl z&^pG_Ktwjl%V(H6YuL7G)pBc^rL`M9k+%-!Fs)K~-~7f=VCgPWndIfDU8uZL9oYDl zqj{_$E-x0vrOuM>+j%n%x^G9^zfH6;mrO~%dVkAwQ5<SzQ-mBB>G7M6b(RvLz-(o% zE!H(~;(JFk%d2jrL>0?1M^MGW9~@0B2Sh59D)@=cKBkK0R25c36`UU)&|Krkgf?$- z69te-!E5_7-?rmZN`AqqHn#!G-IFmPd`HBj6T(fBq7%Z+HEcroo%m4tILTi)MUV-h zQ}5^`@_uG3T>Z&0(n<-q5mOBW;yn*Xwol+{*US*On#~Lq1pGGnGm-pxf&95l{(Opm zjG2Lu&8H;uX|XUf(8|=SM-q#su8qP_+aNFnQ`Q(WgF<8@ACjny>Q@EZszPG5YC$Zt zuXo2WK&iGCtI-D7An7khEg1QkTr(uf$X$z1nymNjvm&vxmA^GT6c+yK_|GEJu*u}Z zcdboW#NW)QPf%IJuQW1p%kTg0@R8vD_l{tEK|Lj*!M#9&#As3N*Rq*p{hy8rN`C`@ z)X9_ktYv3qJ=c<%WVABDOfc3UsGJn6o=iXr*5mN8`hI^q3avQ=giZu&NeX|$$urg( z@$JbkaU!U1a6=k;--x^rUMV&5nNCX&h9rY>)_UCXqEUnmtDTG|>f|k3`;2T>gY<%J zkCBThRK{*>=D&DL_>@t=8N~S~+jf&&aZ-4DEpuOI&s!TSpP1{M|JJ8w(A$;3^txin z1#2(mJ2Pd*oB$D>&k$d)W#Kn+p|gVr`{T$SXNQuD))k8HI+RT`vr>17xhsEcop6q2 zHP@jMKZdzX6?n<$WhKQ-WD=GGC$3|{A_F=}7{YRb<3^*`vVhy0_6?6KcBD%n;&GK6 zvp}RPBib9eE{)6Zi+@yIkUp~>Q3e>rUOSYp3i@*OH2B<_qZFF!Q1$f1T&5m6Cs{9B zcPlf@lqMayZi{gpAs17Ja`wH~vH09eV=CkG2rr7ktqdiqjn!?q(6LR1U2fECL_F$% z_mdQL!28!R2W%tVLLG3_TIPV4+)7G@UxM|yHd@APis{t8mWAc^wJzt2IW#PPlK>wk zf7+5it;wG)<j<@4$8f%cY(6EKPm2ZTODj{CSC@!HT?mDtW<p>J+OIR5FFLg=RrFEv zP3*ByeX;yI{htN#VS2tKL2jtt9FB(RBP9IRFG&vz*9S{6EFEdpC*!+bY5qr6y%!$A zG8&uyoRrPd5fOS<sS`_YjnJRQ&v#OqmXUgY>3Np^I#TZ>jV0-<pjDFVrg~wN-cOpz zD6G*aK`~38h}K(6FS7I#RrL<ic9#CAs@_*BXX(OfdQa&jODom&T<HQ!ud9yvS6RAV zjQ*^2i={s&>ANgFIaYr`_Ir`2BMa)q>3w7?|8X%+A15d99}D93LfOfGG)cf8jrfnB z67&N33I3xbQSTvl;XhK75G|koIGv;qk%#dgW0SFD0{;<_qW6>M@*f9M^n7_G|Iw|6 zK2qMufB4nZC(66|kK;A<BKZjaQB(_myvKjku<OsrpYR_i?D}B&EB@no6(#tE|A^4^ z-txcv$6gJ4IS8iL#2$ajfjWy~>0cds0qzIT{PjBOECVE`zMg!Ug^+&f#A@wWdUmSb zL+ZiOv1$4<(z7gmC=Cs(kfona*N2n0!;-oI8TveFAxodj&__wDS$ak$cIzgVPO7aJ zO8Z#)quP3rbd05E)zJq?XIR=^S068Z&eGTGV*Yn5J+q!ZTKbKp8`Rgw;fFgm)<wQQ z*T*J>u=MH%`Y@?FOSf)_25M*Nn+^4$IO$UQ6^-;UQcIR@+Zg4~Vd*~`>r<p&EWN)8 z>R~WT_in0pl*X|14^8#D626v;@O`G4o&t+UtHH1*JuM1v_0ilfNba;|dW^K5lVxGX z{bqWCw2ft4A{o=N^eE{d%b3#~Gg@3t?I^v?G6GxZDJ98ijimGJ_j3GAAcEoOt<*^A zOO_kc5_9t(*CV7KSw;!T&|Bzs=`WU1EgLi5yqj7}_AO<jVKvFgYN=P1!+B14E6h36 zQcslQdCo?XlNOYQUt(Z6xPCZMQ%{C7Irbzzhc)E1`yWTz-IlZ{xizP?Lvbk5=EkR` z%AHFgG$bW5I?f?Kh9A*NVE>ZXzZ3`TX|1bMZxV-g%?FRzekZBxBqgoK)D4oVLQ-Fm zR18UdO;RdJeM3_9Na|aX$|kArNU9S_-6W~rB=tQ>Jx@|UkknX``jMn&lGH7qshBJ# z$)8B(izIcMq_&gP&m>h&QooSYNs_7{sS6}^hor8O)UPCUi==)dsk<cgJ4yMyh^aqF z%1Tmyl2igo{Y6qvOieAgOOlO9=HDds1WDZ^sV*e-4@u>d)W0M(jHLb}sR<-?pQPrJ z)B}=QNm7qt6kf2Aq$HBsO;R#R9U&<nl6sG%d`aq)sU+z~l3$UOKS}*UQUN6OFG&TG zRM1P93L>c}k_slN6p~U%DubjfB-M<hLP)9|NmU`K9wZe?QqPi97)ce9RJiYBQ*kLl zl2($rkfdxRwVI?NNNN*FMUvD$l8Pd!V<Z(#QfEl2DoK4#QsfI@1>ccWb&~pxq{vxA z!DAaR6-!bfBt=##1=UGvYCK8WNiu<?>XK9<Nwp-YB$CP@sbrGsMN%mwHJGGokklBG zs!38aNU9b|EhQ;CNv$U-m87<jltxkqNy<S|Z`0QY>m+%eWI9ReOOi?@sUJxyjimk} zsdSR^EyYv@NrjVCCP~GU6n-%aZ-J0h9g=EDQgunHHA&fteRRgum_@#$M+_LXa`H;G z;HuAKko%<mqCC75mUYsffO_rp8uE}*62aC7H6g9KJg5|=Kd%=;e0x1ho?Qxe=IKo! zah~o^N;bCFTgn4yW)>uO&>PAHrI7hRuLoiK^iU}6pvS>e*?Mir_)L!izm5pLje<9@ z%pyY3aBDN?aIGV9cuVAfC6vP}oWs{S0*9C0_78>JFg;EFfeK$Bf9C=HHHR+CMd$}2 zG?q~4>m2$(o&mig<|cm7ta_TiR0|3_;|!a!ktn2rV#u5biCy$Yq_ub6&~sKS`6Y@~ zXiF+&mJF+6l{P}zo2b#;u6lntdm}9CtLF%fZjQx2IH|q}0+e(^w_QYQ!|{PZ;qnNh zz7^tAQ^Vl+dOZxTTjT^t`va$T{gyLa9_j)7{6<JxSF5EwXd_&BLyxB&GAp$cE}QiX zX@kIEy~rRx#>p9EbV#cW*PqhE<uxAIC7#$+`1?=m={S3nrZeH+7qLI+iNVmj9$;^K zg5|y9>;%U@xA;L;Z#_}^TR{9%M7*BqlD5<)r$Lh~da(SP2ZIVv28DA_6aD(2w6*ZN z0eUt@LQ;4AX-Mshp+X`_*M`z*dYsVHaU?era?4O7f=*jrMNwbO*B$t>Ns5%qkV5Oa zL>u|C?1a7j^l+)8SKxNufvG~z_D2z?F<|`OKu>)&TvO$$@RIHfmL_<G8}|sfz=3+2 zw2Q%QCv;E4PrKYK>ZNo!8vd=G7A$S?ivFsBE)9ZyI1b^ujIuN*>1?^_M#C?l9%)`2 z&C7z=!N$mf;&2T8?-EJy`%c6sRDE8r0Vn$DwM$-=0)+AL>&wLL?7>A#W&!rouW(@y z@(ha(4VHePvJiTxxUUDmp9KPghE|Mq>%oP=dK=g~LJx<LzD^r{R}E1b3h?Q#KvEZ0 zjal$jITp@^>;4$<VqIp&Qdej>fZ<rd=-3t=eRTNxif+Y=3|P)AM!?Q_MI73l;P2tO zQ<^To;(Po#><jqSlu8J}=w6`m(&oxzUa1_&RMhzs^r(_2@#THJ3iVKFw}88&64wg7 zCh8q1)qo-tbgNe`n;yaC^i1rW#2g<hY#)Vez7W`aCa~EsOYgwQu5|JVgf~X(!O|yQ znSJyKW*5ikEu}yh`2zN|A0&-&83%Tt6`I;ymWqnUZ~x?_RfX!~a9H75pHNoJ(BlQw zJ$M8kSEKx(#SNdZkl8Dz<1EM~p?Zuvet^%NyQ_h;N(lTn3$>Z<m9dlLW_#<ddQyLe z-q(zdy)+!x)85*FUn=wlcWIK|2$vdERg27UJ166cYQ9&vIo{#)sd|0s4F-3}40nGj zuGtTIg?r6A94a^lHq6jNz;7&C%?}LtJ2NmUHII-bNMCzJzy47426EIUD0~6U#RePa zy4eYWj+DY!uE{2FaX8n#Yi@jw?mKRduF0)7LCfvVY%`iMA)?he;dp_sKh&FxR@clc zhsKp0Hm<;s2web)E~NIv7_(*cHuR^H{A>!&`FfMeK<TCV=!TYTV&PZ(0`!JQXLxwS zdANKgLD<~|dY1Gm;l=!~j0F^VHp`>_@ZW`kKP<NCkISbwLD?c)B)><g1XuOWrb;&` zy^b1L+8$q-a(+GrcelBkacNnp=0!_zhv+8DAQ~2czCjLRICFX_hI-MPX;;Y+n^`D? z^{r6c%r!wKuJetCGvE6L!_vQf1K@$;RHV)3IH}5J7S1S}E4?6%5`J2y*OVXU3|evq z>zC_;<SY-2CJaMTpmYWH2Fglxc7y4R%wsYtg66%&@~9qftrYa=T<#wM*CH?io3cs| zk(VM95-(p|h3#B~VqkbEsAK+SxTD$=;99Y>3+yhz;B(Vv__;(c!F>=a0}>E^@*E_b zhr3kmRtvmNN9gtCPq1V)ZbN<K0e%jfBhFpJKT5XnW%*xRA-{8lRBT3#f4UaU?T&|5 zenuLx%l=%4=MqVf^b)Elehcd{T7U0)G@+O+=ANm#h4zdT2^%-)39e8Wk5F(}=P;P| zBFvjF=}*XQJz!dUhY2gyQ*d&m(!3zToG;be$zwcVioC<vU)Gax_M<SHM3|AQ&<wAa z>hW;<U%z08e+9$4mpxE7ct>sesveKi97X*|ME&bky|sMK1Lll(m?t;uv9i3C4Uz{2 zPB-~q4~W0LLv-GX8#n0;LUKacHkV7JJr}x7ZzE|e*W?mwk=$&d^XRC0b~}!$-W={} zGu(^Mv7w7^3E6?Y)7>j@7Z-5&PBbJmGHU0ysGakLBN{NxJj0E@_b$Qs<4*?THv@a5 z`N6eax-M_o$_CmGdw47dt+#l%$BkPd^YzpQl{T2Y2NnB1Z^pYqGZ3X4Zn9A|nG|xI z<hCMzxNAjF>JnaJdDJCrEE6QfC9YEr+{WaawGSPE-!`)&khd|%-RCv*0rA_6C|Sl5 z3jaWW@4sJw$MtOk$U20+xHad|{Q&aF_TbT+^T;@eJbH;du!JhQDb37+y5$BwE^<R5 zVIMlQiv6hCMF|0+u(-ZGM4o}f<>+{(dN7)_&E4^+hfvM0A{oxd^2Tk%WjqBr^U+9( z-_p|{;jnI%Uqad4SHA0zQ1m;IM|8V<mZO~JD0IP#DCw}<FCdJ}4Z-qz9#HR~KxD1^ z*0##Y0Yl`8@;@ByE=4Ps|L~~!t7lERHXM6QPnXs0EX1e@d*5V>L)xMYsIUf9g@v(c z!E*9;bF&h*dy^#x%1-FD<!&6YGeeyAmj0~V$pfN;Cj?z){`$7=kY{j+sSJWHN2r2I zRs8;)<sDoCPx3$<?}<p)5Gn8KjpaQYaVJB(_pUxv-sS<Z`5_Ra-b3rZ!XZ9q5Q%TH zzE6kz3jtMN{`=@uFL@wdd<f!}4{$FhXb021KWu#0wM?bWyw*G*8lJJ?3e|@cd92eP zgTi;v;h-td2n?-^n*M5WJfH#7%<+6Y9Qn`~58ybfC(B*&(~x9dUwIY-u|cOiJWb9H zHlBx{!$7Qnu;ktX3+Qle&+@3ZC^|2|KVKDt&1D?E^98+zgfFAO>O$18aEA~zq<(~> zdCLwGH9Q6H@E^2kNJd%B6Ii`}QDAlTihmeP8x@oQ$3MYX<x|eI_=;;e{IQwyg&poA zd)Fs8t^Ccq;!mRQHh|TwP;g1lhT7**{iXo0Vn^kurZ)R>_n>&#^Qmr;Q+C3grK#Bv zehK??@@ce?{BQLnxE~u72##A$D}JIBi#+<XI^6h}t@stZ`Nskb7qSgTtP4`$+~)|N zyOSAAN5+88QIr8C*?$>B_I6$wwDH1#4vw6!^hh{=EGQKI{6Y_vCvyh)QD@SEsW(^) zk_kx|d>iBpm&SQzF#2H()a#6aAH-hOBjoLz!4}5g+AW;JN1hF`K=3sb{#CEo8y|t4 zCV$EiKNb*6M+Mp7@}e5Sc#`T(-)A3&i0Y^#`9kJZ99_7HL^n0j79NM(uk|G9zE`k+ z9tJk$8@-;C$-vSKFe~JKt9O%i+@o@zEYw{r$c(PEflRWQ`Pz55nc0WI^b%pF-PH5s zr#xV~dBD(~zWP0`e(_-+(zJOZ%+5);=TLkT&#{i>1l!=p0qDqPd!Wwnj*8tI0bxJs zN|>sx6!#cjXPgd*oUpfZ<b58{dl<AFy_2~!9A0$H-)3W;u32!<(!8^RABg%{@B>Gy z;~sqT<-rl~_wwK>{EDIvgjcwN#B~*}pz6X+4_Ei!F8847_h0l_sV1q7A3@#C>;M6B z<b>VkUW?t$=E7>bg@6a~h`92-U2MtI;a5S_wCZ{)o-Z4sW&DP*PQTsec&g8C=6{2K zNAEa+!|y$i8h{&N6ulSC%YrI@2<WJY2Dl$@p#S>^qQB&UzK)|``V-O1Md7i8!msA= zm;Vyri~mJKxn5llg!A>3aQLM<ZX;f0+;Z>fcDe;Af8oLHv)z>nri<^l|Hfn4$M&#r z>OZdGLHG2h<a-_({)=n)cTq?Lq(Xkeg-rU_UC5Sl^F3^OtM(txKTRR&PraeAb=C-` z|EKSjy3u^PzbiM|Lm{R5EDxu(=6vU3fjo(Wl}b*&%{tzUIF=wLz_eOv)m*{(s^6T+ z@=JT*LO5=^pa6Uy7(oi~!T`-MMdqs*@36QCg{7$VkL8k$VtI7J9p=MMROks*ZW7Ki zVRMxTzBc}ni`&=NSwp%^YYA=tlt>y6Ulu#NL1RB>mi*fuHuZkQf6%G-(>+ior%|~Z zvd!m9{sPPU&!r|oMxtH?jvP=DINy}LOy^-?TupM~Uh{EM9OMN%<4Zc}F+@$SV-OcY zYosS3cJ^M#i*P;#c>IwD#p{$r$e5ZMEH_66=rx7LG$nBKbc%Y*FM^#J@`$}~XHIIi z#4#p3k(yLe#aRoAXNCm9^(`TE114C0o`DHb$)LS#Fb~)(2H80f72<Tt>$zxaIPA3$ zXK%U017pQQFxrMXo5}BUjCVOka+q_N{I&<i@rPg(S9ey2(gtC^(BjE3e>fiQ43+=n zkiT(A+|6slXo_`bRk^|g{I(}JT@QR|bEeBFWh{cpjc^{4<I2q5u6o%+6cpvGC+C)t zix+7Dt9<CKs1?)SjKuRGM0y(b*5O@Hk?xF_+j-!&c?fRLs?Icdav2MICNM0Fyjgcn zTZTHwIgj0$RvXt$<2+DDKLi!kSV!K@QMWKuRNDagRS$@b4}mxz>ufB4${{{x5V^n_ ziI2gB<9BN;f$(7$+~@PaJj*bp0TAx*%tqgY|JZqt+z2h#b?8ij#ma)}v>*%aC9pBL zF)p<`8-A%ZL#pxlE*Zj;o!rShNOabKnbn-;!=~7M?%{7mk~2|yoK(z~Tkd019o7wp zrOlk_kZ~vkH%Xg0t#Z~rvn@11YQDIo!RmpkRcvI41;T?AXQ(usVGa>77dLmNmpqpi zD-6QH9=HQhLbB5Bzpru-qL;{pv3EkM;!BpC771@s5^-0H(0hNt`Mn|&o1eNXM1kHu z=q*-xU@!N?rqNL&)!6{Ij4A9pBJ3}%m=>ZTu|Zfk9BUC50Ox8U_FEp<$Gl>9f+y-Y zZKgph{lQrMDzd6l7iS4Nxaq+C#e>05o($;T{z0cx!|#w6s%T6J(66Ro0^!i7Eo*=c zDk7ZKq*zvNns%y@+-y<fR4d;+Q6&YMN1?_$G4u{*^xf&seCbKAm``}ejLCGW(j*3l zFBEYX_WCSmGEDm<BngiDTP$=~<5f#aWRiH4H*~6NC*D1ys@QBsM+NthUhxW7>J2Uj z#@BP!mo725i)OgAJk;#*FGBEP*!sA%JMR_vLl5A>2F@9>&wl389)s!K+`22jTPoE+ z4cKe7gj9NwVCg@v@b@a=>70#2l14=h_Ze<P#u2~lX*3O*mjz!oHhYl83Ap6U+0Ul# zY3=yb4MXdCIFGjb-JQpd-@>Z%sedGI(J-M!h(!-UI^*^MZKr7={oH<c4{|EY>5$iQ zATR?hY3}SLtu%myAYd8E<t}u|e$j1og1=fgYs#lM=t(muu71$iz7EAt2Jb@8McjsT z!YhxX-g(f065GnzK>nTcxMSu~(aQOp^s`scTMq^81X_-V-;k3Iu<$7U0Q1z>bMVl` z@EI`&%uc%M0p?5vtx%t_rj1jRb2wUijz;^dZ(C<ixvd9KYfm8B^mm`cs9_=pdcgoH zl*f2r6g>pvetV}XZ{--93=As^|4MzsszS%}*gbTff7t_fgI8RtL8tr)$Nk7q*$DZZ z2gVt%7&*{8*I8ed4>Gks5M@ixa}JXK^#J<Y69|WVCwQeZ1|8`f$a#?U9~&VJF~&V# zGrVR=JYI9s4x0P07M@F!2@(5{j&d9}WR#OT%H5nz*#$KmnKZ98$s5PlE%hKYQEwwp zKt!_9ceFc(1f4p0jOx(`D;H<9OLzBhR+ravN!M^mv2r+^D<zBQ7-u}}g>VI4dJ5$& z@sM`~m$&$!;DwM0bxnmdGYhOeg~dd(Q{;o!DR}8OELr!1>xsCP_XU^wzn;z-@@FWG z`?2FE2ifZQ(_XlMxg&DI63Xc#&gqNZ0w-K4HIb{9GlhKk3_?eio1v}c?q2R_A7_Nz z7|F=Oq(M3Bxo7%1JIi$u$bAzh6N|+i|KC3gx53b)REzv92k6HEn)P$`lKXf7^g`yO zv!5!jbYrwrHuXn0wyYe&C*i`zkiiPi4RCgn7kc2#dkD^#gPehI`dMd;e3T1xL`1_q z#dJ6~GA#s-4aClU-2?Z)!*NsOTL?MLBp)Jnl)v@B`RXA!i`C?Cxb}B=0E9k|QDjw+ zp2N8dU)eX%SsPjmaM}U)y>QES6`5MDhlfDlf5NLmm44{At%RtPFfD{a__G++m{o}^ zlHfttWPhnOL(hIBdJtSKObdj#p}6~rk6632z~G&;phFY8pW0qpxnTNePc$=>W@bV3 zaAuHs!=01yIT37NX2}R=WBBnokD<8$_tC`Dz6H;xCgVg-b%Of}L??;uaECQ&1dh&= zBb^<kon{HQQ3>(30Sd}D@DY^=B;i-uNFLo!7+vH(N>n)hiZuY<OV%yY9V#Qc#P-){ z9v|S0MrsSI=UXOWyN`B8$+kl*(g}mTqn&HykVEDX6O4Cph`|RO5>$pzRKo8C33rYa zB#aq{!@e_u(VM*ExlD2=<mT=tIvlFhAl-R-yePG*Jemn57an4Rx!!nZH+i^+XhXPY zgGJF0koM-2G&2isPY}e~{fjdRI!$qgLh)Cqz0ewXr1=_`^2S8;HhVn;+;xaKvLlnQ zMemE8u!M5j&N&^MEO1Jjg2SqUL-(5IQowBw{2vVkP)G9GRA(F+DpPS}gdS$?$NKrQ z<*>PHf)2B;@jond4dPL$ZgQ#OX9!X)p5c57uL>eKUxuEW<&rGtu(@m6AFk{gDp}kt zr(GJwBpb;k!}<mCFb~NJxMa_Xk|7?ItS!yVg7tF*$wn?jk@`+?`a|_vdQ}`lhKx<; zyJXzsA>&SyjLYXa6Qqxsj2F0!Siiq~)<eeAT*miA84-`lxQ)vwEp(T$6JGW@zR)>@ z-0oW9Ho8KNxNGaLMa~4d-VrvsY7=U%@_<Fyoa={hrY26ZB-|DU@9a+v$E$pl#<Y-f zQa<dqsYcS-GIAm^;(Md;XHyuk)M;GdYMzEWjS0U;T0-5n`$r#v@M7H6ETm|HPZ)lr z@|<s(yx<7iXZ&CpnmYcVE)yvzw;_z%>E#Bul2pbl1Ye5djFt}{VZ%N5Ro-7X52A#k z3)+9ged<2461Tvva3y_CsPUbvo1H4)otP(aWk)kitCEXH+^6stOPnc^Kb$B*)%d&t zWgBo?5^r`Tl^l<Vh8ATJf$$>W2FYV@(BUIYKmSqb*v-~^M=Gat8h^jJ8rSUjtPugt z;GlRBAPMrvq}d_s3!HmX8K9s{#~W-s3Sc;JI>C=?olYsAfjz^)aCeeOm<gBP!sGIu z9#}m*v2d5ACk%Zz!s9Rpzm-AcT)?66{EAM%c4$%R42Hy)Fg%*;!C;mr1G-I=y}{{_ z4l~4ZinveS?@_z#A+-xPV(pu(_BXV4F^qf}x7lxaKwR~Nz!r{{Bi>|VCLH!|z^zH6 zH7{L>h=2!MaVxRPn`T$2yy;E#IdF25(=NB<h*=Dgt|_N|9ihYZ6A0GC1FWGZ*o97b z)c4aCTn7#3U_%%fZh$Aj$R8t8nPh`Kzy>}X%mS&KB10f!J8l!N<FKm**o->}>)3%Z zuJV9g?g>ksbjzJMi@nFe-eF*PPRvF_<6Rh6zU6^+%)p{U9!D4*^7zOf@i#bV>CZCq zvne#$!#n_nM?E0%_sB%}WslQewjE`ozu8_~#RP5h2$e#Py8Fk}GH0w@?<kAfYaeA3 z9aav9NvCm_X|E-!8YJ$+ah8t2?m@isDC=ze>Q&`#tc>_XN;#NjX2HtW1kZi+%^G|G zlNKHo4q@de@MtdZto^95LKMV3Fd2>;3gn(^p991hikz^7avH)p^*?BEqAoEtJW7H5 zK~WY^9C{Ur^V$2hYZ}|_!E6V%h~J~cDCjx)BG=1#t{1F}`@E$%t~1_5@7U}RI<yZx z^zs2xi;J5&hp}b<aj1JD6tM`n-akrZ*O~tEfcl-Q_|DNvzevri>l?V8;5f#5&3=sa z8kG*W{rku@j+y%^=@{!PGtk1LxZLi+fx3!7_y7!TrUr?_qoQHQF>Gs|2X2lhE_K|e zkK@M4tYfh8J-kvV!cy;jeNt2`B$Q$Ie0~B=Yl;W#L{C`S?!Vr`gN`yT?rsBjguKH8 zW2=EdhZA-SwU<+(5n+$h%&pvr0^c=^2=I_NsiaPHkozS5FLEN`^q=qI2z&FG#|Zlq zA7CaHd;Sz!to3;1*a$#9+&M?pK`;1z{GPxHcOVF>M7~Yf=s4ps<h09J>mN6dj5^2N zM{<YJ(N*C52hK3L7t)eN_)~a;kvwpQD9^~<5Ym18c0SH*q7#>~#YH_pI?nWwLG!Xe z|4<MTPqoopb-W0)mdp3Q%C0=H#$)X}W2;?`S|UP%5|VckTQ9NG))EpsK_o#ev84z> zB~oe)qQaDxT5fe!TDRzi;96^KRV<OHQoYp{z180K;`_}rbIzG_-lX66{WEiB=AGX> z^UO2PEN5n(J!f3>2^)Pm9{OlW@#GmyGCtF!eXL0Xz!0|EM%pe-+D;Gq$}j*@TdmTx zO+9DOh8b5Q@#lv%D{Bt^sVN+F9-Z%Z8*#rLP>t07OEi*SuDg-SFr-i^_jM_qzw(p< zweqZ^wYYx5HHqAp=c<3JT;KL-p6ga7B)k0Uuv(6xGIJL;I9Ig{@;l`uD|mIEUNywo z&uTs)Mr7h|lL5KDjnx-9Or=sa57Vs$3N6!vHkzf|vd#e^a_N|s>sBJ@qiOiZjc9q_ zliMk;6=EEn>zZ7>YXf`B4u;yrh`6hmTwPO$S4>1X!$R$9itNWVQP+H^kvtpf1v@Hc zL9<wegG!R0IB4(-TdxXnWdUY1r4RbDiXF7oml|MSAw;3IMr>swLJ#+6&22#89w5>n zXaf?BXj5L$%oG_;ksZXRH$3tpXvgk=g+sCPfiAViwr`;|Ud*>?jkyPvK+d}ffn0ac z5J;p@0kbKxgII9OC;(y~$qs1j-|o1i@pIJDdmQ})buq69jJQ;)lI|+sXqFUcmH-BC zpnf0LkzKX1<PyFy#jwr4@JDsUL)1#Rf%?IZuAV_4|Nd84cdQ90)@MOgQpR>+B@Ve| zlG+GjT}H&*2@7OxH0aabpz&A^6onVz#-pYJoy4@SO-_Ob6uIZ1aQqxL!@d2B?TGel z!6DT^Z~dZ~hzois$Xqt1AM)nm@Y}VjY94OW)Z(I_n*~6k<B_;kkQWBCuAeo;ox%IK zBDu*^17q2;;gGjJ|L^^<V0KpHp7O?xbDZ#C7;CAcGPVm|Ns*MR^E!Z)m3FK*;!qKa zo1@}rXX~e54Y7)Q5EjJ(4l9n_eSqUJwM61C*nsoCl3D$*d)eAwocs-v+w8DfyN>!@ z1*kFb85QSrV~B+RK)i6UW%GZ+*0V%cLFFucY-oi0OM^kf4tulzC(GaU_{99fN&@G} zeBH#|a+VX<v7yS&cJhB(to$$bB<IQ`+s(|`V3jG)3m%3wXWKQ}I|f?+M`6$7CafF7 zVEW%>tiBJt`LMS<k9JxCYaOW8!^c=%T-LxB4Pabm9E>j-V7sI!@N>n2$B1Uk3S(ve zsj6N|Y-ZL!@x0IG|9b82J}MR<T1+ctbzm(uKr;ytE22wVa~<3lB~;{=w7M{(dh~D2 zr7~6vmZ$+nD1f)iTGQmCDc)oZu>nwjZ(a@nD>T3|1%Nw?Rps9&emK#D){FSiA14Yv z#?JL(U(lCqpme(F#R^sg`&5Hsi&R!CrlOVN_{bOFLmL25^+hEsoZZ#{Hx&RbW|~wT zIN)DeBpmct|F${4@kK7MA-fn>TkxuuKdXL3wHrD`6${6ED_bD~tQ#y-%Zs5c@n3lr zmE@y2E6P}}rXZRjX>C~-4T?+HZcqr=Y@D8<2p_06ZYb)f=nT|PXOhU!b!s|ThmJ?_ zLp<@MGG4E4d7gKuT*K<amLHL4n;MtJ1LKYoB}#~9iI_2Nt6?=1WvW=dXKWT7@m6?i zYg$jT9l8eZDT3)nH~{=a`gJTv(Vgpv1+}aiIK5C*g>aYwypg9Ds#se8p%fy1fr=x- zANm`FzyB!~rG3^0))eXO0?KNA{?iey`)XSa@t~B1Gc?idBc|R9Kqo47RO`JuDnR_i zXSug=&Yg%!2(*;O3$*65mPZwQVJnx$YbI9J^(uoO_11QseyQUx>ejW&ut7(a<lvcs zx{#a$O(8k-Z_j}iR=5}vWH}vuRFcn@U2hBzTG`PeEhgA%!scnTxdxh?VTqKR0gXjm zeW1<upc!g!ri|6638o+QR(mfru%2SuH8QSyxap*AB+wZl(i`I4B3x>dNj_rv_rE~i z^py29yR4Bf8p!yc8R|a7Y9L<kS_d0%ThTS;5hUo<qRKe;7iGK`VO10Jeh(-wjz?Hk zSlMI5Z&vD<nuMa!oMK0aHJsrrl+QWKM}GlZt0{C{OAXe{1J+Lr8(YUuv<bDGj4MP# z)<Tb|*{s20+69XZvqD&+MjPQlqd9ym8)gF<Vh19{v4C5R*$NG`%mnI@j1ja`#X1ee z@^H|$*arDhF_2(j82eO1?lmF7woc-13#+t<I9aE(*xwAeAK7p}EC%;lbE_4*t#NOf zxHvhP#J;fs6%+%6roc(B7FH=SrGA}CBHM{(u6|rKv-7ySnNwMn<G!nlipSmUL7g0( ziu6lQ)$*h;(RV2>RK=0b>CoEHIry6e9jskIWpTB&6~q!yid-BNMrw5+&NZ{C%b~}; z)n&^_E112giOz5l9chhXFW88lrHP(#+*nuuP*TYTQ)CCRt(`&Pn=L{+v0P2phW1uN zwhu*luPHt~uGTCwJ3#4OG@+3~(0euXoQ?)`&z7Ns*dq-c{*10N`_qR1JE%6-EVDXe zniM2DcamBUFXG_n=k>PuO@jo0Nc5YEPR9c4iU#ju&W9UAGTlcF*2LV|ob%1-YH{2M z^1$LAkO?~-2S437h63y?W0eAQbP%1NwOm)8W5fr~T4A^Y<blM^9~06kaN0T%{{t0; zJK2NFI-F2{|A1zas3&Dw7Y5D{e}C2dJ>1>kFPaX2K8>@SmA(FaIw;BMCO++f5p6#e zVQ87pPIyMN3T4yeLri7yI#dO*xu;bR6Or7WRyCG)f(E$?U%1mxtMs$(bm|fSBVs?6 zrL+^_y)ZMuT%XS1Pb>(D(qrrsCzaI440H{Gc<JLg%Xg8%PI^m0XtY(AH9e`uz{WC1 zHvtH`FoYe;{#FaoBnG2aLz!fo@CToCH$K$pOg2CR^)-Ox(P^BT2x%bBJPOfQ(r|y> zg=UCAl#EqVe@Az5y{}sYqD7y6(Ds=cJ>5j_Z;g}p*o%NmD;{pm08B~W*KoL-r)xb! zUS%%=39mR5N7(s67H3y9Ql1;hDR8zsSZu1-q;-YWZu3?bibOwOBsv|BuN-TI<KY&^ zU`)eGi_BPSA6{i~46)1uCy$HFPE+^Z!>kBA)<fBwi`-$>e*7WplRZpE6w7qTL9M1v z--}iw6=b}mC{`{FaapZa(`uq@BL4Cn?ps1^@g<y(w<7V{3K5v4(C{b<$sMdenO5T~ zDext};0uccr`5rv(N+y<f!R;=9%)s?D=btDPCiJY+b3B)lzHafqafb9eQ|gFC2k8m zy+UYsI#Z*K$6G5ttS$6lu<j?7>Oqg8-dvYj&9f>%zohubs+VVtHF`O&y$rzPnz?Z< z?Yw>*)&R8<ZG##=<vpm;$(=zmV;4N5wK*9bm`?5>zn|!yYz@KG7O|!@;VrE(_!^IA zjnQ*{EMGGxASzTv(ePVxqM;$>ZoAZw)x@@mRyD^OgHXpLsK=KnqoE#G`j9El?BH*8 zA`?dn-DJKz*^0xyst<+lD+=E=C|s#1%rYqKmts)Z`(D#$#FPfOHuk_E?z^cjP5Fy2 zg?Bv^dJgc^f_{Dx3y@7ytv8wTwC_}=%4s!~sd(BmD{$OZl>KN>_Re&JvdS5C+h_$o z7>IJ(vMCkQg8{g7=si8?3t0D)Cv#?Cjxg!8S|wGRsRA@w;4>*lESjjmxvw-;THiD) zoozTR&ZSw&Y`qO#fOvCqu<!dae&X!JhGp1(0IkITET=_gx-~@LWE~#OAKJLScsv_h z>mS?Lu=})oNT3Pvk8`a0?0Xa_|3kT@QSfi|Aa=u+w@|Y%A9U)s^>XK0b6AZtYJ9>v zBHj9gRXyX&`$}gN?~RO9c(-|&)^|OlULZo=SRpsi@u+LPK+!W3BVT(PRHO&$`CDoP zYW4v#{`plsXJzxYX^JLlk|Zh?Z`1;~@T+>3SUTVGW63t)v1i<jfpX4Z>vevi^2^&w zVrSzZOT7A$Rg>k|@~_f_tvKUm4#tRdc2wgWRyf(MK?mVnUS!o^xi*}AMc~M@!jBeX zi2b()yQjdQ+UtwEORVSEPd1z%>^Q{phpVhWk+2L(HCTMG0E(loxVH$JCuO76SdEGi zS%?jgv8Lv!B~~rPWXz~uv*lI>p1L8BC<Da9sw(AzN{dY^P*!(exMyu}&#$!7F;yVA zGy~4yST^=TQhkx8+K^oJ499$d;NCFcXy8W!M2Om}LD&{wxYvt@Ym;NOz?(M&ciw=* zL4In_Rw8~4M%OdGa9<P+H+L;o_UxSMH;)ZGTo_As{MQ%dKSiUIdlhZ@?JHJw7OtVf z#Jy}+W6~x;VTYiW;)iu0t%*!BTeOjk&|A4ivl91!+?);9ps~K7B)?UA29*(EuYrey ze3AQmBa`Ms|02z2=m6@tS2v)auhAvF>@H~m<{dutW*Mjk3eo%hJ5~izag)`69n?_x z|Jlt6`g=b?SYe{m=%DH%a5LEPnJ+xfF1p#_3*UAN*7!eb<U0m3-jQr4I&H-;`n@mS zt-rv#u{@}b*f%n)BCB&=sb2r{N`aFCoVT7g6&c^*z_WbugVi|it5B<9QY!!DH0bQR z%}QfEG}?0-jVAX%gNSa!M(duBu>;Z7hStfBMoc~TmKDfmXvk?Ak~ZInmq*`*;HB8m zCKZE*CgN<XM%$#(JS}tgUA)u1!G^ZJ7&Np<1;MvtSKzFMJf$JgBnj+<4d`ewK(RY8 zo<GzWe`pLkVU-~2JtY!$f@Qzi(Ee>lgEY@%O}|uKy0OUJfl&v~)Zi-7oAv65l}`s( z5zqdJbvoYr+<`9Y^Ui9pc>X=8SEE4_cfoS^V2w9G;n64tyq4mNe_*$-Z;?>ZZYb(_ z81bp&?J_1l3=;~9%+d3Z{kx4>58q?;V_Uvd^POXRFqxgY(>9rX?Mv^;?B2cD+c~Vs z&6R|86Ugf)w!e&Hrx2L>B70k~pV<2`I^Vt`3CEdC@W8QGdU`_}rARs*>r@=gZo@t` zXvLp*!D9a_!PUg;k)bv5I8Nps6wE(Ek1Qc__j&CyKlCBF?&nr*Jn4WOdW)sL%%Qhf z0O2RD{h(=IUC1klss3S3^@YzKZXGH~L=0_MLH_E(P!f^-he7tj{RY|oZSj^MF6&5Q z+Z}XGbQ1~3SaOdL5qniG+6G;cYlS!#8U)W*<j|fFV5Z>FT&jT&eRBy{9q64ce|KRc zzETtplfibP!eL`UGxxCdtmB`GxDiKO#2q9MW1X=7E6<EczImP0ygnCIk62|K-@5Zg zIj&PSqfXZ-LLGs<f@9NqCfWC>)e}$J_B{ZOpirmi*qGywkp2+!Qo`?;Wxmwlpa?ev zi8-htmVc%y6nosLP)0jERNPTvw?6^Vz!eQ38g*%dp<Qp2(aud&eEk~w2K5McK0k4_ zG;e^v`+Ue5VvsZNg1bid@~mF?U!7`%QvF1)vb-*=Mfl{N<DHu-19GS`PpdQ%`_ZQj z`Kj0*Z{vKdu*1%vM!V@tqei<fsQt<^XRQvHmdHZYf8<CYY+TopafDs|oW`!rJ1TPy z4;1#*bHM(^7yIr7ci*RG!&RK~&~}~{bBcQ>y;=+gBTu4hSEP7F2SA999}PN6er?o| ztVr~h(A~tPuR%vo%5BuK+t<am+C+Cg-D=}~Ng6{Wu~A=pH`q!eBQ+SN9o}_WLK$&Y zKl6fX4c<-u?t-mT`6;n<?G>XYWc~vG8p)cRx`LYEC;>h+YLZ)gO>VjK>6+Z|C8&@H zV);HbDJOCZRDoLbaA5tiSF4ny2&EVDjq2dGtE>)=3A(By&gNTzt_M1(hmZx2&a#Lh z>XGRVzUXa5=ZjWd@%qEin1IEtu**u1|I=3M5*e%`H(g(ECBko8H6k`4W=Zm9a<{;Z zDv`XE0-^G&zvE}BvbgnxG*#A$iS3v0=L-D+(e|Peq}Gyvj^f!LFe%>oN+TS(jR~#b z-isvzBk77I0e8>_bA0Jdlk}=*L!>&}UVz<_4ektn!oLv11?+-(^H5NP(nUEJ-LgbH zs(Kwc4j2#<A6vnW&wU|q@*S8(LySpi=+uhnh5>Z{8|+jU`U2$_4TL`WwD|c3{%|gn zC;WaygT;Mo1+bENzMB{&utO@RmA>^Dc+;xQn&`a8Z(^WtWXsz?<;896lw0_~wFQ3k z7N+;Tbk>gFVXoD~mi4(jsj4Q{CLtla5F{jnB3(ifFZgY%W}Cm3kpz6MWn>y;<X;dO z^|tk>JkO2~Ls?Sm$SRViO;f_dQjMmo&7T&9-(z!Oxu!ezUznRNwb8vuvkQ5F)mC)8 z>lt&T{TlXho|;1i-9x>1+w$+q^HQTM&-1yT2nym(8vfV?TgLOc;4@~;fJQajNs%2y z^zYspNLkNeRWFI)KXCGb9)_<Z&i(48hss~FYgD}f7ET#w<C#^N#~9F?$cQei5e%8? zv0RRPtluTE>Q5^b??m`~-^=|ywE&8waiA=Hr^cgx4-ML-jUToYXxM&R^ExI4MEWB7 z+)$wlE_rkFZFdfHE`fKHy{X6Z@}OR<xo@>m>I68F9`VdQ#L(!tw<Px*{g4KR*mZ?1 zR+i!oaS&8O8kAh|VdC%iAWJ1KD_KAm)Zo7L6rOMJA>|Juh5hDXWHTv>KmQv`o%CPO zeH)k<Kl}or47%*whXe7plkCGqpwwf}`2bWB(|^VBoUS&MPDP+drI`G{s>8;cC<PC& z=pJJO807(=Rt8U~mGh|5im$t$F!)M#nl@|XBjt57vyBSb5Vu#wxyKk*NW%wZ;v$nv z)yO%Umem6u9H+=H&FizzZ4`c@Dcp0}TW)Wdd3%@TfvnJ$H{X+&YWM18)%RYxEF2ZN z=ddN2nhLn0T0Yy)RjFE6d|R#h754_Od*on|o{Ua0=`pnG-)tFMdS_hI8Mdf~8u`|I z07F)TZP^A~A(gAfWwNG2DtGa4m&z5xX<YtabnYwoUhCYB(76|ex^(XIS3Eiwb|mhV z<$8SUYbLZb5}KI_)r|xvC3Fzi1GTisKJiIsyic-I*Rx8Hi?Q2n6@BMQu?p>sC%YDs zFKpS5gT1mh9f1W1Q@PzY^OBJKY|DE`<#pivR9W5yR{lI(cvIJDRj|<m$mUqnt4dft zYM|=`6K>5aaZ|lCyy~s!dU&!lPz$E#D2vf&x{A!Ic(*O5GS^BD80d~|%dR<;jiYNN zL`WsxnK~s-96PS4x1>oB4Wnn7x*SU`%t!~P`;s>2syDY!jcDwzyW}QMZl}1=ln2l) zL`<+`?F>@a6RAvGbu*mkxERVCu|p=t;4ogFZmMC1<%99L4MQ$d*ey?X&8Qo`ISbu6 zsb8Z$q_xuMJH;Rv5;Yk_*5B&pt5*Bma!F!9zHb+=mG8})Z!7T-*4~rRDaKUhoJHC) z{w-h0V9R`Omb5zDI6_SR3fIXKOcX~|-j2oDP=*$RQri!O&Nl(J`0<u(o(*7bF#x-q zJd|xS0a{n%;cTl7U{f&we*}ay&_Z(DggN>oV2;>e4iy9QWpy6G?w9~^HTcu)dmF&5 zVgOQV@?ciwn!6>P;)j~NF{^mZw<XJ6E4o2`u7$y(xd|}FpEqFPHh{1q0BZArY@nI9 zur?&VpDk}p5qagvyl$zRi)kjzm^$EMstsnU2Zkga(kUgKRnM1-y92aN?m#?X<QiMa zp5e}GWY4fxG4>2$zB(<`U+Sx0Lj5adx{p<Cza}EC*RO6BmkqWNQ<IyO#xifb+b9}N zqc>8jk$Uc#|4YfNF&=jf;=xAIU#Oz_|EK8VDo?Ri8=GCKU!5IMA4UA{z~8k;#mLax zJJ(nValNp9wZDdb^RLU_^Hy{I6w6>_UN5R7+17(6*Va)EvZ{w8N7ABR6eDwbNRzho z5R!)UqDqq$Jw(buAD*<I2TvN$!za>mUQ{VEn-^7qZ01F=)U3)dm=`}SY1HJ@Nh6b{ zO4E5+dwR8kaXh~#<l(4t(kU;UQ)y!6-#E{Z#KghA-ZHrcTOplQ(#esIkj{GPY=DzQ z6w7Z1%hg`2bcRVM4o(sgDHE5-dC4;AESJto>8z5@YU!+jla!iOb<FsQNz>w|PubJ3 zH4iNrCW%{#%+e@gHc{ybNpd|Q&^@Ou@0TIzm9dikY$Dtfk~Q#zWK}#NStn0OR?ZWW zwe*B!EoDfqa<i$rp3txiuSCfKPom_249RB8CRTVtk|&;!WR52!x#S5+c6maQZ|+cP zR;4{B+wnCH_G*C`*?~t&f1~y<YrjTE72i+$E3|*2BcIPQ3q(vO9uzRYfR$LC(?lAV z3L(jlPF{ql=;Xx(VreJdB6ul<mXRy1s7EJf;rEi{<#1sqb!EYxYn}Mn(itmeuo8)6 z$x_MyZpgtB=xjK>GT@xdgmY{GoS}>1{6{*sm%$Os;q+Mvr}HW)L(={wP-E6gFlho4 zff}#KfV6^%K&$mKAnjlx5PQXefHZ{}hrM|o;ix7pM?yoTX0c>tHF8yfNa+r}zN%o) zn(q9816MV&dh#X#OQ^%ZlJy735d}k&EM*q)02$8q<h>n{up)^a;7HLviVuOeHi{?0 z`#p+JfH%4q9}n+zFP;D|yf;sVx4t(|azw6;rljO(J}xM-kd+8g#$iiK6&nL*$#j_V zN}d^tV5GPoEwhLrF?=$-qcMC2ybgVM8oWJy_>1r&`%-9EUrKA*kIzQr8~yl9c!B*X zZLRXE3?SO(3?RDK58!?A$(;dwD7<b1`EX4R*`V#&3*`^*?ILGrG?8;?An%Hg%MRkb z;0+kWqv35G#QVW}Fo^KF4<_cU9n7N;`ORP+1F!iIJ`mpGAv~(1sxz6gy+0bL3&*$$ zX+2gJLM$QswqGG7Ij*WJIcgly;EW}HPlzRcpNi#Uf!t~+ad^{EJ`tfx!-#9shVkhL z-5$orz>68q$HCh>oN9kjc@Kv3o`~!m$NR%u6GvqJ5XXlh)NKSG1aG7AejP!PedBo? zB6q~|Sa{_U_y~C866nkQ3H%vdJu<O7=nW7Y`lgHieEibYBfGn^WY|-^JKL#xT@s0@ zs}hOKorxqsej_OqF_J>7Mv?^mIg*b?;R&O7D!i{pQR8+QO|^V?G@pb>|0JsVyd+Ay zlf<VYGJXuT_$OodD1_>cr7FxF%cmgp<5=Qc|8aaILc7NibL)<$Vl&25+RgDKivyC0 z)w#(8R%Zf%&6_}A1rrD?W+G+yXd;2tnnYmpCK1^6NtD)YGJ)-$OkfSBkR;8RLbY8p zg?9%L*QStMMWpb-2rW*bCc37)md{f&tWe(V=lKA9(taxCTR4?RX^AGw!l$2d!1`@t zhwfm*LJ*7;_oh<Qb)QC5y*-U&i%lnQ*mR;}_H-iPi|JI;#;GKCOHzsXKc$j5^qN6c z+@U<@Oo~jINz6Dilb|Eg$Xk_0V)SDg30&t{R6@cms`sv0lvZUnHQJ2XB+}PsQ+ZwI z5Wn7@Lm7_Eq3m^DAX%C40!1!;f#|&Y0@3-mxs-3+T%z;QTp}<rol5vToibca=iR`s zh8esMywnWh?8yx35jEyf3CZ*5%O&%83O@N`9-jqodL}8J-!iFtO?;8Rgvk3Z@;UG( z&nNx!{d`h9BNvcTy0n1O2EIi3@?PS@bi<H&<mKDY5|801&3F1uYMA~DscE+_B*LpM zB9=~GMB<Xah$_`(F^Tp2i>annm+*KHkg|l*E-axA&~+(&vSX?0uFI%4A<HPk(q+Wp zUzbsDiqGQy&Jr^*(kKl?)|Z#h5KFUo-)bs~%rJ+_k*m>aCW2>k*avr=wSF>3=cA9} z<;ce8h&d~Hlt^jN#97@dIZBRspJXy|Du;)x&hArRR9(TVnx&kO1LB?qC}jYzAy(FF z(#2`wAC*I853ykdk27<{(zv;piO#R^5Yg#wla@|{^513Z#buJHcr*SxInXX#F7B-4 zV*-rt*UGWCBgS58m#l%}9&Z{W>h)+^CeW)kF>-j0!0>E**G=q*Zc@3n*LR)pNph{# z>N}C~MbmCi>N=5C>u8MW$;Si}kJG@|v#WS*T{W_FT^)mb@^|Z)*f|0W$pG6|-|btj zzN-MTf!z{gfAT+IcwGt7NsRvJ;fXJkT<>|AdSi{%)Y|h_la$<CO**M}4hhSrIi!U` z*6<X~AF`r7;Vy9SM&7-(e4u!|hL?tvm0n9ZrmdwMg=<O5dI?f{p9xa4;jfUaZd6{S zb<}^Sts|McwvM!PxAjEDd+VvgS9_I&bkeKzN#3jUN$1x{ZESgsvOlqb=uO$chl7Yy z8%TFG+(>ClH}cw*IYv)8Q#&G8V6DZ68)3Qr+Bf3*Mr<6yf2{q$*HyT!_G94>zxIus zjJQYMapB{_6(ecjRjFic{yU7*p45NLMNul1%+B{g*pqrCol?a)UDD6mue3=~5UTwi z@HGWwFMjuv4g-ahwJL*b!@mYK?kQt;3p9{QB|Gq45%#41Ih0aGt}dxS`wz7ruvt;k z2EL|%Y_<1>9`c~%oOYK%w%Q{Q_N0>DP!wpr!HiTAL~#Fu%^YTv3dGgTyivVXm>*;9 zRc2!1$fSuh7tMNNY|`ZMlSe0|<s=7+;4M74a?lM{0(0-=`tXw*h;>_daCHm6$Au^R zB%Rs9M??h5&!jUhd|^&<V;Kr@g=Ds5l^1EvWvGRS+sbE`zl8a*Tsbr<B@*7?LFMy2 z;iYfzrsXes!u#IfVdayr=!mAGa4WAqK3@mrIyF1XZ~Wwx)amh~CMHgsmNbp0Odgwq z@~(M(Qz>QY_$gE48xCpcN-xyua&?=XRc_Lh(Mc0sY2WCy2=QnuuiNsb4$4(-c9t_` z%CzYzQ>Tndnl^3x<gu<i-+Fz7=g+%0_OB!f`A#Ra5M|!rjmq722V1?tgR4B!LAgxG z&I(+8eNo+^3v*H>cb<_P8zh}^(utQ&H|g}2PONl>OQ)xF`bek0bdsbqQaTghWRJ`$ TJ9;85ZF7=4?&-3PH+TFGs<b4M diff --git a/public/.doctrees/model_description.doctree b/public/.doctrees/model_description.doctree index d5ddd83b22705a3d1377a224632a476f2d1f02e8..e2fd9c867479134e716db2feefd9e9e8d22e3b33 100644 GIT binary patch delta 2022 zcmcgtU1%It6waOP)?_iJCUH&nFL!s_?9Mu_n`pJBO+;I3izF|K2)bl%c4sp)Y-YFf zlQf8ID)<mwB<5_PmSTMp3&m9S%@%(Of)5IP5`FQ97DN#A$rmkn?#%v~R>dGL?47yi zp6~qK^PPFEc*gLqc~AF0`o8z;0YUOKz8m;dsQQi<>55EOm~K(4OidXdicE94lk>~0 zWXonQN6WTlss)*ri_Y0nxgeJ$s#-M9bjnI*nJ&n5QC*gCXHqUJ6jVzs>#Rg8%wS8h zB^!0+j%+=t_-k`V%Ldv}O)8&cjmv|N?IzdZw~^2Nw+{tE_w0o?M?|s+>2Mf+@dutd z`rkwZHwQ=H+tE4l1$+`1E|?N+<t$G5W@ct6|Cwy5Qj+O(^Tm82lTEeMI!Y&OW^g6F zlCG3jWFzUq{-iC@NfCYxJlD$$fpz#_z0Q+UK*okZ4NeYMNl%XwR4ytZ#iN83Nr^li zgRS6KyEgFv&JW!SV(%gNCgdaM;K$Gr@)j2Upm3JJ+sP-$yYOE4MeklEsBOYPBuzFU z6W`yDd)J=5psm4LWQ|-!cf$|X&>~azVZI6ci`lxiffDTvTx{h&?KY8&H;#=h6LJkc zqEEt?(Mf!JB${>h0oaNrU_HiVeX%1=nG%bV-<z#5Bxu**O3cI~j4F`qjtX6hr|K_b z3wmp(p&GCIFe3LRoNYB*f3?mPFtuT!r^j4i${1IVqFx*$|M$6M>;>gO+v%mp_0<j? zOwKmWG>1*JXjk<-r;LO`W>MZwdfDY-vzH`?Zpbvw(Pfo6=v=O7>-l+REOMga!(Nhg zEA2b3yA;ba6Ui;pf?QPfZM5cGMWSQRGQ(iiRc=5pP*u;DY-GD?rQ4i+=I>+QQRvNb z<0WY^tT$YxfmByAt;^|a%enw50Uij4a2O0tIbbZbzZU!F{JTuV1o)Va^2s6`YFmqR ztnGGY8NC&8!7mDPZA7wz*mFzy+=g;9go*e=)yco=$XPybT64u6Bse(rMLC&~CZtSy zLUe}BEFZn;c12L}r9=yrm}<RY54(-M-D=gj>z$iz6QsB^g514*?mXPMYu`8#EVrDO z2KK<s(cb<8-Bp5>@z;;NvNM0%-5rG4#N}NZyxaJgizjLHEN+_B>c#I7ANFR~ouA{8 zO_4KjK6zMpM}V#H7<fd#cN)8P10rIuW9?ZnM6SRIF(7>Cf<ACSpSd6@HP{3lPVE;q z1l|s0y0Mk|UJyn-jm`V7duD#dShSz`@&jLP;9}SMbpHKZtzcL<jWn*a?wqgNN|Z}D OK)F-9(P&IOPyPTaD4)y# delta 852 zcmbPH)SbrKz&e$|cq8jgex}1rn;-BWW!lUq9LmOcX7WwJGm{0yBqnP~`<Zpw+1V+i zq^2q4=BK3QXcQ;r7UZOAT5*AdL7=#>G_fdE!BznxqXnTRf0T|TUu)Q8Sy@iT{K@LF zt|GaN3=A348EZ0RGMF=DGjuZKycH%l$lhRVm>emWz}Pi;mz)bz598!QJu8+DpxVg` zrDP_b)>C1c#yI(-p8Vwb@;0nW8PZt|lOM?I0W~qIn(_kq5Ccn-vhpSeDl~X(0O~AG zO3aY2ouZMU7&|3HId)1`6;LoSLlwwV2Vza2NF7ils~$*{W@u+&ahb|yNyRco#(k3~ zD7i8nW1QTmX#nJKD93_@q$W2gt53eFWCY~hQg(rgS*j>bUakxh>s2WRl0XMasUbTM zXq{%`6p+JMduB}zP@TfBqoD2tauPcbi$TO9pkl34KuUrBWn!X=kMuT6YpXFb3QTU$ z)SaBK!@+BS?6k=(I(;5;)UnBUa+L0FMxDuGdRB~PlLPhS7%e6j=vlLv0F8%5Dx=fn z4|-;-ra=GcOxD(y1}b;gH)D*LT&FL^7zI`yhO9gVs9a&PrGXGsOMrnXlMd5l0R<CA z)6IJf9x^d)W!gO7_%X9xH&9zv2Z(3}5e-11w1+b<F*miOvLLk>6#Q8rHJxDj&e9A; RkO)Xa22WPQ<^$#ti~xRZ1zG?A diff --git a/public/_sources/bayes_description.rst.txt b/public/_sources/bayes_description.rst.txt index 0cb36d10f..5017bceea 100644 --- a/public/_sources/bayes_description.rst.txt +++ b/public/_sources/bayes_description.rst.txt @@ -48,10 +48,14 @@ Next we define the uncertainty on the observation with the class :any:`bayesvali For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them. The ``parameters`` contain the variance for each point in the observation. +.. warning:: + For models with only a single uncertain input parameter, numerical issues can appear when the discrepancy is set only depending on the observed data. + To resolve this, a small value can be added to the variance of the discrepancy. + >>> obsData = pd.DataFrame(Model.observations, columns=Model.Output.names) >>> DiscrepancyOpts = Discrepancy('') >>> DiscrepancyOpts.type = 'Gaussian' ->>> DiscrepancyOpts.parameters = obsData**2 +>>> DiscrepancyOpts.parameters = obsData**2+0.01 Now we can initialize an object of class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference` with all the wanted properties. This object has to be given our ``Engine``. @@ -76,7 +80,7 @@ For this example we use the python package ``emcee`` to define the MCMC moves. >>> BayesObj.inference_method = 'MCMC' >>> import emcee >>> BayesObj.mcmc_params = { ->>> 'n_steps': 1e4,#5, +>>> 'n_steps': 1e4, >>> 'n_walkers': 30, >>> 'moves': emcee.moves.KDEMove(), >>> 'multiprocessing': False, diff --git a/public/_sources/bmc_description.rst.txt b/public/_sources/bmc_description.rst.txt index 2ef20019c..3ebd9d525 100644 --- a/public/_sources/bmc_description.rst.txt +++ b/public/_sources/bmc_description.rst.txt @@ -79,5 +79,5 @@ Now we can run the full model comparison. >>> output_dict = BayesOpts.model_comparison_all(meta_models, opts_bootstrap) -The created plots are saved in the folder `Outputs_Comparison`. +The created plots are saved in the folder ``Outputs_Comparison``. diff --git a/public/_sources/model_description.rst.txt b/public/_sources/model_description.rst.txt index 923f20a7c..42103caa6 100644 --- a/public/_sources/model_description.rst.txt +++ b/public/_sources/model_description.rst.txt @@ -25,9 +25,11 @@ This function takes a single realization of the uncertain parameter as a 2-dimen Here we use the key ``A`` for the sample values and ``B`` for their squares. Under the key ``x_values`` a list should be given that is of the same length as each output of the model for a single input. The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis. +If we want to set the ``x_values`` outside of the model, it can also be given as an additional parameter ->>> def model(sample): ->>> square = sample*sample +>>> def model(samples, x_values): +>>> sample = samples[0]*x_values +>>> square = np.power(samples[0]*x_values, 2) >>> outputs = {'A': sample, 'B': square, 'x_values': [0]} >>> return outputs @@ -43,7 +45,13 @@ Lastly we list the keys of the outputs that we are interested in. >>> Model.link_type = 'Function' >>> Model.py_file = 'model' >>> Model.name = 'model' ->>> Model.Output.names = ['A', 'B'] +>>> Model.Output.names = ['A'] + +Any parameters to the model function, that are not the samples, can be set via the ``func_args`` argument. +In this case we define ``x_values`` as a ``np.array`` and include it. + +>>> x_values = np.arange(0,1,0.1) +>>> Model.func_args = {'x_values':x_values} With this we have completed an interface to our model. We can now evaluate this model on the samples created in the input example. diff --git a/public/bayes_description.html b/public/bayes_description.html index 09045e6aa..de6cd6dae 100644 --- a/public/bayes_description.html +++ b/public/bayes_description.html @@ -385,10 +385,15 @@ As this expects a 1D-array for each output key, we need to change the format sli <p>Next we define the uncertainty on the observation with the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html#bayesvalidrox.bayes_inference.discrepancy.Discrepancy" title="bayesvalidrox.bayes_inference.discrepancy.Discrepancy"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</span></code></a>. For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them. The <code class="docutils literal notranslate"><span class="pre">parameters</span></code> contain the variance for each point in the observation.</p> +<div class="admonition warning"> +<p class="admonition-title">Warning</p> +<p>For models with only a single uncertain input parameter, numerical issues can appear when the discrepancy is set only depending on the observed data. +To resolve this, a small value can be added to the variance of the discrepancy.</p> +</div> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">obsData</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">DiscrepancyOpts</span> <span class="o">=</span> <span class="n">Discrepancy</span><span class="p">(</span><span class="s1">''</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">type</span> <span class="o">=</span> <span class="s1">'Gaussian'</span> -<span class="gp">>>> </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">obsData</span><span class="o">**</span><span class="mi">2</span> +<span class="gp">>>> </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">obsData</span><span class="o">**</span><span class="mi">2</span><span class="o">+</span><span class="mf">0.01</span> </pre></div> </div> <p>Now we can initialize an object of class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html#bayesvalidrox.bayes_inference.bayes_inference.BayesInference" title="bayesvalidrox.bayes_inference.bayes_inference.BayesInference"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</span></code></a> with all the wanted properties. @@ -413,7 +418,7 @@ For this example we use the python package <code class="docutils literal notrans <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">inference_method</span> <span class="o">=</span> <span class="s1">'MCMC'</span> <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">emcee</span> <span class="gp">>>> </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">mcmc_params</span> <span class="o">=</span> <span class="p">{</span> -<span class="gp">>>> </span> <span class="s1">'n_steps'</span><span class="p">:</span> <span class="mf">1e4</span><span class="p">,</span><span class="c1">#5,</span> +<span class="gp">>>> </span> <span class="s1">'n_steps'</span><span class="p">:</span> <span class="mf">1e4</span><span class="p">,</span> <span class="gp">>>> </span> <span class="s1">'n_walkers'</span><span class="p">:</span> <span class="mi">30</span><span class="p">,</span> <span class="gp">>>> </span> <span class="s1">'moves'</span><span class="p">:</span> <span class="n">emcee</span><span class="o">.</span><span class="n">moves</span><span class="o">.</span><span class="n">KDEMove</span><span class="p">(),</span> <span class="gp">>>> </span> <span class="s1">'multiprocessing'</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span> diff --git a/public/bmc_description.html b/public/bmc_description.html index f406cd5fc..9d570df35 100644 --- a/public/bmc_description.html +++ b/public/bmc_description.html @@ -418,7 +418,7 @@ In this example we use the following settings.</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">output_dict</span> <span class="o">=</span> <span class="n">BayesOpts</span><span class="o">.</span><span class="n">model_comparison_all</span><span class="p">(</span><span class="n">meta_models</span><span class="p">,</span> <span class="n">opts_bootstrap</span><span class="p">)</span> </pre></div> </div> -<p>The created plots are saved in the folder <cite>Outputs_Comparison</cite>.</p> +<p>The created plots are saved in the folder <code class="docutils literal notranslate"><span class="pre">Outputs_Comparison</span></code>.</p> </section> </section> diff --git a/public/model_description.html b/public/model_description.html index cc6d6cce5..16ff2a7b8 100644 --- a/public/model_description.html +++ b/public/model_description.html @@ -360,9 +360,11 @@ We define this model as a function <code class="docutils literal notranslate"><s This function takes a single realization of the uncertain parameter as a 2-dimensional <code class="docutils literal notranslate"><span class="pre">np.array</span></code> and returns a dictionary of model results. Here we use the key <code class="docutils literal notranslate"><span class="pre">A</span></code> for the sample values and <code class="docutils literal notranslate"><span class="pre">B</span></code> for their squares. Under the key <code class="docutils literal notranslate"><span class="pre">x_values</span></code> a list should be given that is of the same length as each output of the model for a single input. -The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis.</p> -<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">sample</span><span class="p">):</span> -<span class="gp">>>> </span> <span class="n">square</span> <span class="o">=</span> <span class="n">sample</span><span class="o">*</span><span class="n">sample</span> +The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis. +If we want to set the <code class="docutils literal notranslate"><span class="pre">x_values</span></code> outside of the model, it can also be given as an additional parameter</p> +<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">x_values</span><span class="p">):</span> +<span class="gp">>>> </span> <span class="n">sample</span> <span class="o">=</span> <span class="n">samples</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x_values</span> +<span class="gp">>>> </span> <span class="n">square</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">power</span><span class="p">(</span><span class="n">samples</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x_values</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="gp">>>> </span> <span class="n">outputs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'A'</span><span class="p">:</span> <span class="n">sample</span><span class="p">,</span> <span class="s1">'B'</span><span class="p">:</span> <span class="n">square</span><span class="p">,</span> <span class="s1">'x_values'</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">]}</span> <span class="gp">>>> </span> <span class="k">return</span> <span class="n">outputs</span> </pre></div> @@ -378,7 +380,13 @@ Lastly we list the keys of the outputs that we are interested in.</p> <span class="gp">>>> </span><span class="n">Model</span><span class="o">.</span><span class="n">link_type</span> <span class="o">=</span> <span class="s1">'Function'</span> <span class="gp">>>> </span><span class="n">Model</span><span class="o">.</span><span class="n">py_file</span> <span class="o">=</span> <span class="s1">'model'</span> <span class="gp">>>> </span><span class="n">Model</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">'model'</span> -<span class="gp">>>> </span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'A'</span><span class="p">,</span> <span class="s1">'B'</span><span class="p">]</span> +<span class="gp">>>> </span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'A'</span><span class="p">]</span> +</pre></div> +</div> +<p>Any parameters to the model function, that are not the samples, can be set via the <code class="docutils literal notranslate"><span class="pre">func_args</span></code> argument. +In this case we define <code class="docutils literal notranslate"><span class="pre">x_values</span></code> as a <code class="docutils literal notranslate"><span class="pre">np.array</span></code> and include it.</p> +<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x_values</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mf">0.1</span><span class="p">)</span> +<span class="gp">>>> </span><span class="n">Model</span><span class="o">.</span><span class="n">func_args</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'x_values'</span><span class="p">:</span><span class="n">x_values</span><span class="p">}</span> </pre></div> </div> <p>With this we have completed an interface to our model. diff --git a/public/searchindex.js b/public/searchindex.js index 65862bbbd..8fe061015 100644 --- a/public/searchindex.js +++ b/public/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API": [[71, "api"]], "Active learning: iteratively expanding the training set": [[69, "active-learning-iteratively-expanding-the-training-set"]], "Arguments": [[42, "arguments"], [42, "id2"], [60, "arguments"]], "Attributes": [[3, "attributes"], [5, "attributes"], [7, "attributes"], [9, "attributes"], [13, "attributes"], [16, "attributes"], [25, "attributes"], [26, "attributes"], [39, "attributes"], [42, "attributes"], [47, "attributes"], [49, "attributes"], [50, "attributes"], [52, "attributes"], [55, "attributes"], [58, "attributes"], [65, "attributes"]], "Bayesian Inference": [[87, "bayesian-inference"]], "Bayesian inference": [[72, "bayesian-inference"]], "Bayesian multi-model comparison": [[74, "bayesian-multi-model-comparison"]], "Contribution": [[77, "contribution"]], "Define probabilistic input model": [[87, "define-probabilistic-input-model"]], "Define surrogate (meta) model": [[87, "define-surrogate-meta-model"]], "Define the data uncertainty": [[87, "define-the-data-uncertainty"]], "Define the model with PyLinkForwardModel": [[87, "define-the-model-with-pylinkforwardmodel"]], "Discrepancy": [[70, "id3"], [73, "id3"]], "EXAMPLES": [[76, "examples"]], "Example": [[69, "example"], [72, "example"], [74, "example"], [78, "example"], [80, "example"], [85, "example"], [86, "example"]], "Example: Analytical function": [[70, "example-analytical-function"]], "Example: OHagan-function": [[82, "example-ohagan-function"]], "Example: beam": [[73, "example-beam"]], "Example: borehole": [[75, "example-borehole"]], "Example: ishigami": [[79, "example-ishigami"]], "Example: model comparison": [[81, "example-model-comparison"]], "Example: pollution": [[84, "example-pollution"]], "Examples": [[49, "examples"]], "Exploration, exploitation and tradeoff": [[69, "exploration-exploitation-and-tradeoff"]], "Further contents": [[77, "further-contents"]], "Import necessary libraries": [[87, "import-necessary-libraries"]], "Indices and tables": [[77, "indices-and-tables"]], "Installation": [[77, "installation"], [83, "installation"]], "License": [[77, "license"]], "Links": [[77, "links"]], "MetaModel options": [[86, "metamodel-options"]], "MetaModel settings": [[70, "id4"], [73, "id4"], [75, "id3"], [79, "id3"], [81, "id7"], [82, "id3"], [84, "id3"]], "Model 1: L2_model": [[81, "model-1-l2-model"]], "Model 1: NL2_model": [[81, "model-1-nl2-model"]], "Model 1: NL4_model": [[81, "model-1-nl4-model"]], "Model and Data": [[70, "model-and-data"], [73, "model-and-data"], [75, "model-and-data"], [79, "model-and-data"], [82, "model-and-data"], [84, "model-and-data"]], "Models": [[80, "models"]], "Note": [[39, "note"], [65, "note"]], "Notes": [[24, "notes"], [25, "notes"], [26, "notes"], [52, "notes"], [55, "notes"]], "Overview": [[83, "overview"]], "Parameters": [[3, "parameters"], [3, "id2"], [3, "id4"], [3, "id7"], [5, "parameters"], [5, "id1"], [5, "id3"], [5, "id5"], [5, "id7"], [5, "id9"], [5, "id11"], [5, "id13"], [5, "id15"], [7, "parameters"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id5"], [9, "id7"], [9, "id9"], [9, "id11"], [10, "parameters"], [13, "parameters"], [13, "id1"], [13, "id4"], [13, "id6"], [13, "id8"], [13, "id10"], [16, "parameters"], [16, "id2"], [16, "id4"], [16, "id6"], [16, "id8"], [16, "id10"], [16, "id12"], [17, "parameters"], [22, "parameters"], [24, "parameters"], [24, "id2"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id12"], [25, "id1"], [25, "id3"], [25, "id5"], [25, "id7"], [25, "id9"], [25, "id11"], [25, "id15"], [25, "id17"], [26, "id1"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [26, "id11"], [26, "id15"], [26, "id17"], [27, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [39, "parameters"], [39, "id2"], [39, "id4"], [39, "id6"], [39, "id8"], [39, "id10"], [39, "id12"], [39, "id14"], [39, "id16"], [40, "parameters"], [47, "parameters"], [47, "id2"], [47, "id4"], [52, "parameters"], [52, "id1"], [52, "id2"], [52, "id5"], [52, "id7"], [52, "id9"], [52, "id11"], [52, "id13"], [52, "id17"], [55, "parameters"], [55, "id1"], [55, "id3"], [55, "id5"], [55, "id8"], [55, "id10"], [55, "id14"], [55, "id16"], [58, "parameters"], [58, "id1"], [60, "parameters"], [60, "id1"], [60, "id3"], [60, "id6"], [60, "id9"], [60, "id11"], [60, "id13"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [65, "parameters"], [65, "id4"], [65, "id6"], [65, "id8"], [65, "id10"], [65, "id12"], [65, "id14"], [65, "id16"], [65, "id18"], [65, "id20"], [66, "parameters"], [67, "parameters"], [68, "parameters"]], "Parameters:": [[25, "parameters"], [26, "parameters"]], "Post-processing": [[87, "post-processing"]], "Postprocessing": [[85, "postprocessing"]], "Priors": [[70, "id2"], [73, "id2"], [75, "id2"], [79, "id2"], [82, "id2"], [84, "id2"]], "Priors, input space and experimental design": [[78, "priors-input-space-and-experimental-design"]], "Priors1": [[81, "id2"], [81, "id4"], [81, "id6"]], "Pylink model": [[70, "id1"], [73, "id1"], [75, "id1"], [79, "id1"], [82, "id1"], [84, "id1"]], "Pylink model1": [[81, "id1"], [81, "id3"], [81, "id5"]], "Quickstart": [[77, "quickstart"]], "Raises": [[13, "raises"], [60, "raises"], [67, "raises"]], "References": [[52, "references"], [55, "references"], [55, "id7"], [58, "references"], [58, "id2"]], "Returns": [[3, "returns"], [3, "id1"], [3, "id3"], [3, "id5"], [3, "id6"], [3, "id8"], [5, "returns"], [5, "id2"], [5, "id4"], [5, "id6"], [5, "id8"], [5, "id10"], [5, "id12"], [5, "id14"], [5, "id16"], [5, "id17"], [7, "returns"], [9, "returns"], [9, "id2"], [9, "id4"], [9, "id6"], [9, "id8"], [9, "id10"], [9, "id12"], [10, "returns"], [13, "returns"], [13, "id2"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [13, "id11"], [16, "returns"], [16, "id1"], [16, "id3"], [16, "id5"], [16, "id7"], [16, "id9"], [16, "id11"], [16, "id13"], [17, "returns"], [22, "returns"], [24, "returns"], [24, "id1"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id11"], [24, "id13"], [25, "returns"], [25, "id2"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [25, "id14"], [25, "id16"], [25, "id18"], [26, "returns"], [26, "id2"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [26, "id14"], [26, "id16"], [26, "id18"], [27, "returns"], [29, "returns"], [29, "id1"], [29, "id2"], [29, "id3"], [29, "id4"], [30, "returns"], [31, "returns"], [32, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [39, "returns"], [39, "id1"], [39, "id3"], [39, "id5"], [39, "id7"], [39, "id9"], [39, "id11"], [39, "id13"], [39, "id15"], [39, "id17"], [40, "returns"], [42, "returns"], [42, "id1"], [42, "id3"], [42, "id4"], [47, "returns"], [47, "id1"], [47, "id3"], [47, "id5"], [49, "returns"], [52, "returns"], [52, "id3"], [52, "id4"], [52, "id6"], [52, "id8"], [52, "id10"], [52, "id12"], [52, "id16"], [52, "id18"], [55, "returns"], [55, "id2"], [55, "id4"], [55, "id6"], [55, "id9"], [55, "id13"], [55, "id15"], [55, "id17"], [58, "returns"], [60, "returns"], [60, "id2"], [60, "id4"], [60, "id5"], [60, "id7"], [60, "id8"], [60, "id10"], [60, "id12"], [60, "id14"], [61, "returns"], [62, "returns"], [63, "returns"], [65, "returns"], [65, "id1"], [65, "id2"], [65, "id3"], [65, "id5"], [65, "id7"], [65, "id9"], [65, "id11"], [65, "id13"], [65, "id15"], [65, "id17"], [65, "id19"], [65, "id21"], [66, "returns"], [67, "returns"], [68, "returns"]], "Sequential training": [[87, "sequential-training"]], "Set the experimental design": [[87, "set-the-experimental-design"]], "Surrogate": [[70, "surrogate"], [73, "surrogate"], [75, "surrogate"], [79, "surrogate"], [82, "surrogate"], [84, "surrogate"]], "Surrogate-assisted\u00a0Bayesian validation of computational models": [[77, "surrogate-assisted-bayesian-validation-of-computational-models"]], "Surrogates 1-3": [[81, "surrogates-1-3"]], "TUTORIAL": [[87, "tutorial"]], "Train the surrogate with an engine": [[87, "train-the-surrogate-with-an-engine"]], "Training choices": [[70, "id5"], [73, "id5"], [75, "id4"], [79, "id4"], [81, "id8"], [82, "id4"], [84, "id4"]], "Training surrogate models": [[86, "training-surrogate-models"]], "Training with the engine": [[86, "training-with-the-engine"]], "USER GUIDE": [[83, "user-guide"]], "bayesvalidrox": [[0, "module-bayesvalidrox"]], "bayesvalidrox.bayes_inference": [[1, "module-bayesvalidrox.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference": [[2, "module-bayesvalidrox.bayes_inference.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, "bayesvalidrox-bayes-inference-bayes-inference-bayesinference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[4, "module-bayesvalidrox.bayes_inference.bayes_model_comparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, "bayesvalidrox-bayes-inference-bayes-model-comparison-bayesmodelcomparison"]], "bayesvalidrox.bayes_inference.discrepancy": [[6, "module-bayesvalidrox.bayes_inference.discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, "bayesvalidrox-bayes-inference-discrepancy-discrepancy"]], "bayesvalidrox.bayes_inference.mcmc": [[8, "module-bayesvalidrox.bayes_inference.mcmc"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, "bayesvalidrox-bayes-inference-mcmc-mcmc"]], "bayesvalidrox.bayes_inference.mcmc.gelman_rubin": [[10, "bayesvalidrox-bayes-inference-mcmc-gelman-rubin"]], "bayesvalidrox.post_processing": [[11, "module-bayesvalidrox.post_processing"]], "bayesvalidrox.post_processing.post_processing": [[12, "module-bayesvalidrox.post_processing.post_processing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, "bayesvalidrox-post-processing-post-processing-postprocessing"]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink"]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, "bayesvalidrox-pylink-pylink-pylinkforwardmodel"]], "bayesvalidrox.pylink.pylink.within_range": [[17, "bayesvalidrox-pylink-pylink-within-range"]], "bayesvalidrox.surrogate_models": [[18, "module-bayesvalidrox.surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[19, "module-bayesvalidrox.surrogate_models.adaptPlot"]], "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot": [[20, "bayesvalidrox-surrogate-models-adaptplot-adaptplot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[21, "module-bayesvalidrox.surrogate_models.apoly_construction"]], "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction": [[22, "bayesvalidrox-surrogate-models-apoly-construction-apoly-construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[23, "module-bayesvalidrox.surrogate_models.bayes_linear"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, "bayesvalidrox-surrogate-models-bayes-linear-bayesianlinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, "bayesvalidrox-surrogate-models-bayes-linear-eblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, "bayesvalidrox-surrogate-models-bayes-linear-vblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean": [[27, "bayesvalidrox-surrogate-models-bayes-linear-gamma-mean"]], "bayesvalidrox.surrogate_models.engine": [[28, "module-bayesvalidrox.surrogate_models.engine"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, "bayesvalidrox-surrogate-models-engine-engine"]], "bayesvalidrox.surrogate_models.engine.hellinger_distance": [[30, "bayesvalidrox-surrogate-models-engine-hellinger-distance"]], "bayesvalidrox.surrogate_models.engine.logpdf": [[31, "bayesvalidrox-surrogate-models-engine-logpdf"]], "bayesvalidrox.surrogate_models.engine.subdomain": [[32, "bayesvalidrox-surrogate-models-engine-subdomain"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[33, "module-bayesvalidrox.surrogate_models.eval_rec_rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule": [[34, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary": [[35, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule-arbitrary"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis": [[36, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-univ-basis"]], "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs": [[37, "bayesvalidrox-surrogate-models-eval-rec-rule-poly-rec-coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[38, "module-bayesvalidrox.surrogate_models.exp_designs"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, "bayesvalidrox-surrogate-models-exp-designs-expdesigns"]], "bayesvalidrox.surrogate_models.exp_designs.check_ranges": [[40, "bayesvalidrox-surrogate-models-exp-designs-check-ranges"]], "bayesvalidrox.surrogate_models.exploration": [[41, "module-bayesvalidrox.surrogate_models.exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, "bayesvalidrox-surrogate-models-exploration-exploration"]], "bayesvalidrox.surrogate_models.glexindex": [[43, "module-bayesvalidrox.surrogate_models.glexindex"]], "bayesvalidrox.surrogate_models.glexindex.cross_truncate": [[44, "bayesvalidrox-surrogate-models-glexindex-cross-truncate"]], "bayesvalidrox.surrogate_models.glexindex.glexindex": [[45, "bayesvalidrox-surrogate-models-glexindex-glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[46, "module-bayesvalidrox.surrogate_models.input_space"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, "bayesvalidrox-surrogate-models-input-space-inputspace"]], "bayesvalidrox.surrogate_models.inputs": [[48, "module-bayesvalidrox.surrogate_models.inputs"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, "bayesvalidrox-surrogate-models-inputs-input"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, "bayesvalidrox-surrogate-models-inputs-marginal"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[51, "module-bayesvalidrox.surrogate_models.orthogonal_matching_pursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-orthogonalmatchingpursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr": [[53, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-corr"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[54, "module-bayesvalidrox.surrogate_models.reg_fast_ard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, "bayesvalidrox-surrogate-models-reg-fast-ard-regressionfastard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions": [[56, "bayesvalidrox-surrogate-models-reg-fast-ard-update-precisions"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[57, "module-bayesvalidrox.surrogate_models.reg_fast_laplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, "bayesvalidrox-surrogate-models-reg-fast-laplace-regressionfastlaplace"]], "bayesvalidrox.surrogate_models.sequential_design": [[59, "module-bayesvalidrox.surrogate_models.sequential_design"]], "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign": [[60, "bayesvalidrox-surrogate-models-sequential-design-sequentialdesign"]], "bayesvalidrox.surrogate_models.sequential_design.hellinger_distance": [[61, "bayesvalidrox-surrogate-models-sequential-design-hellinger-distance"]], "bayesvalidrox.surrogate_models.sequential_design.logpdf": [[62, "bayesvalidrox-surrogate-models-sequential-design-logpdf"]], "bayesvalidrox.surrogate_models.sequential_design.subdomain": [[63, "bayesvalidrox-surrogate-models-sequential-design-subdomain"]], "bayesvalidrox.surrogate_models.surrogate_models": [[64, "module-bayesvalidrox.surrogate_models.surrogate_models"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[65, "bayesvalidrox-surrogate-models-surrogate-models-metamodel"]], "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error": [[66, "bayesvalidrox-surrogate-models-surrogate-models-corr-loocv-error"]], "bayesvalidrox.surrogate_models.surrogate_models.create_psi": [[67, "bayesvalidrox-surrogate-models-surrogate-models-create-psi"]], "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator": [[68, "bayesvalidrox-surrogate-models-surrogate-models-gaussian-process-emulator"]]}, "docnames": ["_autosummary/bayesvalidrox", "_autosummary/bayesvalidrox.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "_autosummary/bayesvalidrox.bayes_inference.discrepancy", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "_autosummary/bayesvalidrox.bayes_inference.mcmc", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "_autosummary/bayesvalidrox.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing", "_autosummary/bayesvalidrox.pylink", "_autosummary/bayesvalidrox.pylink.pylink", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel", "_autosummary/bayesvalidrox.pylink.pylink.within_range", "_autosummary/bayesvalidrox.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "_autosummary/bayesvalidrox.surrogate_models.engine", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges", "_autosummary/bayesvalidrox.surrogate_models.exploration", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration", "_autosummary/bayesvalidrox.surrogate_models.glexindex", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex", "_autosummary/bayesvalidrox.surrogate_models.input_space", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace", "_autosummary/bayesvalidrox.surrogate_models.inputs", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "_autosummary/bayesvalidrox.surrogate_models.sequential_design", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "al_description", "analyticalfunction", "api", "bayes_description", "beam", "bmc_description", "borehole", "examples", "index", "input_description", "ishigami", "model_description", "modelcomparison", "ohaganfunction", "packagedescription", "pollution", "post_description", "surrogate_description", "tutorial"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["_autosummary/bayesvalidrox.rst", "_autosummary/bayesvalidrox.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.rst", "_autosummary/bayesvalidrox.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.rst", "_autosummary/bayesvalidrox.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.rst", "_autosummary/bayesvalidrox.pylink.pylink.within_range.rst", "_autosummary/bayesvalidrox.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.rst", "al_description.rst", "analyticalfunction.rst", "api.rst", "bayes_description.rst", "beam.rst", "bmc_description.rst", "borehole.rst", "examples.rst", "index.rst", "input_description.rst", "ishigami.rst", "model_description.rst", "modelcomparison.rst", "ohaganfunction.rst", "packagedescription.rst", "pollution.rst", "post_description.rst", "surrogate_description.rst", "tutorial.rst"], "indexentries": {}, "objects": {"": [[0, 0, 0, "-", "bayesvalidrox"]], "bayesvalidrox": [[1, 0, 0, "-", "bayes_inference"], [11, 0, 0, "-", "post_processing"], [14, 0, 0, "-", "pylink"], [18, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.bayes_inference": [[2, 0, 0, "-", "bayes_inference"], [4, 0, 0, "-", "bayes_model_comparison"], [6, 0, 0, "-", "discrepancy"], [8, 0, 0, "-", "mcmc"]], "bayesvalidrox.bayes_inference.bayes_inference": [[3, 1, 1, "", "BayesInference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, 2, 1, "", "__init__"], [3, 2, 1, "", "create_error_model"], [3, 2, 1, "", "create_inference"], [3, 2, 1, "", "normpdf"], [3, 2, 1, "", "perform_bootstrap"], [3, 2, 1, "", "plot_log_BME"], [3, 2, 1, "", "plot_post_params"], [3, 2, 1, "", "setup_inference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[5, 1, 1, "", "BayesModelComparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, 2, 1, "", "__init__"], [5, 2, 1, "", "cal_model_weight"], [5, 2, 1, "", "calc_bayes_factors"], [5, 2, 1, "", "calc_justifiability_analysis"], [5, 2, 1, "", "calc_model_weights"], [5, 2, 1, "", "generate_dataset"], [5, 2, 1, "", "model_comparison_all"], [5, 2, 1, "", "plot_bayes_factor"], [5, 2, 1, "", "plot_just_analysis"], [5, 2, 1, "", "plot_model_weights"], [5, 2, 1, "", "setup"]], "bayesvalidrox.bayes_inference.discrepancy": [[7, 1, 1, "", "Discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, 2, 1, "", "__init__"], [7, 2, 1, "", "get_sample"]], "bayesvalidrox.bayes_inference.mcmc": [[9, 1, 1, "", "MCMC"], [10, 3, 1, "", "gelman_rubin"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, 2, 1, "", "__init__"], [9, 2, 1, "", "eval_model"], [9, 2, 1, "", "log_likelihood"], [9, 2, 1, "", "log_posterior"], [9, 2, 1, "", "log_prior"], [9, 2, 1, "", "normpdf"], [9, 2, 1, "", "run_sampler"], [9, 2, 1, "", "train_error_model"]], "bayesvalidrox.post_processing": [[12, 0, 0, "-", "post_processing"]], "bayesvalidrox.post_processing.post_processing": [[13, 1, 1, "", "PostProcessing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, 2, 1, "", "__init__"], [13, 2, 1, "", "check_accuracy"], [13, 2, 1, "", "check_reg_quality"], [13, 2, 1, "", "compute_pce_moments"], [13, 2, 1, "", "plot_moments"], [13, 2, 1, "", "plot_seq_design_diagnostics"], [13, 2, 1, "", "sobol_indices"], [13, 2, 1, "", "valid_metamodel"]], "bayesvalidrox.pylink": [[15, 0, 0, "-", "pylink"]], "bayesvalidrox.pylink.pylink": [[16, 1, 1, "", "PyLinkForwardModel"], [17, 3, 1, "", "within_range"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, 1, 1, "", "OutputData"], [16, 2, 1, "", "__init__"], [16, 2, 1, "", "read_observation"], [16, 2, 1, "", "read_output"], [16, 2, 1, "", "run_command"], [16, 2, 1, "", "run_forwardmodel"], [16, 2, 1, "", "run_model_parallel"], [16, 2, 1, "", "uMBridge_model"], [16, 2, 1, "", "update_input_params"], [16, 2, 1, "", "zip_subdirs"]], "bayesvalidrox.surrogate_models": [[19, 0, 0, "-", "adaptPlot"], [21, 0, 0, "-", "apoly_construction"], [23, 0, 0, "-", "bayes_linear"], [28, 0, 0, "-", "engine"], [33, 0, 0, "-", "eval_rec_rule"], [38, 0, 0, "-", "exp_designs"], [41, 0, 0, "-", "exploration"], [43, 0, 0, "-", "glexindex"], [46, 0, 0, "-", "input_space"], [48, 0, 0, "-", "inputs"], [51, 0, 0, "-", "orthogonal_matching_pursuit"], [54, 0, 0, "-", "reg_fast_ard"], [57, 0, 0, "-", "reg_fast_laplace"], [59, 0, 0, "-", "sequential_design"], [64, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[20, 3, 1, "", "adaptPlot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[22, 3, 1, "", "apoly_construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[24, 1, 1, "", "BayesianLinearRegression"], [25, 1, 1, "", "EBLinearRegression"], [26, 1, 1, "", "VBLinearRegression"], [27, 3, 1, "", "gamma_mean"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, 2, 1, "", "__init__"], [24, 2, 1, "", "fit"], [24, 2, 1, "", "get_metadata_routing"], [24, 2, 1, "", "get_params"], [24, 2, 1, "", "predict"], [24, 2, 1, "", "predict_dist"], [24, 2, 1, "", "score"], [24, 2, 1, "", "set_params"], [24, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, 2, 1, "", "__init__"], [25, 2, 1, "", "fit"], [25, 2, 1, "", "get_metadata_routing"], [25, 2, 1, "", "get_params"], [25, 2, 1, "", "predict"], [25, 2, 1, "", "predict_dist"], [25, 2, 1, "", "score"], [25, 2, 1, "", "set_params"], [25, 2, 1, "", "set_predict_request"], [25, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, 2, 1, "", "__init__"], [26, 2, 1, "", "fit"], [26, 2, 1, "", "get_metadata_routing"], [26, 2, 1, "", "get_params"], [26, 2, 1, "", "predict"], [26, 2, 1, "", "predict_dist"], [26, 2, 1, "", "score"], [26, 2, 1, "", "set_params"], [26, 2, 1, "", "set_predict_request"], [26, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.engine": [[29, 1, 1, "", "Engine"], [30, 3, 1, "", "hellinger_distance"], [31, 3, 1, "", "logpdf"], [32, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, 2, 1, "", "__init__"], [29, 2, 1, "", "eval_metamodel"], [29, 2, 1, "", "start_engine"], [29, 2, 1, "", "train_normal"], [29, 2, 1, "", "train_seq_design"], [29, 2, 1, "", "train_sequential"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[34, 3, 1, "", "eval_rec_rule"], [35, 3, 1, "", "eval_rec_rule_arbitrary"], [36, 3, 1, "", "eval_univ_basis"], [37, 3, 1, "", "poly_rec_coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[39, 1, 1, "", "ExpDesigns"], [40, 3, 1, "", "check_ranges"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, 2, 1, "", "__init__"], [39, 2, 1, "", "build_polytypes"], [39, 2, 1, "", "check_valid_inputs"], [39, 2, 1, "", "generate_ED"], [39, 2, 1, "", "generate_samples"], [39, 2, 1, "", "init_param_space"], [39, 2, 1, "", "pcm_sampler"], [39, 2, 1, "", "plot_samples"], [39, 2, 1, "", "random_sampler"], [39, 2, 1, "", "read_from_file"], [39, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.exploration": [[42, 1, 1, "", "Exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, 2, 1, "", "__init__"], [42, 2, 1, "", "approximate_voronoi"], [42, 2, 1, "", "get_exploration_samples"], [42, 2, 1, "", "get_mc_samples"], [42, 2, 1, "", "get_vornoi_samples"]], "bayesvalidrox.surrogate_models.glexindex": [[44, 3, 1, "", "cross_truncate"], [45, 3, 1, "", "glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[47, 1, 1, "", "InputSpace"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, 2, 1, "", "__init__"], [47, 2, 1, "", "build_polytypes"], [47, 2, 1, "", "check_valid_inputs"], [47, 2, 1, "", "init_param_space"], [47, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.inputs": [[49, 1, 1, "", "Input"], [50, 1, 1, "", "Marginal"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, 2, 1, "", "__init__"], [49, 2, 1, "", "add_marginals"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, 2, 1, "", "__init__"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[52, 1, 1, "", "OrthogonalMatchingPursuit"], [53, 3, 1, "", "corr"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, 2, 1, "", "__init__"], [52, 2, 1, "", "blockwise_inverse"], [52, 2, 1, "", "fit"], [52, 2, 1, "", "get_metadata_routing"], [52, 2, 1, "", "get_params"], [52, 2, 1, "", "loo_error"], [52, 2, 1, "", "predict"], [52, 2, 1, "", "score"], [52, 2, 1, "", "set_params"], [52, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[55, 1, 1, "", "RegressionFastARD"], [56, 3, 1, "", "update_precisions"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, 2, 1, "", "__init__"], [55, 2, 1, "", "fit"], [55, 2, 1, "", "get_metadata_routing"], [55, 2, 1, "", "get_params"], [55, 2, 1, "", "log_marginal_like"], [55, 2, 1, "", "predict"], [55, 2, 1, "", "score"], [55, 2, 1, "", "set_params"], [55, 2, 1, "", "set_predict_request"], [55, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[58, 1, 1, "", "RegressionFastLaplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, 2, 1, "", "__init__"], [58, 2, 1, "", "predict"]], "bayesvalidrox.surrogate_models.sequential_design": [[60, 1, 1, "", "SequentialDesign"], [61, 3, 1, "", "hellinger_distance"], [62, 3, 1, "", "logpdf"], [63, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "choose_next_sample"], [60, 2, 1, "", "dual_annealing"], [60, 2, 1, "", "run_util_func"], [60, 2, 1, "", "start_seqdesign"], [60, 2, 1, "", "tradeoff_weights"], [60, 2, 1, "", "util_AlphOptDesign"], [60, 2, 1, "", "util_BayesianActiveDesign"], [60, 2, 1, "", "util_BayesianDesign"], [60, 2, 1, "", "util_VarBasedDesign"]], "bayesvalidrox.surrogate_models.surrogate_models": [[65, 1, 1, "", "MetaModel"], [66, 3, 1, "", "corr_loocv_error"], [67, 3, 1, "", "create_psi"], [68, 3, 1, "", "gaussian_process_emulator"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[65, 2, 1, "", "__init__"], [65, 2, 1, "", "adaptive_regression"], [65, 2, 1, "", "add_InputSpace"], [65, 1, 1, "", "auto_vivification"], [65, 2, 1, "", "build_metamodel"], [65, 2, 1, "", "copy_meta_model_opts"], [65, 2, 1, "", "create_model_error"], [65, 2, 1, "", "eval_metamodel"], [65, 2, 1, "", "eval_model_error"], [65, 2, 1, "", "fit"], [65, 2, 1, "", "generate_polynomials"], [65, 2, 1, "", "pca_transformation"], [65, 2, 1, "", "regression"], [65, 2, 1, "", "univ_basis_vals"], [65, 2, 1, "", "update_pce_coeffs"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel.auto_vivification": [[65, 2, 1, "", "clear"], [65, 2, 1, "", "copy"], [65, 2, 1, "", "fromkeys"], [65, 2, 1, "", "get"], [65, 2, 1, "", "items"], [65, 2, 1, "", "keys"], [65, 2, 1, "", "pop"], [65, 2, 1, "", "popitem"], [65, 2, 1, "", "setdefault"], [65, 2, 1, "", "update"], [65, 2, 1, "", "values"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"": [9, 13, 16, 22, 24, 25, 26, 33, 42, 52, 55, 56, 58, 60, 65, 82, 87], "0": [3, 5, 7, 16, 24, 25, 26, 30, 44, 45, 49, 52, 55, 58, 61, 65, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87], "0001": 26, "001": [13, 25, 55, 72], "002": 22, "01": 5, "032": 42, "045e": 85, "05": [3, 22, 42, 85], "057": 72, "06": 25, "07": [58, 85], "08": 51, "1": [3, 5, 9, 10, 13, 16, 24, 25, 26, 30, 33, 34, 35, 36, 39, 42, 44, 45, 47, 49, 52, 55, 58, 60, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87], "10": [13, 22, 42, 44, 58, 69, 70, 77, 85, 86, 87], "100": [3, 26, 55, 65, 73, 74, 78, 81, 82, 87], "1000": [5, 13, 58, 69, 70, 87], "10000": 82, "100000": 3, "1016": [13, 22, 42], "104": 33, "106": [22, 60], "106737": 13, "11": [13, 42, 85], "12": [65, 70, 81], "125": 9, "13": 19, "13380": 72, "14": [33, 51, 69, 79, 82], "15": [51, 82, 85], "150": [70, 84, 87], "16": [39, 69, 87], "171": 60, "179": 22, "18082457": 65, "182": 60, "19": [54, 58], "190": 22, "195": 13, "1993": 52, "1d": 72, "1e": [25, 26, 39, 55, 58, 69, 87], "1e4": 72, "1e5": 87, "2": [3, 7, 9, 13, 24, 25, 26, 33, 39, 44, 45, 47, 52, 55, 58, 60, 65, 66, 70, 72, 73, 75, 77, 79, 80, 81, 84, 85, 87], "200": [3, 79, 87], "2001": 55, "2002": 87, "2003": [55, 58], "2004": 82, "2006": [55, 58], "2009": [52, 58, 66], "2010": [9, 42], "2011": [13, 42, 52, 66, 87], "2012": [22, 87], "2013": [9, 75, 79, 84], "2014": 33, "2016": 60, "2017": 60, "2018": 60, "2020": [13, 19, 54, 60], "2021": 33, "2022": [33, 51], "2051": 42, "2055": 42, "214": 42, "22": 60, "224e": 85, "23": [24, 25, 26, 52, 55], "230": [52, 66], "234": 72, "2345": [52, 66], "2367": [52, 66], "24": [19, 54], "2554": 33, "2563": 33, "27": 13, "27th": 52, "2_": 87, "2d": [16, 31, 62, 65], "2e": 3, "2nd": 33, "3": [3, 24, 25, 26, 37, 39, 42, 45, 47, 52, 55, 58, 70, 74, 75, 77, 79, 82, 83, 86, 87], "30": [72, 74, 87], "300": [25, 55, 75], "306": 9, "332": 60, "382": 60, "4": [26, 33, 39, 45, 69, 70, 72, 73, 75, 81, 82, 84, 87], "40": 52, "406e": 85, "407": 60, "41": 54, "44": 52, "45": 54, "46": 19, "5": [9, 25, 49, 60, 70, 72, 75, 78, 82, 85, 87], "50": 75, "500": [72, 82, 87], "5000": 75, "500000": 3, "513e": 85, "53": 58, "59": 51, "5a": 22, "6": [45, 52, 66, 73], "61": 33, "63": 58, "65": [9, 82], "651879": 65, "66": 82, "683": 42, "696": 42, "7": [58, 65, 82], "70569": [22, 33], "75": [73, 87], "751": 82, "752": 72, "769": 82, "8": [60, 75, 84], "80": 9, "85": [70, 77, 86], "890": 60, "9": [77, 83, 86, 87], "925": 9, "99": 65, "999": 65, "A": [3, 5, 7, 9, 13, 16, 24, 25, 26, 33, 39, 42, 47, 49, 52, 55, 56, 58, 60, 65, 70, 74, 75, 79, 80, 81, 84, 85, 87], "As": [69, 72, 74, 87], "FOR": [75, 79, 84], "For": [7, 10, 13, 24, 25, 26, 39, 52, 55, 65, 69, 72, 74, 75, 77, 79, 80, 84, 86, 87], "If": [3, 7, 9, 13, 16, 24, 25, 26, 39, 40, 45, 47, 49, 52, 55, 58, 65, 72, 75, 77, 78, 79, 83, 84, 86, 87], "In": [3, 7, 42, 65, 69, 72, 74, 78, 80, 86, 87], "It": [16, 60, 65, 77, 83], "Its": 80, "NO": [75, 79, 84], "NOT": [75, 79, 84], "No": [60, 75, 79, 81, 82, 84], "OF": [75, 79, 84], "OR": [75, 79, 84], "One": [29, 65], "THE": [75, 79, 84], "THERE": [75, 79, 84], "The": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 40, 42, 44, 45, 47, 50, 52, 55, 60, 61, 65, 66, 68, 69, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85, 86, 87], "Then": [72, 74, 83, 86], "There": 65, "These": [65, 72, 74, 86, 87], "To": [65, 74, 85], "Will": 39, "With": [7, 72, 77, 80, 86, 87], "_": [7, 86], "__": [24, 25, 26, 52, 55], "__init__": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65], "_i": 7, "aa": 55, "ab": [34, 37], "about": 76, "abov": [3, 81], "absolut": [55, 58], "abstract": [24, 55], "accept": [65, 72, 87], "accord": [86, 87], "accordingli": [72, 75, 79, 84], "account": 83, "accuraci": [13, 83, 85, 87], "accuracycheckmetamodel": 87, "achiev": [30, 61, 87], "activ": [3, 39, 56, 60, 70, 73, 79, 83, 84, 85, 86, 87], "active_": [52, 55, 58], "actual": [16, 29, 60, 86, 87], "ad": [24, 25, 26, 52, 55, 56, 78], "adapt": [16, 29, 42, 52, 60, 65, 66, 69], "adapt_verbos": 39, "adaptive_regress": 65, "add": [49, 72, 87], "add_expdesign": [], "add_inputspac": 65, "add_margin": [49, 77, 78, 87], "addit": [7, 16, 69, 72, 74, 87], "addition": [75, 78, 79, 84], "adopt": 87, "advwatr": 13, "affin": 9, "after": 69, "again": [16, 87], "against": [17, 74, 78, 83, 85], "ai": 9, "ainv": 52, "al": [3, 69, 70, 75, 82], "al_descript": [], "alc": 60, "alg": 58, "algorithm": [52, 55, 58, 60, 65], "alia": [24, 25, 26, 52, 55], "all": [3, 5, 13, 16, 17, 24, 25, 26, 29, 36, 39, 47, 52, 55, 60, 65, 67, 69, 72, 77, 78, 81, 83, 85, 87], "all_candid": 42, "all_just_data": 5, "all_output": 16, "allow": [16, 24, 25, 26, 52, 55, 80, 85, 87], "alm": 60, "almost": 82, "along": [36, 60, 65, 87], "alpha": 25, "alpha_": [25, 26, 55, 58], "alphabet": [39, 60], "alreadi": [52, 55, 58, 65], "also": [29, 39, 65, 69, 72, 74, 77, 86, 87], "altern": [29, 86], "alwai": [24, 25, 26, 45, 52, 55], "amazaspshumik": 55, "an": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 42, 47, 50, 52, 55, 60, 65, 69, 72, 73, 74, 77, 78, 80, 81, 83, 84, 85, 86], "analysi": [3, 5, 13, 16, 33, 52, 55, 65, 66, 75, 79, 82, 83, 86, 87], "analyt": [76, 87], "analytical_funct": 87, "analyticfunc": 87, "anaylsi": 13, "angl": [52, 65, 66, 86], "ani": [3, 52, 65, 69, 75, 79, 84, 87], "anneal": [39, 69], "anoth": [16, 42, 74, 77, 87], "apc": [22, 64, 65, 70, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87], "api": 77, "apoly_coeff": 36, "app": 39, "appli": [9, 60, 65, 78, 86], "applic": [13, 37, 52, 85], "apply_constraint": 65, "approach": [10, 60, 82], "approxim": [3, 9, 26, 42, 52, 85, 86, 87], "approximate_voronoi": 42, "ar": [3, 5, 7, 9, 10, 13, 16, 17, 24, 25, 26, 29, 34, 35, 39, 44, 45, 52, 55, 65, 69, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87], "arang": 87, "arbitrari": [22, 65, 77, 86, 87], "arbitrarili": [24, 25, 26, 52, 55], "ard": [55, 65, 86], "area": 42, "arg": [3, 44, 45], "argument": [3, 16, 67, 87], "around": 87, "arrai": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 42, 44, 45, 47, 50, 52, 55, 58, 60, 61, 62, 65, 66, 67, 68, 72, 80], "array_lik": [31, 62], "asilomar": 52, "ask": 72, "askei": 37, "aspect": 83, "assembl": [67, 69], "asset": 10, "assign": [3, 30, 39, 61, 74], "assist": [70, 84], "associ": [38, 42, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 86, 87], "assum": [16, 26, 45, 75, 79, 84, 87], "astronom": 9, "asumpt": 5, "attribut": 78, "aug": 19, "author": [19, 22, 33, 51, 54, 75, 79, 84], "auto": 72, "auto_vivif": 65, "automat": [55, 78, 87], "autoselect": 68, "autovivif": 65, "aux_fil": 16, "auxiliari": 16, "avail": [3, 7, 16, 39, 47, 50, 65, 69, 73, 77, 83, 86, 87], "avali": 49, "averag": 5, "avoid": 87, "axi": [13, 45, 80], "b": [3, 7, 10, 13, 26, 27, 33, 52, 65, 66, 80, 82, 85], "b_i": 44, "babacan": 58, "bal": [60, 70], "bar": 13, "barro": 13, "base": [3, 5, 7, 9, 13, 16, 22, 24, 25, 26, 29, 31, 33, 35, 36, 39, 42, 47, 49, 50, 52, 55, 56, 58, 60, 62, 65, 66, 69, 72, 74, 78, 81, 83, 84, 86, 87], "basi": [22, 67], "basic": 87, "basis_indic": [65, 67], "bay": [3, 5, 9, 24, 25, 55, 74, 83], "bayes_": 87, "bayes_env": 83, "bayes_inf": [], "bayes_infer": [72, 74, 87], "bayes_loocv": 3, "bayes_model_comparison": 74, "bayes_pc": 87, "bayesactdesign": [39, 60, 87], "bayesfactor": 5, "bayesian": [3, 5, 7, 9, 13, 16, 24, 25, 26, 55, 58, 60, 65, 69, 70, 79, 82, 83, 84, 86], "bayesian3": [60, 69], "bayesianlinearregress": [25, 26], "bayesinfer": [5, 72, 74, 87], "bayesmodelcomparison": 74, "bayesobj": 72, "bayesopt": [9, 74, 87], "bayesoptdesign": [39, 60], "bayesvalidrox": [69, 71, 72, 73, 74, 76, 77, 78, 80, 83, 85, 86, 87], "bc": [58, 79, 84], "beam": [76, 80], "beam9point": 73, "becaus": [24, 25, 26, 52, 55], "beck": 60, "becom": 87, "been": [16, 39], "befor": [16, 29, 60, 65, 86, 87], "beforehand": 39, "behaviour": 86, "being": [3, 9, 16, 69], "below": [55, 58], "best": [24, 25, 26, 52, 55, 65, 68, 83], "beta": [55, 78], "beta_": [25, 26], "better": 25, "between": [10, 17, 30, 61, 65, 69, 72, 87], "bia": [25, 26], "bias_input": [9, 87], "bias_term": 58, "biasinput": 9, "bin": 83, "binder": 16, "bingham": [75, 79, 84], "bishop": [55, 58], "bit": 87, "blatman": [52, 66, 87], "blob": [10, 43, 55], "blockwise_invers": 52, "bm": 5, "bmc": 3, "bme": [3, 5, 13, 87], "bme_dict": 5, "bonu": [], "bool": [3, 5, 16, 17, 24, 25, 26, 29, 39, 40, 45, 47, 49, 52, 55, 58, 60, 65, 68], "boolean": [25, 44, 52, 55, 58], "bootstrap": [3, 5, 65, 70, 72, 74, 84, 86], "bootstrap_method": 65, "bootstrap_nois": [3, 72], "borehol": 76, "both": [10, 44, 45, 85, 87], "bound": [17, 32, 39, 44, 45, 47, 60, 63], "bound_tupl": [39, 47], "boundari": 60, "bridg": 80, "brief": 83, "broad": [25, 80, 86], "brr": [65, 86], "bug": [], "build": [29, 65, 74, 77, 78, 83, 86], "build_metamodel": 65, "build_polytyp": [39, 47], "built": [46, 86], "burn": [3, 72], "bvr": [], "c": [24, 26, 40, 52, 55, 58], "c_point": 16, "ca": [75, 79, 84], "cai": 60, "cal_model_weight": 5, "calc_bayes_factor": 5, "calc_justifiability_analysi": 5, "calc_model_weight": 5, "calcul": [3, 5, 9, 24, 25, 26, 39, 47, 52, 55, 58, 60, 66, 78, 83, 85, 87], "calib": [3, 13, 16], "calibr": [3, 7, 13, 16, 70, 84, 87], "call": [10, 15, 16, 24, 25, 26, 52, 55, 60, 69, 72, 74, 77, 86, 87], "calss": 16, "cambridg": 42, "can": [3, 7, 13, 16, 24, 25, 26, 29, 44, 49, 52, 55, 65, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 86, 87], "candid": [39, 42, 60], "captur": 86, "carlo": [3, 9, 16, 42, 87], "case": [3, 7, 13, 16, 25, 42, 65], "cd": 83, "cell": 42, "center": [42, 52, 55, 58], "central": 77, "chain": [3, 9, 10, 72], "chair": 33, "chang": [13, 24, 25, 26, 52, 55, 58, 69, 72], "chao": [13, 22, 33, 52, 60, 65, 66, 77, 85, 86, 87], "chaospi": [39, 47], "characteris": [25, 26, 55, 58], "characterist": [70, 73], "chart": 13, "cheap": 87, "chebyshev": [39, 78], "check": [3, 13, 16, 17, 24, 25, 26, 39, 40, 47, 52, 55, 75, 77, 78, 79, 82, 83, 85, 87], "check_accuraci": [13, 85], "check_reg_qu": 13, "check_valid_input": [39, 47], "chemic": 60, "choic": 69, "choos": [29, 60, 69, 83, 87], "choose_next_sampl": 60, "chosen": [3, 69, 72, 82, 86, 87], "cite": [], "class": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 23, 24, 25, 26, 28, 29, 38, 39, 41, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 64, 65, 69, 72, 74, 77, 78, 80, 83, 85, 86, 87], "classic": 37, "clear": 65, "clearli": [75, 79, 84], "clermont": [52, 66], "clf": 66, "clf_bia": 56, "clone": 83, "code": [16, 74, 87], "coef_": [25, 26, 52, 55, 58], "coeff": [52, 66], "coeffic": 65, "coeffici": [22, 24, 25, 26, 35, 36, 37, 52, 55, 58, 65, 66, 82, 87], "coffici": [52, 66], "cohn": 60, "collaps": 42, "collect": 74, "colloc": [16, 39], "column": [16, 72, 87], "com": [10, 13, 43, 55, 58, 65], "combin": [10, 52, 65, 77, 86, 87], "come": 69, "command": [16, 42, 73, 80], "comment": [75, 79, 84], "common": 49, "commun": 9, "compar": [3, 9, 16, 65, 74, 83, 85], "comparison": [5, 39, 76, 77, 83, 85, 87], "compet": 74, "complet": 80, "complex": 82, "compon": [13, 24, 25, 26, 52, 55, 65, 86], "compress": [58, 79, 84], "comput": [9, 13, 25, 26, 27, 31, 35, 36, 37, 42, 52, 55, 58, 60, 62, 65, 66, 83, 85, 87], "compute_pce_mo": 13, "compute_scor": 55, "computed_scor": 55, "condit": 69, "conf": 33, "confer": 52, "confus": [5, 74], "confusion_matrix": 5, "consecut": 74, "consid": [7, 45, 78, 86, 87], "consist": [24, 25, 26, 52, 55, 86], "consol": [72, 85], "constant": [24, 25, 26, 52, 55], "constraint": 65, "construct": [22, 78], "contact": 77, "contain": [3, 5, 9, 16, 24, 25, 26, 39, 47, 50, 52, 55, 60, 65, 72, 74, 77, 78, 80, 83, 84, 87], "context": 7, "contibut": 77, "continu": [30, 61], "contribut": 82, "converg": [10, 25, 26, 87], "convini": 65, "coordin": [16, 65], "copi": [16, 25, 52, 55, 58, 65], "copy_meta_model_opt": 65, "copy_x": [24, 25, 26, 52, 55, 58], "copyright": [75, 79, 84], "core": 87, "corner": 3, "corner_title_fmt": 3, "correct": [52, 66], "correl": [72, 81], "correspond": [13, 16, 24, 25, 26, 34, 42, 50, 60, 65, 78, 83, 85, 86], "cosin": 81, "cost": 86, "couckuyt": 42, "count": 45, "cov": [31, 62], "covari": [3, 7, 9, 25, 26, 31, 55, 58, 62], "cpu": 16, "creat": [3, 5, 16, 19, 33, 39, 42, 47, 51, 54, 65, 73, 74, 77, 78, 80, 83, 86, 87], "create_error_model": 3, "create_infer": [3, 72, 87], "create_metamodel": [], "create_model_error": 65, "credit": 43, "crieterion": 42, "criteria": 44, "criterion": 60, "crombecq": 42, "cross": [3, 39, 45, 65, 69], "cross_trunc": 45, "csv": 16, "currecnt": 16, "current": [16, 22, 69, 83], "d": [9, 26, 39, 42, 52, 58, 60, 65, 84, 86], "data": [3, 5, 9, 16, 17, 22, 24, 25, 26, 31, 39, 47, 49, 50, 52, 55, 58, 62, 65, 69, 78, 81, 83, 86], "data_noise_level": 5, "datafram": [3, 7, 9, 16, 72, 87], "dataset": 86, "dbingham": [75, 79, 84], "de": [13, 22, 33, 77, 83], "deafault": 25, "deal": [75, 79, 82], "decai": 60, "decomposit": 52, "decreas": [60, 69, 84], "dedic": [72, 87], "deep": [24, 25, 26, 52, 55], "def": [74, 77, 80], "default": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 50, 52, 55, 58, 60, 65, 68], "defin": [3, 5, 7, 10, 16, 24, 25, 26, 32, 34, 39, 42, 49, 52, 55, 63, 65, 69, 72, 74, 77, 78, 80, 83, 86], "definit": [7, 22, 77, 78, 87], "deflect": 73, "degre": [22, 34, 35, 36, 37, 39, 47, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "degthre": 74, "delet": 56, "demeest": 42, "denot": 80, "depart": [22, 33], "depend": [25, 26, 49, 70, 72, 73, 75, 77, 79, 81, 82, 84, 86], "deprec": 87, "depth": 77, "derek": [75, 79, 84], "deriv": [75, 79, 84], "describ": [9, 58, 77, 78, 83, 87], "descrip": 7, "descript": [3, 5, 9, 16, 31, 60, 62, 65, 77], "design": [13, 16, 29, 38, 39, 42, 60, 65, 67, 69, 70, 77, 80, 83, 84, 86], "detail": [13, 70, 75, 77, 78, 79, 81, 84], "determin": [24, 25, 26, 52, 55], "deviat": [13, 16, 65, 69, 86, 87], "deviatioon": [29, 65], "dhaen": 42, "diagnost": [72, 85], "diagon": [3, 7, 9], "dict": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 35, 36, 37, 52, 55, 60, 65], "dictionari": [3, 5, 9, 13, 16, 60, 65, 72, 74, 80, 87], "differ": [30, 61, 65, 77, 81, 87], "dim": 65, "dim_red_method": 65, "dimens": [45, 52], "dimension": [25, 26, 55, 58, 65, 80, 86], "dir_nam": 16, "direct": [36, 65, 86], "directi": 87, "directli": [72, 78, 86, 87], "directori": [9, 13, 16, 72, 87], "disc_typ": 7, "discoutputopt": 87, "discrep": [3, 9, 72, 74, 87], "discrepancyopt": [72, 74, 87], "discuss": 87, "displai": [13, 87], "disregard": [24, 25, 26, 52, 55], "disrep": 7, "dissert": [52, 66], "dist": [3, 39, 47], "dist_typ": [49, 50, 77, 78, 87], "distanc": [30, 61], "distibut": 5, "distinct": 74, "distribut": [3, 7, 9, 24, 25, 26, 27, 30, 31, 39, 46, 47, 48, 50, 52, 55, 58, 61, 62, 65, 70, 72, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87], "diverg": [3, 13, 39], "divid": [32, 63], "dkl": [39, 60, 70, 87], "do": [13, 29, 60, 67, 69, 75, 77, 79, 83, 84, 87], "doc": [], "doctor": [52, 66], "document": 77, "doe": [16, 65, 72], "doi": [13, 22, 42], "domain": [32, 42, 63], "done": [16, 29, 39, 65, 72, 87], "doostan": 60, "dot": 86, "dpp": 39, "dr": 22, "drainag": 13, "drawn": [3, 87], "driven": 22, "dtype": [52, 55, 58], "dual": [39, 69], "dual_ann": 60, "due": [], "dump": 87, "dure": [65, 72, 85], "e": [3, 7, 9, 16, 22, 24, 25, 26, 33, 39, 42, 45, 47, 52, 55, 58, 65, 68, 72, 77, 80], "each": [3, 5, 7, 9, 13, 16, 24, 25, 26, 32, 39, 42, 44, 45, 50, 52, 55, 58, 63, 65, 69, 72, 74, 76, 80, 83, 87], "earlier": 87, "easi": 80, "easili": 87, "ebl": [65, 86], "ed_i": 65, "effect": [7, 24, 25, 26, 52, 55, 56, 82], "effici": [13, 42], "eigenvalu": [25, 26], "eigenvector": [25, 26], "eigf": [39, 69], "eigvals_": [25, 26], "eigvecs_": [25, 26], "either": [3, 16, 25, 39, 47, 64, 65, 70, 78, 87], "ejor": 42, "els": [39, 40, 47, 52, 55, 58, 65, 72], "elsevi": 22, "em": 25, "email": [75, 79, 84], "emce": [3, 9, 10, 72, 87], "emper": [65, 86], "empir": [24, 25], "empti": 65, "emul": [3, 5, 9, 60, 68, 72, 74, 87], "en": 9, "enable_metadata_rout": [24, 25, 26, 52, 55], "encapsul": [24, 25, 26, 52, 55], "end": 16, "engin": [3, 9, 13, 22, 59, 60, 69, 72, 74, 77, 85], "engine_": [69, 72, 74, 85, 86], "engine_2": 74, "enrich": 60, "ensampl": 10, "ensembl": 9, "entri": [3, 7, 9], "entropi": [3, 39, 60, 84], "environ": 83, "environment": [22, 33, 84], "epsilon": [7, 60, 69, 84, 87], "eq": 13, "equal": [5, 7, 60, 69], "erro": 66, "error": [3, 7, 9, 13, 24, 25, 26, 52, 55, 60, 65, 66, 85, 87], "error_metamodel": 9, "error_model": 9, "especi": [25, 87], "ess": 10, "estim": [3, 10, 16, 24, 25, 26, 30, 52, 55, 58, 61, 65, 66, 68, 69, 72, 83, 85, 87], "eth": 33, "european": 42, "eval_metamodel": [29, 65, 86], "eval_model": 9, "eval_model_error": 65, "evalu": [5, 9, 13, 15, 29, 34, 35, 36, 52, 65, 67, 72, 80, 83, 85, 86, 87], "evaul": 39, "even": [75, 79, 84], "evereyth": 29, "everi": [30, 61], "evid": [3, 13], "exact": 86, "exampl": [13, 16, 44, 45, 77, 83, 87], "except": [13, 24, 25, 26, 52, 55, 65], "exe_path": 16, "execut": [16, 73, 80], "exist": [24, 25, 26, 52, 55], "exlor": 60, "exp_design": [69, 78], "expand": [83, 85, 86], "expans": [13, 22, 33, 45, 52, 60, 65, 66, 77, 85, 86, 87], "expd": [29, 60, 77], "expdesign": [9, 42, 60, 69, 74, 77, 78, 86, 87], "expdesign2": 74, "expect": [7, 13, 16, 24, 25, 26, 39, 52, 55, 58, 60, 72, 77, 85], "experi": 60, "experiment": [29, 38, 39, 42, 60, 65, 69, 77, 80, 83, 86], "explain": [65, 87], "explan": [70, 81], "explanatori": [25, 26, 52, 55, 58], "explicitli": 65, "exploit": [39, 60, 70, 75, 82, 87], "exploit_method": [39, 69, 87], "exploitaiton": [75, 82, 87], "exploitation_weight": 60, "explor": [39, 60, 70, 75, 82, 87], "exploration_scor": 42, "exploration_weight": 60, "explore_method": [39, 69, 87], "expon": [43, 45, 78], "exponenti": [60, 81], "express": [75, 79, 84], "extens": [16, 80, 87], "extra": 81, "extract": [16, 65], "f": [13, 65, 87], "fa61759ff685": 13, "factor": [5, 10, 74, 83], "fals": [3, 5, 10, 20, 24, 25, 26, 29, 39, 40, 45, 52, 55, 58, 60, 65, 68, 72, 74, 87], "far": 7, "farid": [19, 33, 51, 54, 60], "fast": [55, 58, 65, 84, 86], "fast_rvm": 55, "fastard": [65, 70, 73, 74, 77, 82, 86, 87], "faster": [25, 87], "fastsbl": [55, 58], "faul": [55, 58], "featur": [24, 25, 26, 52, 55, 56, 65, 77], "feinberg": 43, "ferrand": [52, 66], "field": 26, "file": [16, 29, 39, 73, 74, 77, 80, 81, 84, 87], "file_nam": 16, "filenam": 80, "fill": [39, 42, 69, 75, 82], "final": 86, "final_out_dict": 65, "find": [16, 60, 65, 71], "first": [13, 16, 29, 45, 65, 72, 74, 86, 87], "fit": [24, 25, 26, 39, 52, 55, 58, 65, 66, 68, 75, 79, 84, 86], "fit_intercept": [24, 25, 26, 52, 55, 58], "fix": [25, 58], "flag": [39, 47], "flat": 72, "flexibl": 13, "float": [3, 5, 9, 10, 24, 25, 26, 27, 30, 31, 39, 44, 45, 52, 55, 58, 60, 61, 62, 65, 66, 68], "flow": [75, 79], "folder": [72, 74, 77, 78, 83, 85, 87], "follow": [3, 7, 22, 39, 44, 49, 60, 65, 72, 74, 76, 78, 87], "followin": 7, "forc": 65, "foreman": 9, "form": [24, 25, 26, 52, 55, 77, 87], "format": [3, 7, 13, 72, 77], "formul": 78, "formula": 58, "forward": 16, "found": [65, 76, 77, 80, 87], "foundat": [75, 79, 84], "four": 78, "fp": 25, "frac": [9, 24, 25, 26, 52, 55], "fraction": 72, "framework": [13, 33], "fraser": [75, 79, 84], "free": [75, 79, 84], "fri": [33, 51], "from": [3, 5, 13, 16, 24, 25, 26, 29, 34, 39, 46, 47, 52, 55, 58, 65, 67, 69, 72, 74, 77, 78, 80, 83, 85, 86, 87], "fromkei": 65, "ft": [39, 78], "full": [74, 85, 86, 87], "fulli": 10, "func": 16, "func_arg": [16, 74], "function": [3, 8, 13, 15, 16, 19, 21, 23, 33, 38, 39, 40, 42, 43, 44, 51, 52, 54, 59, 60, 64, 65, 67, 69, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87], "functtion": [], "further": [39, 47], "futur": 81, "g": [16, 24, 25, 26, 45, 52, 55, 58, 66, 72, 77, 80], "gain": [85, 87], "gamma": [26, 27, 39, 47, 78], "gaussian": [7, 9, 24, 25, 26, 55, 58, 60, 65, 68, 70, 72, 73, 82, 86, 87], "gaussian_kd": [39, 47], "gelman": [10, 72], "gener": [5, 7, 16, 24, 25, 26, 29, 39, 42, 45, 47, 52, 55, 65, 66, 75, 78, 79, 80, 84, 86, 87], "generate_": 39, "generate_dataset": 5, "generate_polynomi": 65, "generate_sampl": [39, 78], "get": [3, 24, 25, 26, 52, 55, 65, 77, 85], "get_exploration_sampl": 42, "get_mc_sampl": 42, "get_metadata_rout": [24, 25, 26, 52, 55], "get_param": [24, 25, 26, 52, 55], "get_sampl": 7, "get_vornoi_sampl": 42, "git": [76, 77, 83], "github": [10, 43, 55, 77], "gitlab": 77, "give": [80, 83, 86, 87], "given": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 40, 47, 49, 52, 55, 60, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "global": [13, 39, 42, 87], "gnu": [75, 79, 84], "go": 3, "goal": 86, "goe": 77, "goodman": 9, "gorissen": 42, "gp": [68, 86], "gpe": [64, 65], "grade": 45, "greater": 10, "grid": [39, 78], "group": [7, 39], "guid": [24, 25, 26, 52, 55, 77, 87], "guidelin": 77, "guilla": 60, "gull": 25, "h5py": 39, "h_l": 75, "h_u": 75, "ha": [9, 24, 25, 26, 39, 45, 47, 52, 55, 60, 65, 72, 86, 87], "habil": 22, "hadigol": 60, "hagan": 82, "haitao": 60, "halton": [39, 78], "hammer": 9, "hammerslei": [39, 78], "handi": 87, "happi": 77, "have": [7, 10, 16, 24, 25, 26, 39, 47, 52, 55, 56, 72, 80, 82, 87], "hdf5": [29, 39], "hdf5_file": 39, "head": 77, "height": 73, "helling": [30, 61], "help": [72, 87], "helper": 13, "here": [3, 16, 65, 69, 71, 76, 77, 80, 83, 84, 86, 87], "hermit": 78, "highest": [65, 87], "histogram": 87, "hogg": 9, "hold": 44, "holder": 16, "hope": [75, 79, 84], "how": [13, 24, 25, 26, 52, 55, 65, 72, 73, 75, 79, 81, 82, 87], "howev": [], "htm": 55, "html": [10, 75, 79], "http": [9, 10, 13, 22, 42, 43, 55, 58, 65, 75, 77, 79, 83, 84], "hydraul": [22, 33], "hydrogeologi": 13, "hydromechan": 33, "hydrosystem": [22, 33], "hyperbol": [45, 65], "hypercub": [69, 70, 73, 75, 78, 79, 81, 82, 84], "i": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 58, 60, 61, 65, 68, 69, 70, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "icvram2014": 33, "id": 16, "ident": [30, 61], "ieee": 58, "ifram": 87, "ignor": [24, 25, 26, 52, 55], "ii": [25, 87], "iii": 87, "ilja": 60, "illustr": 73, "imag": 58, "implement": [24, 26, 33, 42, 64, 65, 87], "impli": [75, 79, 84], "implment": 87, "import": [13, 72, 74, 77, 78, 80, 85, 86], "importantli": [], "improv": 39, "inaccuraci": 7, "includ": [5, 16, 25, 26, 44, 45, 69, 72, 77, 78, 83, 85, 86, 87], "increas": [60, 69], "independ": 7, "index": [44, 45, 60, 65, 67, 68, 77, 85], "indic": [3, 10, 13, 43, 44, 45, 65, 67, 75, 79, 80, 82, 83, 85, 87], "induc": [65, 87], "inf": 45, "inf_entropi": 3, "infer": [3, 7, 9, 13, 16, 73, 77, 83, 84], "inference_method": [3, 72, 87], "influenc": [24, 25, 26, 52, 55, 60], "inform": [3, 24, 25, 26, 52, 55, 60, 65, 75, 79, 84, 87], "ing": 22, "init_param_spac": [39, 47], "init_sampl": [3, 9, 72], "initi": [3, 5, 25, 39, 47, 55, 69, 72, 87], "input": [3, 7, 13, 16, 24, 25, 26, 36, 39, 42, 46, 47, 52, 55, 60, 65, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 86], "input0": 77, "input1": 77, "input_data": [49, 50, 78, 87], "input_descript": [], "input_fil": 16, "input_obj": 65, "input_object": [39, 47], "input_spac": 78, "input_templ": 16, "inputdisc": 7, "inputobj": [39, 47], "inputparam": [70, 78, 87], "inputparameters_2": 87, "inputspac": [39, 65, 77, 78], "insert": 65, "insid": [17, 24, 25, 26, 52, 55, 83], "insight": [], "instanc": [24, 25, 26, 52, 55, 65], "instanci": 65, "instanti": 87, "instead": [24, 25, 26, 45, 52, 55], "institut": [22, 33], "instruct": [65, 87], "int": [3, 5, 7, 13, 16, 17, 22, 25, 26, 29, 32, 33, 34, 35, 36, 37, 39, 42, 44, 45, 47, 55, 58, 60, 63, 65, 68], "intec": 42, "intercept": [52, 55, 58], "intercept_": [25, 26], "interconnect": [], "interest": 80, "interfac": [77, 80, 83], "intersit": 42, "intro": [], "introduc": [], "introduct": 76, "introductori": [77, 87], "inv_inf_matrix": 52, "invari": 9, "invers": [7, 52, 87], "inversemodel": [77, 83], "io": [9, 10], "ipython": 87, "ishigami": [75, 76], "isoprobabilist": [39, 47, 78], "issu": 77, "item": [3, 16, 65], "iter": [3, 5, 25, 26, 29, 55, 58, 60, 65, 70, 75, 78, 82, 83, 85, 86, 87], "its": [16, 72, 77, 80, 83, 85, 86, 87], "itself": 86, "iw": [22, 33, 77, 83], "j": [9, 13, 22, 42, 82], "jacobi": 34, "jan": 33, "jdist": [39, 47], "jianfei": 60, "jobe": 16, "joblib": 87, "joergdietrich": 10, "jointli": [3, 7, 9, 84, 86], "jonathan": 43, "jonathf": 43, "journal": [42, 52, 66], "jul": 51, "just": [39, 47, 87], "just_analysi": 3, "justifi": [3, 5, 83], "jwalton3141": 10, "k": [3, 9, 39, 42, 58, 65], "k_w": 75, "karniadaki": 87, "katsaggelo": 58, "kdemov": [72, 87], "keep": [24, 25, 26, 52, 55, 87], "kei": [16, 39, 65, 72, 80], "kernel": [24, 25, 26, 52, 55, 68, 86], "key_str": 16, "keyerror": 65, "keyword": 16, "kingdom": 33, "kl": 26, "kld": [3, 13], "known": [3, 7, 9, 39, 87], "krige": 60, "krishnaprasad": 52, "kroeker": 60, "kullback": [3, 13, 39], "l": [75, 84], "l_0": 44, "l_inf": 44, "l_p": 44, "label": [13, 80], "lack": 65, "laerman": 42, "laguerr": [37, 39, 47], "lai": 72, "lambda": 87, "lambda_": [55, 58], "lang": 9, "laplac": 58, "lar": [65, 86], "larg": 87, "larger": [44, 45, 72], "largest": 45, "last": 65, "lastli": 80, "later": 87, "latest": 83, "latin": [69, 70, 73, 75, 78, 79, 81, 82, 84], "latin_hypercub": [39, 78, 87], "latter": [24, 25, 26, 45, 52, 55, 87], "lead": 83, "learn": [39, 42, 55, 58, 60, 65, 73, 79, 83, 84, 85, 86, 87], "least": [52, 60, 65, 66, 78, 86], "leav": [3, 39, 65, 69], "leibler": [3, 13, 39], "length": [3, 25, 26, 55, 58, 72, 80], "leq": 44, "less": 87, "let": 87, "level": [3, 5], "lexicograph": 45, "lh2": 33, "li": 40, "liabil": [75, 79, 84], "lib": 58, "librari": [], "licens": [75, 79, 84], "lie": 17, "lifo": 65, "like": [3, 24, 25, 26, 52, 55, 58, 65, 66, 86, 87], "likelihood": [3, 7, 9, 25, 30, 31, 55, 56, 58, 61, 62, 72, 87], "line": 13, "linear": [24, 25, 26, 74, 77, 81], "linearmodel": [24, 52, 55], "link": [73, 80, 83, 87], "link_typ": [16, 74, 77, 80, 87], "list": [3, 16, 17, 24, 25, 26, 32, 36, 37, 39, 40, 42, 45, 47, 50, 52, 55, 58, 60, 63, 65, 77, 80, 81, 87], "littl": 87, "liu": 60, "liverpool": 33, "load": [73, 87], "locat": [39, 60], "log": [9, 31, 55, 56, 62], "log_bm": 3, "log_lik": [9, 31, 62], "log_likelihood": 9, "log_marginal_lik": 55, "log_posterior": 9, "log_prior": 9, "logarithm": 3, "loglik": [3, 9], "lognorm": [73, 75, 78], "logprior": 9, "loo": [52, 65, 66], "loo_error": 52, "loocv": [3, 39, 52, 66], "loocvscor": 65, "loop": 68, "low": 45, "lower": [17, 32, 39, 45, 47, 60, 63], "lowest": 65, "ls3": 22, "l\u00fcthen": 33, "m": [7, 33, 52, 55, 58, 60, 73, 75, 79, 83, 84, 86], "machin": [42, 55, 58], "mackai": [25, 60], "mackei": 9, "mai": [24, 25, 26, 52, 55, 58], "mail": [22, 33], "main": [77, 80, 86], "mainli": [69, 78], "make": [9, 69, 86, 87], "manag": 33, "mani": 13, "manner": [29, 69, 78, 83], "manual": 33, "manuscript": 22, "map": [24, 25, 26, 52, 55, 65, 80], "mar": 54, "marelli": 33, "margin": [7, 39, 42, 47, 48, 49, 55, 56, 58, 77, 78, 83, 87], "mark": [75, 79, 84], "markov": [3, 9], "mass": 42, "master": [10, 43, 55, 77, 83], "match": [52, 67, 75, 81, 86, 87], "math": 44, "mathcal": [7, 9, 86], "mathemat": 9, "matlab": [33, 42], "matric": 74, "matrix": [3, 5, 7, 24, 25, 26, 31, 34, 52, 55, 58, 62, 66, 67], "max": [70, 73, 75, 79, 82, 84], "max_a_post": [39, 87], "max_a_posteriori": 3, "max_deg": [34, 35, 36, 39, 47, 65], "max_func_itr": 39, "max_pce_deg": 39, "maxdepth": [], "maxim": [25, 30, 55, 60, 61, 86], "maximis": [55, 58], "maximum": [3, 22, 25, 26, 30, 34, 35, 36, 37, 39, 45, 47, 55, 58, 61, 65], "maxout": 17, "mc": [42, 70, 73, 75, 79, 80, 81, 82, 84, 87], "mc_criterion": 42, "mc_ref": 16, "mc_ref_dict": 16, "mc_ref_fil": 16, "mc_refer": 87, "mcmc": [3, 72, 83, 87], "mcmc_param": [3, 9, 72, 87], "md": [], "mean": [3, 7, 9, 13, 16, 24, 25, 26, 27, 29, 31, 45, 52, 55, 58, 62, 65, 72, 86, 87], "mean_2": 87, "mean_pr": [9, 29, 65], "meas_fil": 16, "meas_file_valid": 16, "measur": [3, 7, 13, 16, 60, 87], "measured_data": 3, "measureddata": 65, "measurement_error": 87, "mechan": [24, 25, 26, 52, 55, 60], "merchant": [75, 79, 84], "messag": [], "met": [55, 58], "meta": [3, 9, 13, 16, 24, 25, 26, 29, 52, 55, 65], "meta_model": 74, "meta_model_engin": [], "meta_model_typ": [39, 47, 65, 74, 77, 86, 87], "metadata": [24, 25, 26, 52, 55], "metadata_rout": [24, 25, 26, 52, 55], "metadatarequest": [24, 25, 26, 52, 55], "metamod": [29, 60, 69, 77, 86], "metamod2": 74, "metamodel": [3, 5, 13, 29, 39, 41, 47, 60, 64, 74, 77, 78, 85, 87], "metamodel_train": 87, "metamodelengin": [], "metamodelopt": [65, 87], "method": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 38, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65, 69, 70, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87], "metric": [3, 87], "mgrid": 44, "mice": 60, "might": [], "miketip": [55, 58], "minim": [26, 77], "minout": 17, "mit": 77, "mix": 78, "mmse": 39, "mod_loo_threshold": [39, 69, 87], "mode": [3, 52, 55, 58], "model": [3, 5, 7, 9, 13, 15, 16, 22, 24, 25, 26, 29, 33, 39, 42, 52, 55, 56, 58, 60, 65, 69, 72, 76, 78, 83, 85], "model2": 74, "model_comparison_al": [5, 74], "model_dict": 5, "model_out_dict": 13, "model_weight": 5, "model_weights_dict": 5, "modelnam": 87, "modifi": [39, 52, 75, 79, 84], "modul": [0, 1, 11, 14, 18, 77], "modulu": 73, "mohammadi": [33, 60], "molina": 58, "moment": [13, 16, 35, 36, 50, 83, 85, 87], "monomi": [43, 45], "mont": [3, 9, 16, 42, 87], "more": [13, 29, 60, 65, 75, 77, 79, 84, 87], "most": 87, "move": [3, 9, 72, 87], "mp": 16, "mu_pr": [24, 25, 26], "much": 82, "multi": [43, 45, 65, 67, 81, 83], "multi_process": 16, "multioutput": [24, 25, 26, 52, 55], "multioutputregressor": [24, 25, 26, 52, 55], "multipl": [7, 83, 86, 87], "multipli": 7, "multiplrocess": 9, "multiprocess": [3, 16, 72, 87], "multivar": 3, "multivari": [3, 7, 31, 62, 65, 66, 67], "must": [16, 72], "mutual": 60, "n": [7, 33], "n_": 7, "n_bootstrap": 5, "n_bootstrap_itr": [3, 5, 65, 72], "n_burn": [3, 9, 72], "n_cand_group": [39, 69, 70, 75, 82, 87], "n_canddid": [39, 69, 87], "n_candid": [42, 60, 70, 75, 82], "n_cpu": 16, "n_featu": [25, 26], "n_featur": [24, 25, 26, 52, 55, 58, 65, 66], "n_init_sampl": [65, 74, 77, 86, 87], "n_input": 65, "n_iter": [24, 25, 26, 55, 58], "n_iter_": 55, "n_kfold": 58, "n_m": 5, "n_max": [37, 65, 67], "n_max_sampl": [39, 69, 87], "n_measur": [3, 9], "n_new_sampl": [32, 39, 63, 69, 87], "n_ob": [3, 5, 16], "n_out": 65, "n_output": [16, 24, 25, 26, 52, 55, 65], "n_param": [3, 7, 9, 10, 13, 16, 29, 36, 39, 42, 47, 60, 65, 67, 68], "n_pca_compon": 65, "n_prior_sampl": 3, "n_replic": 39, "n_sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 34, 35, 36, 39, 47, 52, 55, 56, 60, 65, 66, 67, 68, 74, 85, 87], "n_samples_fit": [24, 25, 26, 52, 55], "n_samples_test": [25, 26, 52, 55, 58], "n_step": [3, 9, 10, 72, 87], "n_term": [65, 67], "n_test_sampl": [24, 25, 26], "n_walker": [3, 9, 10, 72, 87], "nagel": 13, "name": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 47, 49, 50, 52, 55, 72, 74, 77, 78, 80, 83, 87], "nameerror": 60, "ndarrai": 45, "ndim": 87, "necessari": [16, 83], "need": [3, 5, 7, 16, 29, 60, 65, 69, 72, 74, 77, 86, 87], "neg": [24, 25, 26, 52, 55], "neither": 13, "nest": [24, 25, 26, 40, 52, 55], "new": [16, 39, 42, 49, 52, 60, 65, 69, 77, 80, 87], "new_c_point": 16, "new_input_fil": 16, "new_metamodelopt": 65, "new_sampl": 42, "next": [16, 60, 72, 83], "nips01": 55, "nnme": 87, "nois": [3, 5, 7, 25, 26, 55, 58, 84], "non": [42, 52, 55, 58], "none": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 60, 65, 68, 69, 70, 75, 77, 82, 87], "nonlinear": 81, "nor": 13, "norm": [44, 65, 70, 73, 75, 78, 79, 81, 82, 84, 86, 87], "normal": [3, 5, 7, 25, 31, 52, 55, 62, 65], "normpdf": [3, 9], "notat": [], "note": [7, 16, 87], "now": [39, 72, 74, 77, 80, 86, 87], "nowak": [13, 22, 60, 87], "np": [16, 52, 55, 58, 65, 74, 78, 80, 87], "npy": 87, "nsampl": [29, 65, 86, 87], "nu": 58, "nug_term": 68, "nugget": 68, "number": [3, 5, 7, 13, 16, 24, 25, 26, 29, 32, 39, 42, 45, 52, 55, 58, 60, 63, 65, 68, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 86], "numer": 25, "numpi": [24, 25, 26, 44, 45, 52, 55, 58, 87], "numpoli": [43, 45], "o": 82, "oaklei": 82, "obj": [3, 7, 9, 13, 39, 42, 47, 49, 65], "object": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65, 66, 68, 72, 74, 77, 78, 80, 85, 86, 87], "obs_data": [3, 9], "obs_dict": 16, "obs_dict_valid": 16, "obsdata": [72, 87], "observ": [3, 5, 7, 9, 16, 31, 62, 72, 74, 80, 87], "obtain": [10, 65, 87], "off": [39, 60], "ohagan": 76, "ol": [65, 86], "oladyshkin": [13, 22, 60, 87], "old": [42, 60], "old_edi": 60, "old_edx": 60, "omit": 45, "omp": [75, 81], "onc": [69, 87], "one": [3, 9, 10, 16, 25, 26, 32, 39, 45, 55, 56, 58, 63, 65, 69, 74, 77, 78, 87], "ong": 60, "onli": [3, 7, 9, 16, 24, 25, 26, 29, 39, 45, 52, 55, 58, 65, 78, 81, 87], "open": [77, 87], "oper": 42, "opposit": 45, "opt": [39, 60], "opt_col_point": 39, "opt_sigma": 3, "optim": [25, 39, 55, 60, 84], "optimi": 60, "optimum": 60, "option": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 52, 55, 58, 60, 65, 68, 77, 78, 80, 83, 87], "opts_bootstrap": 74, "opts_dict": 5, "order": [45, 65, 72, 83], "ordinari": [65, 86], "org": [13, 42, 77], "orig_space_dist": [39, 47], "origin": [24, 25, 26, 52, 55, 65, 80, 85], "origmodeloutput_": 87, "orthogon": [37, 52, 66, 75, 81], "orthonorm": 22, "other": [3, 24, 25, 26, 52, 55, 74, 80, 83, 86], "otherwis": [9, 16, 24, 25, 26, 52, 55, 58, 65, 72], "our": [72, 77, 80, 86, 87], "out": [3, 7, 17, 25, 26, 39, 60, 65, 69, 72, 77, 85], "out_dict": 65, "out_dir": [3, 5, 9, 16, 39, 72], "out_nam": 39, "outpust": 13, "output": [3, 7, 9, 13, 16, 39, 60, 65, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87], "output_bayes_": 87, "output_dict": 74, "output_file_nam": 16, "output_nam": 16, "output_pars": 16, "outputdata": 16, "outputmatrix": 65, "outputs_bayes_model_calib": 72, "outputs_comparison": [5, 74], "outputs_postprocess": 13, "outputs_postprocessing_": 87, "outputs_postprocessing_calib": 85, "outputs_prior": 78, "over": [39, 68, 78], "overal": 77, "overfit": 87, "overflow": 25, "overview": [], "overwritten": [52, 55, 58], "own": [], "p": [7, 9, 13, 22, 30, 42, 44, 52, 61], "pacif": 9, "packag": [3, 9, 71, 72, 73, 76, 77, 83], "page": [77, 83, 87], "pair": [5, 65], "pairwis": 83, "panda": [7, 87], "paper": [55, 58, 60], "parallel": [16, 29, 39, 60, 65], "param": [16, 24, 25, 26, 37, 39, 47, 52, 55], "param_set": 16, "paramet": [49, 50, 69, 70, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87], "parameterset": 9, "paramethr": 7, "paramt": 25, "paras": 16, "parmet": 3, "parser": [16, 73, 80], "part": [32, 63, 65, 81, 82, 87], "parti": 16, "particular": [75, 79, 84], "pass": [3, 16, 24, 25, 26, 39, 47, 52, 55, 87], "path": 16, "pati": 52, "pattern": [16, 55, 58], "pc": 64, "pca": [65, 86], "pca_transform": 65, "pce": [13, 39, 47, 65, 73, 85, 86, 87], "pce_deg": [65, 74, 77, 86, 87], "pce_mean": 13, "pce_q_norm": [65, 74, 77, 86, 87], "pce_reg_method": [65, 74, 77, 86, 87], "pceengine_": 87, "pcemodel": [13, 20], "pcemodel_": [], "pcm_sampler": 39, "pd": [72, 87], "pdf": [13, 55, 58], "peopl": [], "per": [70, 75, 82], "percentag": 65, "percis": 39, "perfect": 25, "perfect_fit_tol": 25, "perform": [3, 5, 9, 13, 69, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87], "perform_bootstrap": 3, "perl": 65, "perturb": [3, 5], "perturbed_data": [3, 5], "pfaffenwaldr": [22, 33], "physic": [52, 66], "pip": [77, 83], "pipelin": [24, 25, 26, 52, 55], "pkl": 87, "place": 16, "pleas": [24, 25, 26, 52, 55, 75, 79, 84], "plot": [3, 5, 13, 39, 74, 87], "plot_bayes_factor": 5, "plot_just_analysi": 5, "plot_log_bm": 3, "plot_map_pr": 3, "plot_model_weight": 5, "plot_moment": [13, 85, 87], "plot_nam": 5, "plot_post_param": 3, "plot_post_pr": [3, 72, 74, 87], "plot_sampl": [39, 78], "plot_seq_design_diagnost": [13, 85], "plot_typ": 13, "plote": 20, "plotmoment": [], "point": [3, 7, 16, 24, 25, 26, 29, 34, 35, 39, 42, 55, 58, 60, 68, 72, 78, 87], "poli": [37, 74], "pollut": 76, "poly_coeff": 35, "poly_typ": [34, 36, 37, 39, 47], "polynom": 65, "polynomi": [13, 22, 33, 34, 35, 36, 37, 39, 47, 52, 60, 65, 66, 67, 77, 78, 85, 86, 87], "pop": 65, "popitem": 65, "posit": [30, 61], "possibl": [24, 25, 26, 52, 55, 78], "post": [10, 13, 16, 83], "post_descript": [], "post_plot_pr": 72, "post_process": [85, 87], "post_snapshot": [39, 87], "posterior": [3, 9, 25, 26, 39, 52, 55, 58, 72, 87], "posterior_df": 9, "posteriori": [3, 39], "postpc": 87, "postproc": 85, "postprocess": [77, 80, 83, 87], "potenti": 10, "power": 74, "pp": [9, 42, 52, 66, 82], "practic": [78, 83], "precis": [25, 26, 55, 58], "precomput": [24, 25, 26, 52, 55], "predict": [3, 9, 24, 25, 26, 29, 52, 55, 58, 60, 65, 66, 72, 87], "predict_dist": [24, 25, 26], "predit": 65, "prefer": [83, 87], "prepar": [16, 29, 60, 86], "prescrib": 39, "prescript": 65, "present": [22, 65, 86], "prevent": 25, "previou": [16, 87], "previous": 86, "prevrun_no": 16, "princip": [13, 65, 86], "print": [25, 26, 60, 65], "prior": [3, 5, 7, 9, 26, 39, 46, 47, 58, 72, 80, 83, 86, 87], "prior_": 87, "prior_output": 87, "prior_sampl": 3, "probabilist": 82, "probabl": [30, 61, 78], "probablist": 3, "proc": 33, "procedur": 3, "proceed": 52, "process": [9, 13, 16, 58, 60, 65, 68, 83, 86], "produc": [75, 79, 84], "program": [75, 79, 84], "progress": [25, 26], "proj": 42, "project": 77, "propag": [52, 66], "properti": [69, 70, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87], "propos": [9, 40, 69, 77], "provid": [13, 24, 25, 26, 29, 39, 45, 47, 52, 55, 65, 70, 72, 74, 76, 77, 81, 83, 86, 87], "psi": [52, 66, 67], "psrf": 10, "public": [9, 75, 79, 84], "publish": [75, 79, 84], "purpos": [75, 79, 84], "pursuit": [52, 75, 81], "py": [10, 16, 43, 55, 74, 77, 80, 87], "py_fil": [16, 74, 77, 80, 87], "pylink": [80, 83, 87], "pylinkforwardmodel": [74, 77, 80], "pypi": 77, "python": [3, 13, 16, 72, 77, 80, 83, 87], "python3": 83, "q": [30, 56, 61, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "qualiti": [13, 75, 79, 82, 85], "qualt": 3, "quantif": [22, 33], "question": [72, 75, 79, 84], "quit": [], "r": [7, 24, 25, 26, 52, 55, 58, 75, 82], "r2_score": [24, 25, 26, 52, 55], "r_2": 66, "r_hat": 10, "r_w": 75, "rais": [24, 25, 26, 52, 55, 65], "random": [29, 39, 42, 69, 70, 74, 77, 78, 87], "random_sampl": 39, "randomli": [39, 87], "rang": [17, 37, 40, 80, 86, 87], "rate": [26, 27, 75, 79], "ratio": 10, "raw": [16, 22, 39, 47], "raw_data": [39, 47], "read": [16, 29, 39, 80, 87], "read_from_fil": 39, "read_observ": 16, "read_output": 16, "readthedoc": 9, "realiti": 7, "realiz": [7, 69, 78, 80], "realli": 3, "recalcul": 65, "recheck": 78, "reciev": 16, "recognit": [55, 58], "recomput": 56, "recurr": 37, "recurs": [37, 52], "redidu": 7, "redistribut": [75, 79, 84], "reduc": [45, 86], "reduct": [10, 65, 86], "ref": [55, 58, 60], "ref_bme_kld": 13, "ref_typ": 77, "refer": [7, 13, 16, 30, 33, 61, 65, 70, 73, 75, 79, 80, 81, 82, 84, 85, 87], "refin": 29, "refit": 29, "reg_method": 65, "regress": [9, 13, 24, 25, 26, 52, 55, 58, 65, 66, 70, 73, 75, 79, 81, 82, 84, 86, 87], "regressor": [24, 25, 26, 36, 52, 55, 65, 66, 67], "regressormixin": [24, 52, 55], "regresssor": 52, "reject": [3, 72, 83, 87], "relat": [48, 78], "releas": 83, "relev": [24, 25, 26, 52, 55, 78], "reli": 87, "reliabl": [13, 22], "remain": 82, "remov": [16, 65], "renam": 16, "repeat": 87, "replac": [16, 83, 86], "replic": 39, "report": [25, 26, 33, 77], "repositori": [76, 83], "repres": 7, "represent": 86, "reproduc": 9, "req_output": [3, 9], "request": [3, 16, 24, 25, 26, 29, 39, 52, 55, 60, 65], "requir": [3, 9, 16, 37, 49], "research": [22, 42], "reshap": [44, 87], "residu": [7, 24, 25, 26, 52, 55, 66], "respect": [5, 65, 74, 87], "respons": [24, 25, 26, 39, 60, 65], "ress": 22, "rest": 16, "result": [5, 16, 39, 65, 69, 72, 78, 80, 85, 86, 87], "retain": [24, 25, 26, 52, 55], "retrain": 87, "retun": 29, "return": [44, 45, 74, 77, 80, 86, 87], "return_out_dict": 65, "return_sampl": 29, "return_std": [25, 26, 55, 58], "return_var": 10, "returnvar": 65, "revers": 45, "review": 60, "rework": 69, "rezaiifar": 52, "ridg": [65, 86], "rieckermann": 13, "risk": 33, "rmse": [13, 85, 87], "robin": 10, "root": [3, 9, 10, 13, 39, 87], "root_sampl": 86, "rosenblatt": [39, 47, 49, 78], "rossenblatt": 49, "rout": [24, 25, 26, 52, 55], "row": [9, 16], "rss": 25, "rst": [], "rubin": 72, "run": [9, 13, 16, 29, 39, 60, 65, 72, 73, 74, 77, 80, 83, 84, 85, 87], "run_command": 16, "run_forwardmodel": 16, "run_model_parallel": [16, 72, 80], "run_no": 60, "run_sampl": 9, "run_util_func": 60, "runtim": 65, "rvm_ard_model": 55, "rwmh": 10, "safeti": [13, 22, 33], "same": [16, 39, 47, 60, 74, 77, 78, 80, 81], "sampel": 78, "sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 32, 35, 36, 38, 39, 42, 47, 52, 55, 60, 63, 65, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "sample_weight": [24, 25, 26, 52, 55], "sampler": [3, 9], "sampling_method": [29, 39, 74, 77, 78, 86, 87], "save": [29, 39, 74, 78, 85, 87], "savefig": 20, "sc": 33, "scalar": 7, "scale": 10, "scheme": [39, 45, 60, 65, 69, 70, 75, 82, 84, 86], "scienc": 9, "scope": 16, "score": [24, 25, 26, 39, 42, 52, 55, 60, 65, 66], "scores_": 55, "script": [16, 22, 87], "search": [16, 60, 77], "second": [16, 78, 87], "section": [39, 55, 58, 87], "see": [13, 24, 25, 26, 39, 49, 52, 55, 75, 77, 79, 81, 82, 84], "select": [3, 9, 13, 16, 29, 42, 52, 55, 56, 60, 65, 68], "selected_indic": [3, 9], "self": [24, 25, 26, 52, 55, 65], "sens": [58, 79, 84], "sensit": [13, 52, 66, 75, 79, 82, 87], "separ": [16, 39, 87], "sequenc": 44, "sequenti": [13, 16, 29, 39, 41, 42, 55, 60, 65, 69, 75, 82, 85], "sergei": [22, 60], "serv": 16, "set": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 30, 32, 39, 40, 42, 45, 46, 52, 55, 58, 60, 61, 63, 65, 67, 72, 74, 76, 77, 78, 80, 83, 85, 86], "set_config": [24, 25, 26, 52, 55], "set_param": [24, 25, 26, 52, 55], "set_predict_request": [25, 26, 55], "set_score_request": [24, 25, 26, 52, 55], "setdefault": 65, "setup": [5, 81], "setup_infer": 3, "sfu": [75, 79, 84], "shall": 65, "shallow": 65, "shape": [3, 5, 7, 9, 13, 16, 24, 25, 26, 27, 29, 34, 35, 36, 39, 42, 45, 47, 52, 55, 58, 60, 65, 66, 67, 68, 72], "share": 81, "shceme": 87, "shell": [16, 73, 80], "shell_command": 16, "short": 76, "shot": 65, "should": [3, 10, 16, 24, 25, 26, 29, 44, 52, 55, 65, 69, 72, 74, 75, 78, 79, 80, 84, 86, 87], "show": [70, 73, 77, 81, 84, 87], "shown": 3, "sigma": [3, 7, 9, 58, 60, 87], "sigma2": [3, 9, 58, 60], "sigma2_prior": 7, "sigma2dict": 60, "sigma_": [55, 58], "sigma_f": 87, "signal": 52, "significantli": 82, "sim": 7, "simillar": 16, "simon": [75, 79, 84], "simpl": [24, 25, 26, 52, 55, 77, 80, 86], "simpli": 3, "simplic": 7, "simul": [3, 9, 13, 16, 22, 42, 65, 87], "simulation_output": 16, "sinc": 87, "singl": [7, 9, 13, 80, 87], "singular": 52, "size": [24, 25, 26, 52, 55, 58, 87], "skbay": 55, "sklearn": [24, 25, 26, 52, 55], "sklearnpca": 65, "slightli": 72, "smaller": [25, 45, 72, 82, 87], "smallest": 25, "so": [7, 24, 25, 26, 52, 55, 82, 83, 87], "sobol": [13, 39, 75, 78, 79, 82, 83, 85, 87], "sobol_cel": 13, "sobol_indic": [13, 85], "sobolindicespc": 87, "soc": 82, "societi": 9, "softwar": [16, 75, 79, 84], "solut": 87, "solver": 16, "some": [24, 25, 26, 39, 47, 52, 55, 68, 72, 74, 85, 87], "sonja": [75, 79, 84], "soon": 60, "sort": 45, "sourc": [10, 65, 77, 83], "space": [39, 42, 46, 47, 60, 65, 69, 70, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87], "sparemulti": 65, "spars": [13, 24, 25, 26, 52, 55, 58, 66, 86], "sparsex": 65, "sparsiti": [65, 87], "specif": [50, 65, 72, 85], "specifi": [17, 29, 39, 65, 77, 78, 86], "sphinx_new": [], "split": [69, 83, 87], "springer": [55, 58], "squar": [3, 9, 10, 13, 24, 25, 26, 52, 55, 60, 65, 80, 86, 87], "ssurjano": [75, 79, 84], "stabl": 9, "stackoverflow": 65, "stand": 3, "standard": [13, 16, 29, 65, 69, 86, 87], "start": [3, 16, 29, 45, 55, 60, 69, 77, 86, 87], "start_engin": [29, 69, 77, 86, 87], "start_seqdesign": 60, "stat": [75, 79, 84], "static": [29, 70, 73, 75, 78, 79, 81, 82, 84, 87], "statist": 82, "std": [3, 9, 16, 60, 87], "std_2": 87, "std_pred": [9, 29, 65], "stdev": [9, 86], "step": [3, 16, 39, 70, 72, 86], "step_snapshot": [39, 87], "still": 69, "stochast": [13, 22], "stop": [39, 45, 69], "store": [16, 74, 87], "str": [3, 5, 7, 13, 16, 24, 25, 26, 29, 39, 42, 47, 52, 55, 65], "straightforward": 83, "strategi": [42, 60, 87], "string": [3, 9, 13, 16, 34, 36, 37, 39, 47, 50, 60, 87], "structur": [69, 83], "stuttgart": [22, 33, 77, 83], "sub": [24, 25, 26, 52, 55], "subdirectori": 16, "submatrix": 52, "subobject": [24, 25, 26, 52, 55], "successfulli": 16, "sudret": [13, 33, 52, 66, 87], "sum": [10, 24, 25, 26, 45, 52, 55], "sum_i": 44, "summari": [60, 65], "sumo": 42, "superclass": 24, "support": [3, 7, 39, 44, 65, 77, 78], "surjanov": [75, 79, 84], "surrog": [9, 16, 28, 29, 42, 59, 65, 69, 72, 74, 78, 83, 85], "surrogate_descript": [], "surrogate_model": [69, 78, 83, 86, 87], "switzerland": 33, "sy": 87, "system": [13, 22, 33, 52], "t": [24, 25, 26, 42, 44, 52, 55], "t_l": 75, "t_u": 75, "tag": 87, "take": [69, 72, 80, 83, 87], "taken": [29, 72], "target": [25, 26, 52, 55, 58, 60, 65, 66, 68], "task": 72, "tau": 84, "teach": 76, "tell": 86, "templat": 16, "term": [7, 25, 26, 37, 45, 68, 75, 79, 84, 87], "termin": [55, 58], "test": [24, 25, 26, 52, 55, 58, 72, 75, 84], "test_": 84, "test_analytical_funct": 87, "text": [7, 16], "textbf": 7, "th": 42, "than": [10, 44, 45, 72], "thei": [78, 83, 87], "them": [16, 29, 69, 72, 74, 77, 83], "themselv": 87, "theorem": 9, "theori": 60, "therefor": [24, 25, 26, 45, 55, 58], "theta": [7, 9, 10, 40], "theta_": 7, "thi": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 40, 42, 47, 52, 55, 58, 60, 65, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "thin": 72, "thing": 86, "third": 16, "though": [73, 87], "three": [5, 65, 74, 81, 86, 87], "threshold": [25, 26, 39, 55, 58, 65], "through": [83, 87], "thu": 19, "time": [5, 13, 16, 69, 70, 72, 73, 74, 75, 79, 81, 82, 84, 87], "timestep": [65, 80], "tip": [55, 58], "titl": 3, "toctre": [], "todo": [3, 60, 78], "tol": [24, 25, 26, 55, 56, 58], "tolist": 45, "tom": [3, 87], "toolbox": 42, "topic": 83, "total": [3, 13, 24, 25, 26, 45, 52, 55, 70, 73, 75, 79, 81, 82, 84, 85, 87], "total_sigma2": [3, 9], "total_sobol": [13, 87], "towardsdatasci": 13, "tpl": 16, "tr_x": [39, 47], "trade": [39, 60], "tradeoff": [70, 75, 82, 84, 87], "tradeoff_schem": [39, 60, 69, 87], "tradeoff_weight": 60, "train": [3, 9, 13, 16, 28, 29, 36, 39, 41, 42, 52, 55, 59, 60, 65, 68, 74, 77, 78, 83, 85], "train_error_model": 9, "train_norm": [29, 74, 77, 86, 87], "train_seq_design": 29, "train_sequenti": [29, 69, 85, 87], "transact": 58, "transform": [16, 39, 47, 49, 65, 78], "transpos": 52, "tree": 77, "trine": 39, "true": [3, 5, 16, 17, 20, 24, 25, 26, 29, 39, 40, 44, 52, 55, 58, 65, 72, 74, 78, 87], "true_sampl": 72, "truncat": [44, 45, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "try": 25, "tsunami": 60, "tue": 54, "tupl": [16, 32, 39, 45, 47, 60, 63, 65], "tutori": [70, 77, 81], "two": [13, 24, 25, 26, 30, 45, 55, 58, 61, 65, 77, 80, 84, 86, 87], "type": [3, 5, 7, 9, 13, 16, 25, 29, 31, 34, 36, 37, 39, 47, 50, 60, 62, 65, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87], "type_": 3, "typic": [10, 87], "u": [24, 25, 26, 52, 55, 77, 86, 87], "ugent": 42, "um": 80, "umbridg": 16, "umbridge_model": 16, "uncertain": [7, 49, 50, 65, 78, 80, 83, 86], "uncertainti": [3, 9, 22, 33, 52, 66, 72, 78, 83], "unchang": [24, 25, 26, 52, 55], "under": [75, 77, 79, 80, 83, 84], "underli": [], "understand": [72, 85], "uni": [22, 33, 77, 83], "unif": [77, 78, 87], "uniform": [49, 70, 73, 75, 78, 79, 84, 87], "uniform_averag": [24, 25, 26, 52, 55], "union": 45, "uniqu": [24, 25, 26], "unit": 33, "univ_basi": 65, "univ_basis_v": [39, 47, 65], "univ_p_v": 67, "univ_v": 36, "univari": [22, 35, 36, 65, 67], "univers": [33, 75, 79, 84], "universitaet": 22, "unknown": [3, 7, 9, 60], "unstabl": 25, "until": 39, "up": [3, 65, 67, 86], "updat": [16, 24, 25, 26, 52, 55, 58, 65, 72], "update_input_param": 16, "update_pce_coeff": 65, "upper": [17, 32, 39, 45, 47, 60, 63], "uq_bsc": 58, "uq_regress": 58, "uqlab": [33, 58], "urban": 13, "us": [3, 7, 9, 13, 16, 22, 24, 25, 26, 39, 42, 44, 45, 47, 52, 55, 58, 60, 65, 69, 72, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87], "use_bayes_set": 5, "useag": 86, "user": [3, 5, 16, 24, 25, 26, 33, 39, 47, 52, 55, 77, 78, 86, 87], "util": [24, 25, 26, 39, 43, 52, 55, 60], "util_alphoptdesign": 60, "util_bayesianactivedesign": 60, "util_bayesiandesign": 60, "util_func": [39, 60, 69, 87], "util_varbaseddesign": 60, "utilii": 39, "v": [3, 22, 24, 25, 26, 39, 47, 52, 55, 65], "v1": 33, "valid": [3, 13, 16, 39, 47, 65, 66, 69, 78, 83, 85, 87], "valid_error": 13, "valid_metamodel": [13, 85, 87], "valid_metr": 3, "valid_model_run": 87, "valid_sampl": 87, "validlikelihoods_": 87, "valu": [3, 5, 7, 9, 10, 16, 17, 24, 25, 26, 34, 35, 45, 52, 55, 56, 58, 65, 66, 68, 70, 72, 73, 78, 80, 86, 87], "valueerror": 67, "var": 60, "var_hat": [25, 26, 55, 58], "var_pca_threshold": 65, "var_pr": [24, 25, 26], "varbasedoptdesign": 39, "variabl": [25, 26, 52, 55, 58, 82, 87], "varianc": [3, 7, 10, 24, 25, 26, 55, 58, 65, 68, 69, 70, 72, 73, 82, 84], "variant": 86, "variat": [24, 26, 65, 86], "varidx": [65, 68], "varieti": 80, "variou": [65, 87], "varoptdesign": [39, 60, 69], "vbl": [65, 86], "vector": [25, 26, 65], "venv": 83, "verbos": [3, 9, 16, 24, 25, 26, 29, 52, 55, 58, 60, 65, 72, 87], "veri": [25, 80], "versa": [30, 61], "version": [24, 25, 26, 42, 52, 55, 65, 75, 77, 79, 83, 84], "via": [5, 7, 9, 39, 47, 65, 72, 73, 75, 78, 79, 80, 82, 83, 86, 87], "vice": [30, 61], "view": 65, "virtual": 83, "visual": [5, 39, 72, 78, 83, 85, 87], "voronoi": [39, 42, 69, 87], "vulner": 33, "w": [9, 10, 13, 22, 24, 25, 26, 42, 52, 55], "wa": 65, "wai": [60, 65, 86, 87], "walker": [3, 72], "want": [72, 77, 78, 85, 86, 87], "warranti": [75, 79, 84], "wavelet": 52, "wb": 87, "we": [7, 25, 69, 72, 74, 75, 76, 77, 79, 80, 84, 85, 86, 87], "wear": 9, "websit": [], "weibul": 78, "weight": [5, 10, 24, 25, 26, 39, 52, 55, 58, 60, 69, 74, 83], "well": [10, 24, 25, 26, 52, 55, 72, 74], "were": 85, "what": [3, 7, 76, 86], "when": [3, 7, 9, 13, 16, 24, 25, 26, 30, 39, 52, 55, 58, 61, 78, 87], "where": [5, 7, 24, 25, 26, 34, 35, 39, 44, 52, 55, 65, 78, 87], "whether": [5, 16, 39, 52, 55, 58], "which": [3, 16, 22, 24, 25, 26, 30, 58, 61, 72, 87], "while": [45, 69, 83, 85, 86, 87], "width": 73, "wiener": 37, "wight": 5, "wish": 16, "witch": 44, "within": [10, 16, 74, 76], "without": [16, 69, 73, 75, 77, 79, 84, 87], "wolfgang": 60, "word": 16, "work": [16, 24, 25, 26, 52, 55, 75, 77, 79, 84, 87], "workflow": [77, 87], "wors": [24, 25, 26, 52, 55], "would": [24, 25, 26, 52, 55, 77], "wrapper": 16, "write": 9, "written": [16, 72], "wrong": 60, "www": [22, 33, 55, 58, 75, 79, 84], "x": [13, 16, 24, 25, 26, 31, 34, 35, 36, 39, 44, 47, 52, 53, 55, 58, 62, 65, 68, 78, 80, 86, 87], "x1": 16, "x_1": [49, 50, 79, 87], "x_2": [79, 87], "x_3": 79, "x_axi": 13, "x_can": 60, "x_i": [44, 86], "x_mc": 60, "x_new": 60, "x_valu": [16, 20, 72, 74, 77, 80, 86], "xi": 16, "xiu": 87, "xlabel": 13, "xnew": 60, "xx": 16, "xxa": 55, "xya": 55, "y": [7, 9, 24, 25, 26, 39, 52, 53, 55, 65, 66, 68], "y_hat": [25, 26, 52, 55, 58, 60], "y_i": 86, "y_pc_val": 20, "y_pc_val_std": 20, "y_pred": [24, 25, 26, 52, 55, 65], "y_true": [24, 25, 26, 52, 55], "y_val": 20, "ye": [16, 70, 73, 84], "yet": 10, "yew": 60, "you": [7, 13, 16, 24, 25, 26, 52, 55, 71, 75, 77, 79, 81, 82, 84], "young": 73, "your": [13, 75, 79, 82, 83], "yr": [75, 79], "z": [77, 87], "zero": [30, 52, 55, 58, 61, 72], "zeromean": 7, "zip": 16, "zip_subdir": 16, "zurich": 33}, "titles": ["bayesvalidrox", "bayesvalidrox.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "bayesvalidrox.bayes_inference.bayes_model_comparison", "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "bayesvalidrox.bayes_inference.discrepancy", "bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "bayesvalidrox.bayes_inference.mcmc", "bayesvalidrox.bayes_inference.mcmc.MCMC", "bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "bayesvalidrox.post_processing", "bayesvalidrox.post_processing.post_processing", "bayesvalidrox.post_processing.post_processing.PostProcessing", "bayesvalidrox.pylink", "bayesvalidrox.pylink.pylink", "bayesvalidrox.pylink.pylink.PyLinkForwardModel", "bayesvalidrox.pylink.pylink.within_range", "bayesvalidrox.surrogate_models", "bayesvalidrox.surrogate_models.adaptPlot", "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "bayesvalidrox.surrogate_models.apoly_construction", "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "bayesvalidrox.surrogate_models.bayes_linear", "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "bayesvalidrox.surrogate_models.engine", "bayesvalidrox.surrogate_models.engine.Engine", "bayesvalidrox.surrogate_models.engine.hellinger_distance", "bayesvalidrox.surrogate_models.engine.logpdf", "bayesvalidrox.surrogate_models.engine.subdomain", "bayesvalidrox.surrogate_models.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "bayesvalidrox.surrogate_models.exp_designs", "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "bayesvalidrox.surrogate_models.exp_designs.check_ranges", "bayesvalidrox.surrogate_models.exploration", "bayesvalidrox.surrogate_models.exploration.Exploration", "bayesvalidrox.surrogate_models.glexindex", "bayesvalidrox.surrogate_models.glexindex.cross_truncate", "bayesvalidrox.surrogate_models.glexindex.glexindex", "bayesvalidrox.surrogate_models.input_space", "bayesvalidrox.surrogate_models.input_space.InputSpace", "bayesvalidrox.surrogate_models.inputs", "bayesvalidrox.surrogate_models.inputs.Input", "bayesvalidrox.surrogate_models.inputs.Marginal", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "bayesvalidrox.surrogate_models.reg_fast_ard", "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "bayesvalidrox.surrogate_models.reg_fast_laplace", "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "bayesvalidrox.surrogate_models.sequential_design", "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign", "bayesvalidrox.surrogate_models.sequential_design.hellinger_distance", "bayesvalidrox.surrogate_models.sequential_design.logpdf", "bayesvalidrox.surrogate_models.sequential_design.subdomain", "bayesvalidrox.surrogate_models.surrogate_models", "bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "bayesvalidrox.surrogate_models.surrogate_models.create_psi", "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "Active learning: iteratively expanding the training set", "Example: Analytical function", "API", "Bayesian inference", "Example: beam", "Bayesian multi-model comparison", "Example: borehole", "EXAMPLES", "Surrogate-assisted\u00a0Bayesian validation of computational models", "Priors, input space and experimental design", "Example: ishigami", "Models", "Example: model comparison", "Example: OHagan-function", "USER GUIDE", "Example: pollution", "Postprocessing", "Training surrogate models", "TUTORIAL"], "titleterms": {"1": 81, "3": 81, "activ": 69, "adaptplot": [19, 20], "also": [], "an": 87, "analyt": 70, "api": 71, "apoly_construct": [21, 22], "argument": [42, 60], "assist": 77, "attribut": [3, 5, 7, 9, 13, 16, 25, 26, 39, 42, 47, 49, 50, 52, 55, 58, 65], "bay": [], "bayes_infer": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "bayes_linear": [23, 24, 25, 26, 27], "bayes_model_comparison": [4, 5], "bayesian": [72, 74, 77, 87], "bayesianlinearregress": 24, "bayesinfer": 3, "bayesmodelcomparison": 5, "bayesvalidrox": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "beam": 73, "borehol": 75, "check_rang": 40, "choic": [70, 73, 75, 79, 81, 82, 84], "class": [], "comparison": [74, 81], "comput": 77, "contact": [], "content": 77, "contribut": 77, "corr": 53, "corr_loocv_error": 66, "create_psi": 67, "cross_trunc": 44, "data": [70, 73, 75, 79, 82, 84, 87], "defin": 87, "descript": [], "design": [78, 87], "discrep": [6, 7, 70, 73], "eblinearregress": 25, "engin": [28, 29, 30, 31, 32, 86, 87], "eval_rec_rul": [33, 34, 35, 36, 37], "eval_rec_rule_arbitrari": 35, "eval_univ_basi": 36, "exampl": [49, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86], "exp_design": [38, 39, 40], "expand": 69, "expdesign": 39, "experiment": [78, 87], "exploit": 69, "explor": [41, 42, 69], "function": [70, 82], "further": 77, "gamma_mean": 27, "gaussian_process_emul": 68, "gelman_rubin": 10, "glexindex": [43, 44, 45], "guid": 83, "hellinger_dist": [30, 61], "import": 87, "indic": 77, "infer": [72, 87], "input": [48, 49, 50, 78, 87], "input_spac": [46, 47], "inputspac": 47, "instal": [77, 83], "introductori": [], "ishigami": 79, "iter": 69, "l2_model": 81, "learn": 69, "librari": 87, "licens": 77, "link": 77, "logpdf": [31, 62], "margin": 50, "mcmc": [8, 9, 10], "meta": 87, "meta_model_engin": [], "metamodel": [65, 70, 73, 75, 79, 81, 82, 84, 86], "model": [70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87], "model1": 81, "multi": 74, "necessari": 87, "nl2_model": 81, "nl4_model": 81, "note": [24, 25, 26, 39, 52, 55, 65], "ohagan": 82, "option": 86, "orthogonal_matching_pursuit": [51, 52, 53], "orthogonalmatchingpursuit": 52, "overview": 83, "packag": [], "paramet": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 47, 52, 55, 58, 60, 61, 62, 63, 65, 66, 67, 68], "pollut": 84, "poly_rec_coeff": 37, "post": 87, "post_process": [11, 12, 13], "postprocess": [13, 85], "prior": [70, 73, 75, 78, 79, 82, 84], "priors1": 81, "probabilist": 87, "process": 87, "pylink": [14, 15, 16, 17, 70, 73, 75, 79, 81, 82, 84], "pylinkforwardmodel": [16, 87], "quickstart": 77, "rais": [13, 60, 67], "refer": [52, 55, 58], "reg_fast_ard": [54, 55, 56], "reg_fast_laplac": [57, 58], "regressionfastard": 55, "regressionfastlaplac": 58, "return": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 42, 47, 49, 52, 55, 58, 60, 61, 62, 63, 65, 66, 67, 68], "see": [], "sequenti": 87, "sequential_design": [59, 60, 61, 62, 63], "sequentialdesign": 60, "set": [69, 70, 73, 75, 79, 81, 82, 84, 87], "space": 78, "subdomain": [32, 63], "surrog": [70, 73, 75, 77, 79, 81, 82, 84, 86, 87], "surrogate_model": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "tabl": 77, "theori": [], "tradeoff": 69, "train": [69, 70, 73, 75, 79, 81, 82, 84, 86, 87], "tutori": 87, "uncertainti": 87, "update_precis": 56, "user": 83, "valid": 77, "vblinearregress": 26, "within_rang": 17}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API": [[71, "api"]], "Active learning: iteratively expanding the training set": [[69, "active-learning-iteratively-expanding-the-training-set"]], "Arguments": [[42, "arguments"], [42, "id2"], [60, "arguments"]], "Attributes": [[3, "attributes"], [5, "attributes"], [7, "attributes"], [9, "attributes"], [13, "attributes"], [16, "attributes"], [25, "attributes"], [26, "attributes"], [39, "attributes"], [42, "attributes"], [47, "attributes"], [49, "attributes"], [50, "attributes"], [52, "attributes"], [55, "attributes"], [58, "attributes"], [65, "attributes"]], "Bayesian Inference": [[87, "bayesian-inference"]], "Bayesian inference": [[72, "bayesian-inference"]], "Bayesian multi-model comparison": [[74, "bayesian-multi-model-comparison"]], "Contribution": [[77, "contribution"]], "Define probabilistic input model": [[87, "define-probabilistic-input-model"]], "Define surrogate (meta) model": [[87, "define-surrogate-meta-model"]], "Define the data uncertainty": [[87, "define-the-data-uncertainty"]], "Define the model with PyLinkForwardModel": [[87, "define-the-model-with-pylinkforwardmodel"]], "Discrepancy": [[70, "id3"], [73, "id3"]], "EXAMPLES": [[76, "examples"]], "Example": [[69, "example"], [72, "example"], [74, "example"], [78, "example"], [80, "example"], [85, "example"], [86, "example"]], "Example: Analytical function": [[70, "example-analytical-function"]], "Example: OHagan-function": [[82, "example-ohagan-function"]], "Example: beam": [[73, "example-beam"]], "Example: borehole": [[75, "example-borehole"]], "Example: ishigami": [[79, "example-ishigami"]], "Example: model comparison": [[81, "example-model-comparison"]], "Example: pollution": [[84, "example-pollution"]], "Examples": [[49, "examples"]], "Exploration, exploitation and tradeoff": [[69, "exploration-exploitation-and-tradeoff"]], "Further contents": [[77, "further-contents"]], "Import necessary libraries": [[87, "import-necessary-libraries"]], "Indices and tables": [[77, "indices-and-tables"]], "Installation": [[77, "installation"], [83, "installation"]], "License": [[77, "license"]], "Links": [[77, "links"]], "MetaModel options": [[86, "metamodel-options"]], "MetaModel settings": [[70, "id4"], [73, "id4"], [75, "id3"], [79, "id3"], [81, "id7"], [82, "id3"], [84, "id3"]], "Model 1: L2_model": [[81, "model-1-l2-model"]], "Model 1: NL2_model": [[81, "model-1-nl2-model"]], "Model 1: NL4_model": [[81, "model-1-nl4-model"]], "Model and Data": [[70, "model-and-data"], [73, "model-and-data"], [75, "model-and-data"], [79, "model-and-data"], [82, "model-and-data"], [84, "model-and-data"]], "Models": [[80, "models"]], "Note": [[39, "note"], [65, "note"]], "Notes": [[24, "notes"], [25, "notes"], [26, "notes"], [52, "notes"], [55, "notes"]], "Overview": [[83, "overview"]], "Parameters": [[3, "parameters"], [3, "id2"], [3, "id4"], [3, "id7"], [5, "parameters"], [5, "id1"], [5, "id3"], [5, "id5"], [5, "id7"], [5, "id9"], [5, "id11"], [5, "id13"], [5, "id15"], [7, "parameters"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id5"], [9, "id7"], [9, "id9"], [9, "id11"], [10, "parameters"], [13, "parameters"], [13, "id1"], [13, "id4"], [13, "id6"], [13, "id8"], [13, "id10"], [16, "parameters"], [16, "id2"], [16, "id4"], [16, "id6"], [16, "id8"], [16, "id10"], [16, "id12"], [17, "parameters"], [22, "parameters"], [24, "parameters"], [24, "id2"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id12"], [25, "id1"], [25, "id3"], [25, "id5"], [25, "id7"], [25, "id9"], [25, "id11"], [25, "id15"], [25, "id17"], [26, "id1"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [26, "id11"], [26, "id15"], [26, "id17"], [27, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [39, "parameters"], [39, "id2"], [39, "id4"], [39, "id6"], [39, "id8"], [39, "id10"], [39, "id12"], [39, "id14"], [39, "id16"], [40, "parameters"], [47, "parameters"], [47, "id2"], [47, "id4"], [52, "parameters"], [52, "id1"], [52, "id2"], [52, "id5"], [52, "id7"], [52, "id9"], [52, "id11"], [52, "id13"], [52, "id17"], [55, "parameters"], [55, "id1"], [55, "id3"], [55, "id5"], [55, "id8"], [55, "id10"], [55, "id14"], [55, "id16"], [58, "parameters"], [58, "id1"], [60, "parameters"], [60, "id1"], [60, "id3"], [60, "id6"], [60, "id9"], [60, "id11"], [60, "id13"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [65, "parameters"], [65, "id4"], [65, "id6"], [65, "id8"], [65, "id10"], [65, "id12"], [65, "id14"], [65, "id16"], [65, "id18"], [65, "id20"], [66, "parameters"], [67, "parameters"], [68, "parameters"]], "Parameters:": [[25, "parameters"], [26, "parameters"]], "Post-processing": [[87, "post-processing"]], "Postprocessing": [[85, "postprocessing"]], "Priors": [[70, "id2"], [73, "id2"], [75, "id2"], [79, "id2"], [82, "id2"], [84, "id2"]], "Priors, input space and experimental design": [[78, "priors-input-space-and-experimental-design"]], "Priors1": [[81, "id2"], [81, "id4"], [81, "id6"]], "Pylink model": [[70, "id1"], [73, "id1"], [75, "id1"], [79, "id1"], [82, "id1"], [84, "id1"]], "Pylink model1": [[81, "id1"], [81, "id3"], [81, "id5"]], "Quickstart": [[77, "quickstart"]], "Raises": [[13, "raises"], [60, "raises"], [67, "raises"]], "References": [[52, "references"], [55, "references"], [55, "id7"], [58, "references"], [58, "id2"]], "Returns": [[3, "returns"], [3, "id1"], [3, "id3"], [3, "id5"], [3, "id6"], [3, "id8"], [5, "returns"], [5, "id2"], [5, "id4"], [5, "id6"], [5, "id8"], [5, "id10"], [5, "id12"], [5, "id14"], [5, "id16"], [5, "id17"], [7, "returns"], [9, "returns"], [9, "id2"], [9, "id4"], [9, "id6"], [9, "id8"], [9, "id10"], [9, "id12"], [10, "returns"], [13, "returns"], [13, "id2"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [13, "id11"], [16, "returns"], [16, "id1"], [16, "id3"], [16, "id5"], [16, "id7"], [16, "id9"], [16, "id11"], [16, "id13"], [17, "returns"], [22, "returns"], [24, "returns"], [24, "id1"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id11"], [24, "id13"], [25, "returns"], [25, "id2"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [25, "id14"], [25, "id16"], [25, "id18"], [26, "returns"], [26, "id2"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [26, "id14"], [26, "id16"], [26, "id18"], [27, "returns"], [29, "returns"], [29, "id1"], [29, "id2"], [29, "id3"], [29, "id4"], [30, "returns"], [31, "returns"], [32, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [39, "returns"], [39, "id1"], [39, "id3"], [39, "id5"], [39, "id7"], [39, "id9"], [39, "id11"], [39, "id13"], [39, "id15"], [39, "id17"], [40, "returns"], [42, "returns"], [42, "id1"], [42, "id3"], [42, "id4"], [47, "returns"], [47, "id1"], [47, "id3"], [47, "id5"], [49, "returns"], [52, "returns"], [52, "id3"], [52, "id4"], [52, "id6"], [52, "id8"], [52, "id10"], [52, "id12"], [52, "id16"], [52, "id18"], [55, "returns"], [55, "id2"], [55, "id4"], [55, "id6"], [55, "id9"], [55, "id13"], [55, "id15"], [55, "id17"], [58, "returns"], [60, "returns"], [60, "id2"], [60, "id4"], [60, "id5"], [60, "id7"], [60, "id8"], [60, "id10"], [60, "id12"], [60, "id14"], [61, "returns"], [62, "returns"], [63, "returns"], [65, "returns"], [65, "id1"], [65, "id2"], [65, "id3"], [65, "id5"], [65, "id7"], [65, "id9"], [65, "id11"], [65, "id13"], [65, "id15"], [65, "id17"], [65, "id19"], [65, "id21"], [66, "returns"], [67, "returns"], [68, "returns"]], "Sequential training": [[87, "sequential-training"]], "Set the experimental design": [[87, "set-the-experimental-design"]], "Surrogate": [[70, "surrogate"], [73, "surrogate"], [75, "surrogate"], [79, "surrogate"], [82, "surrogate"], [84, "surrogate"]], "Surrogate-assisted\u00a0Bayesian validation of computational models": [[77, "surrogate-assisted-bayesian-validation-of-computational-models"]], "Surrogates 1-3": [[81, "surrogates-1-3"]], "TUTORIAL": [[87, "tutorial"]], "Train the surrogate with an engine": [[87, "train-the-surrogate-with-an-engine"]], "Training choices": [[70, "id5"], [73, "id5"], [75, "id4"], [79, "id4"], [81, "id8"], [82, "id4"], [84, "id4"]], "Training surrogate models": [[86, "training-surrogate-models"]], "Training with the engine": [[86, "training-with-the-engine"]], "USER GUIDE": [[83, "user-guide"]], "bayesvalidrox": [[0, "module-bayesvalidrox"]], "bayesvalidrox.bayes_inference": [[1, "module-bayesvalidrox.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference": [[2, "module-bayesvalidrox.bayes_inference.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, "bayesvalidrox-bayes-inference-bayes-inference-bayesinference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[4, "module-bayesvalidrox.bayes_inference.bayes_model_comparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, "bayesvalidrox-bayes-inference-bayes-model-comparison-bayesmodelcomparison"]], "bayesvalidrox.bayes_inference.discrepancy": [[6, "module-bayesvalidrox.bayes_inference.discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, "bayesvalidrox-bayes-inference-discrepancy-discrepancy"]], "bayesvalidrox.bayes_inference.mcmc": [[8, "module-bayesvalidrox.bayes_inference.mcmc"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, "bayesvalidrox-bayes-inference-mcmc-mcmc"]], "bayesvalidrox.bayes_inference.mcmc.gelman_rubin": [[10, "bayesvalidrox-bayes-inference-mcmc-gelman-rubin"]], "bayesvalidrox.post_processing": [[11, "module-bayesvalidrox.post_processing"]], "bayesvalidrox.post_processing.post_processing": [[12, "module-bayesvalidrox.post_processing.post_processing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, "bayesvalidrox-post-processing-post-processing-postprocessing"]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink"]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, "bayesvalidrox-pylink-pylink-pylinkforwardmodel"]], "bayesvalidrox.pylink.pylink.within_range": [[17, "bayesvalidrox-pylink-pylink-within-range"]], "bayesvalidrox.surrogate_models": [[18, "module-bayesvalidrox.surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[19, "module-bayesvalidrox.surrogate_models.adaptPlot"]], "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot": [[20, "bayesvalidrox-surrogate-models-adaptplot-adaptplot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[21, "module-bayesvalidrox.surrogate_models.apoly_construction"]], "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction": [[22, "bayesvalidrox-surrogate-models-apoly-construction-apoly-construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[23, "module-bayesvalidrox.surrogate_models.bayes_linear"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, "bayesvalidrox-surrogate-models-bayes-linear-bayesianlinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, "bayesvalidrox-surrogate-models-bayes-linear-eblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, "bayesvalidrox-surrogate-models-bayes-linear-vblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean": [[27, "bayesvalidrox-surrogate-models-bayes-linear-gamma-mean"]], "bayesvalidrox.surrogate_models.engine": [[28, "module-bayesvalidrox.surrogate_models.engine"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, "bayesvalidrox-surrogate-models-engine-engine"]], "bayesvalidrox.surrogate_models.engine.hellinger_distance": [[30, "bayesvalidrox-surrogate-models-engine-hellinger-distance"]], "bayesvalidrox.surrogate_models.engine.logpdf": [[31, "bayesvalidrox-surrogate-models-engine-logpdf"]], "bayesvalidrox.surrogate_models.engine.subdomain": [[32, "bayesvalidrox-surrogate-models-engine-subdomain"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[33, "module-bayesvalidrox.surrogate_models.eval_rec_rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule": [[34, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary": [[35, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule-arbitrary"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis": [[36, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-univ-basis"]], "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs": [[37, "bayesvalidrox-surrogate-models-eval-rec-rule-poly-rec-coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[38, "module-bayesvalidrox.surrogate_models.exp_designs"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, "bayesvalidrox-surrogate-models-exp-designs-expdesigns"]], "bayesvalidrox.surrogate_models.exp_designs.check_ranges": [[40, "bayesvalidrox-surrogate-models-exp-designs-check-ranges"]], "bayesvalidrox.surrogate_models.exploration": [[41, "module-bayesvalidrox.surrogate_models.exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, "bayesvalidrox-surrogate-models-exploration-exploration"]], "bayesvalidrox.surrogate_models.glexindex": [[43, "module-bayesvalidrox.surrogate_models.glexindex"]], "bayesvalidrox.surrogate_models.glexindex.cross_truncate": [[44, "bayesvalidrox-surrogate-models-glexindex-cross-truncate"]], "bayesvalidrox.surrogate_models.glexindex.glexindex": [[45, "bayesvalidrox-surrogate-models-glexindex-glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[46, "module-bayesvalidrox.surrogate_models.input_space"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, "bayesvalidrox-surrogate-models-input-space-inputspace"]], "bayesvalidrox.surrogate_models.inputs": [[48, "module-bayesvalidrox.surrogate_models.inputs"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, "bayesvalidrox-surrogate-models-inputs-input"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, "bayesvalidrox-surrogate-models-inputs-marginal"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[51, "module-bayesvalidrox.surrogate_models.orthogonal_matching_pursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-orthogonalmatchingpursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr": [[53, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-corr"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[54, "module-bayesvalidrox.surrogate_models.reg_fast_ard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, "bayesvalidrox-surrogate-models-reg-fast-ard-regressionfastard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions": [[56, "bayesvalidrox-surrogate-models-reg-fast-ard-update-precisions"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[57, "module-bayesvalidrox.surrogate_models.reg_fast_laplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, "bayesvalidrox-surrogate-models-reg-fast-laplace-regressionfastlaplace"]], "bayesvalidrox.surrogate_models.sequential_design": [[59, "module-bayesvalidrox.surrogate_models.sequential_design"]], "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign": [[60, "bayesvalidrox-surrogate-models-sequential-design-sequentialdesign"]], "bayesvalidrox.surrogate_models.sequential_design.hellinger_distance": [[61, "bayesvalidrox-surrogate-models-sequential-design-hellinger-distance"]], "bayesvalidrox.surrogate_models.sequential_design.logpdf": [[62, "bayesvalidrox-surrogate-models-sequential-design-logpdf"]], "bayesvalidrox.surrogate_models.sequential_design.subdomain": [[63, "bayesvalidrox-surrogate-models-sequential-design-subdomain"]], "bayesvalidrox.surrogate_models.surrogate_models": [[64, "module-bayesvalidrox.surrogate_models.surrogate_models"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[65, "bayesvalidrox-surrogate-models-surrogate-models-metamodel"]], "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error": [[66, "bayesvalidrox-surrogate-models-surrogate-models-corr-loocv-error"]], "bayesvalidrox.surrogate_models.surrogate_models.create_psi": [[67, "bayesvalidrox-surrogate-models-surrogate-models-create-psi"]], "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator": [[68, "bayesvalidrox-surrogate-models-surrogate-models-gaussian-process-emulator"]]}, "docnames": ["_autosummary/bayesvalidrox", "_autosummary/bayesvalidrox.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "_autosummary/bayesvalidrox.bayes_inference.discrepancy", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "_autosummary/bayesvalidrox.bayes_inference.mcmc", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "_autosummary/bayesvalidrox.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing", "_autosummary/bayesvalidrox.pylink", "_autosummary/bayesvalidrox.pylink.pylink", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel", "_autosummary/bayesvalidrox.pylink.pylink.within_range", "_autosummary/bayesvalidrox.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "_autosummary/bayesvalidrox.surrogate_models.engine", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges", "_autosummary/bayesvalidrox.surrogate_models.exploration", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration", "_autosummary/bayesvalidrox.surrogate_models.glexindex", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex", "_autosummary/bayesvalidrox.surrogate_models.input_space", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace", "_autosummary/bayesvalidrox.surrogate_models.inputs", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "_autosummary/bayesvalidrox.surrogate_models.sequential_design", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "al_description", "analyticalfunction", "api", "bayes_description", "beam", "bmc_description", "borehole", "examples", "index", "input_description", "ishigami", "model_description", "modelcomparison", "ohaganfunction", "packagedescription", "pollution", "post_description", "surrogate_description", "tutorial"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["_autosummary/bayesvalidrox.rst", "_autosummary/bayesvalidrox.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.rst", "_autosummary/bayesvalidrox.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.rst", "_autosummary/bayesvalidrox.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.rst", "_autosummary/bayesvalidrox.pylink.pylink.within_range.rst", "_autosummary/bayesvalidrox.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.rst", "al_description.rst", "analyticalfunction.rst", "api.rst", "bayes_description.rst", "beam.rst", "bmc_description.rst", "borehole.rst", "examples.rst", "index.rst", "input_description.rst", "ishigami.rst", "model_description.rst", "modelcomparison.rst", "ohaganfunction.rst", "packagedescription.rst", "pollution.rst", "post_description.rst", "surrogate_description.rst", "tutorial.rst"], "indexentries": {}, "objects": {"": [[0, 0, 0, "-", "bayesvalidrox"]], "bayesvalidrox": [[1, 0, 0, "-", "bayes_inference"], [11, 0, 0, "-", "post_processing"], [14, 0, 0, "-", "pylink"], [18, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.bayes_inference": [[2, 0, 0, "-", "bayes_inference"], [4, 0, 0, "-", "bayes_model_comparison"], [6, 0, 0, "-", "discrepancy"], [8, 0, 0, "-", "mcmc"]], "bayesvalidrox.bayes_inference.bayes_inference": [[3, 1, 1, "", "BayesInference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, 2, 1, "", "__init__"], [3, 2, 1, "", "create_error_model"], [3, 2, 1, "", "create_inference"], [3, 2, 1, "", "normpdf"], [3, 2, 1, "", "perform_bootstrap"], [3, 2, 1, "", "plot_log_BME"], [3, 2, 1, "", "plot_post_params"], [3, 2, 1, "", "setup_inference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[5, 1, 1, "", "BayesModelComparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, 2, 1, "", "__init__"], [5, 2, 1, "", "cal_model_weight"], [5, 2, 1, "", "calc_bayes_factors"], [5, 2, 1, "", "calc_justifiability_analysis"], [5, 2, 1, "", "calc_model_weights"], [5, 2, 1, "", "generate_dataset"], [5, 2, 1, "", "model_comparison_all"], [5, 2, 1, "", "plot_bayes_factor"], [5, 2, 1, "", "plot_just_analysis"], [5, 2, 1, "", "plot_model_weights"], [5, 2, 1, "", "setup"]], "bayesvalidrox.bayes_inference.discrepancy": [[7, 1, 1, "", "Discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, 2, 1, "", "__init__"], [7, 2, 1, "", "get_sample"]], "bayesvalidrox.bayes_inference.mcmc": [[9, 1, 1, "", "MCMC"], [10, 3, 1, "", "gelman_rubin"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, 2, 1, "", "__init__"], [9, 2, 1, "", "eval_model"], [9, 2, 1, "", "log_likelihood"], [9, 2, 1, "", "log_posterior"], [9, 2, 1, "", "log_prior"], [9, 2, 1, "", "normpdf"], [9, 2, 1, "", "run_sampler"], [9, 2, 1, "", "train_error_model"]], "bayesvalidrox.post_processing": [[12, 0, 0, "-", "post_processing"]], "bayesvalidrox.post_processing.post_processing": [[13, 1, 1, "", "PostProcessing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, 2, 1, "", "__init__"], [13, 2, 1, "", "check_accuracy"], [13, 2, 1, "", "check_reg_quality"], [13, 2, 1, "", "compute_pce_moments"], [13, 2, 1, "", "plot_moments"], [13, 2, 1, "", "plot_seq_design_diagnostics"], [13, 2, 1, "", "sobol_indices"], [13, 2, 1, "", "valid_metamodel"]], "bayesvalidrox.pylink": [[15, 0, 0, "-", "pylink"]], "bayesvalidrox.pylink.pylink": [[16, 1, 1, "", "PyLinkForwardModel"], [17, 3, 1, "", "within_range"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, 1, 1, "", "OutputData"], [16, 2, 1, "", "__init__"], [16, 2, 1, "", "read_observation"], [16, 2, 1, "", "read_output"], [16, 2, 1, "", "run_command"], [16, 2, 1, "", "run_forwardmodel"], [16, 2, 1, "", "run_model_parallel"], [16, 2, 1, "", "uMBridge_model"], [16, 2, 1, "", "update_input_params"], [16, 2, 1, "", "zip_subdirs"]], "bayesvalidrox.surrogate_models": [[19, 0, 0, "-", "adaptPlot"], [21, 0, 0, "-", "apoly_construction"], [23, 0, 0, "-", "bayes_linear"], [28, 0, 0, "-", "engine"], [33, 0, 0, "-", "eval_rec_rule"], [38, 0, 0, "-", "exp_designs"], [41, 0, 0, "-", "exploration"], [43, 0, 0, "-", "glexindex"], [46, 0, 0, "-", "input_space"], [48, 0, 0, "-", "inputs"], [51, 0, 0, "-", "orthogonal_matching_pursuit"], [54, 0, 0, "-", "reg_fast_ard"], [57, 0, 0, "-", "reg_fast_laplace"], [59, 0, 0, "-", "sequential_design"], [64, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[20, 3, 1, "", "adaptPlot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[22, 3, 1, "", "apoly_construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[24, 1, 1, "", "BayesianLinearRegression"], [25, 1, 1, "", "EBLinearRegression"], [26, 1, 1, "", "VBLinearRegression"], [27, 3, 1, "", "gamma_mean"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, 2, 1, "", "__init__"], [24, 2, 1, "", "fit"], [24, 2, 1, "", "get_metadata_routing"], [24, 2, 1, "", "get_params"], [24, 2, 1, "", "predict"], [24, 2, 1, "", "predict_dist"], [24, 2, 1, "", "score"], [24, 2, 1, "", "set_params"], [24, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, 2, 1, "", "__init__"], [25, 2, 1, "", "fit"], [25, 2, 1, "", "get_metadata_routing"], [25, 2, 1, "", "get_params"], [25, 2, 1, "", "predict"], [25, 2, 1, "", "predict_dist"], [25, 2, 1, "", "score"], [25, 2, 1, "", "set_params"], [25, 2, 1, "", "set_predict_request"], [25, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, 2, 1, "", "__init__"], [26, 2, 1, "", "fit"], [26, 2, 1, "", "get_metadata_routing"], [26, 2, 1, "", "get_params"], [26, 2, 1, "", "predict"], [26, 2, 1, "", "predict_dist"], [26, 2, 1, "", "score"], [26, 2, 1, "", "set_params"], [26, 2, 1, "", "set_predict_request"], [26, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.engine": [[29, 1, 1, "", "Engine"], [30, 3, 1, "", "hellinger_distance"], [31, 3, 1, "", "logpdf"], [32, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, 2, 1, "", "__init__"], [29, 2, 1, "", "eval_metamodel"], [29, 2, 1, "", "start_engine"], [29, 2, 1, "", "train_normal"], [29, 2, 1, "", "train_seq_design"], [29, 2, 1, "", "train_sequential"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[34, 3, 1, "", "eval_rec_rule"], [35, 3, 1, "", "eval_rec_rule_arbitrary"], [36, 3, 1, "", "eval_univ_basis"], [37, 3, 1, "", "poly_rec_coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[39, 1, 1, "", "ExpDesigns"], [40, 3, 1, "", "check_ranges"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, 2, 1, "", "__init__"], [39, 2, 1, "", "build_polytypes"], [39, 2, 1, "", "check_valid_inputs"], [39, 2, 1, "", "generate_ED"], [39, 2, 1, "", "generate_samples"], [39, 2, 1, "", "init_param_space"], [39, 2, 1, "", "pcm_sampler"], [39, 2, 1, "", "plot_samples"], [39, 2, 1, "", "random_sampler"], [39, 2, 1, "", "read_from_file"], [39, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.exploration": [[42, 1, 1, "", "Exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, 2, 1, "", "__init__"], [42, 2, 1, "", "approximate_voronoi"], [42, 2, 1, "", "get_exploration_samples"], [42, 2, 1, "", "get_mc_samples"], [42, 2, 1, "", "get_vornoi_samples"]], "bayesvalidrox.surrogate_models.glexindex": [[44, 3, 1, "", "cross_truncate"], [45, 3, 1, "", "glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[47, 1, 1, "", "InputSpace"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, 2, 1, "", "__init__"], [47, 2, 1, "", "build_polytypes"], [47, 2, 1, "", "check_valid_inputs"], [47, 2, 1, "", "init_param_space"], [47, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.inputs": [[49, 1, 1, "", "Input"], [50, 1, 1, "", "Marginal"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, 2, 1, "", "__init__"], [49, 2, 1, "", "add_marginals"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, 2, 1, "", "__init__"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[52, 1, 1, "", "OrthogonalMatchingPursuit"], [53, 3, 1, "", "corr"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, 2, 1, "", "__init__"], [52, 2, 1, "", "blockwise_inverse"], [52, 2, 1, "", "fit"], [52, 2, 1, "", "get_metadata_routing"], [52, 2, 1, "", "get_params"], [52, 2, 1, "", "loo_error"], [52, 2, 1, "", "predict"], [52, 2, 1, "", "score"], [52, 2, 1, "", "set_params"], [52, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[55, 1, 1, "", "RegressionFastARD"], [56, 3, 1, "", "update_precisions"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, 2, 1, "", "__init__"], [55, 2, 1, "", "fit"], [55, 2, 1, "", "get_metadata_routing"], [55, 2, 1, "", "get_params"], [55, 2, 1, "", "log_marginal_like"], [55, 2, 1, "", "predict"], [55, 2, 1, "", "score"], [55, 2, 1, "", "set_params"], [55, 2, 1, "", "set_predict_request"], [55, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[58, 1, 1, "", "RegressionFastLaplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, 2, 1, "", "__init__"], [58, 2, 1, "", "predict"]], "bayesvalidrox.surrogate_models.sequential_design": [[60, 1, 1, "", "SequentialDesign"], [61, 3, 1, "", "hellinger_distance"], [62, 3, 1, "", "logpdf"], [63, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "choose_next_sample"], [60, 2, 1, "", "dual_annealing"], [60, 2, 1, "", "run_util_func"], [60, 2, 1, "", "start_seqdesign"], [60, 2, 1, "", "tradeoff_weights"], [60, 2, 1, "", "util_AlphOptDesign"], [60, 2, 1, "", "util_BayesianActiveDesign"], [60, 2, 1, "", "util_BayesianDesign"], [60, 2, 1, "", "util_VarBasedDesign"]], "bayesvalidrox.surrogate_models.surrogate_models": [[65, 1, 1, "", "MetaModel"], [66, 3, 1, "", "corr_loocv_error"], [67, 3, 1, "", "create_psi"], [68, 3, 1, "", "gaussian_process_emulator"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[65, 2, 1, "", "__init__"], [65, 2, 1, "", "adaptive_regression"], [65, 2, 1, "", "add_InputSpace"], [65, 1, 1, "", "auto_vivification"], [65, 2, 1, "", "build_metamodel"], [65, 2, 1, "", "copy_meta_model_opts"], [65, 2, 1, "", "create_model_error"], [65, 2, 1, "", "eval_metamodel"], [65, 2, 1, "", "eval_model_error"], [65, 2, 1, "", "fit"], [65, 2, 1, "", "generate_polynomials"], [65, 2, 1, "", "pca_transformation"], [65, 2, 1, "", "regression"], [65, 2, 1, "", "univ_basis_vals"], [65, 2, 1, "", "update_pce_coeffs"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel.auto_vivification": [[65, 2, 1, "", "clear"], [65, 2, 1, "", "copy"], [65, 2, 1, "", "fromkeys"], [65, 2, 1, "", "get"], [65, 2, 1, "", "items"], [65, 2, 1, "", "keys"], [65, 2, 1, "", "pop"], [65, 2, 1, "", "popitem"], [65, 2, 1, "", "setdefault"], [65, 2, 1, "", "update"], [65, 2, 1, "", "values"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"": [9, 13, 16, 22, 24, 25, 26, 33, 42, 52, 55, 56, 58, 60, 65, 82, 87], "0": [3, 5, 7, 16, 24, 25, 26, 30, 44, 45, 49, 52, 55, 58, 61, 65, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87], "0001": 26, "001": [13, 25, 55, 72], "002": 22, "01": [5, 72], "032": 42, "045e": 85, "05": [3, 22, 42, 85], "057": 72, "06": 25, "07": [58, 85], "08": 51, "1": [3, 5, 9, 10, 13, 16, 24, 25, 26, 30, 33, 34, 35, 36, 39, 42, 44, 45, 47, 49, 52, 55, 58, 60, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87], "10": [13, 22, 42, 44, 58, 69, 70, 77, 85, 86, 87], "100": [3, 26, 55, 65, 73, 74, 78, 81, 82, 87], "1000": [5, 13, 58, 69, 70, 87], "10000": 82, "100000": 3, "1016": [13, 22, 42], "104": 33, "106": [22, 60], "106737": 13, "11": [13, 42, 85], "12": [65, 70, 81], "125": 9, "13": 19, "13380": 72, "14": [33, 51, 69, 79, 82], "15": [51, 82, 85], "150": [70, 84, 87], "16": [39, 69, 87], "171": 60, "179": 22, "18082457": 65, "182": 60, "19": [54, 58], "190": 22, "195": 13, "1993": 52, "1d": 72, "1e": [25, 26, 39, 55, 58, 69, 87], "1e4": 72, "1e5": 87, "2": [3, 7, 9, 13, 24, 25, 26, 33, 39, 44, 45, 47, 52, 55, 58, 60, 65, 66, 70, 72, 73, 75, 77, 79, 80, 81, 84, 85, 87], "200": [3, 79, 87], "2001": 55, "2002": 87, "2003": [55, 58], "2004": 82, "2006": [55, 58], "2009": [52, 58, 66], "2010": [9, 42], "2011": [13, 42, 52, 66, 87], "2012": [22, 87], "2013": [9, 75, 79, 84], "2014": 33, "2016": 60, "2017": 60, "2018": 60, "2020": [13, 19, 54, 60], "2021": 33, "2022": [33, 51], "2051": 42, "2055": 42, "214": 42, "22": 60, "224e": 85, "23": [24, 25, 26, 52, 55], "230": [52, 66], "234": 72, "2345": [52, 66], "2367": [52, 66], "24": [19, 54], "2554": 33, "2563": 33, "27": 13, "27th": 52, "2_": 87, "2d": [16, 31, 62, 65], "2e": 3, "2nd": 33, "3": [3, 24, 25, 26, 37, 39, 42, 45, 47, 52, 55, 58, 70, 74, 75, 77, 79, 82, 83, 86, 87], "30": [72, 74, 87], "300": [25, 55, 75], "306": 9, "332": 60, "382": 60, "4": [26, 33, 39, 45, 69, 70, 72, 73, 75, 81, 82, 84, 87], "40": 52, "406e": 85, "407": 60, "41": 54, "44": 52, "45": 54, "46": 19, "5": [9, 25, 49, 60, 70, 72, 75, 78, 82, 85, 87], "50": 75, "500": [72, 82, 87], "5000": 75, "500000": 3, "513e": 85, "53": 58, "59": 51, "5a": 22, "6": [45, 52, 66, 73], "61": 33, "63": 58, "65": [9, 82], "651879": 65, "66": 82, "683": 42, "696": 42, "7": [58, 65, 82], "70569": [22, 33], "75": [73, 87], "751": 82, "752": 72, "769": 82, "8": [60, 75, 84], "80": 9, "85": [70, 77, 86], "890": 60, "9": [77, 83, 86, 87], "925": 9, "99": 65, "999": 65, "A": [3, 5, 7, 9, 13, 16, 24, 25, 26, 33, 39, 42, 47, 49, 52, 55, 56, 58, 60, 65, 70, 74, 75, 79, 80, 81, 84, 85, 87], "As": [69, 72, 74, 87], "FOR": [75, 79, 84], "For": [7, 10, 13, 24, 25, 26, 39, 52, 55, 65, 69, 72, 74, 75, 77, 79, 80, 84, 86, 87], "If": [3, 7, 9, 13, 16, 24, 25, 26, 39, 40, 45, 47, 49, 52, 55, 58, 65, 72, 75, 77, 78, 79, 80, 83, 84, 86, 87], "In": [3, 7, 42, 65, 69, 72, 74, 78, 80, 86, 87], "It": [16, 60, 65, 77, 83], "Its": 80, "NO": [75, 79, 84], "NOT": [75, 79, 84], "No": [60, 75, 79, 81, 82, 84], "OF": [75, 79, 84], "OR": [75, 79, 84], "One": [29, 65], "THE": [75, 79, 84], "THERE": [75, 79, 84], "The": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 40, 42, 44, 45, 47, 50, 52, 55, 60, 61, 65, 66, 68, 69, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85, 86, 87], "Then": [72, 74, 83, 86], "There": 65, "These": [65, 72, 74, 86, 87], "To": [65, 72, 74, 85], "Will": 39, "With": [7, 72, 77, 80, 86, 87], "_": [7, 86], "__": [24, 25, 26, 52, 55], "__init__": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65], "_i": 7, "aa": 55, "ab": [34, 37], "about": 76, "abov": [3, 81], "absolut": [55, 58], "abstract": [24, 55], "accept": [65, 72, 87], "accord": [86, 87], "accordingli": [72, 75, 79, 84], "account": 83, "accuraci": [13, 83, 85, 87], "accuracycheckmetamodel": 87, "achiev": [30, 61, 87], "activ": [3, 39, 56, 60, 70, 73, 79, 83, 84, 85, 86, 87], "active_": [52, 55, 58], "actual": [16, 29, 60, 86, 87], "ad": [24, 25, 26, 52, 55, 56, 72, 78], "adapt": [16, 29, 42, 52, 60, 65, 66, 69], "adapt_verbos": 39, "adaptive_regress": 65, "add": [49, 72, 87], "add_expdesign": [], "add_inputspac": 65, "add_margin": [49, 77, 78, 87], "addit": [7, 16, 69, 72, 74, 80, 87], "addition": [75, 78, 79, 84], "adopt": 87, "advwatr": 13, "affin": 9, "after": 69, "again": [16, 87], "against": [17, 74, 78, 83, 85], "ai": 9, "ainv": 52, "al": [3, 69, 70, 75, 82], "al_descript": [], "alc": 60, "alg": 58, "algorithm": [52, 55, 58, 60, 65], "alia": [24, 25, 26, 52, 55], "all": [3, 5, 13, 16, 17, 24, 25, 26, 29, 36, 39, 47, 52, 55, 60, 65, 67, 69, 72, 77, 78, 81, 83, 85, 87], "all_candid": 42, "all_just_data": 5, "all_output": 16, "allow": [16, 24, 25, 26, 52, 55, 80, 85, 87], "alm": 60, "almost": 82, "along": [36, 60, 65, 87], "alpha": 25, "alpha_": [25, 26, 55, 58], "alphabet": [39, 60], "alreadi": [52, 55, 58, 65], "also": [29, 39, 65, 69, 72, 74, 77, 80, 86, 87], "altern": [29, 86], "alwai": [24, 25, 26, 45, 52, 55], "amazaspshumik": 55, "an": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 42, 47, 50, 52, 55, 60, 65, 69, 72, 73, 74, 77, 78, 80, 81, 83, 84, 85, 86], "analysi": [3, 5, 13, 16, 33, 52, 55, 65, 66, 75, 79, 82, 83, 86, 87], "analyt": [76, 87], "analytical_funct": 87, "analyticfunc": 87, "anaylsi": 13, "angl": [52, 65, 66, 86], "ani": [3, 52, 65, 69, 75, 79, 80, 84, 87], "anneal": [39, 69], "anoth": [16, 42, 74, 77, 87], "apc": [22, 64, 65, 70, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87], "api": 77, "apoly_coeff": 36, "app": 39, "appear": 72, "appli": [9, 60, 65, 78, 86], "applic": [13, 37, 52, 85], "apply_constraint": 65, "approach": [10, 60, 82], "approxim": [3, 9, 26, 42, 52, 85, 86, 87], "approximate_voronoi": 42, "ar": [3, 5, 7, 9, 10, 13, 16, 17, 24, 25, 26, 29, 34, 35, 39, 44, 45, 52, 55, 65, 69, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87], "arang": [80, 87], "arbitrari": [22, 65, 77, 86, 87], "arbitrarili": [24, 25, 26, 52, 55], "ard": [55, 65, 86], "area": 42, "arg": [3, 44, 45], "argument": [3, 16, 67, 80, 87], "around": 87, "arrai": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 42, 44, 45, 47, 50, 52, 55, 58, 60, 61, 62, 65, 66, 67, 68, 72, 80], "array_lik": [31, 62], "asilomar": 52, "ask": 72, "askei": 37, "aspect": 83, "assembl": [67, 69], "asset": 10, "assign": [3, 30, 39, 61, 74], "assist": [70, 84], "associ": [38, 42, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 86, 87], "assum": [16, 26, 45, 75, 79, 84, 87], "astronom": 9, "asumpt": 5, "attribut": 78, "aug": 19, "author": [19, 22, 33, 51, 54, 75, 79, 84], "auto": 72, "auto_vivif": 65, "automat": [55, 78, 87], "autoselect": 68, "autovivif": 65, "aux_fil": 16, "auxiliari": 16, "avail": [3, 7, 16, 39, 47, 50, 65, 69, 73, 77, 83, 86, 87], "avali": 49, "averag": 5, "avoid": 87, "axi": [13, 45, 80], "b": [3, 7, 10, 13, 26, 27, 33, 52, 65, 66, 80, 82, 85], "b_i": 44, "babacan": 58, "bal": [60, 70], "bar": 13, "barro": 13, "base": [3, 5, 7, 9, 13, 16, 22, 24, 25, 26, 29, 31, 33, 35, 36, 39, 42, 47, 49, 50, 52, 55, 56, 58, 60, 62, 65, 66, 69, 72, 74, 78, 81, 83, 84, 86, 87], "basi": [22, 67], "basic": 87, "basis_indic": [65, 67], "bay": [3, 5, 9, 24, 25, 55, 74, 83], "bayes_": 87, "bayes_env": 83, "bayes_inf": [], "bayes_infer": [72, 74, 87], "bayes_loocv": 3, "bayes_model_comparison": 74, "bayes_pc": 87, "bayesactdesign": [39, 60, 87], "bayesfactor": 5, "bayesian": [3, 5, 7, 9, 13, 16, 24, 25, 26, 55, 58, 60, 65, 69, 70, 79, 82, 83, 84, 86], "bayesian3": [60, 69], "bayesianlinearregress": [25, 26], "bayesinfer": [5, 72, 74, 87], "bayesmodelcomparison": 74, "bayesobj": 72, "bayesopt": [9, 74, 87], "bayesoptdesign": [39, 60], "bayesvalidrox": [69, 71, 72, 73, 74, 76, 77, 78, 80, 83, 85, 86, 87], "bc": [58, 79, 84], "beam": [76, 80], "beam9point": 73, "becaus": [24, 25, 26, 52, 55], "beck": 60, "becom": 87, "been": [16, 39], "befor": [16, 29, 60, 65, 86, 87], "beforehand": 39, "behaviour": 86, "being": [3, 9, 16, 69], "below": [55, 58], "best": [24, 25, 26, 52, 55, 65, 68, 83], "beta": [55, 78], "beta_": [25, 26], "better": 25, "between": [10, 17, 30, 61, 65, 69, 72, 87], "bia": [25, 26], "bias_input": [9, 87], "bias_term": 58, "biasinput": 9, "bin": 83, "binder": 16, "bingham": [75, 79, 84], "bishop": [55, 58], "bit": 87, "blatman": [52, 66, 87], "blob": [10, 43, 55], "blockwise_invers": 52, "bm": 5, "bmc": 3, "bme": [3, 5, 13, 87], "bme_dict": 5, "bonu": [], "bool": [3, 5, 16, 17, 24, 25, 26, 29, 39, 40, 45, 47, 49, 52, 55, 58, 60, 65, 68], "boolean": [25, 44, 52, 55, 58], "bootstrap": [3, 5, 65, 70, 72, 74, 84, 86], "bootstrap_method": 65, "bootstrap_nois": [3, 72], "borehol": 76, "both": [10, 44, 45, 85, 87], "bound": [17, 32, 39, 44, 45, 47, 60, 63], "bound_tupl": [39, 47], "boundari": 60, "bridg": 80, "brief": 83, "broad": [25, 80, 86], "brr": [65, 86], "bug": [], "build": [29, 65, 74, 77, 78, 83, 86], "build_metamodel": 65, "build_polytyp": [39, 47], "built": [46, 86], "burn": [3, 72], "bvr": [], "c": [24, 26, 40, 52, 55, 58], "c_point": 16, "ca": [75, 79, 84], "cai": 60, "cal_model_weight": 5, "calc_bayes_factor": 5, "calc_justifiability_analysi": 5, "calc_model_weight": 5, "calcul": [3, 5, 9, 24, 25, 26, 39, 47, 52, 55, 58, 60, 66, 78, 83, 85, 87], "calib": [3, 13, 16], "calibr": [3, 7, 13, 16, 70, 84, 87], "call": [10, 15, 16, 24, 25, 26, 52, 55, 60, 69, 72, 74, 77, 86, 87], "calss": 16, "cambridg": 42, "can": [3, 7, 13, 16, 24, 25, 26, 29, 44, 49, 52, 55, 65, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 86, 87], "candid": [39, 42, 60], "captur": 86, "carlo": [3, 9, 16, 42, 87], "case": [3, 7, 13, 16, 25, 42, 65, 80], "cd": 83, "cell": 42, "center": [42, 52, 55, 58], "central": 77, "chain": [3, 9, 10, 72], "chair": 33, "chang": [13, 24, 25, 26, 52, 55, 58, 69, 72], "chao": [13, 22, 33, 52, 60, 65, 66, 77, 85, 86, 87], "chaospi": [39, 47], "characteris": [25, 26, 55, 58], "characterist": [70, 73], "chart": 13, "cheap": 87, "chebyshev": [39, 78], "check": [3, 13, 16, 17, 24, 25, 26, 39, 40, 47, 52, 55, 75, 77, 78, 79, 82, 83, 85, 87], "check_accuraci": [13, 85], "check_reg_qu": 13, "check_valid_input": [39, 47], "chemic": 60, "choic": 69, "choos": [29, 60, 69, 83, 87], "choose_next_sampl": 60, "chosen": [3, 69, 72, 82, 86, 87], "cite": [], "class": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 23, 24, 25, 26, 28, 29, 38, 39, 41, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 64, 65, 69, 72, 74, 77, 78, 80, 83, 85, 86, 87], "classic": 37, "clear": 65, "clearli": [75, 79, 84], "clermont": [52, 66], "clf": 66, "clf_bia": 56, "clone": 83, "code": [16, 74, 87], "coef_": [25, 26, 52, 55, 58], "coeff": [52, 66], "coeffic": 65, "coeffici": [22, 24, 25, 26, 35, 36, 37, 52, 55, 58, 65, 66, 82, 87], "coffici": [52, 66], "cohn": 60, "collaps": 42, "collect": 74, "colloc": [16, 39], "column": [16, 72, 87], "com": [10, 13, 43, 55, 58, 65], "combin": [10, 52, 65, 77, 86, 87], "come": 69, "command": [16, 42, 73, 80], "comment": [75, 79, 84], "common": 49, "commun": 9, "compar": [3, 9, 16, 65, 74, 83, 85], "comparison": [5, 39, 76, 77, 83, 85, 87], "compet": 74, "complet": 80, "complex": 82, "compon": [13, 24, 25, 26, 52, 55, 65, 86], "compress": [58, 79, 84], "comput": [9, 13, 25, 26, 27, 31, 35, 36, 37, 42, 52, 55, 58, 60, 62, 65, 66, 83, 85, 87], "compute_pce_mo": 13, "compute_scor": 55, "computed_scor": 55, "condit": 69, "conf": 33, "confer": 52, "confus": [5, 74], "confusion_matrix": 5, "consecut": 74, "consid": [7, 45, 78, 86, 87], "consist": [24, 25, 26, 52, 55, 86], "consol": [72, 85], "constant": [24, 25, 26, 52, 55], "constraint": 65, "construct": [22, 78], "contact": 77, "contain": [3, 5, 9, 16, 24, 25, 26, 39, 47, 50, 52, 55, 60, 65, 72, 74, 77, 78, 80, 83, 84, 87], "context": 7, "contibut": 77, "continu": [30, 61], "contribut": 82, "converg": [10, 25, 26, 87], "convini": 65, "coordin": [16, 65], "copi": [16, 25, 52, 55, 58, 65], "copy_meta_model_opt": 65, "copy_x": [24, 25, 26, 52, 55, 58], "copyright": [75, 79, 84], "core": 87, "corner": 3, "corner_title_fmt": 3, "correct": [52, 66], "correl": [72, 81], "correspond": [13, 16, 24, 25, 26, 34, 42, 50, 60, 65, 78, 83, 85, 86], "cosin": 81, "cost": 86, "couckuyt": 42, "count": 45, "cov": [31, 62], "covari": [3, 7, 9, 25, 26, 31, 55, 58, 62], "cpu": 16, "creat": [3, 5, 16, 19, 33, 39, 42, 47, 51, 54, 65, 73, 74, 77, 78, 80, 83, 86, 87], "create_error_model": 3, "create_infer": [3, 72, 87], "create_metamodel": [], "create_model_error": 65, "credit": 43, "crieterion": 42, "criteria": 44, "criterion": 60, "crombecq": 42, "cross": [3, 39, 45, 65, 69], "cross_trunc": 45, "csv": 16, "currecnt": 16, "current": [16, 22, 69, 83], "d": [9, 26, 39, 42, 52, 58, 60, 65, 84, 86], "data": [3, 5, 9, 16, 17, 22, 24, 25, 26, 31, 39, 47, 49, 50, 52, 55, 58, 62, 65, 69, 72, 78, 81, 83, 86], "data_noise_level": 5, "datafram": [3, 7, 9, 16, 72, 87], "dataset": 86, "dbingham": [75, 79, 84], "de": [13, 22, 33, 77, 83], "deafault": 25, "deal": [75, 79, 82], "decai": 60, "decomposit": 52, "decreas": [60, 69, 84], "dedic": [72, 87], "deep": [24, 25, 26, 52, 55], "def": [74, 77, 80], "default": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 50, 52, 55, 58, 60, 65, 68], "defin": [3, 5, 7, 10, 16, 24, 25, 26, 32, 34, 39, 42, 49, 52, 55, 63, 65, 69, 72, 74, 77, 78, 80, 83, 86], "definit": [7, 22, 77, 78, 87], "deflect": 73, "degre": [22, 34, 35, 36, 37, 39, 47, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "degthre": 74, "delet": 56, "demeest": 42, "denot": 80, "depart": [22, 33], "depend": [25, 26, 49, 70, 72, 73, 75, 77, 79, 81, 82, 84, 86], "deprec": 87, "depth": 77, "derek": [75, 79, 84], "deriv": [75, 79, 84], "describ": [9, 58, 77, 78, 83, 87], "descrip": 7, "descript": [3, 5, 9, 16, 31, 60, 62, 65, 77], "design": [13, 16, 29, 38, 39, 42, 60, 65, 67, 69, 70, 77, 80, 83, 84, 86], "detail": [13, 70, 75, 77, 78, 79, 81, 84], "determin": [24, 25, 26, 52, 55], "deviat": [13, 16, 65, 69, 86, 87], "deviatioon": [29, 65], "dhaen": 42, "diagnost": [72, 85], "diagon": [3, 7, 9], "dict": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 35, 36, 37, 52, 55, 60, 65], "dictionari": [3, 5, 9, 13, 16, 60, 65, 72, 74, 80, 87], "differ": [30, 61, 65, 77, 81, 87], "dim": 65, "dim_red_method": 65, "dimens": [45, 52], "dimension": [25, 26, 55, 58, 65, 80, 86], "dir_nam": 16, "direct": [36, 65, 86], "directi": 87, "directli": [72, 78, 86, 87], "directori": [9, 13, 16, 72, 87], "disc_typ": 7, "discoutputopt": 87, "discrep": [3, 9, 72, 74, 87], "discrepancyopt": [72, 74, 87], "discuss": 87, "displai": [13, 87], "disregard": [24, 25, 26, 52, 55], "disrep": 7, "dissert": [52, 66], "dist": [3, 39, 47], "dist_typ": [49, 50, 77, 78, 87], "distanc": [30, 61], "distibut": 5, "distinct": 74, "distribut": [3, 7, 9, 24, 25, 26, 27, 30, 31, 39, 46, 47, 48, 50, 52, 55, 58, 61, 62, 65, 70, 72, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87], "diverg": [3, 13, 39], "divid": [32, 63], "dkl": [39, 60, 70, 87], "do": [13, 29, 60, 67, 69, 75, 77, 79, 83, 84, 87], "doc": [], "doctor": [52, 66], "document": 77, "doe": [16, 65, 72], "doi": [13, 22, 42], "domain": [32, 42, 63], "done": [16, 29, 39, 65, 72, 87], "doostan": 60, "dot": 86, "dpp": 39, "dr": 22, "drainag": 13, "drawn": [3, 87], "driven": 22, "dtype": [52, 55, 58], "dual": [39, 69], "dual_ann": 60, "due": [], "dump": 87, "dure": [65, 72, 85], "e": [3, 7, 9, 16, 22, 24, 25, 26, 33, 39, 42, 45, 47, 52, 55, 58, 65, 68, 72, 77, 80], "each": [3, 5, 7, 9, 13, 16, 24, 25, 26, 32, 39, 42, 44, 45, 50, 52, 55, 58, 63, 65, 69, 72, 74, 76, 80, 83, 87], "earlier": 87, "easi": 80, "easili": 87, "ebl": [65, 86], "ed_i": 65, "effect": [7, 24, 25, 26, 52, 55, 56, 82], "effici": [13, 42], "eigenvalu": [25, 26], "eigenvector": [25, 26], "eigf": [39, 69], "eigvals_": [25, 26], "eigvecs_": [25, 26], "either": [3, 16, 25, 39, 47, 64, 65, 70, 78, 87], "ejor": 42, "els": [39, 40, 47, 52, 55, 58, 65, 72], "elsevi": 22, "em": 25, "email": [75, 79, 84], "emce": [3, 9, 10, 72, 87], "emper": [65, 86], "empir": [24, 25], "empti": 65, "emul": [3, 5, 9, 60, 68, 72, 74, 87], "en": 9, "enable_metadata_rout": [24, 25, 26, 52, 55], "encapsul": [24, 25, 26, 52, 55], "end": 16, "engin": [3, 9, 13, 22, 59, 60, 69, 72, 74, 77, 85], "engine_": [69, 72, 74, 85, 86], "engine_2": 74, "enrich": 60, "ensampl": 10, "ensembl": 9, "entri": [3, 7, 9], "entropi": [3, 39, 60, 84], "environ": 83, "environment": [22, 33, 84], "epsilon": [7, 60, 69, 84, 87], "eq": 13, "equal": [5, 7, 60, 69], "erro": 66, "error": [3, 7, 9, 13, 24, 25, 26, 52, 55, 60, 65, 66, 85, 87], "error_metamodel": 9, "error_model": 9, "especi": [25, 87], "ess": 10, "estim": [3, 10, 16, 24, 25, 26, 30, 52, 55, 58, 61, 65, 66, 68, 69, 72, 83, 85, 87], "eth": 33, "european": 42, "eval_metamodel": [29, 65, 86], "eval_model": 9, "eval_model_error": 65, "evalu": [5, 9, 13, 15, 29, 34, 35, 36, 52, 65, 67, 72, 80, 83, 85, 86, 87], "evaul": 39, "even": [75, 79, 84], "evereyth": 29, "everi": [30, 61], "evid": [3, 13], "exact": 86, "exampl": [13, 16, 44, 45, 77, 83, 87], "except": [13, 24, 25, 26, 52, 55, 65], "exe_path": 16, "execut": [16, 73, 80], "exist": [24, 25, 26, 52, 55], "exlor": 60, "exp_design": [69, 78], "expand": [83, 85, 86], "expans": [13, 22, 33, 45, 52, 60, 65, 66, 77, 85, 86, 87], "expd": [29, 60, 77], "expdesign": [9, 42, 60, 69, 74, 77, 78, 86, 87], "expdesign2": 74, "expect": [7, 13, 16, 24, 25, 26, 39, 52, 55, 58, 60, 72, 77, 85], "experi": 60, "experiment": [29, 38, 39, 42, 60, 65, 69, 77, 80, 83, 86], "explain": [65, 87], "explan": [70, 81], "explanatori": [25, 26, 52, 55, 58], "explicitli": 65, "exploit": [39, 60, 70, 75, 82, 87], "exploit_method": [39, 69, 87], "exploitaiton": [75, 82, 87], "exploitation_weight": 60, "explor": [39, 60, 70, 75, 82, 87], "exploration_scor": 42, "exploration_weight": 60, "explore_method": [39, 69, 87], "expon": [43, 45, 78], "exponenti": [60, 81], "express": [75, 79, 84], "extens": [16, 80, 87], "extra": 81, "extract": [16, 65], "f": [13, 65, 87], "fa61759ff685": 13, "factor": [5, 10, 74, 83], "fals": [3, 5, 10, 20, 24, 25, 26, 29, 39, 40, 45, 52, 55, 58, 60, 65, 68, 72, 74, 87], "far": 7, "farid": [19, 33, 51, 54, 60], "fast": [55, 58, 65, 84, 86], "fast_rvm": 55, "fastard": [65, 70, 73, 74, 77, 82, 86, 87], "faster": [25, 87], "fastsbl": [55, 58], "faul": [55, 58], "featur": [24, 25, 26, 52, 55, 56, 65, 77], "feinberg": 43, "ferrand": [52, 66], "field": 26, "file": [16, 29, 39, 73, 74, 77, 80, 81, 84, 87], "file_nam": 16, "filenam": 80, "fill": [39, 42, 69, 75, 82], "final": 86, "final_out_dict": 65, "find": [16, 60, 65, 71], "first": [13, 16, 29, 45, 65, 72, 74, 86, 87], "fit": [24, 25, 26, 39, 52, 55, 58, 65, 66, 68, 75, 79, 84, 86], "fit_intercept": [24, 25, 26, 52, 55, 58], "fix": [25, 58], "flag": [39, 47], "flat": 72, "flexibl": 13, "float": [3, 5, 9, 10, 24, 25, 26, 27, 30, 31, 39, 44, 45, 52, 55, 58, 60, 61, 62, 65, 66, 68], "flow": [75, 79], "folder": [72, 74, 77, 78, 83, 85, 87], "follow": [3, 7, 22, 39, 44, 49, 60, 65, 72, 74, 76, 78, 87], "followin": 7, "forc": 65, "foreman": 9, "form": [24, 25, 26, 52, 55, 77, 87], "format": [3, 7, 13, 72, 77], "formul": 78, "formula": 58, "forward": 16, "found": [65, 76, 77, 80, 87], "foundat": [75, 79, 84], "four": 78, "fp": 25, "frac": [9, 24, 25, 26, 52, 55], "fraction": 72, "framework": [13, 33], "fraser": [75, 79, 84], "free": [75, 79, 84], "fri": [33, 51], "from": [3, 5, 13, 16, 24, 25, 26, 29, 34, 39, 46, 47, 52, 55, 58, 65, 67, 69, 72, 74, 77, 78, 80, 83, 85, 86, 87], "fromkei": 65, "ft": [39, 78], "full": [74, 85, 86, 87], "fulli": 10, "func": 16, "func_arg": [16, 74, 80], "function": [3, 8, 13, 15, 16, 19, 21, 23, 33, 38, 39, 40, 42, 43, 44, 51, 52, 54, 59, 60, 64, 65, 67, 69, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87], "functtion": [], "further": [39, 47], "futur": 81, "g": [16, 24, 25, 26, 45, 52, 55, 58, 66, 72, 77, 80], "gain": [85, 87], "gamma": [26, 27, 39, 47, 78], "gaussian": [7, 9, 24, 25, 26, 55, 58, 60, 65, 68, 70, 72, 73, 82, 86, 87], "gaussian_kd": [39, 47], "gelman": [10, 72], "gener": [5, 7, 16, 24, 25, 26, 29, 39, 42, 45, 47, 52, 55, 65, 66, 75, 78, 79, 80, 84, 86, 87], "generate_": 39, "generate_dataset": 5, "generate_polynomi": 65, "generate_sampl": [39, 78], "get": [3, 24, 25, 26, 52, 55, 65, 77, 85], "get_exploration_sampl": 42, "get_mc_sampl": 42, "get_metadata_rout": [24, 25, 26, 52, 55], "get_param": [24, 25, 26, 52, 55], "get_sampl": 7, "get_vornoi_sampl": 42, "git": [76, 77, 83], "github": [10, 43, 55, 77], "gitlab": 77, "give": [80, 83, 86, 87], "given": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 40, 47, 49, 52, 55, 60, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "global": [13, 39, 42, 87], "gnu": [75, 79, 84], "go": 3, "goal": 86, "goe": 77, "goodman": 9, "gorissen": 42, "gp": [68, 86], "gpe": [64, 65], "grade": 45, "greater": 10, "grid": [39, 78], "group": [7, 39], "guid": [24, 25, 26, 52, 55, 77, 87], "guidelin": 77, "guilla": 60, "gull": 25, "h5py": 39, "h_l": 75, "h_u": 75, "ha": [9, 24, 25, 26, 39, 45, 47, 52, 55, 60, 65, 72, 86, 87], "habil": 22, "hadigol": 60, "hagan": 82, "haitao": 60, "halton": [39, 78], "hammer": 9, "hammerslei": [39, 78], "handi": 87, "happi": 77, "have": [7, 10, 16, 24, 25, 26, 39, 47, 52, 55, 56, 72, 80, 82, 87], "hdf5": [29, 39], "hdf5_file": 39, "head": 77, "height": 73, "helling": [30, 61], "help": [72, 87], "helper": 13, "here": [3, 16, 65, 69, 71, 76, 77, 80, 83, 84, 86, 87], "hermit": 78, "highest": [65, 87], "histogram": 87, "hogg": 9, "hold": 44, "holder": 16, "hope": [75, 79, 84], "how": [13, 24, 25, 26, 52, 55, 65, 72, 73, 75, 79, 81, 82, 87], "howev": [], "htm": 55, "html": [10, 75, 79], "http": [9, 10, 13, 22, 42, 43, 55, 58, 65, 75, 77, 79, 83, 84], "hydraul": [22, 33], "hydrogeologi": 13, "hydromechan": 33, "hydrosystem": [22, 33], "hyperbol": [45, 65], "hypercub": [69, 70, 73, 75, 78, 79, 81, 82, 84], "i": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 58, 60, 61, 65, 68, 69, 70, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "icvram2014": 33, "id": 16, "ident": [30, 61], "ieee": 58, "ifram": 87, "ignor": [24, 25, 26, 52, 55], "ii": [25, 87], "iii": 87, "ilja": 60, "illustr": 73, "imag": 58, "implement": [24, 26, 33, 42, 64, 65, 87], "impli": [75, 79, 84], "implment": 87, "import": [13, 72, 74, 77, 78, 80, 85, 86], "importantli": [], "improv": 39, "inaccuraci": 7, "includ": [5, 16, 25, 26, 44, 45, 69, 72, 77, 78, 80, 83, 85, 86, 87], "increas": [60, 69], "independ": 7, "index": [44, 45, 60, 65, 67, 68, 77, 85], "indic": [3, 10, 13, 43, 44, 45, 65, 67, 75, 79, 80, 82, 83, 85, 87], "induc": [65, 87], "inf": 45, "inf_entropi": 3, "infer": [3, 7, 9, 13, 16, 73, 77, 83, 84], "inference_method": [3, 72, 87], "influenc": [24, 25, 26, 52, 55, 60], "inform": [3, 24, 25, 26, 52, 55, 60, 65, 75, 79, 84, 87], "ing": 22, "init_param_spac": [39, 47], "init_sampl": [3, 9, 72], "initi": [3, 5, 25, 39, 47, 55, 69, 72, 87], "input": [3, 7, 13, 16, 24, 25, 26, 36, 39, 42, 46, 47, 52, 55, 60, 65, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 86], "input0": 77, "input1": 77, "input_data": [49, 50, 78, 87], "input_descript": [], "input_fil": 16, "input_obj": 65, "input_object": [39, 47], "input_spac": 78, "input_templ": 16, "inputdisc": 7, "inputobj": [39, 47], "inputparam": [70, 78, 87], "inputparameters_2": 87, "inputspac": [39, 65, 77, 78], "insert": 65, "insid": [17, 24, 25, 26, 52, 55, 83], "insight": [], "instanc": [24, 25, 26, 52, 55, 65], "instanci": 65, "instanti": 87, "instead": [24, 25, 26, 45, 52, 55], "institut": [22, 33], "instruct": [65, 87], "int": [3, 5, 7, 13, 16, 17, 22, 25, 26, 29, 32, 33, 34, 35, 36, 37, 39, 42, 44, 45, 47, 55, 58, 60, 63, 65, 68], "intec": 42, "intercept": [52, 55, 58], "intercept_": [25, 26], "interconnect": [], "interest": 80, "interfac": [77, 80, 83], "intersit": 42, "intro": [], "introduc": [], "introduct": 76, "introductori": [77, 87], "inv_inf_matrix": 52, "invari": 9, "invers": [7, 52, 87], "inversemodel": [77, 83], "io": [9, 10], "ipython": 87, "ishigami": [75, 76], "isoprobabilist": [39, 47, 78], "issu": [72, 77], "item": [3, 16, 65], "iter": [3, 5, 25, 26, 29, 55, 58, 60, 65, 70, 75, 78, 82, 83, 85, 86, 87], "its": [16, 72, 77, 80, 83, 85, 86, 87], "itself": 86, "iw": [22, 33, 77, 83], "j": [9, 13, 22, 42, 82], "jacobi": 34, "jan": 33, "jdist": [39, 47], "jianfei": 60, "jobe": 16, "joblib": 87, "joergdietrich": 10, "jointli": [3, 7, 9, 84, 86], "jonathan": 43, "jonathf": 43, "journal": [42, 52, 66], "jul": 51, "just": [39, 47, 87], "just_analysi": 3, "justifi": [3, 5, 83], "jwalton3141": 10, "k": [3, 9, 39, 42, 58, 65], "k_w": 75, "karniadaki": 87, "katsaggelo": 58, "kdemov": [72, 87], "keep": [24, 25, 26, 52, 55, 87], "kei": [16, 39, 65, 72, 80], "kernel": [24, 25, 26, 52, 55, 68, 86], "key_str": 16, "keyerror": 65, "keyword": 16, "kingdom": 33, "kl": 26, "kld": [3, 13], "known": [3, 7, 9, 39, 87], "krige": 60, "krishnaprasad": 52, "kroeker": 60, "kullback": [3, 13, 39], "l": [75, 84], "l_0": 44, "l_inf": 44, "l_p": 44, "label": [13, 80], "lack": 65, "laerman": 42, "laguerr": [37, 39, 47], "lai": 72, "lambda": 87, "lambda_": [55, 58], "lang": 9, "laplac": 58, "lar": [65, 86], "larg": 87, "larger": [44, 45, 72], "largest": 45, "last": 65, "lastli": 80, "later": 87, "latest": 83, "latin": [69, 70, 73, 75, 78, 79, 81, 82, 84], "latin_hypercub": [39, 78, 87], "latter": [24, 25, 26, 45, 52, 55, 87], "lead": 83, "learn": [39, 42, 55, 58, 60, 65, 73, 79, 83, 84, 85, 86, 87], "least": [52, 60, 65, 66, 78, 86], "leav": [3, 39, 65, 69], "leibler": [3, 13, 39], "length": [3, 25, 26, 55, 58, 72, 80], "leq": 44, "less": 87, "let": 87, "level": [3, 5], "lexicograph": 45, "lh2": 33, "li": 40, "liabil": [75, 79, 84], "lib": 58, "librari": [], "licens": [75, 79, 84], "lie": 17, "lifo": 65, "like": [3, 24, 25, 26, 52, 55, 58, 65, 66, 86, 87], "likelihood": [3, 7, 9, 25, 30, 31, 55, 56, 58, 61, 62, 72, 87], "line": 13, "linear": [24, 25, 26, 74, 77, 81], "linearmodel": [24, 52, 55], "link": [73, 80, 83, 87], "link_typ": [16, 74, 77, 80, 87], "list": [3, 16, 17, 24, 25, 26, 32, 36, 37, 39, 40, 42, 45, 47, 50, 52, 55, 58, 60, 63, 65, 77, 80, 81, 87], "littl": 87, "liu": 60, "liverpool": 33, "load": [73, 87], "locat": [39, 60], "log": [9, 31, 55, 56, 62], "log_bm": 3, "log_lik": [9, 31, 62], "log_likelihood": 9, "log_marginal_lik": 55, "log_posterior": 9, "log_prior": 9, "logarithm": 3, "loglik": [3, 9], "lognorm": [73, 75, 78], "logprior": 9, "loo": [52, 65, 66], "loo_error": 52, "loocv": [3, 39, 52, 66], "loocvscor": 65, "loop": 68, "low": 45, "lower": [17, 32, 39, 45, 47, 60, 63], "lowest": 65, "ls3": 22, "l\u00fcthen": 33, "m": [7, 33, 52, 55, 58, 60, 73, 75, 79, 83, 84, 86], "machin": [42, 55, 58], "mackai": [25, 60], "mackei": 9, "mai": [24, 25, 26, 52, 55, 58], "mail": [22, 33], "main": [77, 80, 86], "mainli": [69, 78], "make": [9, 69, 86, 87], "manag": 33, "mani": 13, "manner": [29, 69, 78, 83], "manual": 33, "manuscript": 22, "map": [24, 25, 26, 52, 55, 65, 80], "mar": 54, "marelli": 33, "margin": [7, 39, 42, 47, 48, 49, 55, 56, 58, 77, 78, 83, 87], "mark": [75, 79, 84], "markov": [3, 9], "mass": 42, "master": [10, 43, 55, 77, 83], "match": [52, 67, 75, 81, 86, 87], "math": 44, "mathcal": [7, 9, 86], "mathemat": 9, "matlab": [33, 42], "matric": 74, "matrix": [3, 5, 7, 24, 25, 26, 31, 34, 52, 55, 58, 62, 66, 67], "max": [70, 73, 75, 79, 82, 84], "max_a_post": [39, 87], "max_a_posteriori": 3, "max_deg": [34, 35, 36, 39, 47, 65], "max_func_itr": 39, "max_pce_deg": 39, "maxdepth": [], "maxim": [25, 30, 55, 60, 61, 86], "maximis": [55, 58], "maximum": [3, 22, 25, 26, 30, 34, 35, 36, 37, 39, 45, 47, 55, 58, 61, 65], "maxout": 17, "mc": [42, 70, 73, 75, 79, 80, 81, 82, 84, 87], "mc_criterion": 42, "mc_ref": 16, "mc_ref_dict": 16, "mc_ref_fil": 16, "mc_refer": 87, "mcmc": [3, 72, 83, 87], "mcmc_param": [3, 9, 72, 87], "md": [], "mean": [3, 7, 9, 13, 16, 24, 25, 26, 27, 29, 31, 45, 52, 55, 58, 62, 65, 72, 86, 87], "mean_2": 87, "mean_pr": [9, 29, 65], "meas_fil": 16, "meas_file_valid": 16, "measur": [3, 7, 13, 16, 60, 87], "measured_data": 3, "measureddata": 65, "measurement_error": 87, "mechan": [24, 25, 26, 52, 55, 60], "merchant": [75, 79, 84], "messag": [], "met": [55, 58], "meta": [3, 9, 13, 16, 24, 25, 26, 29, 52, 55, 65], "meta_model": 74, "meta_model_engin": [], "meta_model_typ": [39, 47, 65, 74, 77, 86, 87], "metadata": [24, 25, 26, 52, 55], "metadata_rout": [24, 25, 26, 52, 55], "metadatarequest": [24, 25, 26, 52, 55], "metamod": [29, 60, 69, 77, 86], "metamod2": 74, "metamodel": [3, 5, 13, 29, 39, 41, 47, 60, 64, 74, 77, 78, 85, 87], "metamodel_train": 87, "metamodelengin": [], "metamodelopt": [65, 87], "method": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 38, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65, 69, 70, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87], "metric": [3, 87], "mgrid": 44, "mice": 60, "might": [], "miketip": [55, 58], "minim": [26, 77], "minout": 17, "mit": 77, "mix": 78, "mmse": 39, "mod_loo_threshold": [39, 69, 87], "mode": [3, 52, 55, 58], "model": [3, 5, 7, 9, 13, 15, 16, 22, 24, 25, 26, 29, 33, 39, 42, 52, 55, 56, 58, 60, 65, 69, 72, 76, 78, 83, 85], "model2": 74, "model_comparison_al": [5, 74], "model_dict": 5, "model_out_dict": 13, "model_weight": 5, "model_weights_dict": 5, "modelnam": 87, "modifi": [39, 52, 75, 79, 84], "modul": [0, 1, 11, 14, 18, 77], "modulu": 73, "mohammadi": [33, 60], "molina": 58, "moment": [13, 16, 35, 36, 50, 83, 85, 87], "monomi": [43, 45], "mont": [3, 9, 16, 42, 87], "more": [13, 29, 60, 65, 75, 77, 79, 84, 87], "most": 87, "move": [3, 9, 72, 87], "mp": 16, "mu_pr": [24, 25, 26], "much": 82, "multi": [43, 45, 65, 67, 81, 83], "multi_process": 16, "multioutput": [24, 25, 26, 52, 55], "multioutputregressor": [24, 25, 26, 52, 55], "multipl": [7, 83, 86, 87], "multipli": 7, "multiplrocess": 9, "multiprocess": [3, 16, 72, 87], "multivar": 3, "multivari": [3, 7, 31, 62, 65, 66, 67], "must": [16, 72], "mutual": 60, "n": [7, 33], "n_": 7, "n_bootstrap": 5, "n_bootstrap_itr": [3, 5, 65, 72], "n_burn": [3, 9, 72], "n_cand_group": [39, 69, 70, 75, 82, 87], "n_canddid": [39, 69, 87], "n_candid": [42, 60, 70, 75, 82], "n_cpu": 16, "n_featu": [25, 26], "n_featur": [24, 25, 26, 52, 55, 58, 65, 66], "n_init_sampl": [65, 74, 77, 86, 87], "n_input": 65, "n_iter": [24, 25, 26, 55, 58], "n_iter_": 55, "n_kfold": 58, "n_m": 5, "n_max": [37, 65, 67], "n_max_sampl": [39, 69, 87], "n_measur": [3, 9], "n_new_sampl": [32, 39, 63, 69, 87], "n_ob": [3, 5, 16], "n_out": 65, "n_output": [16, 24, 25, 26, 52, 55, 65], "n_param": [3, 7, 9, 10, 13, 16, 29, 36, 39, 42, 47, 60, 65, 67, 68], "n_pca_compon": 65, "n_prior_sampl": 3, "n_replic": 39, "n_sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 34, 35, 36, 39, 47, 52, 55, 56, 60, 65, 66, 67, 68, 74, 85, 87], "n_samples_fit": [24, 25, 26, 52, 55], "n_samples_test": [25, 26, 52, 55, 58], "n_step": [3, 9, 10, 72, 87], "n_term": [65, 67], "n_test_sampl": [24, 25, 26], "n_walker": [3, 9, 10, 72, 87], "nagel": 13, "name": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 47, 49, 50, 52, 55, 72, 74, 77, 78, 80, 83, 87], "nameerror": 60, "ndarrai": 45, "ndim": 87, "necessari": [16, 83], "need": [3, 5, 7, 16, 29, 60, 65, 69, 72, 74, 77, 86, 87], "neg": [24, 25, 26, 52, 55], "neither": 13, "nest": [24, 25, 26, 40, 52, 55], "new": [16, 39, 42, 49, 52, 60, 65, 69, 77, 80, 87], "new_c_point": 16, "new_input_fil": 16, "new_metamodelopt": 65, "new_sampl": 42, "next": [16, 60, 72, 83], "nips01": 55, "nnme": 87, "nois": [3, 5, 7, 25, 26, 55, 58, 84], "non": [42, 52, 55, 58], "none": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 60, 65, 68, 69, 70, 75, 77, 82, 87], "nonlinear": 81, "nor": 13, "norm": [44, 65, 70, 73, 75, 78, 79, 81, 82, 84, 86, 87], "normal": [3, 5, 7, 25, 31, 52, 55, 62, 65], "normpdf": [3, 9], "notat": [], "note": [7, 16, 87], "now": [39, 72, 74, 77, 80, 86, 87], "nowak": [13, 22, 60, 87], "np": [16, 52, 55, 58, 65, 74, 78, 80, 87], "npy": 87, "nsampl": [29, 65, 86, 87], "nu": 58, "nug_term": 68, "nugget": 68, "number": [3, 5, 7, 13, 16, 24, 25, 26, 29, 32, 39, 42, 45, 52, 55, 58, 60, 63, 65, 68, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 86], "numer": [25, 72], "numpi": [24, 25, 26, 44, 45, 52, 55, 58, 87], "numpoli": [43, 45], "o": 82, "oaklei": 82, "obj": [3, 7, 9, 13, 39, 42, 47, 49, 65], "object": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65, 66, 68, 72, 74, 77, 78, 80, 85, 86, 87], "obs_data": [3, 9], "obs_dict": 16, "obs_dict_valid": 16, "obsdata": [72, 87], "observ": [3, 5, 7, 9, 16, 31, 62, 72, 74, 80, 87], "obtain": [10, 65, 87], "off": [39, 60], "ohagan": 76, "ol": [65, 86], "oladyshkin": [13, 22, 60, 87], "old": [42, 60], "old_edi": 60, "old_edx": 60, "omit": 45, "omp": [75, 81], "onc": [69, 87], "one": [3, 9, 10, 16, 25, 26, 32, 39, 45, 55, 56, 58, 63, 65, 69, 74, 77, 78, 87], "ong": 60, "onli": [3, 7, 9, 16, 24, 25, 26, 29, 39, 45, 52, 55, 58, 65, 72, 78, 81, 87], "open": [77, 87], "oper": 42, "opposit": 45, "opt": [39, 60], "opt_col_point": 39, "opt_sigma": 3, "optim": [25, 39, 55, 60, 84], "optimi": 60, "optimum": 60, "option": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 52, 55, 58, 60, 65, 68, 77, 78, 80, 83, 87], "opts_bootstrap": 74, "opts_dict": 5, "order": [45, 65, 72, 83], "ordinari": [65, 86], "org": [13, 42, 77], "orig_space_dist": [39, 47], "origin": [24, 25, 26, 52, 55, 65, 80, 85], "origmodeloutput_": 87, "orthogon": [37, 52, 66, 75, 81], "orthonorm": 22, "other": [3, 24, 25, 26, 52, 55, 74, 80, 83, 86], "otherwis": [9, 16, 24, 25, 26, 52, 55, 58, 65, 72], "our": [72, 77, 80, 86, 87], "out": [3, 7, 17, 25, 26, 39, 60, 65, 69, 72, 77, 85], "out_dict": 65, "out_dir": [3, 5, 9, 16, 39, 72], "out_nam": 39, "outpust": 13, "output": [3, 7, 9, 13, 16, 39, 60, 65, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87], "output_bayes_": 87, "output_dict": 74, "output_file_nam": 16, "output_nam": 16, "output_pars": 16, "outputdata": 16, "outputmatrix": 65, "outputs_bayes_model_calib": 72, "outputs_comparison": [5, 74], "outputs_postprocess": 13, "outputs_postprocessing_": 87, "outputs_postprocessing_calib": 85, "outputs_prior": 78, "outsid": 80, "over": [39, 68, 78], "overal": 77, "overfit": 87, "overflow": 25, "overview": [], "overwritten": [52, 55, 58], "own": [], "p": [7, 9, 13, 22, 30, 42, 44, 52, 61], "pacif": 9, "packag": [3, 9, 71, 72, 73, 76, 77, 83], "page": [77, 83, 87], "pair": [5, 65], "pairwis": 83, "panda": [7, 87], "paper": [55, 58, 60], "parallel": [16, 29, 39, 60, 65], "param": [16, 24, 25, 26, 37, 39, 47, 52, 55], "param_set": 16, "paramet": [49, 50, 69, 70, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87], "parameterset": 9, "paramethr": 7, "paramt": 25, "paras": 16, "parmet": 3, "parser": [16, 73, 80], "part": [32, 63, 65, 81, 82, 87], "parti": 16, "particular": [75, 79, 84], "pass": [3, 16, 24, 25, 26, 39, 47, 52, 55, 87], "path": 16, "pati": 52, "pattern": [16, 55, 58], "pc": 64, "pca": [65, 86], "pca_transform": 65, "pce": [13, 39, 47, 65, 73, 85, 86, 87], "pce_deg": [65, 74, 77, 86, 87], "pce_mean": 13, "pce_q_norm": [65, 74, 77, 86, 87], "pce_reg_method": [65, 74, 77, 86, 87], "pceengine_": 87, "pcemodel": [13, 20], "pcemodel_": [], "pcm_sampler": 39, "pd": [72, 87], "pdf": [13, 55, 58], "peopl": [], "per": [70, 75, 82], "percentag": 65, "percis": 39, "perfect": 25, "perfect_fit_tol": 25, "perform": [3, 5, 9, 13, 69, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87], "perform_bootstrap": 3, "perl": 65, "perturb": [3, 5], "perturbed_data": [3, 5], "pfaffenwaldr": [22, 33], "physic": [52, 66], "pip": [77, 83], "pipelin": [24, 25, 26, 52, 55], "pkl": 87, "place": 16, "pleas": [24, 25, 26, 52, 55, 75, 79, 84], "plot": [3, 5, 13, 39, 74, 87], "plot_bayes_factor": 5, "plot_just_analysi": 5, "plot_log_bm": 3, "plot_map_pr": 3, "plot_model_weight": 5, "plot_moment": [13, 85, 87], "plot_nam": 5, "plot_post_param": 3, "plot_post_pr": [3, 72, 74, 87], "plot_sampl": [39, 78], "plot_seq_design_diagnost": [13, 85], "plot_typ": 13, "plote": 20, "plotmoment": [], "point": [3, 7, 16, 24, 25, 26, 29, 34, 35, 39, 42, 55, 58, 60, 68, 72, 78, 87], "poli": [37, 74], "pollut": 76, "poly_coeff": 35, "poly_typ": [34, 36, 37, 39, 47], "polynom": 65, "polynomi": [13, 22, 33, 34, 35, 36, 37, 39, 47, 52, 60, 65, 66, 67, 77, 78, 85, 86, 87], "pop": 65, "popitem": 65, "posit": [30, 61], "possibl": [24, 25, 26, 52, 55, 78], "post": [10, 13, 16, 83], "post_descript": [], "post_plot_pr": 72, "post_process": [85, 87], "post_snapshot": [39, 87], "posterior": [3, 9, 25, 26, 39, 52, 55, 58, 72, 87], "posterior_df": 9, "posteriori": [3, 39], "postpc": 87, "postproc": 85, "postprocess": [77, 80, 83, 87], "potenti": 10, "power": [74, 80], "pp": [9, 42, 52, 66, 82], "practic": [78, 83], "precis": [25, 26, 55, 58], "precomput": [24, 25, 26, 52, 55], "predict": [3, 9, 24, 25, 26, 29, 52, 55, 58, 60, 65, 66, 72, 87], "predict_dist": [24, 25, 26], "predit": 65, "prefer": [83, 87], "prepar": [16, 29, 60, 86], "prescrib": 39, "prescript": 65, "present": [22, 65, 86], "prevent": 25, "previou": [16, 87], "previous": 86, "prevrun_no": 16, "princip": [13, 65, 86], "print": [25, 26, 60, 65], "prior": [3, 5, 7, 9, 26, 39, 46, 47, 58, 72, 80, 83, 86, 87], "prior_": 87, "prior_output": 87, "prior_sampl": 3, "probabilist": 82, "probabl": [30, 61, 78], "probablist": 3, "proc": 33, "procedur": 3, "proceed": 52, "process": [9, 13, 16, 58, 60, 65, 68, 83, 86], "produc": [75, 79, 84], "program": [75, 79, 84], "progress": [25, 26], "proj": 42, "project": 77, "propag": [52, 66], "properti": [69, 70, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87], "propos": [9, 40, 69, 77], "provid": [13, 24, 25, 26, 29, 39, 45, 47, 52, 55, 65, 70, 72, 74, 76, 77, 81, 83, 86, 87], "psi": [52, 66, 67], "psrf": 10, "public": [9, 75, 79, 84], "publish": [75, 79, 84], "purpos": [75, 79, 84], "pursuit": [52, 75, 81], "py": [10, 16, 43, 55, 74, 77, 80, 87], "py_fil": [16, 74, 77, 80, 87], "pylink": [80, 83, 87], "pylinkforwardmodel": [74, 77, 80], "pypi": 77, "python": [3, 13, 16, 72, 77, 80, 83, 87], "python3": 83, "q": [30, 56, 61, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "qualiti": [13, 75, 79, 82, 85], "qualt": 3, "quantif": [22, 33], "question": [72, 75, 79, 84], "quit": [], "r": [7, 24, 25, 26, 52, 55, 58, 75, 82], "r2_score": [24, 25, 26, 52, 55], "r_2": 66, "r_hat": 10, "r_w": 75, "rais": [24, 25, 26, 52, 55, 65], "random": [29, 39, 42, 69, 70, 74, 77, 78, 87], "random_sampl": 39, "randomli": [39, 87], "rang": [17, 37, 40, 80, 86, 87], "rate": [26, 27, 75, 79], "ratio": 10, "raw": [16, 22, 39, 47], "raw_data": [39, 47], "read": [16, 29, 39, 80, 87], "read_from_fil": 39, "read_observ": 16, "read_output": 16, "readthedoc": 9, "realiti": 7, "realiz": [7, 69, 78, 80], "realli": 3, "recalcul": 65, "recheck": 78, "reciev": 16, "recognit": [55, 58], "recomput": 56, "recurr": 37, "recurs": [37, 52], "redidu": 7, "redistribut": [75, 79, 84], "reduc": [45, 86], "reduct": [10, 65, 86], "ref": [55, 58, 60], "ref_bme_kld": 13, "ref_typ": 77, "refer": [7, 13, 16, 30, 33, 61, 65, 70, 73, 75, 79, 80, 81, 82, 84, 85, 87], "refin": 29, "refit": 29, "reg_method": 65, "regress": [9, 13, 24, 25, 26, 52, 55, 58, 65, 66, 70, 73, 75, 79, 81, 82, 84, 86, 87], "regressor": [24, 25, 26, 36, 52, 55, 65, 66, 67], "regressormixin": [24, 52, 55], "regresssor": 52, "reject": [3, 72, 83, 87], "relat": [48, 78], "releas": 83, "relev": [24, 25, 26, 52, 55, 78], "reli": 87, "reliabl": [13, 22], "remain": 82, "remov": [16, 65], "renam": 16, "repeat": 87, "replac": [16, 83, 86], "replic": 39, "report": [25, 26, 33, 77], "repositori": [76, 83], "repres": 7, "represent": 86, "reproduc": 9, "req_output": [3, 9], "request": [3, 16, 24, 25, 26, 29, 39, 52, 55, 60, 65], "requir": [3, 9, 16, 37, 49], "research": [22, 42], "reshap": [44, 87], "residu": [7, 24, 25, 26, 52, 55, 66], "resolv": 72, "respect": [5, 65, 74, 87], "respons": [24, 25, 26, 39, 60, 65], "ress": 22, "rest": 16, "result": [5, 16, 39, 65, 69, 72, 78, 80, 85, 86, 87], "retain": [24, 25, 26, 52, 55], "retrain": 87, "retun": 29, "return": [44, 45, 74, 77, 80, 86, 87], "return_out_dict": 65, "return_sampl": 29, "return_std": [25, 26, 55, 58], "return_var": 10, "returnvar": 65, "revers": 45, "review": 60, "rework": 69, "rezaiifar": 52, "ridg": [65, 86], "rieckermann": 13, "risk": 33, "rmse": [13, 85, 87], "robin": 10, "root": [3, 9, 10, 13, 39, 87], "root_sampl": 86, "rosenblatt": [39, 47, 49, 78], "rossenblatt": 49, "rout": [24, 25, 26, 52, 55], "row": [9, 16], "rss": 25, "rst": [], "rubin": 72, "run": [9, 13, 16, 29, 39, 60, 65, 72, 73, 74, 77, 80, 83, 84, 85, 87], "run_command": 16, "run_forwardmodel": 16, "run_model_parallel": [16, 72, 80], "run_no": 60, "run_sampl": 9, "run_util_func": 60, "runtim": 65, "rvm_ard_model": 55, "rwmh": 10, "safeti": [13, 22, 33], "same": [16, 39, 47, 60, 74, 77, 78, 80, 81], "sampel": 78, "sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 32, 35, 36, 38, 39, 42, 47, 52, 55, 60, 63, 65, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "sample_weight": [24, 25, 26, 52, 55], "sampler": [3, 9], "sampling_method": [29, 39, 74, 77, 78, 86, 87], "save": [29, 39, 74, 78, 85, 87], "savefig": 20, "sc": 33, "scalar": 7, "scale": 10, "scheme": [39, 45, 60, 65, 69, 70, 75, 82, 84, 86], "scienc": 9, "scope": 16, "score": [24, 25, 26, 39, 42, 52, 55, 60, 65, 66], "scores_": 55, "script": [16, 22, 87], "search": [16, 60, 77], "second": [16, 78, 87], "section": [39, 55, 58, 87], "see": [13, 24, 25, 26, 39, 49, 52, 55, 75, 77, 79, 81, 82, 84], "select": [3, 9, 13, 16, 29, 42, 52, 55, 56, 60, 65, 68], "selected_indic": [3, 9], "self": [24, 25, 26, 52, 55, 65], "sens": [58, 79, 84], "sensit": [13, 52, 66, 75, 79, 82, 87], "separ": [16, 39, 87], "sequenc": 44, "sequenti": [13, 16, 29, 39, 41, 42, 55, 60, 65, 69, 75, 82, 85], "sergei": [22, 60], "serv": 16, "set": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 30, 32, 39, 40, 42, 45, 46, 52, 55, 58, 60, 61, 63, 65, 67, 72, 74, 76, 77, 78, 80, 83, 85, 86], "set_config": [24, 25, 26, 52, 55], "set_param": [24, 25, 26, 52, 55], "set_predict_request": [25, 26, 55], "set_score_request": [24, 25, 26, 52, 55], "setdefault": 65, "setup": [5, 81], "setup_infer": 3, "sfu": [75, 79, 84], "shall": 65, "shallow": 65, "shape": [3, 5, 7, 9, 13, 16, 24, 25, 26, 27, 29, 34, 35, 36, 39, 42, 45, 47, 52, 55, 58, 60, 65, 66, 67, 68, 72], "share": 81, "shceme": 87, "shell": [16, 73, 80], "shell_command": 16, "short": 76, "shot": 65, "should": [3, 10, 16, 24, 25, 26, 29, 44, 52, 55, 65, 69, 72, 74, 75, 78, 79, 80, 84, 86, 87], "show": [70, 73, 77, 81, 84, 87], "shown": 3, "sigma": [3, 7, 9, 58, 60, 87], "sigma2": [3, 9, 58, 60], "sigma2_prior": 7, "sigma2dict": 60, "sigma_": [55, 58], "sigma_f": 87, "signal": 52, "significantli": 82, "sim": 7, "simillar": 16, "simon": [75, 79, 84], "simpl": [24, 25, 26, 52, 55, 77, 80, 86], "simpli": 3, "simplic": 7, "simul": [3, 9, 13, 16, 22, 42, 65, 87], "simulation_output": 16, "sinc": 87, "singl": [7, 9, 13, 72, 80, 87], "singular": 52, "size": [24, 25, 26, 52, 55, 58, 87], "skbay": 55, "sklearn": [24, 25, 26, 52, 55], "sklearnpca": 65, "slightli": 72, "small": 72, "smaller": [25, 45, 72, 82, 87], "smallest": 25, "so": [7, 24, 25, 26, 52, 55, 82, 83, 87], "sobol": [13, 39, 75, 78, 79, 82, 83, 85, 87], "sobol_cel": 13, "sobol_indic": [13, 85], "sobolindicespc": 87, "soc": 82, "societi": 9, "softwar": [16, 75, 79, 84], "solut": 87, "solver": 16, "some": [24, 25, 26, 39, 47, 52, 55, 68, 72, 74, 85, 87], "sonja": [75, 79, 84], "soon": 60, "sort": 45, "sourc": [10, 65, 77, 83], "space": [39, 42, 46, 47, 60, 65, 69, 70, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87], "sparemulti": 65, "spars": [13, 24, 25, 26, 52, 55, 58, 66, 86], "sparsex": 65, "sparsiti": [65, 87], "specif": [50, 65, 72, 85], "specifi": [17, 29, 39, 65, 77, 78, 86], "sphinx_new": [], "split": [69, 83, 87], "springer": [55, 58], "squar": [3, 9, 10, 13, 24, 25, 26, 52, 55, 60, 65, 80, 86, 87], "ssurjano": [75, 79, 84], "stabl": 9, "stackoverflow": 65, "stand": 3, "standard": [13, 16, 29, 65, 69, 86, 87], "start": [3, 16, 29, 45, 55, 60, 69, 77, 86, 87], "start_engin": [29, 69, 77, 86, 87], "start_seqdesign": 60, "stat": [75, 79, 84], "static": [29, 70, 73, 75, 78, 79, 81, 82, 84, 87], "statist": 82, "std": [3, 9, 16, 60, 87], "std_2": 87, "std_pred": [9, 29, 65], "stdev": [9, 86], "step": [3, 16, 39, 70, 72, 86], "step_snapshot": [39, 87], "still": 69, "stochast": [13, 22], "stop": [39, 45, 69], "store": [16, 74, 87], "str": [3, 5, 7, 13, 16, 24, 25, 26, 29, 39, 42, 47, 52, 55, 65], "straightforward": 83, "strategi": [42, 60, 87], "string": [3, 9, 13, 16, 34, 36, 37, 39, 47, 50, 60, 87], "structur": [69, 83], "stuttgart": [22, 33, 77, 83], "sub": [24, 25, 26, 52, 55], "subdirectori": 16, "submatrix": 52, "subobject": [24, 25, 26, 52, 55], "successfulli": 16, "sudret": [13, 33, 52, 66, 87], "sum": [10, 24, 25, 26, 45, 52, 55], "sum_i": 44, "summari": [60, 65], "sumo": 42, "superclass": 24, "support": [3, 7, 39, 44, 65, 77, 78], "surjanov": [75, 79, 84], "surrog": [9, 16, 28, 29, 42, 59, 65, 69, 72, 74, 78, 83, 85], "surrogate_descript": [], "surrogate_model": [69, 78, 83, 86, 87], "switzerland": 33, "sy": 87, "system": [13, 22, 33, 52], "t": [24, 25, 26, 42, 44, 52, 55], "t_l": 75, "t_u": 75, "tag": 87, "take": [69, 72, 80, 83, 87], "taken": [29, 72], "target": [25, 26, 52, 55, 58, 60, 65, 66, 68], "task": 72, "tau": 84, "teach": 76, "tell": 86, "templat": 16, "term": [7, 25, 26, 37, 45, 68, 75, 79, 84, 87], "termin": [55, 58], "test": [24, 25, 26, 52, 55, 58, 72, 75, 84], "test_": 84, "test_analytical_funct": 87, "text": [7, 16], "textbf": 7, "th": 42, "than": [10, 44, 45, 72], "thei": [78, 83, 87], "them": [16, 29, 69, 72, 74, 77, 83], "themselv": 87, "theorem": 9, "theori": 60, "therefor": [24, 25, 26, 45, 55, 58], "theta": [7, 9, 10, 40], "theta_": 7, "thi": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 40, 42, 47, 52, 55, 58, 60, 65, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "thin": 72, "thing": 86, "third": 16, "though": [73, 87], "three": [5, 65, 74, 81, 86, 87], "threshold": [25, 26, 39, 55, 58, 65], "through": [83, 87], "thu": 19, "time": [5, 13, 16, 69, 70, 72, 73, 74, 75, 79, 81, 82, 84, 87], "timestep": [65, 80], "tip": [55, 58], "titl": 3, "toctre": [], "todo": [3, 60, 78], "tol": [24, 25, 26, 55, 56, 58], "tolist": 45, "tom": [3, 87], "toolbox": 42, "topic": 83, "total": [3, 13, 24, 25, 26, 45, 52, 55, 70, 73, 75, 79, 81, 82, 84, 85, 87], "total_sigma2": [3, 9], "total_sobol": [13, 87], "towardsdatasci": 13, "tpl": 16, "tr_x": [39, 47], "trade": [39, 60], "tradeoff": [70, 75, 82, 84, 87], "tradeoff_schem": [39, 60, 69, 87], "tradeoff_weight": 60, "train": [3, 9, 13, 16, 28, 29, 36, 39, 41, 42, 52, 55, 59, 60, 65, 68, 74, 77, 78, 83, 85], "train_error_model": 9, "train_norm": [29, 74, 77, 86, 87], "train_seq_design": 29, "train_sequenti": [29, 69, 85, 87], "transact": 58, "transform": [16, 39, 47, 49, 65, 78], "transpos": 52, "tree": 77, "trine": 39, "true": [3, 5, 16, 17, 20, 24, 25, 26, 29, 39, 40, 44, 52, 55, 58, 65, 72, 74, 78, 87], "true_sampl": 72, "truncat": [44, 45, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "try": 25, "tsunami": 60, "tue": 54, "tupl": [16, 32, 39, 45, 47, 60, 63, 65], "tutori": [70, 77, 81], "two": [13, 24, 25, 26, 30, 45, 55, 58, 61, 65, 77, 80, 84, 86, 87], "type": [3, 5, 7, 9, 13, 16, 25, 29, 31, 34, 36, 37, 39, 47, 50, 60, 62, 65, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87], "type_": 3, "typic": [10, 87], "u": [24, 25, 26, 52, 55, 77, 86, 87], "ugent": 42, "um": 80, "umbridg": 16, "umbridge_model": 16, "uncertain": [7, 49, 50, 65, 72, 78, 80, 83, 86], "uncertainti": [3, 9, 22, 33, 52, 66, 72, 78, 83], "unchang": [24, 25, 26, 52, 55], "under": [75, 77, 79, 80, 83, 84], "underli": [], "understand": [72, 85], "uni": [22, 33, 77, 83], "unif": [77, 78, 87], "uniform": [49, 70, 73, 75, 78, 79, 84, 87], "uniform_averag": [24, 25, 26, 52, 55], "union": 45, "uniqu": [24, 25, 26], "unit": 33, "univ_basi": 65, "univ_basis_v": [39, 47, 65], "univ_p_v": 67, "univ_v": 36, "univari": [22, 35, 36, 65, 67], "univers": [33, 75, 79, 84], "universitaet": 22, "unknown": [3, 7, 9, 60], "unstabl": 25, "until": 39, "up": [3, 65, 67, 86], "updat": [16, 24, 25, 26, 52, 55, 58, 65, 72], "update_input_param": 16, "update_pce_coeff": 65, "upper": [17, 32, 39, 45, 47, 60, 63], "uq_bsc": 58, "uq_regress": 58, "uqlab": [33, 58], "urban": 13, "us": [3, 7, 9, 13, 16, 22, 24, 25, 26, 39, 42, 44, 45, 47, 52, 55, 58, 60, 65, 69, 72, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87], "use_bayes_set": 5, "useag": 86, "user": [3, 5, 16, 24, 25, 26, 33, 39, 47, 52, 55, 77, 78, 86, 87], "util": [24, 25, 26, 39, 43, 52, 55, 60], "util_alphoptdesign": 60, "util_bayesianactivedesign": 60, "util_bayesiandesign": 60, "util_func": [39, 60, 69, 87], "util_varbaseddesign": 60, "utilii": 39, "v": [3, 22, 24, 25, 26, 39, 47, 52, 55, 65], "v1": 33, "valid": [3, 13, 16, 39, 47, 65, 66, 69, 78, 83, 85, 87], "valid_error": 13, "valid_metamodel": [13, 85, 87], "valid_metr": 3, "valid_model_run": 87, "valid_sampl": 87, "validlikelihoods_": 87, "valu": [3, 5, 7, 9, 10, 16, 17, 24, 25, 26, 34, 35, 45, 52, 55, 56, 58, 65, 66, 68, 70, 72, 73, 78, 80, 86, 87], "valueerror": 67, "var": 60, "var_hat": [25, 26, 55, 58], "var_pca_threshold": 65, "var_pr": [24, 25, 26], "varbasedoptdesign": 39, "variabl": [25, 26, 52, 55, 58, 82, 87], "varianc": [3, 7, 10, 24, 25, 26, 55, 58, 65, 68, 69, 70, 72, 73, 82, 84], "variant": 86, "variat": [24, 26, 65, 86], "varidx": [65, 68], "varieti": 80, "variou": [65, 87], "varoptdesign": [39, 60, 69], "vbl": [65, 86], "vector": [25, 26, 65], "venv": 83, "verbos": [3, 9, 16, 24, 25, 26, 29, 52, 55, 58, 60, 65, 72, 87], "veri": [25, 80], "versa": [30, 61], "version": [24, 25, 26, 42, 52, 55, 65, 75, 77, 79, 83, 84], "via": [5, 7, 9, 39, 47, 65, 72, 73, 75, 78, 79, 80, 82, 83, 86, 87], "vice": [30, 61], "view": 65, "virtual": 83, "visual": [5, 39, 72, 78, 83, 85, 87], "voronoi": [39, 42, 69, 87], "vulner": 33, "w": [9, 10, 13, 22, 24, 25, 26, 42, 52, 55], "wa": 65, "wai": [60, 65, 86, 87], "walker": [3, 72], "want": [72, 77, 78, 80, 85, 86, 87], "warranti": [75, 79, 84], "wavelet": 52, "wb": 87, "we": [7, 25, 69, 72, 74, 75, 76, 77, 79, 80, 84, 85, 86, 87], "wear": 9, "websit": [], "weibul": 78, "weight": [5, 10, 24, 25, 26, 39, 52, 55, 58, 60, 69, 74, 83], "well": [10, 24, 25, 26, 52, 55, 72, 74], "were": 85, "what": [3, 7, 76, 86], "when": [3, 7, 9, 13, 16, 24, 25, 26, 30, 39, 52, 55, 58, 61, 72, 78, 87], "where": [5, 7, 24, 25, 26, 34, 35, 39, 44, 52, 55, 65, 78, 87], "whether": [5, 16, 39, 52, 55, 58], "which": [3, 16, 22, 24, 25, 26, 30, 58, 61, 72, 87], "while": [45, 69, 83, 85, 86, 87], "width": 73, "wiener": 37, "wight": 5, "wish": 16, "witch": 44, "within": [10, 16, 74, 76], "without": [16, 69, 73, 75, 77, 79, 84, 87], "wolfgang": 60, "word": 16, "work": [16, 24, 25, 26, 52, 55, 75, 77, 79, 84, 87], "workflow": [77, 87], "wors": [24, 25, 26, 52, 55], "would": [24, 25, 26, 52, 55, 77], "wrapper": 16, "write": 9, "written": [16, 72], "wrong": 60, "www": [22, 33, 55, 58, 75, 79, 84], "x": [13, 16, 24, 25, 26, 31, 34, 35, 36, 39, 44, 47, 52, 53, 55, 58, 62, 65, 68, 78, 80, 86, 87], "x1": 16, "x_1": [49, 50, 79, 87], "x_2": [79, 87], "x_3": 79, "x_axi": 13, "x_can": 60, "x_i": [44, 86], "x_mc": 60, "x_new": 60, "x_valu": [16, 20, 72, 74, 77, 80, 86], "xi": 16, "xiu": 87, "xlabel": 13, "xnew": 60, "xx": 16, "xxa": 55, "xya": 55, "y": [7, 9, 24, 25, 26, 39, 52, 53, 55, 65, 66, 68], "y_hat": [25, 26, 52, 55, 58, 60], "y_i": 86, "y_pc_val": 20, "y_pc_val_std": 20, "y_pred": [24, 25, 26, 52, 55, 65], "y_true": [24, 25, 26, 52, 55], "y_val": 20, "ye": [16, 70, 73, 84], "yet": 10, "yew": 60, "you": [7, 13, 16, 24, 25, 26, 52, 55, 71, 75, 77, 79, 81, 82, 84], "young": 73, "your": [13, 75, 79, 82, 83], "yr": [75, 79], "z": [77, 87], "zero": [30, 52, 55, 58, 61, 72], "zeromean": 7, "zip": 16, "zip_subdir": 16, "zurich": 33}, "titles": ["bayesvalidrox", "bayesvalidrox.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "bayesvalidrox.bayes_inference.bayes_model_comparison", "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "bayesvalidrox.bayes_inference.discrepancy", "bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "bayesvalidrox.bayes_inference.mcmc", "bayesvalidrox.bayes_inference.mcmc.MCMC", "bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "bayesvalidrox.post_processing", "bayesvalidrox.post_processing.post_processing", "bayesvalidrox.post_processing.post_processing.PostProcessing", "bayesvalidrox.pylink", "bayesvalidrox.pylink.pylink", "bayesvalidrox.pylink.pylink.PyLinkForwardModel", "bayesvalidrox.pylink.pylink.within_range", "bayesvalidrox.surrogate_models", "bayesvalidrox.surrogate_models.adaptPlot", "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "bayesvalidrox.surrogate_models.apoly_construction", "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "bayesvalidrox.surrogate_models.bayes_linear", "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "bayesvalidrox.surrogate_models.engine", "bayesvalidrox.surrogate_models.engine.Engine", "bayesvalidrox.surrogate_models.engine.hellinger_distance", "bayesvalidrox.surrogate_models.engine.logpdf", "bayesvalidrox.surrogate_models.engine.subdomain", "bayesvalidrox.surrogate_models.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "bayesvalidrox.surrogate_models.exp_designs", "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "bayesvalidrox.surrogate_models.exp_designs.check_ranges", "bayesvalidrox.surrogate_models.exploration", "bayesvalidrox.surrogate_models.exploration.Exploration", "bayesvalidrox.surrogate_models.glexindex", "bayesvalidrox.surrogate_models.glexindex.cross_truncate", "bayesvalidrox.surrogate_models.glexindex.glexindex", "bayesvalidrox.surrogate_models.input_space", "bayesvalidrox.surrogate_models.input_space.InputSpace", "bayesvalidrox.surrogate_models.inputs", "bayesvalidrox.surrogate_models.inputs.Input", "bayesvalidrox.surrogate_models.inputs.Marginal", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "bayesvalidrox.surrogate_models.reg_fast_ard", "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "bayesvalidrox.surrogate_models.reg_fast_laplace", "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "bayesvalidrox.surrogate_models.sequential_design", "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign", "bayesvalidrox.surrogate_models.sequential_design.hellinger_distance", "bayesvalidrox.surrogate_models.sequential_design.logpdf", "bayesvalidrox.surrogate_models.sequential_design.subdomain", "bayesvalidrox.surrogate_models.surrogate_models", "bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "bayesvalidrox.surrogate_models.surrogate_models.create_psi", "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "Active learning: iteratively expanding the training set", "Example: Analytical function", "API", "Bayesian inference", "Example: beam", "Bayesian multi-model comparison", "Example: borehole", "EXAMPLES", "Surrogate-assisted\u00a0Bayesian validation of computational models", "Priors, input space and experimental design", "Example: ishigami", "Models", "Example: model comparison", "Example: OHagan-function", "USER GUIDE", "Example: pollution", "Postprocessing", "Training surrogate models", "TUTORIAL"], "titleterms": {"1": 81, "3": 81, "activ": 69, "adaptplot": [19, 20], "also": [], "an": 87, "analyt": 70, "api": 71, "apoly_construct": [21, 22], "argument": [42, 60], "assist": 77, "attribut": [3, 5, 7, 9, 13, 16, 25, 26, 39, 42, 47, 49, 50, 52, 55, 58, 65], "bay": [], "bayes_infer": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "bayes_linear": [23, 24, 25, 26, 27], "bayes_model_comparison": [4, 5], "bayesian": [72, 74, 77, 87], "bayesianlinearregress": 24, "bayesinfer": 3, "bayesmodelcomparison": 5, "bayesvalidrox": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "beam": 73, "borehol": 75, "check_rang": 40, "choic": [70, 73, 75, 79, 81, 82, 84], "class": [], "comparison": [74, 81], "comput": 77, "contact": [], "content": 77, "contribut": 77, "corr": 53, "corr_loocv_error": 66, "create_psi": 67, "cross_trunc": 44, "data": [70, 73, 75, 79, 82, 84, 87], "defin": 87, "descript": [], "design": [78, 87], "discrep": [6, 7, 70, 73], "eblinearregress": 25, "engin": [28, 29, 30, 31, 32, 86, 87], "eval_rec_rul": [33, 34, 35, 36, 37], "eval_rec_rule_arbitrari": 35, "eval_univ_basi": 36, "exampl": [49, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86], "exp_design": [38, 39, 40], "expand": 69, "expdesign": 39, "experiment": [78, 87], "exploit": 69, "explor": [41, 42, 69], "function": [70, 82], "further": 77, "gamma_mean": 27, "gaussian_process_emul": 68, "gelman_rubin": 10, "glexindex": [43, 44, 45], "guid": 83, "hellinger_dist": [30, 61], "import": 87, "indic": 77, "infer": [72, 87], "input": [48, 49, 50, 78, 87], "input_spac": [46, 47], "inputspac": 47, "instal": [77, 83], "introductori": [], "ishigami": 79, "iter": 69, "l2_model": 81, "learn": 69, "librari": 87, "licens": 77, "link": 77, "logpdf": [31, 62], "margin": 50, "mcmc": [8, 9, 10], "meta": 87, "meta_model_engin": [], "metamodel": [65, 70, 73, 75, 79, 81, 82, 84, 86], "model": [70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87], "model1": 81, "multi": 74, "necessari": 87, "nl2_model": 81, "nl4_model": 81, "note": [24, 25, 26, 39, 52, 55, 65], "ohagan": 82, "option": 86, "orthogonal_matching_pursuit": [51, 52, 53], "orthogonalmatchingpursuit": 52, "overview": 83, "packag": [], "paramet": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 47, 52, 55, 58, 60, 61, 62, 63, 65, 66, 67, 68], "pollut": 84, "poly_rec_coeff": 37, "post": 87, "post_process": [11, 12, 13], "postprocess": [13, 85], "prior": [70, 73, 75, 78, 79, 82, 84], "priors1": 81, "probabilist": 87, "process": 87, "pylink": [14, 15, 16, 17, 70, 73, 75, 79, 81, 82, 84], "pylinkforwardmodel": [16, 87], "quickstart": 77, "rais": [13, 60, 67], "refer": [52, 55, 58], "reg_fast_ard": [54, 55, 56], "reg_fast_laplac": [57, 58], "regressionfastard": 55, "regressionfastlaplac": 58, "return": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 42, 47, 49, 52, 55, 58, 60, 61, 62, 63, 65, 66, 67, 68], "see": [], "sequenti": 87, "sequential_design": [59, 60, 61, 62, 63], "sequentialdesign": 60, "set": [69, 70, 73, 75, 79, 81, 82, 84, 87], "space": 78, "subdomain": [32, 63], "surrog": [70, 73, 75, 77, 79, 81, 82, 84, 86, 87], "surrogate_model": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "tabl": 77, "theori": [], "tradeoff": 69, "train": [69, 70, 73, 75, 79, 81, 82, 84, 86, 87], "tutori": 87, "uncertainti": 87, "update_precis": 56, "user": 83, "valid": 77, "vblinearregress": 26, "within_rang": 17}}) \ No newline at end of file diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py index 50b32dbea..795371651 100644 --- a/src/bayesvalidrox/post_processing/post_processing.py +++ b/src/bayesvalidrox/post_processing/post_processing.py @@ -437,7 +437,7 @@ class PostProcessing: bbox_inches='tight' ) # Destroy the current plot - plt.clf() + plt.close() # Save arrays into files f = open(f'./{newpath}/seq_{plot_name}.txt', 'w') f.write(str(sorted_seq_opt)) @@ -523,7 +523,7 @@ class PostProcessing: bbox_inches='tight' ) # Destroy the current plot - plt.clf() + plt.close() # ---------------- Saving arrays into files --------------- np.save(f'./{newpath}/seq_{plot_name}.npy', seq_values) @@ -830,7 +830,7 @@ class PostProcessing: ) # Destroy the current plot - plt.clf() + plt.close() return self.total_sobol @@ -890,13 +890,12 @@ class PostProcessing: lw=3, linestyle='--') plt.xlabel(par) plt.ylabel('Residuals') - plt.show() # save the current figure fig1.savefig(f'./{newpath}/Residuals_vs_Par_{i+1}.pdf', bbox_inches='tight') # Destroy the current plot - plt.clf() + plt.close() # ------ Fitted vs. residuals ------ # Check the assumptions of linearity and independence @@ -909,13 +908,12 @@ class PostProcessing: linestyle='--') plt.xlabel(key) plt.ylabel('Residuals') - plt.show() # save the current figure fig2.savefig(f'./{newpath}/Fitted_vs_Residuals.pdf', bbox_inches='tight') # Destroy the current plot - plt.clf() + plt.close() # ------ Histogram of normalized residuals ------ fig3 = plt.figure() @@ -937,13 +935,11 @@ class PostProcessing: at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) - plt.show() - # save the current figure fig3.savefig(f'./{newpath}/Hist_NormResiduals.pdf', bbox_inches='tight') # Destroy the current plot - plt.clf() + plt.close() # ------ Q-Q plot of the normalized residuals ------ plt.figure() @@ -954,13 +950,12 @@ class PostProcessing: plt.ylabel("Sample quantiles") plt.title(f"{key}: Q-Q plot of normalized residuals") plt.grid(True) - plt.show() # save the current figure plt.savefig(f'./{newpath}/QQPlot_NormResiduals.pdf', bbox_inches='tight') # Destroy the current plot - plt.clf() + plt.close() # ------------------------------------------------------------------------- def eval_pce_model_3d(self): @@ -1023,7 +1018,6 @@ class PostProcessing: ax.set_zlabel('$f(x_1,x_2)$') plt.grid() - plt.show() # Saving the figure newpath = f'Outputs_PostProcessing_{self.name}/' @@ -1044,10 +1038,8 @@ class PostProcessing: ax.set_xlabel('$x_1$') ax.set_ylabel('$x_2$') ax.set_zlabel('$f(x_1,x_2)$') - plt.grid() - plt.show() - + # Save the figure fig_Model.savefig(f'./{newpath}/3DPlot_Model.pdf', bbox_inches='tight') @@ -1252,15 +1244,14 @@ class PostProcessing: plt.ylabel("Original Model") plt.xlabel("PCE Model") plt.grid() - plt.show() - + # save the current figure plot_name = key.replace(' ', '_') fig.savefig(f'./{newpath}/Model_vs_PCEModel_{plot_name}.pdf', bbox_inches='tight') # Destroy the current plot - plt.clf() + plt.close() # ------------------------------------------------------------------------- def _plot_validation_multi(self, x_values=[], x_axis="x [m]"): @@ -1335,7 +1326,7 @@ class PostProcessing: bbox_inches='tight') # Destroy the current plot - plt.clf() + plt.close() # Zip the subdirectories Model.zip_subdirs(f'{Model.name}valid', f'{Model.name}valid_') -- GitLab