diff --git a/docs/logo/BVRLogoV03.png b/docs/logo/BVRLogoV03.png
new file mode 100644
index 0000000000000000000000000000000000000000..b68ce44489d73ee4251a723dfcf0e9e5c8c36d64
Binary files /dev/null and b/docs/logo/BVRLogoV03.png differ
diff --git a/docs/logo/BVRLogoV03_longtext.png b/docs/logo/BVRLogoV03_longtext.png
new file mode 100644
index 0000000000000000000000000000000000000000..9cc47ce15481d9e16d1661682e27c97034755d4d
Binary files /dev/null and b/docs/logo/BVRLogoV03_longtext.png differ
diff --git a/docs/logo/BVRLogoV03_shorttext.png b/docs/logo/BVRLogoV03_shorttext.png
new file mode 100644
index 0000000000000000000000000000000000000000..491a6ecb1d38aa38442e05c725968bcec6d911b7
Binary files /dev/null and b/docs/logo/BVRLogoV03_shorttext.png differ
diff --git a/examples/model-comparison/example_model_comparison.py b/examples/model-comparison/example_model_comparison.py
index ebd80fea82a3caf3ff204b89da96c59737ba502b..249a0f0c344632ed1302d5d7725ef7ea345d4302 100644
--- a/examples/model-comparison/example_model_comparison.py
+++ b/examples/model-comparison/example_model_comparison.py
@@ -22,7 +22,12 @@ import scipy.io as io
 import pandas as pd
 import joblib
 import sys
+<<<<<<< HEAD
 sys.path.append("../../src/bayesvalidrox/")
+=======
+#sys.path.append("../../src/bayesvalidrox/")
+sys.path.append("../../src/")
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
 
 from bayesvalidrox.pylink.pylink import PyLinkForwardModel
 from bayesvalidrox.surrogate_models.inputs import Input
diff --git a/examples/only-model/L2_model.py b/examples/only-model/L2_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b28c818101e25859bdb222b82cfd9bee741d381
--- /dev/null
+++ b/examples/only-model/L2_model.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This is a simple linear model.
+
+The code for this numerical experiments is available at
+https://github.com/MichaelSinsbeck/paper_sequential-design-model-selection.
+
+Author: Farid Mohammadi, M.Sc.
+E-Mail: farid.mohammadi@iws.uni-stuttgart.de
+Department of Hydromechanics and Modelling of Hydrosystems (LH2)
+Institute for Modelling Hydraulic and Environmental Systems (IWS),
+University of Stuttgart, www.iws.uni-stuttgart.de/lh2/
+Pfaffenwaldring 61
+70569 Stuttgart
+
+Created on Fri Oct 8 2021
+
+"""
+import numpy as np
+
+
+def L2_model(xx):
+    """
+    Linear model y = a*x+b
+
+    Models adapted from Anneli Guthke's paper:
+        ch€oniger, A., T. W€ohling, L. Samaniego,and W. Nowak (2014), Model
+        selection on solid ground: Rigorous comparison ofnine ways to evaluate
+        Bayesian modelevidence,Water Resour. Res.,50,9484–9513,
+        doi:10.1002/2014WR016062
+
+    Parameters
+    ----------
+    xx : array
+        Parameters a and b.
+
+    Returns
+    -------
+    2D-array
+        The first row contains the measurement locations.
+        The second row contains the model outputs.
+
+    """
+    n_output = 15
+    meas_loc = np.linspace(0.25, 4.75, n_output)
+
+    # L2_model
+    L2_model = xx[:, 0] * meas_loc + xx[:, 1]
+
+    # Output
+    output = {
+        'x_values': meas_loc,
+        'Z': L2_model
+        }
+
+    return output
diff --git a/examples/only-model/NL2_model.py b/examples/only-model/NL2_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fd4820e76a9756b85b891b0d8272404e81d3361
--- /dev/null
+++ b/examples/only-model/NL2_model.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This is a nonlinear cosine model.
+
+The code for this numerical experiments is available at
+https://github.com/MichaelSinsbeck/paper_sequential-design-model-selection.
+
+Author: Farid Mohammadi, M.Sc.
+E-Mail: farid.mohammadi@iws.uni-stuttgart.de
+Department of Hydromechanics and Modelling of Hydrosystems (LH2)
+Institute for Modelling Hydraulic and Environmental Systems (IWS),
+University of Stuttgart, www.iws.uni-stuttgart.de/lh2/
+Pfaffenwaldring 61
+70569 Stuttgart
+
+Created on Fri Oct 8 2021
+
+"""
+import numpy as np
+
+
+def NL2_model(xx):
+    """
+    Nonlinear model y = exp(a*x) + b
+
+    Models adapted from Anneli Guthke's paper:
+        ch€oniger, A., T. W€ohling, L. Samaniego,and W. Nowak (2014), Model
+        selection on solid ground: Rigorous comparison ofnine ways to evaluate
+        Bayesian modelevidence,Water Resour. Res.,50,9484–9513,
+        doi:10.1002/2014WR016062
+
+    Parameters
+    ----------
+    xx : array
+        Parameters a and b.
+
+    Returns
+    -------
+    2D-array
+        The first row contains the measurement locations.
+        The second row contains the model outputs.
+
+    """
+    n_output = 15
+    meas_loc = np.linspace(0.25, 4.75, n_output)
+
+    # NL2_model
+    NL2_model = np.exp(xx[:, 0] * meas_loc) + xx[:, 1]
+
+    # Output
+    output = {
+        'x_values': meas_loc,
+        'Z': NL2_model
+        }
+
+    return output
diff --git a/examples/only-model/NL4_model.py b/examples/only-model/NL4_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..5ca495306d9a6d277ec654a3efbdfb84bfc28ce1
--- /dev/null
+++ b/examples/only-model/NL4_model.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This is a nonlinear cosine model.
+
+The code for this numerical experiments is available at
+https://github.com/MichaelSinsbeck/paper_sequential-design-model-selection.
+
+Author: Farid Mohammadi, M.Sc.
+E-Mail: farid.mohammadi@iws.uni-stuttgart.de
+Department of Hydromechanics and Modelling of Hydrosystems (LH2)
+Institute for Modelling Hydraulic and Environmental Systems (IWS),
+University of Stuttgart, www.iws.uni-stuttgart.de/lh2/
+Pfaffenwaldring 61
+70569 Stuttgart
+
+Created on Fri Oct 8 2021
+
+"""
+import numpy as np
+
+
+def NL4_model(xx):
+    """
+    Nonlinear model y = a*cos(b*x+c)+d
+
+    Models adapted from Anneli Guthke's paper:
+        ch€oniger, A., T. W€ohling, L. Samaniego,and W. Nowak (2014), Model
+        selection on solid ground: Rigorous comparison ofnine ways to evaluate
+        Bayesian modelevidence,Water Resour. Res.,50,9484–9513,
+        doi:10.1002/2014WR016062
+
+    Parameters
+    ----------
+    xx : array
+        Parameters a and b.
+
+    Returns
+    -------
+    2D-array
+        The first row contains the measurement locations.
+        The second row contains the model outputs.
+
+    """
+    n_output = 15
+    meas_loc = np.linspace(0.25, 4.75, n_output)
+
+    # NL4_model
+    NL4_model = xx[:, 0] * np.cos(xx[:, 1] * meas_loc + xx[:, 2]) + xx[:, 3]
+
+    # Output
+    output = {
+        'x_values': meas_loc,
+        'Z': NL4_model
+        }
+
+    return output
diff --git a/examples/only-model/bayesvalidrox/__init__.py b/examples/only-model/bayesvalidrox/__init__.py
deleted file mode 100644
index 55c14687472fe6ff00a2438f31b9ba9ecd2992cd..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/__init__.py
+++ /dev/null
@@ -1,23 +0,0 @@
-# -*- coding: utf-8 -*-
-__version__ = "0.0.5"
-
-from .pylink.pylink import PyLinkForwardModel
-from .surrogate_models.surrogate_models import MetaModel
-from .surrogate_models.meta_model_engine import MetaModelEngine
-from .surrogate_models.inputs import Input
-from .post_processing.post_processing import PostProcessing
-from .bayes_inference.bayes_inference import BayesInference
-from .bayes_inference.bayes_model_comparison import BayesModelComparison
-from .bayes_inference.discrepancy import Discrepancy
-
-__all__ = [
-    "__version__",
-    "PyLinkForwardModel",
-    "Input",
-    "Discrepancy",
-    "MetaModel",
-    "MetaModelEngine",
-    "PostProcessing",
-    "BayesInference",
-    "BayesModelComparison"
-    ]
diff --git a/examples/only-model/bayesvalidrox/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/__pycache__/__init__.cpython-311.pyc
deleted file mode 100644
index 278aab3ea132ca1f0dbb5897698da7ba6551a21c..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/__pycache__/__init__.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__init__.py b/examples/only-model/bayesvalidrox/bayes_inference/__init__.py
deleted file mode 100644
index df8d935680f96ab487cf087866e8bfd504762945..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/bayes_inference/__init__.py
+++ /dev/null
@@ -1,9 +0,0 @@
-# -*- coding: utf-8 -*-
-
-from .bayes_inference import BayesInference
-from .mcmc import MCMC
-
-__all__ = [
-    "BayesInference",
-    "MCMC"
-    ]
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/__init__.cpython-311.pyc
deleted file mode 100644
index cb05638998140eeacbfda327b1cbbcff8e50b2e7..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/__init__.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_inference.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_inference.cpython-311.pyc
deleted file mode 100644
index 7f5bbe1146a0ace3a1e790b0274a9167756c5c79..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_inference.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_model_comparison.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_model_comparison.cpython-311.pyc
deleted file mode 100644
index 919edf1404e4ac63d005a49146a39ded9defe066..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_model_comparison.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/discrepancy.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/discrepancy.cpython-311.pyc
deleted file mode 100644
index 277082acf177169ba1aeb1049190f4e2821cf92f..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/discrepancy.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/mcmc.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/mcmc.cpython-311.pyc
deleted file mode 100644
index 28789e25211ee767120c61154597194c2f92b447..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/mcmc.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/bayes_inference.py b/examples/only-model/bayesvalidrox/bayes_inference/bayes_inference.py
deleted file mode 100644
index d566503a5718387be88925915229157bd8125a1a..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/bayes_inference/bayes_inference.py
+++ /dev/null
@@ -1,1537 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import numpy as np
-import os
-import copy
-import pandas as pd
-from tqdm import tqdm
-from scipy import stats
-import scipy.linalg as spla
-import joblib
-import seaborn as sns
-import corner
-import h5py
-import multiprocessing
-import gc
-from sklearn.metrics import mean_squared_error, r2_score
-from sklearn import preprocessing
-from matplotlib.patches import Patch
-import matplotlib.lines as mlines
-from matplotlib.backends.backend_pdf import PdfPages
-import matplotlib.pylab as plt
-
-from .mcmc import MCMC
-
-# Load the mplstyle
-#plt.style.use(os.path.join(os.path.split(__file__)[0],
-#                           '../', 'bayesvalidrox.mplstyle'))
-
-
-class BayesInference:
-    """
-    A class to perform Bayesian Analysis.
-
-
-    Attributes
-    ----------
-    MetaModel : obj
-        Meta model object.
-    discrepancy : obj
-        The discrepancy object for the sigma2s, i.e. the diagonal entries
-        of the variance matrix for a multivariate normal likelihood.
-    name : str, optional
-        The type of analysis, either calibration (`Calib`) or validation
-        (`Valid`). The default is `'Calib'`.
-    emulator : bool, optional
-        Analysis with emulator (MetaModel). The default is `True`.
-    bootstrap : bool, optional
-        Bootstrap the analysis. The default is `False`.
-    req_outputs : list, optional
-        The list of requested output to be used for the analysis.
-        The default is `None`. If None, all the defined outputs for the model
-        object is used.
-    selected_indices : dict, optional
-        A dictionary with the selected indices of each model output. The
-        default is `None`. If `None`, all measurement points are used in the
-        analysis.
-    samples : array of shape (n_samples, n_params), optional
-        The samples to be used in the analysis. The default is `None`. If
-        None the samples are drawn from the probablistic input parameter
-        object of the MetaModel object.
-    n_samples : int, optional
-        Number of samples to be used in the analysis. The default is `500000`.
-        If samples is not `None`, this argument will be assigned based on the
-        number of samples given.
-    measured_data : dict, optional
-        A dictionary containing the observation data. The default is `None`.
-        if `None`, the observation defined in the Model object of the
-        MetaModel is used.
-    inference_method : str, optional
-        A method for approximating the posterior distribution in the Bayesian
-        inference step. The default is `'rejection'`, which stands for
-        rejection sampling. A Markov Chain Monte Carlo sampler can be simply
-        selected by passing `'MCMC'`.
-    mcmc_params : dict, optional
-        A dictionary with args required for the Bayesian inference with
-        `MCMC`. The default is `None`.
-
-        Pass the mcmc_params like the following:
-
-            >>> mcmc_params:{
-                'init_samples': None,  # initial samples
-                'n_walkers': 100,  # number of walkers (chain)
-                'n_steps': 100000,  # number of maximum steps
-                'n_burn': 200,  # number of burn-in steps
-                'moves': None,  # Moves for the emcee sampler
-                'multiprocessing': False,  # multiprocessing
-                'verbose': False # verbosity
-                }
-        The items shown above are the default values. If any parmeter is
-        not defined, the default value will be assigned to it.
-    bayes_loocv : bool, optional
-        Bayesian Leave-one-out Cross Validation. The default is `False`. If
-        `True`, the LOOCV procedure is used to estimate the bayesian Model
-        Evidence (BME).
-    n_bootstrap_itrs : int, optional
-        Number of bootstrap iteration. The default is `1`. If bayes_loocv is
-        `True`, this is qualt to the total length of the observation data
-        set.
-    perturbed_data : array of shape (n_bootstrap_itrs, n_obs), optional
-        User defined perturbed data. The default is `[]`.
-    bootstrap_noise : float, optional
-        A noise level to perturb the data set. The default is `0.05`.
-    just_analysis : bool, optional
-        Justifiability analysis. The default is False.
-    valid_metrics : list, optional
-        List of the validation metrics. The following metrics are supported:
-
-        1. log_BME : logarithm of the Bayesian model evidence
-        2. KLD : Kullback-Leibler Divergence
-        3. inf_entropy: Information entropy
-        The default is `['log_BME']`.
-    plot_post_pred : bool, optional
-        Plot posterior predictive plots. The default is `True`.
-    plot_map_pred : bool, optional
-        Plot the model outputs vs the metamodel predictions for the maximum
-        a posteriori (defined as `max_a_posteriori`) parameter set. The
-        default is `False`.
-    max_a_posteriori : str, optional
-        Maximum a posteriori. `'mean'` and `'mode'` are available. The default
-        is `'mean'`.
-    corner_title_fmt : str, optional
-        Title format for the posterior distribution plot with python
-        package `corner`. The default is `'.2e'`.
-
-    """
-
-    def __init__(self, MetaModel, discrepancy=None, emulator=True,
-                 name='Calib', bootstrap=False, req_outputs=None,
-                 selected_indices=None, samples=None, n_samples=100000,
-                 measured_data=None, inference_method='rejection',
-                 mcmc_params=None, bayes_loocv=False, n_bootstrap_itrs=1,
-                 perturbed_data=[], bootstrap_noise=0.05, just_analysis=False,
-                 valid_metrics=['BME'], plot_post_pred=True,
-                 plot_map_pred=False, max_a_posteriori='mean',
-                 corner_title_fmt='.2e'):
-
-        self.MetaModel = MetaModel
-        self.Discrepancy = discrepancy
-        self.emulator = emulator
-        self.name = name
-        self.bootstrap = bootstrap
-        self.req_outputs = req_outputs
-        self.selected_indices = selected_indices
-        self.samples = samples
-        self.n_samples = n_samples
-        self.measured_data = measured_data
-        self.inference_method = inference_method
-        self.mcmc_params = mcmc_params
-        self.perturbed_data = perturbed_data
-        self.bayes_loocv = bayes_loocv
-        self.n_bootstrap_itrs = n_bootstrap_itrs
-        self.bootstrap_noise = bootstrap_noise
-        self.just_analysis = just_analysis
-        self.valid_metrics = valid_metrics
-        self.plot_post_pred = plot_post_pred
-        self.plot_map_pred = plot_map_pred
-        self.max_a_posteriori = max_a_posteriori
-        self.corner_title_fmt = corner_title_fmt
-
-    # -------------------------------------------------------------------------
-    def create_inference(self):
-        """
-        Starts the inference.
-
-        Returns
-        -------
-        BayesInference : obj
-            The Bayes inference object.
-
-        """
-
-        # Set some variables
-        if self.MetaModel is not None:
-            MetaModel = self.MetaModel
-            Model = MetaModel.ModelObj
-            n_params = MetaModel.n_params
-            output_names = Model.Output.names
-            par_names = MetaModel.ExpDesign.par_names
-        else:
-            
-
-        # If the prior is set by the user, take it.
-        if self.samples is None:
-            self.samples = MetaModel.ExpDesign.generate_samples(
-                self.n_samples, 'random')
-        else:
-            try:
-                samples = self.samples.values
-            except AttributeError:
-                samples = self.samples
-
-            # Take care of an additional Sigma2s
-            self.samples = samples[:, :n_params]
-
-            # Update number of samples
-            self.n_samples = self.samples.shape[0]
-
-        # ---------- Preparation of observation data ----------
-        # Read observation data and perturb it if requested.
-        if self.measured_data is None:
-            self.measured_data = Model.read_observation(case=self.name)
-        # Convert measured_data to a data frame
-        if not isinstance(self.measured_data, pd.DataFrame):
-            self.measured_data = pd.DataFrame(self.measured_data)
-
-        # Extract the total number of measurement points
-        if self.name.lower() == 'calib':
-            self.n_tot_measurement = Model.n_obs
-        else:
-            self.n_tot_measurement = Model.n_obs_valid
-
-        # Find measurement error (if not given) for post predictive plot
-        if not hasattr(self, 'measurement_error'):
-            if isinstance(self.Discrepancy, dict):
-                Disc = self.Discrepancy['known']
-            else:
-                Disc = self.Discrepancy
-            if isinstance(Disc.parameters, dict):
-                self.measurement_error = {k: np.sqrt(Disc.parameters[k]) for k
-                                          in Disc.parameters.keys()}
-            else:
-                try:
-                    self.measurement_error = np.sqrt(Disc.parameters)
-                except TypeError:
-                    pass
-
-        # ---------- Preparation of variance for covariance matrix ----------
-        # Independent and identically distributed
-        total_sigma2 = dict()
-        opt_sigma_flag = isinstance(self.Discrepancy, dict)
-        opt_sigma = None
-        for key_idx, key in enumerate(output_names):
-
-            # Find opt_sigma
-            if opt_sigma_flag and opt_sigma is None:
-                # Option A: known error with unknown bias term
-                opt_sigma = 'A'
-                known_discrepancy = self.Discrepancy['known']
-                self.Discrepancy = self.Discrepancy['infer']
-                sigma2 = np.array(known_discrepancy.parameters[key])
-
-            elif opt_sigma == 'A' or self.Discrepancy.parameters is not None:
-                # Option B: The sigma2 is known (no bias term)
-                if opt_sigma == 'A':
-                    sigma2 = np.array(known_discrepancy.parameters[key])
-                else:
-                    opt_sigma = 'B'
-                    sigma2 = np.array(self.Discrepancy.parameters[key])
-
-            elif not isinstance(self.Discrepancy.InputDisc, str):
-                # Option C: The sigma2 is unknown (bias term including error)
-                opt_sigma = 'C'
-                self.Discrepancy.opt_sigma = opt_sigma
-                n_measurement = self.measured_data[key].values.shape
-                sigma2 = np.zeros((n_measurement[0]))
-
-            total_sigma2[key] = sigma2
-
-            self.Discrepancy.opt_sigma = opt_sigma
-            self.Discrepancy.total_sigma2 = total_sigma2
-
-        # If inferred sigma2s obtained from e.g. calibration are given
-        try:
-            self.sigma2s = self.Discrepancy.get_sample(self.n_samples)
-        except:
-            pass
-        
-        # ---------------- Bootstrap & TOM --------------------
-        if self.bootstrap or self.bayes_loocv or self.just_analysis:
-            if len(self.perturbed_data) == 0:
-                # zero mean noise Adding some noise to the observation function
-                self.perturbed_data = self._perturb_data(
-                    self.measured_data, output_names
-                    )
-            else:
-                self.n_bootstrap_itrs = len(self.perturbed_data)
-
-            # -------- Model Discrepancy -----------
-            if hasattr(self, 'error_model') and self.error_model \
-               and self.name.lower() != 'calib':
-                # Select posterior mean as MAP
-                MAP_theta = self.samples.mean(axis=0).reshape((1, n_params))
-                # MAP_theta = stats.mode(self.samples,axis=0)[0]
-
-                # Evaluate the (meta-)model at the MAP
-                y_MAP, y_std_MAP = MetaModel.eval_metamodel(samples=MAP_theta)
-
-                # Train a GPR meta-model using MAP
-                print('Create error meta model')
-                self.error_MetaModel = MetaModel.create_model_error(
-                    self.bias_inputs, y_MAP, Name=self.name
-                    )
-
-            # -----------------------------------------------------
-            # ----- Loop over the perturbed observation data ------
-            # -----------------------------------------------------
-            # Initilize arrays
-            logLikelihoods = np.zeros((self.n_samples, self.n_bootstrap_itrs),
-                                      dtype=np.float16)
-            BME_Corr = np.zeros((self.n_bootstrap_itrs))
-            log_BME = np.zeros((self.n_bootstrap_itrs))
-            KLD = np.zeros((self.n_bootstrap_itrs))
-            inf_entropy = np.zeros((self.n_bootstrap_itrs))
-
-            # Compute the prior predtions
-            # Evaluate the MetaModel
-            if self.emulator:
-                y_hat, y_std = MetaModel.eval_metamodel(samples=self.samples)
-                self.__mean_pce_prior_pred = y_hat
-                self._std_pce_prior_pred = y_std
-
-                # Correct the predictions with Model discrepancy
-                if hasattr(self, 'error_model') and self.error_model:
-                    y_hat_corr, y_std = self.error_MetaModel.eval_model_error(
-                        self.bias_inputs, self.__mean_pce_prior_pred
-                        )
-                    self.__mean_pce_prior_pred = y_hat_corr
-                    self._std_pce_prior_pred = y_std
-
-                # Surrogate model's error using RMSE of test data
-                if hasattr(MetaModel, 'rmse'):
-                    surrError = MetaModel.rmse
-                else:
-                    surrError = None
-
-            else:
-                # Evaluate the original model
-                self.__model_prior_pred = self._eval_model(
-                    samples=self.samples, key='PriorPred'
-                    )
-                surrError = None
-
-            # Start the likelihood-BME computations for the perturbed data
-            for itr_idx, data in tqdm(
-                    enumerate(self.perturbed_data),
-                    total=self.n_bootstrap_itrs,
-                    desc="Boostraping the BME calculations", ascii=True
-                    ):
-
-                # ---------------- Likelihood calculation ----------------
-                if self.emulator:
-                    model_evals = self.__mean_pce_prior_pred
-                else:
-                    model_evals = self.__model_prior_pred
-                
-                # Leave one out
-                if self.bayes_loocv or self.just_analysis:
-                    self.selected_indices = np.nonzero(data)[0]
-
-                # Prepare data dataframe
-                nobs = list(self.measured_data.count().values[1:])
-                numbers = list(np.cumsum(nobs))
-                indices = list(zip([0] + numbers, numbers))
-                data_dict = {
-                    output_names[i]: data[j:k] for i, (j, k) in
-                    enumerate(indices)
-                    }
-                
-                # Unknown sigma2
-                if opt_sigma == 'C' or hasattr(self, 'sigma2s'):
-                    logLikelihoods[:, itr_idx] = self.normpdf(
-                        model_evals, data_dict, total_sigma2,
-                        sigma2=self.sigma2s, std=surrError
-                        )
-                else:
-                    # known sigma2
-                    logLikelihoods[:, itr_idx] = self.normpdf(
-                        model_evals, data_dict, total_sigma2,
-                        std=surrError
-                        )
-
-                # ---------------- BME Calculations ----------------
-                # BME (log)
-                log_BME[itr_idx] = np.log(
-                    np.nanmean(np.exp(logLikelihoods[:, itr_idx],
-                                      dtype=np.longdouble)) # changed for windows
-                    )
-
-                # BME correction when using Emulator
-                if self.emulator:
-                    BME_Corr[itr_idx] = self.__corr_factor_BME(
-                        data_dict, total_sigma2, log_BME[itr_idx]
-                        )
-
-                # Rejection Step
-                if 'kld' in list(map(str.lower, self.valid_metrics)) and\
-                   'inf_entropy' in list(map(str.lower, self.valid_metrics)):
-                    # Random numbers between 0 and 1
-                    unif = np.random.rand(1, self.n_samples)[0]
-
-                    # Reject the poorly performed prior
-                    Likelihoods = np.exp(logLikelihoods[:, itr_idx],
-                                         dtype=np.float64)
-                    accepted = (Likelihoods/np.max(Likelihoods)) >= unif
-                    posterior = self.samples[accepted]
-
-                    # Posterior-based expectation of likelihoods
-                    postExpLikelihoods = np.mean(
-                        logLikelihoods[:, itr_idx][accepted]
-                        )
-
-                    # Calculate Kullback-Leibler Divergence
-                    KLD[itr_idx] = postExpLikelihoods - log_BME[itr_idx]
-
-                # Posterior-based expectation of prior densities
-                if 'inf_entropy' in list(map(str.lower, self.valid_metrics)):
-                    n_thread = int(0.875 * multiprocessing.cpu_count())
-                    with multiprocessing.Pool(n_thread) as p:
-                        postExpPrior = np.mean(np.concatenate(
-                            p.map(
-                                MetaModel.ExpDesign.JDist.pdf,
-                                np.array_split(posterior.T, n_thread, axis=1))
-                            )
-                            )
-                    # Information Entropy based on Entropy paper Eq. 38
-                    inf_entropy[itr_idx] = log_BME[itr_idx] - postExpPrior - \
-                        postExpLikelihoods
-
-                # Clear memory
-                gc.collect(generation=2)
-
-            # ---------- Store metrics for perturbed data set ----------------
-            # Likelihoods (Size: n_samples, n_bootstrap_itr)
-            self.log_likes = logLikelihoods
-
-            # BME (log), KLD, infEntropy (Size: 1,n_bootstrap_itr)
-            self.log_BME = log_BME
-
-            # BMECorrFactor (log) (Size: 1,n_bootstrap_itr)
-            if self.emulator:
-                self.log_BME_corr_factor = BME_Corr
-
-            if 'kld' in list(map(str.lower, self.valid_metrics)):
-                self.KLD = KLD
-            if 'inf_entropy' in list(map(str.lower, self.valid_metrics)):
-                self.inf_entropy = inf_entropy
-
-            # BME = BME + BMECorrFactor
-            if self.emulator:
-                self.log_BME += self.log_BME_corr_factor
-
-        # ---------------- Parameter Bayesian inference ----------------
-        if self.inference_method.lower() == 'mcmc':
-            # Instantiate the MCMC object
-            MCMC_Obj = MCMC(self)
-            self.MCMC_Obj = MCMC_Obj
-            self.posterior_df = MCMC_Obj.run_sampler(
-                self.measured_data, total_sigma2
-                )
-
-        elif self.name.lower() == 'valid':
-            # Convert to a dataframe if samples are provided after calibration.
-            self.posterior_df = pd.DataFrame(self.samples, columns=par_names)
-
-        else:
-            # Rejection sampling
-            self.posterior_df = self._rejection_sampling()
-        # Provide posterior's summary
-        print('\n')
-        print('-'*15 + 'Posterior summary' + '-'*15)
-        pd.options.display.max_columns = None
-        pd.options.display.max_rows = None
-        print(self.posterior_df.describe())
-        print('-'*50)
-
-        # -------- Model Discrepancy -----------
-        if hasattr(self, 'error_model') and self.error_model \
-           and self.name.lower() == 'calib':
-            if self.inference_method.lower() == 'mcmc':
-                self.error_MetaModel = MCMC_Obj.error_MetaModel
-            else:
-                # Select posterior mean as MAP
-                if opt_sigma == "B":
-                    posterior_df = self.posterior_df.values
-                else:
-                    posterior_df = self.posterior_df.values[:, :-Model.n_outputs]
-
-                # Select posterior mean as Maximum a posteriori
-                map_theta = posterior_df.mean(axis=0).reshape((1, n_params))
-                # map_theta = stats.mode(Posterior_df,axis=0)[0]
-
-                # Evaluate the (meta-)model at the MAP
-                y_MAP, y_std_MAP = MetaModel.eval_metamodel(samples=map_theta)
-
-                # Train a GPR meta-model using MAP
-                self.error_MetaModel = MetaModel.create_model_error(
-                    self.bias_inputs, y_MAP, Name=self.name
-                    )
-
-        # -------- Posterior perdictive -----------
-        self._posterior_predictive()
-
-        # -----------------------------------------------------
-        # ------------------ Visualization --------------------
-        # -----------------------------------------------------
-        # Create Output directory, if it doesn't exist already.
-        out_dir = f'Outputs_Bayes_{Model.name}_{self.name}'
-        os.makedirs(out_dir, exist_ok=True)
-
-        # -------- Posteior parameters --------
-        if opt_sigma != "B":
-            par_names.extend(
-                [self.Discrepancy.InputDisc.Marginals[i].name for i
-                 in range(len(self.Discrepancy.InputDisc.Marginals))]
-                )
-        # Pot with corner
-        figPosterior = corner.corner(self.posterior_df.to_numpy(),
-                                     labels=par_names,
-                                     quantiles=[0.15, 0.5, 0.85],
-                                     show_titles=True,
-                                     title_fmt=self.corner_title_fmt,
-                                     labelpad=0.2,
-                                     use_math_text=True,
-                                     title_kwargs={"fontsize": 28},
-                                     plot_datapoints=False,
-                                     plot_density=False,
-                                     fill_contours=True,
-                                     smooth=0.5,
-                                     smooth1d=0.5)
-
-        # Loop over axes and set x limits
-        if opt_sigma == "B":
-            axes = np.array(figPosterior.axes).reshape(
-                (len(par_names), len(par_names))
-                )
-            for yi in range(len(par_names)):
-                ax = axes[yi, yi]
-                ax.set_xlim(MetaModel.bound_tuples[yi])
-                for xi in range(yi):
-                    ax = axes[yi, xi]
-                    ax.set_xlim(MetaModel.bound_tuples[xi])
-        plt.close()
-
-        # Turn off gridlines
-        for ax in figPosterior.axes:
-            ax.grid(False)
-
-        if self.emulator:
-            plotname = f'/Posterior_Dist_{Model.name}_emulator'
-        else:
-            plotname = f'/Posterior_Dist_{Model.name}'
-
-        figPosterior.set_size_inches((24, 16))
-        figPosterior.savefig(f'./{out_dir}{plotname}.pdf',
-                             bbox_inches='tight')
-
-        # -------- Plot MAP --------
-        if self.plot_map_pred:
-            self._plot_max_a_posteriori()
-
-        # -------- Plot log_BME dist --------
-        if self.bootstrap:
-
-            # Computing the TOM performance
-            self.log_BME_tom = stats.chi2.rvs(
-                self.n_tot_measurement, size=self.log_BME.shape[0]
-                )
-
-            fig, ax = plt.subplots()
-            sns.kdeplot(self.log_BME_tom, ax=ax, color="green", shade=True)
-            sns.kdeplot(
-                self.log_BME, ax=ax, color="blue", shade=True,
-                label='Model BME')
-
-            ax.set_xlabel('log$_{10}$(BME)')
-            ax.set_ylabel('Probability density')
-
-            legend_elements = [
-                Patch(facecolor='green', edgecolor='green', label='TOM BME'),
-                Patch(facecolor='blue', edgecolor='blue', label='Model BME')
-                ]
-            ax.legend(handles=legend_elements)
-
-            if self.emulator:
-                plotname = f'/BME_hist_{Model.name}_emulator'
-            else:
-                plotname = f'/BME_hist_{Model.name}'
-
-            plt.savefig(f'./{out_dir}{plotname}.pdf', bbox_inches='tight')
-            plt.show()
-            plt.close()
-
-        # -------- Posteior perdictives --------
-        if self.plot_post_pred:
-            # Plot the posterior predictive
-            self._plot_post_predictive()
-
-        return self
-
-    # -------------------------------------------------------------------------
-    def _perturb_data(self, data, output_names):
-        """
-        Returns an array with n_bootstrap_itrs rowsof perturbed data.
-        The first row includes the original observation data.
-        If `self.bayes_loocv` is True, a 2d-array will be returned with
-        repeated rows and zero diagonal entries.
-
-        Parameters
-        ----------
-        data : pandas DataFrame
-            Observation data.
-        output_names : list
-            List of the output names.
-
-        Returns
-        -------
-        final_data : array
-            Perturbed data set.
-
-        """
-        noise_level = self.bootstrap_noise
-        obs_data = data[output_names].values
-        n_measurement, n_outs = obs_data.shape
-        self.n_tot_measurement = obs_data[~np.isnan(obs_data)].shape[0]
-        # Number of bootstrap iterations
-        if self.bayes_loocv:
-            self.n_bootstrap_itrs = self.n_tot_measurement
-
-        # Pass loocv dataset
-        if self.bayes_loocv:
-            obs = obs_data.T[~np.isnan(obs_data.T)]
-            final_data = np.repeat(np.atleast_2d(obs), self.n_bootstrap_itrs,
-                                   axis=0)
-            np.fill_diagonal(final_data, 0)
-            return final_data
-
-        else:
-            final_data = np.zeros(
-                (self.n_bootstrap_itrs, self.n_tot_measurement)
-                )
-            final_data[0] = obs_data.T[~np.isnan(obs_data.T)]
-            for itrIdx in range(1, self.n_bootstrap_itrs):
-                data = np.zeros((n_measurement, n_outs))
-                for idx in range(len(output_names)):
-                    std = np.nanstd(obs_data[:, idx])
-                    if std == 0:
-                        std = 0.001
-                    noise = std * noise_level
-                    data[:, idx] = np.add(
-                        obs_data[:, idx],
-                        np.random.normal(0, 1, obs_data.shape[0]) * noise,
-                    )
-
-                final_data[itrIdx] = data.T[~np.isnan(data.T)]
-
-            return final_data
-
-    # -------------------------------------------------------------------------
-    def _logpdf(self, x, mean, cov):
-        """
-        computes the likelihood based on a multivariate normal distribution.
-
-        Parameters
-        ----------
-        x : TYPE
-            DESCRIPTION.
-        mean : array_like
-            Observation data.
-        cov : 2d array
-            Covariance matrix of the distribution.
-
-        Returns
-        -------
-        log_lik : float
-            Log likelihood.
-
-        """
-        n = len(mean)
-        L = spla.cholesky(cov, lower=True)
-        beta = np.sum(np.log(np.diag(L)))
-        dev = x - mean
-        alpha = dev.dot(spla.cho_solve((L, True), dev))
-        log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi)
-        return log_lik
-
-    # -------------------------------------------------------------------------
-    def _eval_model(self, samples=None, key='MAP'):
-        """
-        Evaluates Forward Model.
-
-        Parameters
-        ----------
-        samples : array of shape (n_samples, n_params), optional
-            Parameter sets. The default is None.
-        key : str, optional
-            Key string to be passed to the run_model_parallel method.
-            The default is 'MAP'.
-
-        Returns
-        -------
-        model_outputs : dict
-            Model outputs.
-
-        """
-        MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-
-        if samples is None:
-            self.samples = MetaModel.ExpDesign.generate_samples(
-                self.n_samples, 'random')
-        else:
-            self.samples = samples
-            self.n_samples = len(samples)
-
-        model_outputs, _ = Model.run_model_parallel(
-            self.samples, key_str=key+self.name)
-
-        # Clean up
-        # Zip the subdirectories
-        try:
-            dir_name = f'{Model.name}MAP{self.name}'
-            key = dir_name + '_'
-            Model.zip_subdirs(dir_name, key)
-        except:
-            pass
-
-        return model_outputs
-
-    # -------------------------------------------------------------------------
-    def _kernel_rbf(self, X, hyperparameters):
-        """
-        Isotropic squared exponential kernel.
-
-        Higher l values lead to smoother functions and therefore to coarser
-        approximations of the training data. Lower l values make functions
-        more wiggly with wide uncertainty regions between training data points.
-
-        sigma_f controls the marginal variance of b(x)
-
-        Parameters
-        ----------
-        X : ndarray of shape (n_samples_X, n_features)
-
-        hyperparameters : Dict
-            Lambda characteristic length
-            sigma_f controls the marginal variance of b(x)
-            sigma_0 unresolvable error nugget term, interpreted as random
-                    error that cannot be attributed to measurement error.
-        Returns
-        -------
-        var_cov_matrix : ndarray of shape (n_samples_X,n_samples_X)
-            Kernel k(X, X).
-
-        """
-        from sklearn.gaussian_process.kernels import RBF
-        min_max_scaler = preprocessing.MinMaxScaler()
-        X_minmax = min_max_scaler.fit_transform(X)
-
-        nparams = len(hyperparameters)
-        # characteristic length (0,1]
-        Lambda = hyperparameters[0]
-        # sigma_f controls the marginal variance of b(x)
-        sigma2_f = hyperparameters[1]
-
-        # cov_matrix = sigma2_f*rbf_kernel(X_minmax, gamma = 1/Lambda**2)
-
-        rbf = RBF(length_scale=Lambda)
-        cov_matrix = sigma2_f * rbf(X_minmax)
-        if nparams > 2:
-            # (unresolvable error) nugget term that is interpreted as random
-            # error that cannot be attributed to measurement error.
-            sigma2_0 = hyperparameters[2:]
-            for i, j in np.ndindex(cov_matrix.shape):
-                cov_matrix[i, j] += np.sum(sigma2_0) if i == j else 0
-
-        return cov_matrix
-
-    # -------------------------------------------------------------------------
-    def normpdf(self, outputs, obs_data, total_sigma2s, sigma2=None, std=None):
-        """
-        Calculates the likelihood of simulation outputs compared with
-        observation data.
-
-        Parameters
-        ----------
-        outputs : dict
-            A dictionary containing the simulation outputs as array of shape
-            (n_samples, n_measurement) for each model output.
-        obs_data : dict
-            A dictionary/dataframe containing the observation data.
-        total_sigma2s : dict
-            A dictionary with known values of the covariance diagonal entries,
-            a.k.a sigma^2.
-        sigma2 : array, optional
-            An array of the sigma^2 samples, when the covariance diagonal
-            entries are unknown and are being jointly inferred. The default is
-            None.
-        std : dict, optional
-            A dictionary containing the root mean squared error as array of
-            shape (n_samples, n_measurement) for each model output. The default
-            is None.
-
-        Returns
-        -------
-        logLik : array of shape (n_samples)
-            Likelihoods.
-
-        """
-        Model = self.MetaModel.ModelObj
-        logLik = 0.0
-
-        # Extract the requested model outputs for likelihood calulation
-        if self.req_outputs is None:
-            req_outputs = Model.Output.names
-        else:
-            req_outputs = list(self.req_outputs)
-
-        # Loop over the outputs
-        for idx, out in enumerate(req_outputs):
-            
-            # (Meta)Model Output
-            nsamples, nout = outputs[out].shape
-
-            # Prepare data and remove NaN
-            try:
-                data = obs_data[out].values[~np.isnan(obs_data[out])]
-            except AttributeError:
-                data = obs_data[out][~np.isnan(obs_data[out])]
-
-            # Prepare sigma2s
-            non_nan_indices = ~np.isnan(total_sigma2s[out])
-            tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout]
-
-            # Add the std of the PCE is chosen as emulator.
-            if self.emulator:
-                if std is not None:
-                    tot_sigma2s += std[out]**2
-
-            # Covariance Matrix
-            covMatrix = np.diag(tot_sigma2s)
-
-            # Select the data points to compare
-            try:
-                indices = self.selected_indices[out]
-            except:
-                indices = list(range(nout))
-            covMatrix = np.diag(covMatrix[indices, indices])
-
-            # If sigma2 is not given, use given total_sigma2s
-            if sigma2 is None:
-                logLik += stats.multivariate_normal.logpdf(
-                    outputs[out][:, indices], data[indices], covMatrix)
-                continue
-
-            # Loop over each run/sample and calculate logLikelihood
-            logliks = np.zeros(nsamples)
-            for s_idx in range(nsamples):
-
-                # Simulation run
-                tot_outputs = outputs[out]
-
-                # Covariance Matrix
-                covMatrix = np.diag(tot_sigma2s)
-
-                if sigma2 is not None:
-                    # Check the type error term
-                    if hasattr(self, 'bias_inputs') and \
-                       not hasattr(self, 'error_model'):
-                        # Infer a Bias model usig Gaussian Process Regression
-                        bias_inputs = np.hstack(
-                            (self.bias_inputs[out],
-                             tot_outputs[s_idx].reshape(-1, 1)))
-
-                        params = sigma2[s_idx, idx*3:(idx+1)*3]
-                        covMatrix = self._kernel_rbf(bias_inputs, params)
-                    else:
-                        # Infer equal sigma2s
-                        try:
-                            sigma_2 = sigma2[s_idx, idx]
-                        except TypeError:
-                            sigma_2 = 0.0
-
-                        covMatrix += sigma_2 * np.eye(nout)
-                        # covMatrix = np.diag(sigma2 * total_sigma2s)
-
-                # Select the data points to compare
-                try:
-                    indices = self.selected_indices[out]
-                except:
-                    indices = list(range(nout))
-                covMatrix = np.diag(covMatrix[indices, indices])
-
-                # Compute loglikelihood
-                logliks[s_idx] = self._logpdf(
-                    tot_outputs[s_idx, indices], data[indices], covMatrix
-                    )
-
-            logLik += logliks
-        return logLik
-
-    # -------------------------------------------------------------------------
-    def _corr_factor_BME_old(self, Data, total_sigma2s, posterior):
-        """
-        Calculates the correction factor for BMEs.
-        """
-        MetaModel = self.MetaModel
-        OrigModelOutput = MetaModel.ExpDesign.Y
-        Model = MetaModel.ModelObj
-
-        # Posterior with guassian-likelihood
-        postDist = stats.gaussian_kde(posterior.T)
-
-        # Remove NaN
-        Data = Data[~np.isnan(Data)]
-        total_sigma2s = total_sigma2s[~np.isnan(total_sigma2s)]
-
-        # Covariance Matrix
-        covMatrix = np.diag(total_sigma2s[:self.n_tot_measurement])
-
-        # Extract the requested model outputs for likelihood calulation
-        if self.req_outputs is None:
-            OutputType = Model.Output.names
-        else:
-            OutputType = list(self.req_outputs)
-
-        # SampleSize = OrigModelOutput[OutputType[0]].shape[0]
-
-
-        # Flatten the OutputType for OrigModel
-        TotalOutputs = np.concatenate([OrigModelOutput[x] for x in OutputType], 1)
-
-        NrofBayesSamples = self.n_samples
-        # Evaluate MetaModel on the experimental design
-        Samples = MetaModel.ExpDesign.X
-        OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=Samples)
-
-        # Reset the NrofSamples to NrofBayesSamples
-        self.n_samples = NrofBayesSamples
-
-        # Flatten the OutputType for MetaModel
-        TotalPCEOutputs = np.concatenate([OutputRS[x] for x in OutputRS], 1)
-        TotalPCEstdOutputRS= np.concatenate([stdOutputRS[x] for x in stdOutputRS], 1)
-
-        logweight = 0
-        for i, sample in enumerate(Samples):
-            # Compute likelilhood output vs RS
-            covMatrix = np.diag(TotalPCEstdOutputRS[i]**2)
-            logLik = self._logpdf(TotalOutputs[i], TotalPCEOutputs[i], covMatrix)
-            # Compute posterior likelihood of the collocation points
-            logpostLik = np.log(postDist.pdf(sample[:, None]))[0]
-            if logpostLik != -np.inf:
-                logweight += logLik + logpostLik
-        return logweight
-
-    # -------------------------------------------------------------------------
-    def __corr_factor_BME(self, obs_data, total_sigma2s, logBME):
-        """
-        Calculates the correction factor for BMEs.
-        """
-        MetaModel = self.MetaModel
-        samples = MetaModel.ExpDesign.X
-        model_outputs = MetaModel.ExpDesign.Y
-        Model = MetaModel.ModelObj
-        n_samples = samples.shape[0]
-
-        # Extract the requested model outputs for likelihood calulation
-        output_names = Model.Output.names
-
-        # Evaluate MetaModel on the experimental design and ValidSet
-        OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples)
-
-        logLik_data = np.zeros((n_samples))
-        logLik_model = np.zeros((n_samples))
-        # Loop over the outputs
-        for idx, out in enumerate(output_names):
-
-            # (Meta)Model Output
-            nsamples, nout = model_outputs[out].shape
-
-            # Prepare data and remove NaN
-            try:
-                data = obs_data[out].values[~np.isnan(obs_data[out])]
-            except AttributeError:
-                data = obs_data[out][~np.isnan(obs_data[out])]
-
-            # Prepare sigma2s
-            non_nan_indices = ~np.isnan(total_sigma2s[out])
-            tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout]
-
-            # Covariance Matrix
-            covMatrix_data = np.diag(tot_sigma2s)
-
-            for i, sample in enumerate(samples):
-
-                # Simulation run
-                y_m = model_outputs[out][i]
-
-                # Surrogate prediction
-                y_m_hat = OutputRS[out][i]
-
-                # CovMatrix with the surrogate error
-                covMatrix = np.eye(len(y_m)) * 1/(2*np.pi)
-
-                # Select the data points to compare
-                try:
-                    indices = self.selected_indices[out]
-                except:
-                    indices = list(range(nout))
-                covMatrix = np.diag(covMatrix[indices, indices])
-                covMatrix_data = np.diag(covMatrix_data[indices, indices])
-
-                # Compute likelilhood output vs data
-                logLik_data[i] += self._logpdf(
-                    y_m_hat[indices], data[indices],
-                    covMatrix_data
-                    )
-
-                # Compute likelilhood output vs surrogate
-                logLik_model[i] += self._logpdf(
-                    y_m_hat[indices], y_m[indices],
-                    covMatrix
-                    )
-
-        # Weight
-        logLik_data -= logBME
-        weights = np.mean(np.exp(logLik_model+logLik_data))
-
-        return np.log(weights)
-
-    # -------------------------------------------------------------------------
-    def _rejection_sampling(self):
-        """
-        Performs rejection sampling to update the prior distribution on the
-        input parameters.
-
-        Returns
-        -------
-        posterior : pandas.dataframe
-            Posterior samples of the input parameters.
-
-        """
-
-        MetaModel = self.MetaModel
-        try:
-            sigma2_prior = self.Discrepancy.sigma2_prior
-        except:
-            sigma2_prior = None
-            
-        # Check if the discrepancy is defined as a distribution:
-        samples = self.samples
-
-        if sigma2_prior is not None:
-            samples = np.hstack((samples, sigma2_prior))
-
-        # Take the first column of Likelihoods (Observation data without noise)
-        if self.just_analysis or self.bayes_loocv:
-            index = self.n_tot_measurement-1
-            # account for numerical overflow, especially for windows
-            scale = 0
-            if np.max(self.log_likes[:, index])>709:
-                scale = np.max(self.log_likes[:, index])-709
-                    
-            self.log_likes[:, 0]-=scale
-            likelihoods = np.exp(self.log_likes[:, index], dtype=np.longdouble)
-        else:
-            # account for numerical overflow, especially for windows
-            scale = 0
-            if np.max(self.log_likes[:, 0])>709:            
-                scale = np.max(self.log_likes[:, 0])-709
-                
-            self.log_likes[:, 0]-=scale
-            likelihoods = np.exp(self.log_likes[:, 0], dtype=np.longdouble)
-
-        n_samples = len(likelihoods)
-        norm_ikelihoods = likelihoods / np.max(likelihoods)
-
-        # Normalize based on min if all Likelihoods are zero
-        if all(likelihoods == 0.0):
-            likelihoods = self.log_likes[:, 0]
-            norm_ikelihoods = likelihoods / np.min(likelihoods)
-
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, n_samples)[0]
-
-        # Reject the poorly performed prior
-        accepted_samples = samples[norm_ikelihoods >= unif]
-
-        # Output the Posterior
-        par_names = MetaModel.ExpDesign.par_names
-        if sigma2_prior is not None:
-            for name in self.Discrepancy.name:
-                par_names.append(name)
-
-        return pd.DataFrame(accepted_samples, columns=sigma2_prior)
-
-    # -------------------------------------------------------------------------
-    def _posterior_predictive(self):
-        """
-        Stores the prior- and posterior predictive samples, i.e. model
-        evaluations using the samples, into hdf5 files.
-
-        priorPredictive.hdf5 : Prior predictive samples.
-        postPredictive_wo_noise.hdf5 : Posterior predictive samples without
-        the additive noise.
-        postPredictive.hdf5 : Posterior predictive samples with the additive
-        noise.
-
-        Returns
-        -------
-        None.
-
-        """
-
-        MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-
-        # Make a directory to save the prior/posterior predictive
-        out_dir = f'Outputs_Bayes_{Model.name}_{self.name}'
-        os.makedirs(out_dir, exist_ok=True)
-
-        # Read observation data and perturb it if requested
-        if self.measured_data is None:
-            self.measured_data = Model.read_observation(case=self.name)
-
-        if not isinstance(self.measured_data, pd.DataFrame):
-            self.measured_data = pd.DataFrame(self.measured_data)
-
-        # X_values
-        x_values = MetaModel.ExpDesign.x_values
-
-        try:
-            sigma2_prior = self.Discrepancy.sigma2_prior
-        except:
-            sigma2_prior = None
-
-        # Extract posterior samples
-        posterior_df = self.posterior_df
-
-        # Take care of the sigma2
-        if sigma2_prior is not None:
-            try:
-                sigma2s = posterior_df[self.Discrepancy.name].values
-                posterior_df = posterior_df.drop(
-                    labels=self.Discrepancy.name, axis=1
-                    )
-            except:
-                sigma2s = self.sigma2s
-
-        # Posterior predictive
-        if self.emulator:
-            if self.inference_method == 'rejection':
-                prior_pred = self.__mean_pce_prior_pred
-            if self.name.lower() != 'calib':
-                post_pred = self.__mean_pce_prior_pred
-                post_pred_std = self._std_pce_prior_pred
-            else:
-                post_pred, post_pred_std = MetaModel.eval_metamodel(
-                    samples=posterior_df.values
-                    )
-
-        else:
-            if self.inference_method == 'rejection':
-                prior_pred = self.__model_prior_pred
-            if self.name.lower() != 'calib':
-                post_pred = self.__mean_pce_prior_pred,
-                post_pred_std = self._std_pce_prior_pred
-            else:
-                post_pred = self._eval_model(
-                    samples=posterior_df.values, key='PostPred'
-                    )
-        # Correct the predictions with Model discrepancy
-        if hasattr(self, 'error_model') and self.error_model:
-            y_hat, y_std = self.error_MetaModel.eval_model_error(
-                self.bias_inputs, post_pred
-                )
-            post_pred, post_pred_std = y_hat, y_std
-
-        # Add discrepancy from likelihood Sample to the current posterior runs
-        total_sigma2 = self.Discrepancy.total_sigma2
-        post_pred_withnoise = copy.deepcopy(post_pred)
-        for varIdx, var in enumerate(Model.Output.names):
-            for i in range(len(post_pred[var])):
-                pred = post_pred[var][i]
-
-                # Known sigma2s
-                clean_sigma2 = total_sigma2[var][~np.isnan(total_sigma2[var])]
-                tot_sigma2 = clean_sigma2[:len(pred)]
-                cov = np.diag(tot_sigma2)
-
-                # Check the type error term
-                if sigma2_prior is not None:
-                    # Inferred sigma2s
-                    if hasattr(self, 'bias_inputs') and \
-                       not hasattr(self, 'error_model'):
-                        # TODO: Infer a Bias model usig GPR
-                        bias_inputs = np.hstack((
-                            self.bias_inputs[var], pred.reshape(-1, 1)))
-                        params = sigma2s[i, varIdx*3:(varIdx+1)*3]
-                        cov = self._kernel_rbf(bias_inputs, params)
-                    else:
-                        # Infer equal sigma2s
-                        try:
-                            sigma2 = sigma2s[i, varIdx]
-                        except TypeError:
-                            sigma2 = 0.0
-
-                        # Convert biasSigma2s to a covMatrix
-                        cov += sigma2 * np.eye(len(pred))
-
-                if self.emulator:
-                    if hasattr(MetaModel, 'rmse') and \
-                       MetaModel.rmse is not None:
-                        stdPCE = MetaModel.rmse[var]
-                    else:
-                        stdPCE = post_pred_std[var][i]
-                    # Expected value of variance (Assump: i.i.d stds)
-                    cov += np.diag(stdPCE**2)
-
-                # Sample a multivariate normal distribution with mean of
-                # prediction and variance of cov
-                post_pred_withnoise[var][i] = np.random.multivariate_normal(
-                    pred, cov, 1
-                    )
-
-        # ----- Prior Predictive -----
-        if self.inference_method.lower() == 'rejection':
-            # Create hdf5 metadata
-            hdf5file = f'{out_dir}/priorPredictive.hdf5'
-            hdf5_exist = os.path.exists(hdf5file)
-            if hdf5_exist:
-                os.remove(hdf5file)
-            file = h5py.File(hdf5file, 'a')
-
-            # Store x_values
-            if type(x_values) is dict:
-                grp_x_values = file.create_group("x_values/")
-                for varIdx, var in enumerate(Model.Output.names):
-                    grp_x_values.create_dataset(var, data=x_values[var])
-            else:
-                file.create_dataset("x_values", data=x_values)
-
-            # Store posterior predictive
-            grpY = file.create_group("EDY/")
-            for varIdx, var in enumerate(Model.Output.names):
-                grpY.create_dataset(var, data=prior_pred[var])
-
-        # ----- Posterior Predictive only model evaluations -----
-        # Create hdf5 metadata
-        hdf5file = out_dir+'/postPredictive_wo_noise.hdf5'
-        hdf5_exist = os.path.exists(hdf5file)
-        if hdf5_exist:
-            os.remove(hdf5file)
-        file = h5py.File(hdf5file, 'a')
-
-        # Store x_values
-        if type(x_values) is dict:
-            grp_x_values = file.create_group("x_values/")
-            for varIdx, var in enumerate(Model.Output.names):
-                grp_x_values.create_dataset(var, data=x_values[var])
-        else:
-            file.create_dataset("x_values", data=x_values)
-
-        # Store posterior predictive
-        grpY = file.create_group("EDY/")
-        for varIdx, var in enumerate(Model.Output.names):
-            grpY.create_dataset(var, data=post_pred[var])
-
-        # ----- Posterior Predictive with noise -----
-        # Create hdf5 metadata
-        hdf5file = out_dir+'/postPredictive.hdf5'
-        hdf5_exist = os.path.exists(hdf5file)
-        if hdf5_exist:
-            os.remove(hdf5file)
-        file = h5py.File(hdf5file, 'a')
-
-        # Store x_values
-        if type(x_values) is dict:
-            grp_x_values = file.create_group("x_values/")
-            for varIdx, var in enumerate(Model.Output.names):
-                grp_x_values.create_dataset(var, data=x_values[var])
-        else:
-            file.create_dataset("x_values", data=x_values)
-
-        # Store posterior predictive
-        grpY = file.create_group("EDY/")
-        for varIdx, var in enumerate(Model.Output.names):
-            grpY.create_dataset(var, data=post_pred_withnoise[var])
-
-        return
-
-    # -------------------------------------------------------------------------
-    def _plot_max_a_posteriori(self):
-        """
-        Plots the response of the model output against that of the metamodel at
-        the maximum a posteriori sample (mean or mode of posterior.)
-
-        Returns
-        -------
-        None.
-
-        """
-
-        MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-        out_dir = f'Outputs_Bayes_{Model.name}_{self.name}'
-        opt_sigma = self.Discrepancy.opt_sigma
-
-        # -------- Find MAP and run MetaModel and origModel --------
-        # Compute the MAP
-        if self.max_a_posteriori.lower() == 'mean':
-            if opt_sigma == "B":
-                Posterior_df = self.posterior_df.values
-            else:
-                Posterior_df = self.posterior_df.values[:, :-Model.n_outputs]
-            map_theta = Posterior_df.mean(axis=0).reshape(
-                (1, MetaModel.n_params))
-        else:
-            map_theta = stats.mode(Posterior_df.values, axis=0)[0]
-        # Prin report
-        print("\nPoint estimator:\n", map_theta[0])
-
-        # Run the models for MAP
-        # MetaModel
-        map_metamodel_mean, map_metamodel_std = MetaModel.eval_metamodel(
-            samples=map_theta)
-        self.map_metamodel_mean = map_metamodel_mean
-        self.map_metamodel_std = map_metamodel_std
-
-        # origModel
-        map_orig_model = self._eval_model(samples=map_theta)
-        self.map_orig_model = map_orig_model
-
-        # Extract slicing index
-        x_values = map_orig_model['x_values']
-
-        # List of markers and colors
-        Color = ['k', 'b', 'g', 'r']
-        Marker = 'x'
-
-        # Create a PdfPages object
-        pdf = PdfPages(f'./{out_dir}MAP_PCE_vs_Model_{self.name}.pdf')
-        fig = plt.figure()
-        for i, key in enumerate(Model.Output.names):
-
-            y_val = map_orig_model[key]
-            y_pce_val = map_metamodel_mean[key]
-            y_pce_val_std = map_metamodel_std[key]
-
-            plt.plot(x_values, y_val, color=Color[i], marker=Marker,
-                     lw=2.0, label='$Y_{MAP}^{M}$')
-
-            plt.plot(
-                x_values, y_pce_val[i], color=Color[i], lw=2.0,
-                marker=Marker, linestyle='--', label='$Y_{MAP}^{PCE}$'
-                )
-            # plot the confidence interval
-            plt.fill_between(
-                x_values, y_pce_val[i] - 1.96*y_pce_val_std[i],
-                y_pce_val[i] + 1.96*y_pce_val_std[i],
-                color=Color[i], alpha=0.15
-                )
-
-            # Calculate the adjusted R_squared and RMSE
-            R2 = r2_score(y_pce_val.reshape(-1, 1), y_val.reshape(-1, 1))
-            rmse = np.sqrt(mean_squared_error(y_pce_val, y_val))
-
-            plt.ylabel(key)
-            plt.xlabel("Time [s]")
-            plt.title(f'Model vs MetaModel {key}')
-
-            ax = fig.axes[0]
-            leg = ax.legend(loc='best', frameon=True)
-            fig.canvas.draw()
-            p = leg.get_window_extent().inverse_transformed(ax.transAxes)
-            ax.text(
-                p.p0[1]-0.05, p.p1[1]-0.25,
-                f'RMSE = {rmse:.3f}\n$R^2$ = {R2:.3f}',
-                transform=ax.transAxes, color='black',
-                bbox=dict(facecolor='none', edgecolor='black',
-                          boxstyle='round,pad=1'))
-
-            plt.show()
-
-            # save the current figure
-            pdf.savefig(fig, bbox_inches='tight')
-
-            # Destroy the current plot
-            plt.clf()
-
-        pdf.close()
-
-    # -------------------------------------------------------------------------
-    def _plot_post_predictive(self):
-        """
-        Plots the posterior predictives against the observation data.
-
-        Returns
-        -------
-        None.
-
-        """
-
-        Model = self.MetaModel.ModelObj
-        out_dir = f'Outputs_Bayes_{Model.name}_{self.name}'
-        # Plot the posterior predictive
-        for out_idx, out_name in enumerate(Model.Output.names):
-            fig, ax = plt.subplots()
-            with sns.axes_style("ticks"):
-                x_key = list(self.measured_data)[0]
-
-                # --- Read prior and posterior predictive ---
-                if self.inference_method == 'rejection' and \
-                   self.name.lower() != 'valid':
-                    #  --- Prior ---
-                    # Load posterior predictive
-                    f = h5py.File(
-                        f'{out_dir}/priorPredictive.hdf5', 'r+')
-
-                    try:
-                        x_coords = np.array(f[f"x_values/{out_name}"])
-                    except:
-                        x_coords = np.array(f["x_values"])
-
-                    X_values = np.repeat(x_coords, 10000)
-
-                    prior_pred_df = {}
-                    prior_pred_df[x_key] = X_values
-                    prior_pred_df[out_name] = np.array(
-                        f[f"EDY/{out_name}"])[:10000].flatten('F')
-                    prior_pred_df = pd.DataFrame(prior_pred_df)
-
-                    tags_post = ['prior'] * len(prior_pred_df)
-                    prior_pred_df.insert(
-                        len(prior_pred_df.columns), "Tags", tags_post,
-                        True)
-                    f.close()
-
-                    # --- Posterior ---
-                    f = h5py.File(f"{out_dir}/postPredictive.hdf5", 'r+')
-
-                    X_values = np.repeat(
-                        x_coords, np.array(f[f"EDY/{out_name}"]).shape[0])
-
-                    post_pred_df = {}
-                    post_pred_df[x_key] = X_values
-                    post_pred_df[out_name] = np.array(
-                        f[f"EDY/{out_name}"]).flatten('F')
-
-                    post_pred_df = pd.DataFrame(post_pred_df)
-
-                    tags_post = ['posterior'] * len(post_pred_df)
-                    post_pred_df.insert(
-                        len(post_pred_df.columns), "Tags", tags_post, True)
-                    f.close()
-                    # Concatenate two dataframes based on x_values
-                    frames = [prior_pred_df, post_pred_df]
-                    all_pred_df = pd.concat(frames)
-
-                    # --- Plot posterior predictive ---
-                    sns.violinplot(
-                        x_key, y=out_name, data=all_pred_df, hue="Tags",
-                        legend=False, ax=ax, split=True, inner=None,
-                        color=".8")
-
-                    # --- Plot Data ---
-                    # Find the x,y coordinates for each point
-                    x_coords = np.arange(x_coords.shape[0])
-                    first_header = list(self.measured_data)[0]
-                    obs_data = self.measured_data.round({first_header: 6})
-                    sns.pointplot(
-                        x=first_header, y=out_name, color='g', markers='x',
-                        linestyles='', capsize=16, data=obs_data, ax=ax)
-
-                    ax.errorbar(
-                        x_coords, obs_data[out_name].values,
-                        yerr=1.96*self.measurement_error[out_name],
-                        ecolor='g', fmt=' ', zorder=-1)
-
-                    # Add labels to the legend
-                    handles, labels = ax.get_legend_handles_labels()
-                    labels.append('Data')
-
-                    data_marker = mlines.Line2D(
-                        [], [], color='lime', marker='+', linestyle='None',
-                        markersize=10)
-                    handles.append(data_marker)
-
-                    # Add legend
-                    ax.legend(handles=handles, labels=labels, loc='best',
-                              fontsize='large', frameon=True)
-
-                else:
-                    # Load posterior predictive
-                    f = h5py.File(f"{out_dir}/postPredictive.hdf5", 'r+')
-
-                    try:
-                        x_coords = np.array(f[f"x_values/{out_name}"])
-                    except:
-                        x_coords = np.array(f["x_values"])
-
-                    mu = np.mean(np.array(f[f"EDY/{out_name}"]), axis=0)
-                    std = np.std(np.array(f[f"EDY/{out_name}"]), axis=0)
-
-                    # --- Plot posterior predictive ---
-                    plt.plot(
-                        x_coords, mu, marker='o', color='b',
-                        label='Mean Post. Predictive')
-                    plt.fill_between(
-                        x_coords, mu-1.96*std, mu+1.96*std, color='b',
-                        alpha=0.15)
-
-                    # --- Plot Data ---
-                    ax.plot(
-                        x_coords, self.measured_data[out_name].values,
-                        'ko', label='data', markeredgecolor='w')
-
-                    # --- Plot ExpDesign ---
-                    orig_ED_Y = self.MetaModel.ExpDesign.Y[out_name]
-                    for output in orig_ED_Y:
-                        plt.plot(
-                            x_coords, output, color='grey', alpha=0.15
-                            )
-
-                    # Add labels for axes
-                    plt.xlabel('Time [s]')
-                    plt.ylabel(out_name)
-
-                    # Add labels to the legend
-                    handles, labels = ax.get_legend_handles_labels()
-
-                    patch = Patch(color='b', alpha=0.15)
-                    handles.insert(1, patch)
-                    labels.insert(1, '95 $\\%$ CI')
-
-                    # Add legend
-                    ax.legend(handles=handles, labels=labels, loc='best',
-                              frameon=True)
-
-                # Save figure in pdf format
-                if self.emulator:
-                    plotname = f'/Post_Prior_Perd_{Model.name}_emulator'
-                else:
-                    plotname = f'/Post_Prior_Perd_{Model.name}'
-
-                fig.savefig(f'./{out_dir}{plotname}_{out_name}.pdf',
-                            bbox_inches='tight')
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/bayes_model_comparison.py b/examples/only-model/bayesvalidrox/bayes_inference/bayes_model_comparison.py
deleted file mode 100644
index 718abb8bdac3fd653bb3751a31cc0667c5032e95..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/bayes_inference/bayes_model_comparison.py
+++ /dev/null
@@ -1,714 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Sat Aug 24 16:04:06 2019
-
-@author: farid
-"""
-import numpy as np
-import os
-from scipy import stats
-import seaborn as sns
-import matplotlib.patches as patches
-import matplotlib.colors as mcolors
-import matplotlib.pylab as plt
-from .bayes_inference import BayesInference
-
-# Load the mplstyle
-plt.style.use(os.path.join(os.path.split(__file__)[0],
-                           '../', 'bayesvalidrox.mplstyle'))
-
-
-class BayesModelComparison:
-    """
-    A class to perform Bayesian Analysis.
-
-
-    Attributes
-    ----------
-    justifiability : bool, optional
-        Whether to perform the justifiability analysis. The default is
-        `True`.
-    perturbed_data : array of shape (n_bootstrap_itrs, n_obs), optional
-        User defined perturbed data. The default is `None`.
-    n_bootstarp : int
-        Number of bootstrap iteration. The default is `1000`.
-    data_noise_level : float
-        A noise level to perturb the data set. The default is `0.01`.
-    just_n_meas : int
-        Number of measurements considered for visualization of the
-        justifiability results.
-
-    """
-
-    def __init__(self, justifiability=True, perturbed_data=None,
-                 n_bootstarp=1000, data_noise_level=0.01, just_n_meas=2,
-                 emulator=True):
-
-        self.justifiability = justifiability
-        self.perturbed_data = perturbed_data
-        self.n_bootstarp = n_bootstarp
-        self.data_noise_level = data_noise_level
-        self.just_n_meas = just_n_meas
-        self.emulator = emulator
-
-    # --------------------------------------------------------------------------
-    def create_model_comparison(self, model_dict, opts_dict):
-        """
-        Starts the two-stage model comparison.
-        Stage I: Compare models using Bayes factors.
-        Stage II: Compare models via justifiability analysis.
-
-        Parameters
-        ----------
-        model_dict : dict
-            A dictionary including the metamodels.
-        opts_dict : dict
-            A dictionary given the `BayesInference` options.
-
-            Example:
-
-                >>> opts_bootstrap = {
-                    "bootstrap": True,
-                    "n_samples": 10000,
-                    "Discrepancy": DiscrepancyOpts,
-                    "emulator": True,
-                    "plot_post_pred": True
-                    }
-
-        Returns
-        -------
-        output : dict
-            A dictionary containing the objects and the model weights for the
-            comparison using Bayes factors and justifiability analysis.
-
-        """
-
-        # Bayes factor
-        bayes_dict_bf, model_weights_dict_bf = self.compare_models(
-            model_dict, opts_dict
-            )
-
-        output = {
-            'Bayes objects BF': bayes_dict_bf,
-            'Model weights BF': model_weights_dict_bf
-            }
-
-        # Justifiability analysis
-        if self.justifiability:
-            bayes_dict_ja, model_weights_dict_ja = self.compare_models(
-                model_dict, opts_dict, justifiability=True
-                )
-
-            output['Bayes objects JA'] = bayes_dict_ja
-            output['Model weights JA'] = model_weights_dict_ja
-
-        return output
-
-    # --------------------------------------------------------------------------
-    def compare_models(self, model_dict, opts_dict, justifiability=False):
-        """
-        Passes the options to instantiates the BayesInference class for each
-        model and passes the options from `opts_dict`. Then, it starts the
-        computations.
-        It also creates a folder and saves the diagrams, e.g., Bayes factor
-        plot, confusion matrix, etc.
-
-        Parameters
-        ----------
-        model_dict : dict
-            A dictionary including the metamodels.
-        opts_dict : dict
-            A dictionary given the `BayesInference` options.
-        justifiability : bool, optional
-            Whether to perform the justifiability analysis. The default is
-            `False`.
-
-        Returns
-        -------
-        bayes_dict : dict
-            A dictionary with `BayesInference` objects.
-        model_weights_dict : dict
-            A dictionary containing the model weights.
-
-        """
-
-        if not isinstance(model_dict, dict):
-            raise Exception("To run model comparsion, you need to pass a "
-                            "dictionary of models.")
-
-        # Extract model names
-        self.model_names = [*model_dict]
-
-        # Compute total number of the measurement points
-        MetaModel = list(model_dict.items())[0][1]
-        MetaModel.ModelObj.read_observation()
-        self.n_meas = MetaModel.ModelObj.n_obs
-
-        # ----- Generate data -----
-        # Find n_bootstrap
-        if self.perturbed_data is None:
-            n_bootstarp = self.n_bootstarp
-        else:
-            n_bootstarp = self.perturbed_data.shape[0]
-
-        # Create dataset
-        justData = self.generate_dataset(
-            model_dict, justifiability, n_bootstarp=n_bootstarp)
-
-        # Run create Interface for each model
-        bayes_dict = {}
-        for model in model_dict.keys():
-            print("-"*20)
-            print("Bayesian inference of {}.\n".format(model))
-
-            BayesOpts = BayesInference(model_dict[model])
-
-            # Set BayesInference options
-            for key, value in opts_dict.items():
-                if key in BayesOpts.__dict__.keys():
-                    if key == "Discrepancy" and isinstance(value, dict):
-                        setattr(BayesOpts, key, value[model])
-                    else:
-                        setattr(BayesOpts, key, value)
-
-            # Pass justifiability data as perturbed data
-            BayesOpts.perturbed_data = justData
-            BayesOpts.just_analysis = justifiability
-
-            bayes_dict[model] = BayesOpts.create_inference()
-            print("-"*20)
-
-        # Compute model weights
-        BME_Dict = dict()
-        for modelName, bayesObj in bayes_dict.items():
-            BME_Dict[modelName] = np.exp(bayesObj.log_BME, dtype=np.longdouble)
-
-        # BME correction in BayesInference class
-        model_weights = self.cal_model_weight(
-            BME_Dict, justifiability, n_bootstarp=n_bootstarp)
-
-        # Plot model weights
-        if justifiability:
-            model_names = self.model_names
-            model_names.insert(0, 'Observation')
-
-            # Split the model weights and save in a dict
-            list_ModelWeights = np.split(
-                model_weights, model_weights.shape[1]/self.n_meas, axis=1)
-            model_weights_dict = {key: weights for key, weights in
-                                  zip(model_names, list_ModelWeights)}
-
-            self.plot_just_analysis(model_weights_dict)
-        else:
-            # Create box plot for model weights
-            self.plot_model_weights(model_weights, 'model_weights')
-
-            # Create kde plot for bayes factors
-            self.plot_bayes_factor(BME_Dict, 'kde_plot')
-
-            # Store model weights in a dict
-            model_weights_dict = {key: weights for key, weights in
-                                  zip(self.model_names, model_weights)}
-
-        return bayes_dict, model_weights_dict
-
-    # -------------------------------------------------------------------------
-    def generate_dataset(self, model_dict, justifiability=False,
-                         n_bootstarp=1):
-        """
-        Generates the perturbed data set for the Bayes factor calculations and
-        the data set for the justifiability analysis.
-
-        Parameters
-        ----------
-        model_dict : dict
-            A dictionary including the metamodels.
-        bool, optional
-            Whether to perform the justifiability analysis. The default is
-            `False`.
-        n_bootstarp : int, optional
-            Number of bootstrap iterations. The default is `1`.
-
-        Returns
-        -------
-        all_just_data: array
-            Created data set.
-
-        """
-        # Compute some variables
-        all_just_data = []
-        metaModel = list(model_dict.items())[0][1]
-        out_names = metaModel.ModelObj.Output.names
-
-        # Perturb observations for Bayes Factor
-        if self.perturbed_data is None:
-            self.perturbed_data = self.__perturb_data(
-                    metaModel.ModelObj.observations, out_names, n_bootstarp,
-                    noise_level=self.data_noise_level)
-
-        # Only for Bayes Factor
-        if not justifiability:
-            return self.perturbed_data
-
-        # Evaluate metamodel
-        runs = {}
-        for key, metaModel in model_dict.items():
-            if self.emulator:
-                y_hat, _ = metaModel.eval_metamodel(nsamples=n_bootstarp)
-                runs[key] = y_hat
-            if not self.emulator:
-               # y_hat_ = metaModel.model.                                       # TODO: run the model instead of the surrogate
-                samples = metaModel.ExpDesign.generate_samples(
-                    n_bootstarp,
-                    sampling_method = 'random'
-                    )
-                y_hat = self._eval_model(metaModel,
-                    samples=samples, key='PriorPred'
-                    )
-                #print(y_hat)
-                runs[key] = y_hat
-        # Generate data
-        for i in range(n_bootstarp):
-            y_data = self.perturbed_data[i].reshape(1, -1)
-            justData = np.tril(np.repeat(y_data, y_data.shape[1], axis=0))
-            # Use surrogate runs for data-generating process
-            for key, metaModel in model_dict.items():
-                model_data = np.array(
-                    [runs[key][out][i] for out in out_names]).reshape(y_data.shape)
-                justData = np.vstack((
-                    justData,
-                    np.tril(np.repeat(model_data, model_data.shape[1], axis=0))
-                    ))
-            # Save in a list
-            all_just_data.append(justData)
-
-        # Squeeze the array
-        all_just_data = np.array(all_just_data).transpose(1, 0, 2).reshape(
-            -1, np.array(all_just_data).shape[2]
-            )
-
-        return all_just_data
-
-    # -------------------------------------------------------------------------
-    def __perturb_data(self, data, output_names, n_bootstrap, noise_level):
-        """
-        Returns an array with n_bootstrap_itrs rowsof perturbed data.
-        The first row includes the original observation data.
-        If `self.bayes_loocv` is True, a 2d-array will be returned with
-        repeated rows and zero diagonal entries.
-
-        Parameters
-        ----------
-        data : pandas DataFrame
-            Observation data.
-        output_names : list
-            List of the output names.
-
-        Returns
-        -------
-        final_data : array
-            Perturbed data set.
-
-        """
-        obs_data = data[output_names].values
-        n_measurement, n_outs = obs_data.shape
-        n_tot_measurement = obs_data[~np.isnan(obs_data)].shape[0]
-        final_data = np.zeros(
-            (n_bootstrap, n_tot_measurement)
-            )
-        final_data[0] = obs_data.T[~np.isnan(obs_data.T)]
-        for itrIdx in range(1, n_bootstrap):
-            data = np.zeros((n_measurement, n_outs))
-            for idx in range(len(output_names)):
-                std = np.nanstd(obs_data[:, idx])
-                if std == 0:
-                    std = 0.001
-                noise = std * noise_level
-                data[:, idx] = np.add(
-                    obs_data[:, idx],
-                    np.random.normal(0, 1, obs_data.shape[0]) * noise,
-                )
-
-            final_data[itrIdx] = data.T[~np.isnan(data.T)]
-
-        return final_data
-
-    # -------------------------------------------------------------------------
-    def cal_model_weight(self, BME_Dict, justifiability=False, n_bootstarp=1):
-        """
-        Normalize the BME (Asumption: Model Prior weights are equal for models)
-
-        Parameters
-        ----------
-        BME_Dict : dict
-            A dictionary containing the BME values.
-
-        Returns
-        -------
-        model_weights : array
-            Model weights.
-
-        """
-        # Stack the BME values for all models
-        all_BME = np.vstack(list(BME_Dict.values()))
-
-        if justifiability:
-            # Compute expected log_BME for justifiabiliy analysis
-            all_BME = all_BME.reshape(
-                all_BME.shape[0], -1, n_bootstarp).mean(axis=2)
-
-        # Model weights
-        model_weights = np.divide(all_BME, np.nansum(all_BME, axis=0))
-
-        return model_weights
-
-    # -------------------------------------------------------------------------
-    def plot_just_analysis(self, model_weights_dict):
-        """
-        Visualizes the confusion matrix and the model wights for the
-        justifiability analysis.
-
-        Parameters
-        ----------
-        model_weights_dict : dict
-            Model weights.
-
-        Returns
-        -------
-        None.
-
-        """
-
-        directory = 'Outputs_Comparison/'
-        os.makedirs(directory, exist_ok=True)
-        Color = [*mcolors.TABLEAU_COLORS]
-        names = [*model_weights_dict]
-
-        model_names = [model.replace('_', '$-$') for model in self.model_names]
-        for name in names:
-            fig, ax = plt.subplots()
-            for i, model in enumerate(model_names[1:]):
-                plt.plot(list(range(1, self.n_meas+1)),
-                         model_weights_dict[name][i],
-                         color=Color[i], marker='o',
-                         ms=10, linewidth=2, label=model
-                         )
-
-            plt.title(f"Data generated by: {name.replace('_', '$-$')}")
-            plt.ylabel("Weights")
-            plt.xlabel("No. of measurement points")
-            ax.set_xticks(list(range(1, self.n_meas+1)))
-            plt.legend(loc="best")
-            fig.savefig(
-                f'{directory}modelWeights_{name}.svg', bbox_inches='tight'
-                )
-            plt.close()
-
-        # Confusion matrix for some measurement points
-        epsilon = 1 if self.just_n_meas != 1 else 0
-        for index in range(0, self.n_meas+epsilon, self.just_n_meas):
-            weights = np.array(
-                [model_weights_dict[key][:, index] for key in model_weights_dict]
-                )
-            g = sns.heatmap(
-                weights.T, annot=True, cmap='Blues', xticklabels=model_names,
-                yticklabels=model_names[1:], annot_kws={"size": 24}
-                )
-
-            # x axis on top
-            g.xaxis.tick_top()
-            g.xaxis.set_label_position('top')
-            g.set_xlabel(r"\textbf{Data generated by:}", labelpad=15)
-            g.set_ylabel(r"\textbf{Model weight for:}", labelpad=15)
-            g.figure.savefig(
-                f"{directory}confusionMatrix_ND_{index+1}.pdf",
-                bbox_inches='tight'
-                )
-            plt.close()
-
-    # -------------------------------------------------------------------------
-    def plot_model_weights(self, model_weights, plot_name):
-        """
-        Visualizes the model weights resulting from BMS via the observation
-        data.
-
-        Parameters
-        ----------
-        model_weights : array
-            Model weights.
-        plot_name : str
-            Plot name.
-
-        Returns
-        -------
-        None.
-
-        """
-        font_size = 40
-        # mkdir for plots
-        directory = 'Outputs_Comparison/'
-        os.makedirs(directory, exist_ok=True)
-
-        # Create figure
-        fig, ax = plt.subplots()
-
-        # Filter data using np.isnan
-        mask = ~np.isnan(model_weights.T)
-        filtered_data = [d[m] for d, m in zip(model_weights, mask.T)]
-
-        # Create the boxplot
-        bp = ax.boxplot(filtered_data, patch_artist=True, showfliers=False)
-
-        # change outline color, fill color and linewidth of the boxes
-        for box in bp['boxes']:
-            # change outline color
-            box.set(color='#7570b3', linewidth=4)
-            # change fill color
-            box.set(facecolor='#1b9e77')
-
-        # change color and linewidth of the whiskers
-        for whisker in bp['whiskers']:
-            whisker.set(color='#7570b3', linewidth=2)
-
-        # change color and linewidth of the caps
-        for cap in bp['caps']:
-            cap.set(color='#7570b3', linewidth=2)
-
-        # change color and linewidth of the medians
-        for median in bp['medians']:
-            median.set(color='#b2df8a', linewidth=2)
-
-        # change the style of fliers and their fill
-        # for flier in bp['fliers']:
-        #     flier.set(marker='o', color='#e7298a', alpha=0.75)
-
-        # Custom x-axis labels
-        model_names = [model.replace('_', '$-$') for model in self.model_names]
-        ax.set_xticklabels(model_names)
-
-        ax.set_ylabel('Weight', fontsize=font_size)
-
-        # Title
-        plt.title('Posterior Model Weights')
-
-        # Set y lim
-        ax.set_ylim((-0.05, 1.05))
-
-        # Set size of the ticks
-        for t in ax.get_xticklabels():
-            t.set_fontsize(font_size)
-        for t in ax.get_yticklabels():
-            t.set_fontsize(font_size)
-
-        # Save the figure
-        fig.savefig(
-            f'./{directory}{plot_name}.pdf', bbox_inches='tight'
-            )
-
-        plt.close()
-
-    # -------------------------------------------------------------------------
-    def plot_bayes_factor(self, BME_Dict, plot_name=''):
-        """
-        Plots the Bayes factor distibutions in a :math:`N_m \\times N_m`
-        matrix, where :math:`N_m` is the number of the models.
-
-        Parameters
-        ----------
-        BME_Dict : dict
-            A dictionary containing the BME values of the models.
-        plot_name : str, optional
-            Plot name. The default is ''.
-
-        Returns
-        -------
-        None.
-
-        """
-
-        font_size = 40
-
-        # mkdir for plots
-        directory = 'Outputs_Comparison/'
-        os.makedirs(directory, exist_ok=True)
-
-        Colors = ["blue", "green", "gray", "brown"]
-
-        model_names = list(BME_Dict.keys())
-        nModels = len(model_names)
-
-        # Plots
-        fig, axes = plt.subplots(
-            nrows=nModels, ncols=nModels, sharex=True, sharey=True
-            )
-
-        for i, key_i in enumerate(model_names):
-
-            for j, key_j in enumerate(model_names):
-                ax = axes[i, j]
-                # Set size of the ticks
-                for t in ax.get_xticklabels():
-                    t.set_fontsize(font_size)
-                for t in ax.get_yticklabels():
-                    t.set_fontsize(font_size)
-
-                if j != i:
-
-                    # Null hypothesis: key_j is the better model
-                    BayesFactor = np.log10(
-                        np.divide(BME_Dict[key_i], BME_Dict[key_j])
-                        )
-
-                    # sns.kdeplot(BayesFactor, ax=ax, color=Colors[i], shade=True)
-                    # sns.histplot(BayesFactor, ax=ax, stat="probability",
-                    #              kde=True, element='step',
-                    #              color=Colors[j])
-
-                    # taken from seaborn's source code (utils.py and
-                    # distributions.py)
-                    def seaborn_kde_support(data, bw, gridsize, cut, clip):
-                        if clip is None:
-                            clip = (-np.inf, np.inf)
-                        support_min = max(data.min() - bw * cut, clip[0])
-                        support_max = min(data.max() + bw * cut, clip[1])
-                        return np.linspace(support_min, support_max, gridsize)
-
-                    kde_estim = stats.gaussian_kde(
-                        BayesFactor, bw_method='scott'
-                        )
-
-                    # manual linearization of data
-                    # linearized = np.linspace(
-                    #     quotient.min(), quotient.max(), num=500)
-
-                    # or better: mimic seaborn's internal stuff
-                    bw = kde_estim.scotts_factor() * np.std(BayesFactor)
-                    linearized = seaborn_kde_support(
-                        BayesFactor, bw, 100, 3, None)
-
-                    # computes values of the estimated function on the
-                    # estimated linearized inputs
-                    Z = kde_estim.evaluate(linearized)
-
-                    # https://stackoverflow.com/questions/29661574/normalize-
-                    # numpy-array-columns-in-python
-                    def normalize(x):
-                        return (x - x.min(0)) / x.ptp(0)
-
-                    # normalize so it is between 0;1
-                    Z2 = normalize(Z)
-                    ax.plot(linearized, Z2, "-", color=Colors[i], linewidth=4)
-                    ax.fill_between(
-                        linearized, 0, Z2, color=Colors[i], alpha=0.25
-                        )
-
-                    # Draw BF significant levels according to Jeffreys 1961
-                    # Strong evidence for both models
-                    ax.axvline(
-                        x=np.log10(3), ymin=0, linewidth=4, color='dimgrey'
-                        )
-                    # Strong evidence for one model
-                    ax.axvline(
-                        x=np.log10(10), ymin=0, linewidth=4, color='orange'
-                        )
-                    # Decisive evidence for one model
-                    ax.axvline(
-                        x=np.log10(100), ymin=0, linewidth=4, color='r'
-                        )
-
-                    # legend
-                    BF_label = key_i.replace('_', '$-$') + \
-                        '/' + key_j.replace('_', '$-$')
-                    legend_elements = [
-                        patches.Patch(facecolor=Colors[i], edgecolor=Colors[i],
-                                      label=f'BF({BF_label})')
-                        ]
-                    ax.legend(
-                        loc='upper left', handles=legend_elements,
-                        fontsize=font_size-(nModels+1)*5
-                        )
-
-                elif j == i:
-                    # build a rectangle in axes coords
-                    left, width = 0, 1
-                    bottom, height = 0, 1
-
-                    # axes coordinates are 0,0 is bottom left and 1,1 is upper
-                    # right
-                    p = patches.Rectangle(
-                        (left, bottom), width, height, color='white',
-                        fill=True, transform=ax.transAxes, clip_on=False
-                        )
-                    ax.grid(False)
-                    ax.add_patch(p)
-                    # ax.text(0.5*(left+right), 0.5*(bottom+top), key_i,
-                    fsize = font_size+20 if nModels < 4 else font_size
-                    ax.text(0.5, 0.5, key_i.replace('_', '$-$'),
-                            horizontalalignment='center',
-                            verticalalignment='center',
-                            fontsize=fsize, color=Colors[i],
-                            transform=ax.transAxes)
-
-        # Defining custom 'ylim' values.
-        custom_ylim = (0, 1.05)
-
-        # Setting the values for all axes.
-        plt.setp(axes, ylim=custom_ylim)
-
-        # set labels
-        for i in range(nModels):
-            axes[-1, i].set_xlabel('log$_{10}$(BF)', fontsize=font_size)
-            axes[i, 0].set_ylabel('Probability', fontsize=font_size)
-
-        # Adjust subplots
-        plt.subplots_adjust(wspace=0.2, hspace=0.1)
-
-        plt.savefig(
-            f'./{directory}Bayes_Factor{plot_name}.pdf', bbox_inches='tight'
-            )
-
-        plt.close()
-
-    def _eval_model(self, MetaModel, samples=None, key='MAP'):
-        """
-        Evaluates Forward Model. - mostly copy paste from BayesInference
-
-        Parameters
-        ----------
-        samples : array of shape (n_samples, n_params), optional
-            Parameter sets. The default is None.
-        key : str, optional
-            Key string to be passed to the run_model_parallel method.
-            The default is 'MAP'.
-
-        Returns
-        -------
-        model_outputs : dict
-            Model outputs.
-
-        """
-        #MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-
-        if samples is None:
-            self.samples = MetaModel.ExpDesign.generate_samples(
-                self.n_samples, 'random')
-        else:
-            self.samples = samples
-            self.n_samples = len(samples)
-
-        self.name = 'ModelComp'
-        model_outputs, _ = Model.run_model_parallel(
-            self.samples, key_str=key+self.name)
-
-        # Clean up
-        # Zip the subdirectories
-        try:
-            dir_name = f'{Model.name}MAP{self.name}'
-            key = dir_name + '_'
-            Model.zip_subdirs(dir_name, key)
-        except:
-            pass
-
-        return model_outputs
\ No newline at end of file
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/discrepancy.py b/examples/only-model/bayesvalidrox/bayes_inference/discrepancy.py
deleted file mode 100644
index 0f52c4f0d0afe314fdc73c388f6da5a8aa93ca06..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/bayes_inference/discrepancy.py
+++ /dev/null
@@ -1,99 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import scipy.stats as stats
-from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns
-
-
-class Discrepancy:
-    """
-    Discrepancy class for Bayesian inference method.
-    We define the reference or reality to be equal to what we can model and a
-    descripancy term \\( \\epsilon \\). We consider the followin format:
-
-    $$\\textbf{y}_{\\text{reality}} = \\mathcal{M}(\\theta) + \\epsilon,$$
-
-    where \\( \\epsilon \\in R^{N_{out}} \\) represents the the effects of
-    measurement error and model inaccuracy. For simplicity, it can be defined
-    as an additive Gaussian disrepancy with zeromean and given covariance
-    matrix \\( \\Sigma \\):
-
-    $$\\epsilon \\sim \\mathcal{N}(\\epsilon|0, \\Sigma). $$
-
-    In the context of model inversion or calibration, an observation point
-    \\( \\textbf{y}_i \\in \\mathcal{y} \\) is a realization of a Gaussian
-    distribution with mean value of \\(\\mathcal{M}(\\theta) \\) and covariance
-    matrix of \\( \\Sigma \\).
-
-    $$ p(\\textbf{y}|\\theta) = \\mathcal{N}(\\textbf{y}|\\mathcal{M}
-                                             (\\theta))$$
-
-    The following options are available:
-
-    * Option A: With known redidual covariance matrix \\(\\Sigma\\) for
-    independent measurements.
-
-    * Option B: With unknown redidual covariance matrix \\(\\Sigma\\),
-    paramethrized as \\(\\Sigma(\\theta_{\\epsilon})=\\sigma^2 \\textbf{I}_
-    {N_{out}}\\) with unknown residual variances \\(\\sigma^2\\).
-    This term will be jointly infer with the uncertain input parameters. For
-    the inversion, you need to define a prior marginal via `Input` class. Note
-    that \\(\\sigma^2\\) is only a single scalar multiplier for the diagonal
-    entries of the covariance matrix \\(\\Sigma\\).
-
-    Attributes
-    ----------
-    InputDisc : obj
-        Input object. When the \\(\\sigma^2\\) is expected to be inferred
-        jointly with the parameters (`Option B`).If multiple output groups are
-        defined by `Model.Output.names`, each model output needs to have.
-        a prior marginal using the `Input` class. The default is `''`.
-    disc_type : str
-        Type of the noise definition. `'Gaussian'` is only supported so far.
-    parameters : dict or pandas.DataFrame
-        Known residual variance \\(\\sigma^2\\), i.e. diagonal entry of the
-        covariance matrix of the multivariate normal likelihood in case of
-        `Option A`.
-
-    """
-
-    def __init__(self, InputDisc='', disc_type='Gaussian', parameters=None):
-        self.InputDisc = InputDisc
-        self.disc_type = disc_type
-        self.parameters = parameters
-
-    # -------------------------------------------------------------------------
-    def get_sample(self, n_samples):
-        """
-        Generate samples for the \\(\\sigma^2\\), i.e. the diagonal entries of
-        the variance-covariance matrix in the multivariate normal distribution.
-
-        Parameters
-        ----------
-        n_samples : int
-            Number of samples (parameter sets).
-
-        Returns
-        -------
-        sigma2_prior: array of shape (n_samples, n_params)
-            \\(\\sigma^2\\) samples.
-
-        """
-        self.n_samples = n_samples
-        ExpDesign = ExpDesigns(self.InputDisc)
-        self.sigma2_prior = ExpDesign.generate_ED(
-            n_samples, sampling_method='random', max_pce_deg=1
-            )
-        # Store BoundTuples
-        self.ExpDesign = ExpDesign
-
-        # Naive approach: Fit a gaussian kernel to the provided data
-        self.ExpDesign.JDist = stats.gaussian_kde(ExpDesign.raw_data)
-
-        # Save the names of sigmas
-        if len(self.InputDisc.Marginals) != 0:
-            self.name = []
-            for Marginalidx in range(len(self.InputDisc.Marginals)):
-                self.name.append(self.InputDisc.Marginals[Marginalidx].name)
-
-        return self.sigma2_prior
diff --git a/examples/only-model/bayesvalidrox/bayes_inference/mcmc.py b/examples/only-model/bayesvalidrox/bayes_inference/mcmc.py
deleted file mode 100644
index 6b9ca94823fb7064baa2f0588d0f97fb4c9d1d44..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/bayes_inference/mcmc.py
+++ /dev/null
@@ -1,909 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import os
-import numpy as np
-import emcee
-import pandas as pd
-import matplotlib.pyplot as plt
-from matplotlib.backends.backend_pdf import PdfPages
-import multiprocessing
-import scipy.stats as st
-from scipy.linalg import cholesky as chol
-import warnings
-import shutil
-os.environ["OMP_NUM_THREADS"] = "1"
-
-
-class MCMC:
-    """
-    A class for bayesian inference via a Markov-Chain Monte-Carlo (MCMC)
-    Sampler to approximate the posterior distribution of the Bayes theorem:
-    $$p(\\theta|\\mathcal{y}) = \\frac{p(\\mathcal{y}|\\theta) p(\\theta)}
-                                         {p(\\mathcal{y})}.$$
-
-    This class make inference with emcee package [1] using an Affine Invariant
-    Ensemble sampler (AIES) [2].
-
-    [1] Foreman-Mackey, D., Hogg, D.W., Lang, D. and Goodman, J., 2013.emcee:
-        the MCMC hammer. Publications of the Astronomical Society of the
-        Pacific, 125(925), p.306. https://emcee.readthedocs.io/en/stable/
-
-    [2] Goodman, J. and Weare, J., 2010. Ensemble samplers with affine
-        invariance. Communications in applied mathematics and computational
-        science, 5(1), pp.65-80.
-
-
-    Attributes
-    ----------
-    BayesOpts : obj
-        Bayes object.
-    """
-
-    def __init__(self, BayesOpts):
-
-        self.BayesOpts = BayesOpts
-
-    def run_sampler(self, observation, total_sigma2):
-
-        BayesObj = self.BayesOpts
-        MetaModel = BayesObj.MetaModel
-        Model = MetaModel.ModelObj
-        Discrepancy = self.BayesOpts.Discrepancy
-        n_cpus = Model.n_cpus
-        priorDist = MetaModel.ExpDesign.JDist
-        ndim = MetaModel.n_params
-        self.counter = 0
-        output_dir = f'Outputs_Bayes_{Model.name}_{self.BayesOpts.name}'
-        if not os.path.exists(output_dir):
-            os.makedirs(output_dir)
-
-        self.observation = observation
-        self.total_sigma2 = total_sigma2
-
-        # Unpack mcmc parameters given to BayesObj.mcmc_params
-        self.initsamples = None
-        self.nwalkers = 100
-        self.nburn = 200
-        self.nsteps = 100000
-        self.moves = None
-        self.mp = False
-        self.verbose = False
-
-        # Extract initial samples
-        if 'init_samples' in BayesObj.mcmc_params:
-            self.initsamples = BayesObj.mcmc_params['init_samples']
-            if isinstance(self.initsamples, pd.DataFrame):
-                self.initsamples = self.initsamples.values
-
-        # Extract number of steps per walker
-        if 'n_steps' in BayesObj.mcmc_params:
-            self.nsteps = int(BayesObj.mcmc_params['n_steps'])
-        # Extract number of walkers (chains)
-        if 'n_walkers' in BayesObj.mcmc_params:
-            self.nwalkers = int(BayesObj.mcmc_params['n_walkers'])
-        # Extract moves
-        if 'moves' in BayesObj.mcmc_params:
-            self.moves = BayesObj.mcmc_params['moves']
-        # Extract multiprocessing
-        if 'multiprocessing' in BayesObj.mcmc_params:
-            self.mp = BayesObj.mcmc_params['multiprocessing']
-        # Extract verbose
-        if 'verbose' in BayesObj.mcmc_params:
-            self.verbose = BayesObj.mcmc_params['verbose']
-
-        # Set initial samples
-        np.random.seed(0)
-        if self.initsamples is None:
-            try:
-                initsamples = priorDist.sample(self.nwalkers).T
-            except:
-                # when aPCE selected - gaussian kernel distribution
-                inputSamples = MetaModel.ExpDesign.raw_data.T
-                random_indices = np.random.choice(
-                    len(inputSamples), size=self.nwalkers, replace=False
-                    )
-                initsamples = inputSamples[random_indices]
-
-        else:
-            if self.initsamples.ndim == 1:
-                # When MAL is given.
-                theta = self.initsamples
-                initsamples = [theta + 1e-1*np.multiply(
-                    np.random.randn(ndim), theta) for i in
-                               range(self.nwalkers)]
-            else:
-                # Pick samples based on a uniform dist between min and max of
-                # each dim
-                initsamples = np.zeros((self.nwalkers, ndim))
-                bound_tuples = []
-                for idx_dim in range(ndim):
-                    lower = np.min(self.initsamples[:, idx_dim])
-                    upper = np.max(self.initsamples[:, idx_dim])
-                    bound_tuples.append((lower, upper))
-                    dist = st.uniform(loc=lower, scale=upper-lower)
-                    initsamples[:, idx_dim] = dist.rvs(size=self.nwalkers)
-
-                # Update lower and upper
-                MetaModel.ExpDesign.bound_tuples = bound_tuples
-
-        # Check if sigma^2 needs to be inferred
-        if Discrepancy.opt_sigma != 'B':
-            sigma2_samples = Discrepancy.get_sample(self.nwalkers)
-
-            # Update initsamples
-            initsamples = np.hstack((initsamples, sigma2_samples))
-
-            # Update ndim
-            ndim = initsamples.shape[1]
-
-            # Discrepancy bound
-            disc_bound_tuple = Discrepancy.ExpDesign.bound_tuples
-
-            # Update bound_tuples
-            MetaModel.ExpDesign.bound_tuples += disc_bound_tuple
-
-        print("\n>>>> Bayesian inference with MCMC for "
-              f"{self.BayesOpts.name} started. <<<<<<")
-
-        # Set up the backend
-        filename = f"{output_dir}/emcee_sampler.h5"
-        backend = emcee.backends.HDFBackend(filename)
-        # Clear the backend in case the file already exists
-        backend.reset(self.nwalkers, ndim)
-
-        # Define emcee sampler
-        # Here we'll set up the computation. emcee combines multiple "walkers",
-        # each of which is its own MCMC chain. The number of trace results will
-        # be nwalkers * nsteps.
-        if self.mp:
-            # Run in parallel
-            if n_cpus is None:
-                n_cpus = multiprocessing.cpu_count()
-
-            with multiprocessing.Pool(n_cpus) as pool:
-                sampler = emcee.EnsembleSampler(
-                    self.nwalkers, ndim, self.log_posterior, moves=self.moves,
-                    pool=pool, backend=backend
-                    )
-
-                # Check if a burn-in phase is needed!
-                if self.initsamples is None:
-                    # Burn-in
-                    print("\n Burn-in period is starting:")
-                    pos = sampler.run_mcmc(
-                        initsamples, self.nburn, progress=True
-                        )
-
-                    # Reset sampler
-                    sampler.reset()
-                    pos = pos.coords
-                else:
-                    pos = initsamples
-
-                # Production run
-                print("\n Production run is starting:")
-                pos, prob, state = sampler.run_mcmc(
-                    pos, self.nsteps, progress=True
-                    )
-
-        else:
-            # Run in series and monitor the convergence
-            sampler = emcee.EnsembleSampler(
-                self.nwalkers, ndim, self.log_posterior, moves=self.moves,
-                backend=backend, vectorize=True
-                )
-
-            # Check if a burn-in phase is needed!
-            if self.initsamples is None:
-                # Burn-in
-                print("\n Burn-in period is starting:")
-                pos = sampler.run_mcmc(
-                    initsamples, self.nburn, progress=True
-                    )
-
-                # Reset sampler
-                sampler.reset()
-                pos = pos.coords
-            else:
-                pos = initsamples
-
-            # Production run
-            print("\n Production run is starting:")
-
-            # Track how the average autocorrelation time estimate changes
-            autocorrIdx = 0
-            autocorr = np.empty(self.nsteps)
-            tauold = np.inf
-            autocorreverynsteps = 50
-
-            # sample step by step using the generator sampler.sample
-            for sample in sampler.sample(pos,
-                                         iterations=self.nsteps,
-                                         tune=True,
-                                         progress=True):
-
-                # only check convergence every autocorreverynsteps steps
-                if sampler.iteration % autocorreverynsteps:
-                    continue
-
-                # Train model discrepancy/error
-                if hasattr(BayesObj, 'errorModel') and BayesObj.errorModel \
-                   and not sampler.iteration % 3 * autocorreverynsteps:
-                    try:
-                        self.error_MetaModel = self.train_error_model(sampler)
-                    except:
-                        pass
-
-                # Print the current mean acceptance fraction
-                if self.verbose:
-                    print("\nStep: {}".format(sampler.iteration))
-                    acc_fr = np.mean(sampler.acceptance_fraction)
-                    print(f"Mean acceptance fraction: {acc_fr:.3f}")
-
-                # compute the autocorrelation time so far
-                # using tol=0 means that we'll always get an estimate even if
-                # it isn't trustworthy
-                tau = sampler.get_autocorr_time(tol=0)
-                # average over walkers
-                autocorr[autocorrIdx] = np.nanmean(tau)
-                autocorrIdx += 1
-
-                # output current autocorrelation estimate
-                if self.verbose:
-                    print(f"Mean autocorr time estimate: {np.nanmean(tau):.3f}")
-                    list_gr = np.round(self.gelman_rubin(sampler.chain), 3)
-                    print("Gelman-Rubin Test*: ", list_gr)
-
-                # check convergence
-                converged = np.all(tau*autocorreverynsteps < sampler.iteration)
-                converged &= np.all(np.abs(tauold - tau) / tau < 0.01)
-                converged &= np.all(self.gelman_rubin(sampler.chain) < 1.1)
-
-                if converged:
-                    break
-                tauold = tau
-
-        # Posterior diagnostics
-        try:
-            tau = sampler.get_autocorr_time(tol=0)
-        except emcee.autocorr.AutocorrError:
-            tau = 5
-
-        if all(np.isnan(tau)):
-            tau = 5
-
-        burnin = int(2*np.nanmax(tau))
-        thin = int(0.5*np.nanmin(tau)) if int(0.5*np.nanmin(tau)) != 0 else 1
-        finalsamples = sampler.get_chain(discard=burnin, flat=True, thin=thin)
-        acc_fr = np.nanmean(sampler.acceptance_fraction)
-        list_gr = np.round(self.gelman_rubin(sampler.chain[:, burnin:]), 3)
-
-        # Print summary
-        print('\n')
-        print('-'*15 + 'Posterior diagnostics' + '-'*15)
-        print(f"mean auto-correlation time: {np.nanmean(tau):.3f}")
-        print(f"thin: {thin}")
-        print(f"burn-in: {burnin}")
-        print(f"flat chain shape: {finalsamples.shape}")
-        print(f"Mean acceptance fraction: {acc_fr:.3f}")
-        print("Gelman-Rubin Test*: ", list_gr)
-
-        print("\n* This value must lay between 0.234 and 0.5.")
-        print("* These values must be smaller than 1.1.")
-        print('-'*50)
-
-        print(f"\n>>>> Bayesian inference with MCMC for {self.BayesOpts.name} "
-              "successfully completed. <<<<<<\n")
-
-        # Extract parameter names and their prior ranges
-        par_names = MetaModel.ExpDesign.par_names
-
-        if Discrepancy.opt_sigma != 'B':
-            for i in range(len(Discrepancy.InputDisc.Marginals)):
-                par_names.append(Discrepancy.InputDisc.Marginals[i].name)
-
-        params_range = MetaModel.ExpDesign.bound_tuples
-
-        # Plot traces
-        if self.verbose and self.nsteps < 10000:
-            pdf = PdfPages(output_dir+'/traceplots.pdf')
-            fig = plt.figure()
-            for parIdx in range(ndim):
-                # Set up the axes with gridspec
-                fig = plt.figure()
-                grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)
-                main_ax = fig.add_subplot(grid[:-1, :3])
-                y_hist = fig.add_subplot(grid[:-1, -1], xticklabels=[],
-                                         sharey=main_ax)
-
-                for i in range(self.nwalkers):
-                    samples = sampler.chain[i, :, parIdx]
-                    main_ax.plot(samples, '-')
-
-                    # histogram on the attached axes
-                    y_hist.hist(samples[burnin:], 40, histtype='stepfilled',
-                                orientation='horizontal', color='gray')
-
-                main_ax.set_ylim(params_range[parIdx])
-                main_ax.set_title('traceplot for ' + par_names[parIdx])
-                main_ax.set_xlabel('step number')
-
-                # save the current figure
-                pdf.savefig(fig, bbox_inches='tight')
-
-                # Destroy the current plot
-                plt.clf()
-
-            pdf.close()
-
-        # plot development of autocorrelation estimate
-        if not self.mp:
-            fig1 = plt.figure()
-            steps = autocorreverynsteps*np.arange(1, autocorrIdx+1)
-            taus = autocorr[:autocorrIdx]
-            plt.plot(steps, steps / autocorreverynsteps, "--k")
-            plt.plot(steps, taus)
-            plt.xlim(0, steps.max())
-            plt.ylim(0, np.nanmax(taus)+0.1*(np.nanmax(taus)-np.nanmin(taus)))
-            plt.xlabel("number of steps")
-            plt.ylabel(r"mean $\hat{\tau}$")
-            fig1.savefig(f"{output_dir}/autocorrelation_time.pdf",
-                         bbox_inches='tight')
-
-        # logml_dict = self.marginal_llk_emcee(sampler, self.nburn, logp=None,
-        # maxiter=5000)
-        # print('\nThe Bridge Sampling Estimation is "
-        #       f"{logml_dict['logml']:.5f}.')
-
-        # # Posterior-based expectation of posterior probablity
-        # postExpPostLikelihoods = np.mean(sampler.get_log_prob(flat=True)
-        # [self.nburn*self.nwalkers:])
-
-        # # Posterior-based expectation of prior densities
-        # postExpPrior = np.mean(self.log_prior(emcee_trace.T))
-
-        # # Posterior-based expectation of likelihoods
-        # postExpLikelihoods_emcee = postExpPostLikelihoods - postExpPrior
-
-        # # Calculate Kullback-Leibler Divergence
-        # KLD_emcee = postExpLikelihoods_emcee - logml_dict['logml']
-        # print("Kullback-Leibler divergence: %.5f"%KLD_emcee)
-
-        # # Information Entropy based on Entropy paper Eq. 38
-        # infEntropy_emcee = logml_dict['logml'] - postExpPrior -
-        #                    postExpLikelihoods_emcee
-        # print("Information Entropy: %.5f" %infEntropy_emcee)
-
-        Posterior_df = pd.DataFrame(finalsamples, columns=par_names)
-
-        return Posterior_df
-
-    # -------------------------------------------------------------------------
-    def log_prior(self, theta):
-        """
-        Calculates the log prior likelihood \\( p(\\theta)\\) for the given
-        parameter set(s) \\( \\theta \\).
-
-        Parameters
-        ----------
-        theta : array of shape (n_samples, n_params)
-            Parameter sets, i.e. proposals of MCMC chains.
-
-        Returns
-        -------
-        logprior: float or array of shape n_samples
-            Log prior likelihood. If theta has only one row, a single value is
-            returned otherwise an array.
-
-        """
-
-        MetaModel = self.BayesOpts.MetaModel
-        Discrepancy = self.BayesOpts.Discrepancy
-
-        # Find the number of sigma2 parameters
-        if Discrepancy.opt_sigma != 'B':
-            disc_bound_tuples = Discrepancy.ExpDesign.bound_tuples
-            disc_marginals = Discrepancy.ExpDesign.InputObj.Marginals
-            disc_prior_space = Discrepancy.ExpDesign.prior_space
-            n_sigma2 = len(disc_bound_tuples)
-        else:
-            n_sigma2 = -len(theta)
-        prior_dist = MetaModel.ExpDesign.prior_space
-        params_range = MetaModel.ExpDesign.bound_tuples
-        theta = theta if theta.ndim != 1 else theta.reshape((1, -1))
-        nsamples = theta.shape[0]
-        logprior = -np.inf*np.ones(nsamples)
-
-        for i in range(nsamples):
-            # Check if the sample is within the parameters' range
-            if self._check_ranges(theta[i], params_range):
-                # Check if all dists are uniform, if yes priors are equal.
-                if all(MetaModel.input_obj.Marginals[i].dist_type == 'uniform'
-                       for i in range(MetaModel.n_params)):
-                    logprior[i] = 0.0
-                else:
-                    logprior[i] = np.log(
-                        prior_dist.pdf(theta[i, :-n_sigma2].T)
-                        )
-
-                # Check if bias term needs to be inferred
-                if Discrepancy.opt_sigma != 'B':
-                    if self._check_ranges(theta[i, -n_sigma2:],
-                                          disc_bound_tuples):
-                        if all('unif' in disc_marginals[i].dist_type for i in
-                               range(Discrepancy.ExpDesign.ndim)):
-                            logprior[i] = 0.0
-                        else:
-                            logprior[i] += np.log(
-                                disc_prior_space.pdf(theta[i, -n_sigma2:])
-                                )
-
-        if nsamples == 1:
-            return logprior[0]
-        else:
-            return logprior
-
-    # -------------------------------------------------------------------------
-    def log_likelihood(self, theta):
-        """
-        Computes likelihood \\( p(\\mathcal{Y}|\\theta)\\) of the performance
-        of the (meta-)model in reproducing the observation data.
-
-        Parameters
-        ----------
-        theta : array of shape (n_samples, n_params)
-            Parameter set, i.e. proposals of the MCMC chains.
-
-        Returns
-        -------
-        log_like : array of shape (n_samples)
-            Log likelihood.
-
-        """
-
-        BayesOpts = self.BayesOpts
-        MetaModel = BayesOpts.MetaModel
-        Discrepancy = self.BayesOpts.Discrepancy
-
-        # Find the number of sigma2 parameters
-        if Discrepancy.opt_sigma != 'B':
-            disc_bound_tuples = Discrepancy.ExpDesign.bound_tuples
-            n_sigma2 = len(disc_bound_tuples)
-        else:
-            n_sigma2 = -len(theta)
-        # Check if bias term needs to be inferred
-        if Discrepancy.opt_sigma != 'B':
-            sigma2 = theta[:, -n_sigma2:]
-            theta = theta[:, :-n_sigma2]
-        else:
-            sigma2 = None
-        theta = theta if theta.ndim != 1 else theta.reshape((1, -1))
-
-        # Evaluate Model/MetaModel at theta
-        mean_pred, BayesOpts._std_pce_prior_pred = self.eval_model(theta)
-
-        # Surrogate model's error using RMSE of test data
-        surrError = MetaModel.rmse if hasattr(MetaModel, 'rmse') else None
-
-        # Likelihood
-        log_like = BayesOpts.normpdf(
-            mean_pred, self.observation, self.total_sigma2, sigma2,
-            std=surrError
-            )
-        return log_like
-
-    # -------------------------------------------------------------------------
-    def log_posterior(self, theta):
-        """
-        Computes the posterior likelihood \\(p(\\theta| \\mathcal{Y})\\) for
-        the given parameterset.
-
-        Parameters
-        ----------
-        theta : array of shape (n_samples, n_params)
-            Parameter set, i.e. proposals of the MCMC chains.
-
-        Returns
-        -------
-        log_like : array of shape (n_samples)
-            Log posterior likelihood.
-
-        """
-
-        nsamples = 1 if theta.ndim == 1 else theta.shape[0]
-
-        if nsamples == 1:
-            if self.log_prior(theta) == -np.inf:
-                return -np.inf
-            else:
-                # Compute log prior
-                log_prior = self.log_prior(theta)
-                # Compute log Likelihood
-                log_likelihood = self.log_likelihood(theta)
-
-                return log_prior + log_likelihood
-        else:
-            # Compute log prior
-            log_prior = self.log_prior(theta)
-
-            # Initialize log_likelihood
-            log_likelihood = -np.inf*np.ones(nsamples)
-
-            # find the indices for -inf sets
-            non_inf_idx = np.where(log_prior != -np.inf)[0]
-
-            # Compute loLikelihoods
-            if non_inf_idx.size != 0:
-                log_likelihood[non_inf_idx] = self.log_likelihood(
-                    theta[non_inf_idx]
-                    )
-
-            return log_prior + log_likelihood
-
-    # -------------------------------------------------------------------------
-    def eval_model(self, theta):
-        """
-        Evaluates the (meta-) model at the given theta.
-
-        Parameters
-        ----------
-        theta : array of shape (n_samples, n_params)
-            Parameter set, i.e. proposals of the MCMC chains.
-
-        Returns
-        -------
-        mean_pred : dict
-            Mean model prediction.
-        std_pred : dict
-            Std of model prediction.
-
-        """
-
-        BayesObj = self.BayesOpts
-        MetaModel = BayesObj.MetaModel
-        Model = MetaModel.ModelObj
-
-        if BayesObj.emulator:
-            # Evaluate the MetaModel
-            mean_pred, std_pred = MetaModel.eval_metamodel(samples=theta)
-        else:
-            # Evaluate the origModel
-            mean_pred, std_pred = dict(), dict()
-
-            model_outs, _ = Model.run_model_parallel(
-                theta, prevRun_No=self.counter,
-                key_str='_MCMC', mp=False, verbose=False)
-
-            # Save outputs in respective dicts
-            for varIdx, var in enumerate(Model.Output.names):
-                mean_pred[var] = model_outs[var]
-                std_pred[var] = np.zeros((mean_pred[var].shape))
-
-            # Remove the folder
-            if Model.link_type.lower() != 'function':
-                shutil.rmtree(f"{Model.name}_MCMC_{self.counter+1}")
-
-            # Add one to the counter
-            self.counter += 1
-
-        if hasattr(self, 'error_MetaModel') and BayesObj.error_model:
-            meanPred, stdPred = self.error_MetaModel.eval_model_error(
-                BayesObj.BiasInputs, mean_pred
-                )
-
-        return mean_pred, std_pred
-
-    # -------------------------------------------------------------------------
-    def train_error_model(self, sampler):
-        """
-        Trains an error model using a Gaussian Process Regression.
-
-        Parameters
-        ----------
-        sampler : obj
-            emcee sampler.
-
-        Returns
-        -------
-        error_MetaModel : obj
-            A error model.
-
-        """
-        BayesObj = self.BayesOpts
-        MetaModel = BayesObj.MetaModel
-
-        # Prepare the poster samples
-        try:
-            tau = sampler.get_autocorr_time(tol=0)
-        except emcee.autocorr.AutocorrError:
-            tau = 5
-
-        if all(np.isnan(tau)):
-            tau = 5
-
-        burnin = int(2*np.nanmax(tau))
-        thin = int(0.5*np.nanmin(tau)) if int(0.5*np.nanmin(tau)) != 0 else 1
-        finalsamples = sampler.get_chain(discard=burnin, flat=True, thin=thin)
-        posterior = finalsamples[:, :MetaModel.n_params]
-
-        # Select posterior mean as MAP
-        map_theta = posterior.mean(axis=0).reshape((1, MetaModel.n_params))
-        # MAP_theta = st.mode(Posterior_df,axis=0)[0]
-
-        # Evaluate the (meta-)model at the MAP
-        y_map, y_std_map = MetaModel.eval_metamodel(samples=map_theta)
-
-        # Train a GPR meta-model using MAP
-        error_MetaModel = MetaModel.create_model_error(
-            BayesObj.BiasInputs, y_map, name='Calib')
-
-        return error_MetaModel
-
-    # -------------------------------------------------------------------------
-    def gelman_rubin(self, chain, return_var=False):
-        """
-        The potential scale reduction factor (PSRF) defined by the variance
-        within one chain, W, with the variance between chains B.
-        Both variances are combined in a weighted sum to obtain an estimate of
-        the variance of a parameter \\( \\theta \\).The square root of the
-        ratio of this estimates variance to the within chain variance is called
-        the potential scale reduction.
-        For a well converged chain it should approach 1. Values greater than
-        1.1 typically indicate that the chains have not yet fully converged.
-
-        Source: http://joergdietrich.github.io/emcee-convergence.html
-
-        https://github.com/jwalton3141/jwalton3141.github.io/blob/master/assets/posts/ESS/rwmh.py
-
-        Parameters
-        ----------
-        chain : array (n_walkers, n_steps, n_params)
-            The emcee ensamples.
-
-        Returns
-        -------
-        R_hat : float
-            The Gelman-Robin values.
-
-        """
-        m_chains, n_iters = chain.shape[:2]
-
-        # Calculate between-chain variance
-        θb = np.mean(chain, axis=1)
-        θbb = np.mean(θb, axis=0)
-        B_over_n = ((θbb - θb)**2).sum(axis=0)
-        B_over_n /= (m_chains - 1)
-
-        # Calculate within-chain variances
-        ssq = np.var(chain, axis=1, ddof=1)
-        W = np.mean(ssq, axis=0)
-
-        # (over) estimate of variance
-        var_θ = W * (n_iters - 1) / n_iters + B_over_n
-
-        if return_var:
-            return var_θ
-        else:
-            # The square root of the ratio of this estimates variance to the
-            # within chain variance
-            R_hat = np.sqrt(var_θ / W)
-            return R_hat
-
-    # -------------------------------------------------------------------------
-    def marginal_llk_emcee(self, sampler, nburn=None, logp=None, maxiter=1000):
-        """
-        The Bridge Sampling Estimator of the Marginal Likelihood based on
-        https://gist.github.com/junpenglao/4d2669d69ddfe1d788318264cdcf0583
-
-        Parameters
-        ----------
-        sampler : TYPE
-            MultiTrace, result of MCMC run.
-        nburn : int, optional
-            Number of burn-in step. The default is None.
-        logp : TYPE, optional
-            Model Log-probability function. The default is None.
-        maxiter : int, optional
-            Maximum number of iterations. The default is 1000.
-
-        Returns
-        -------
-        marg_llk : dict
-            Estimated Marginal log-Likelihood.
-
-        """
-        r0, tol1, tol2 = 0.5, 1e-10, 1e-4
-
-        if logp is None:
-            logp = sampler.log_prob_fn
-
-        # Split the samples into two parts
-        # Use the first 50% for fiting the proposal distribution
-        # and the second 50% in the iterative scheme.
-        if nburn is None:
-            mtrace = sampler.chain
-        else:
-            mtrace = sampler.chain[:, nburn:, :]
-
-        nchain, len_trace, nrofVars = mtrace.shape
-
-        N1_ = len_trace // 2
-        N1 = N1_*nchain
-        N2 = len_trace*nchain - N1
-
-        samples_4_fit = np.zeros((nrofVars, N1))
-        samples_4_iter = np.zeros((nrofVars, N2))
-        effective_n = np.zeros((nrofVars))
-
-        # matrix with already transformed samples
-        for var in range(nrofVars):
-
-            # for fitting the proposal
-            x = mtrace[:, :N1_, var]
-
-            samples_4_fit[var, :] = x.flatten()
-            # for the iterative scheme
-            x2 = mtrace[:, N1_:, var]
-            samples_4_iter[var, :] = x2.flatten()
-
-            # effective sample size of samples_4_iter, scalar
-            effective_n[var] = self._my_ESS(x2)
-
-        # median effective sample size (scalar)
-        neff = np.median(effective_n)
-
-        # get mean & covariance matrix and generate samples from proposal
-        m = np.mean(samples_4_fit, axis=1)
-        V = np.cov(samples_4_fit)
-        L = chol(V, lower=True)
-
-        # Draw N2 samples from the proposal distribution
-        gen_samples = m[:, None] + np.dot(
-            L, st.norm.rvs(0, 1, size=samples_4_iter.shape)
-            )
-
-        # Evaluate proposal distribution for posterior & generated samples
-        q12 = st.multivariate_normal.logpdf(samples_4_iter.T, m, V)
-        q22 = st.multivariate_normal.logpdf(gen_samples.T, m, V)
-
-        # Evaluate unnormalized posterior for posterior & generated samples
-        q11 = logp(samples_4_iter.T)
-        q21 = logp(gen_samples.T)
-
-        # Run iterative scheme:
-        tmp = self._iterative_scheme(
-            N1, N2, q11, q12, q21, q22, r0, neff, tol1, maxiter, 'r'
-            )
-        if ~np.isfinite(tmp['logml']):
-            warnings.warn(
-                "logml could not be estimated within maxiter, rerunning with "
-                "adjusted starting value. Estimate might be more variable than"
-                " usual.")
-            # use geometric mean as starting value
-            r0_2 = np.sqrt(tmp['r_vals'][-2]*tmp['r_vals'][-1])
-            tmp = self._iterative_scheme(
-                q11, q12, q21, q22, r0_2, neff, tol2, maxiter, 'logml'
-                )
-
-        marg_llk = dict(
-            logml=tmp['logml'], niter=tmp['niter'], method="normal",
-            q11=q11, q12=q12, q21=q21, q22=q22
-            )
-        return marg_llk
-
-    # -------------------------------------------------------------------------
-    def _iterative_scheme(self, N1, N2, q11, q12, q21, q22, r0, neff, tol,
-                          maxiter, criterion):
-        """
-        Iterative scheme as proposed in Meng and Wong (1996) to estimate the
-        marginal likelihood
-
-        """
-        l1 = q11 - q12
-        l2 = q21 - q22
-        # To increase numerical stability,
-        # subtracting the median of l1 from l1 & l2 later
-        lstar = np.median(l1)
-        s1 = neff/(neff + N2)
-        s2 = N2/(neff + N2)
-        r = r0
-        r_vals = [r]
-        logml = np.log(r) + lstar
-        criterion_val = 1 + tol
-
-        i = 0
-        while (i <= maxiter) & (criterion_val > tol):
-            rold = r
-            logmlold = logml
-            numi = np.exp(l2 - lstar)/(s1 * np.exp(l2 - lstar) + s2 * r)
-            deni = 1/(s1 * np.exp(l1 - lstar) + s2 * r)
-            if np.sum(~np.isfinite(numi))+np.sum(~np.isfinite(deni)) > 0:
-                warnings.warn(
-                    """Infinite value in iterative scheme, returning NaN.
-                     Try rerunning with more samples.""")
-            r = (N1/N2) * np.sum(numi)/np.sum(deni)
-            r_vals.append(r)
-            logml = np.log(r) + lstar
-            i += 1
-            if criterion == 'r':
-                criterion_val = np.abs((r - rold)/r)
-            elif criterion == 'logml':
-                criterion_val = np.abs((logml - logmlold)/logml)
-
-        if i >= maxiter:
-            return dict(logml=np.NaN, niter=i, r_vals=np.asarray(r_vals))
-        else:
-            return dict(logml=logml, niter=i)
-
-    # -------------------------------------------------------------------------
-    def _my_ESS(self, x):
-        """
-        Compute the effective sample size of estimand of interest.
-        Vectorised implementation.
-        https://github.com/jwalton3141/jwalton3141.github.io/blob/master/assets/posts/ESS/rwmh.py
-
-
-        Parameters
-        ----------
-        x : array of shape (n_walkers, n_steps)
-            MCMC Samples.
-
-        Returns
-        -------
-        int
-            Effective sample size.
-
-        """
-        m_chains, n_iters = x.shape
-
-        def variogram(t):
-            variogram = ((x[:, t:] - x[:, :(n_iters - t)])**2).sum()
-            variogram /= (m_chains * (n_iters - t))
-            return variogram
-
-        post_var = self.gelman_rubin(x, return_var=True)
-
-        t = 1
-        rho = np.ones(n_iters)
-        negative_autocorr = False
-
-        # Iterate until the sum of consecutive estimates of autocorrelation is
-        # negative
-        while not negative_autocorr and (t < n_iters):
-            rho[t] = 1 - variogram(t) / (2 * post_var)
-
-            if not t % 2:
-                negative_autocorr = sum(rho[t-1:t+1]) < 0
-
-            t += 1
-
-        return int(m_chains*n_iters / (1 + 2*rho[1:t].sum()))
-
-    # -------------------------------------------------------------------------
-    def _check_ranges(self, theta, ranges):
-        """
-        This function checks if theta lies in the given ranges.
-
-        Parameters
-        ----------
-        theta : array
-            Proposed parameter set.
-        ranges : nested list
-            List of the praremeter ranges.
-
-        Returns
-        -------
-        c : bool
-            If it lies in the given range, it return True else False.
-
-        """
-        c = True
-        # traverse in the list1
-        for i, bounds in enumerate(ranges):
-            x = theta[i]
-            # condition check
-            if x < bounds[0] or x > bounds[1]:
-                c = False
-                return c
-        return c
diff --git a/examples/only-model/bayesvalidrox/bayesvalidrox.mplstyle b/examples/only-model/bayesvalidrox/bayesvalidrox.mplstyle
deleted file mode 100644
index 1f31c01f24597de0e0be741be4d3a706c4213a6c..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/bayesvalidrox.mplstyle
+++ /dev/null
@@ -1,16 +0,0 @@
-figure.titlesize : 30
-axes.titlesize : 30
-axes.labelsize : 30
-axes.linewidth : 3
-axes.grid : True
-lines.linewidth : 3
-lines.markersize : 10
-xtick.labelsize : 30
-ytick.labelsize : 30
-legend.fontsize : 30
-font.family : serif
-font.serif : Arial
-font.size : 30
-text.usetex : True
-grid.linestyle : -
-figure.figsize : 24, 16
diff --git a/examples/only-model/bayesvalidrox/desktop.ini b/examples/only-model/bayesvalidrox/desktop.ini
deleted file mode 100644
index 632de13ae6b61cecf0d9fdbf9c97cfb16bfb51a4..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/desktop.ini
+++ /dev/null
@@ -1,2 +0,0 @@
-[LocalizedFileNames]
-exploration.py=@exploration.py,0
diff --git a/examples/only-model/bayesvalidrox/post_processing/__init__.py b/examples/only-model/bayesvalidrox/post_processing/__init__.py
deleted file mode 100644
index 81c9825420b6ed3f027fb3c141be8af05a89f695..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/post_processing/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-# -*- coding: utf-8 -*-
-
-from .post_processing import PostProcessing
-
-__all__ = [
-    "PostProcessing"
-    ]
diff --git a/examples/only-model/bayesvalidrox/post_processing/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/post_processing/__pycache__/__init__.cpython-311.pyc
deleted file mode 100644
index e9108fe43d767221eb456e5fec28ee23ba4afbe5..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/post_processing/__pycache__/__init__.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/post_processing/__pycache__/post_processing.cpython-311.pyc b/examples/only-model/bayesvalidrox/post_processing/__pycache__/post_processing.cpython-311.pyc
deleted file mode 100644
index e253baea5f0711c774d08f539558c911df465f70..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/post_processing/__pycache__/post_processing.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/post_processing/post_processing.py b/examples/only-model/bayesvalidrox/post_processing/post_processing.py
deleted file mode 100644
index 3a89cf739e9b2a221ec1c078947d3624c747af96..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/post_processing/post_processing.py
+++ /dev/null
@@ -1,1352 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import numpy as np
-import math
-import os
-from itertools import combinations, cycle
-import pandas as pd
-import scipy.stats as stats
-from sklearn.linear_model import LinearRegression
-from sklearn.metrics import mean_squared_error, r2_score
-import matplotlib.pyplot as plt
-import matplotlib.ticker as ticker
-from matplotlib.offsetbox import AnchoredText
-from matplotlib.patches import Patch
-# Load the mplstyle
-#plt.style.use(os.path.join(os.path.split(__file__)[0],
-#                           '../', 'bayesvalidrox.mplstyle'))
-
-
-class PostProcessing:
-    """
-    This class provides many helper functions to post-process the trained
-    meta-model.
-
-    Attributes
-    ----------
-    MetaModel : obj
-        MetaModel object to do postprocessing on.
-    name : str
-        Type of the anaylsis. The default is `'calib'`. If a validation is
-        expected to be performed change this to `'valid'`.
-    """
-
-    def __init__(self, MetaModel, name='calib'):
-        self.MetaModel = MetaModel
-        self.name = name
-
-    # -------------------------------------------------------------------------
-    def plot_moments(self, xlabel='Time [s]', plot_type=None):
-        """
-        Plots the moments in a pdf format in the directory
-        `Outputs_PostProcessing`.
-
-        Parameters
-        ----------
-        xlabel : str, optional
-            String to be displayed as x-label. The default is `'Time [s]'`.
-        plot_type : str, optional
-            Options: bar or line. The default is `None`.
-
-        Returns
-        -------
-        pce_means: dict
-            Mean of the model outputs.
-        pce_means: dict
-            Standard deviation of the model outputs.
-
-        """
-        
-        bar_plot = True if plot_type == 'bar' else False
-        meta_model_type = self.MetaModel.meta_model_type
-        Model = self.MetaModel.ModelObj
-
-        # Read Monte-Carlo reference
-        self.mc_reference = Model.read_mc_reference()
-
-        # Set the x values
-        x_values_orig = self.MetaModel.ExpDesign.x_values
-
-        # Compute the moments with the PCEModel object
-        self.pce_means, self.pce_stds = self.compute_pce_moments()
-
-        # Get the variables
-        out_names = Model.Output.names
-
-        # Open a pdf for the plots
-        newpath = (f'Outputs_PostProcessing_{self.name}/')
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        # Plot the best fit line, set the linewidth (lw), color and
-        # transparency (alpha) of the line
-        for key in out_names:
-            fig, ax = plt.subplots(nrows=1, ncols=2)
-
-            # Extract mean and std
-            mean_data = self.pce_means[key]
-            std_data = self.pce_stds[key]
-
-            # Extract a list of x values
-            if type(x_values_orig) is dict:
-                x = x_values_orig[key]
-            else:
-                x = x_values_orig
-
-            # Plot: bar plot or line plot
-            if bar_plot:
-                ax[0].bar(list(map(str, x)), mean_data, color='b',
-                          width=0.25)
-                ax[1].bar(list(map(str, x)), std_data, color='b',
-                          width=0.25)
-                ax[0].legend(labels=[meta_model_type])
-                ax[1].legend(labels=[meta_model_type])
-            else:
-                #print(x)
-                #print(mean_data)
-                ax[0].plot(x, mean_data, lw=3, color='k', marker='x',
-                           label=meta_model_type)
-                ax[1].plot(x, std_data, lw=3, color='k', marker='x',
-                           label=meta_model_type)
-
-            if self.mc_reference is not None:
-                if bar_plot:
-                    ax[0].bar(list(map(str, x)), self.mc_reference['mean'],
-                              color='r', width=0.25)
-                    ax[1].bar(list(map(str, x)), self.mc_reference['std'],
-                              color='r', width=0.25)
-                    ax[0].legend(labels=[meta_model_type])
-                    ax[1].legend(labels=[meta_model_type])
-                else:
-                    ax[0].plot(x, self.mc_reference['mean'], lw=3, marker='x',
-                               color='r', label='Ref.')
-                    ax[1].plot(x, self.mc_reference['std'], lw=3, marker='x',
-                               color='r', label='Ref.')
-
-            # Label the axes and provide a title
-            ax[0].set_xlabel(xlabel)
-            ax[1].set_xlabel(xlabel)
-            ax[0].set_ylabel(key)
-            ax[1].set_ylabel(key)
-
-            # Provide a title
-            ax[0].set_title('Mean of ' + key)
-            ax[1].set_title('Std of ' + key)
-
-            if not bar_plot:
-                ax[0].legend(loc='best')
-                ax[1].legend(loc='best')
-
-            plt.tight_layout()
-
-            # save the current figure
-            fig.savefig(
-                f'./{newpath}Mean_Std_PCE_{key}.pdf',
-                bbox_inches='tight'
-                )
-
-        return self.pce_means, self.pce_stds
-
-    # -------------------------------------------------------------------------
-    def valid_metamodel(self, n_samples=1, samples=None, model_out_dict=None,
-                        x_axis='Time [s]'):
-        """
-        Evaluates and plots the meta model and the PCEModel outputs for the
-        given number of samples or the given samples.
-
-        Parameters
-        ----------
-        n_samples : int, optional
-            Number of samples to be evaluated. The default is 1.
-        samples : array of shape (n_samples, n_params), optional
-            Samples to be evaluated. The default is None.
-        model_out_dict: dict
-            The model runs using the samples provided.
-        x_axis : str, optional
-            Label of x axis. The default is `'Time [s]'`.
-
-        Returns
-        -------
-        None.
-
-        """
-        MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-
-        if samples is None:
-            self.n_samples = n_samples
-            samples = self._get_sample()
-        else:
-            self.n_samples = samples.shape[0]
-
-        # Extract x_values
-        x_values = MetaModel.ExpDesign.x_values
-
-        if model_out_dict is not None:
-            self.model_out_dict = model_out_dict
-        else:
-            self.model_out_dict = self._eval_model(samples, key_str='valid')
-        self.pce_out_mean, self.pce_out_std = MetaModel.eval_metamodel(samples)
-
-        try:
-            key = Model.Output.names[1]
-        except IndexError:
-            key = Model.Output.names[0]
-
-        n_obs = self.model_out_dict[key].shape[1]
-
-        if n_obs == 1:
-            self._plot_validation()
-        else:
-            print(x_values)
-            self._plot_validation_multi(x_values=x_values, x_axis=x_axis)
-
-    # -------------------------------------------------------------------------
-    def check_accuracy(self, n_samples=None, samples=None, outputs=None):
-        """
-        Checks accuracy of the metamodel by computing the root mean square
-        error and validation error for all outputs.
-
-        Parameters
-        ----------
-        n_samples : int, optional
-            Number of samples. The default is None.
-        samples : array of shape (n_samples, n_params), optional
-            Parameter sets to be checked. The default is None.
-        outputs : dict, optional
-            Output dictionary with model outputs for all given output types in
-            `Model.Output.names`. The default is None.
-
-        Raises
-        ------
-        Exception
-            When neither n_samples nor samples are provided.
-
-        Returns
-        -------
-        rmse: dict
-            Root mean squared error for each output.
-        valid_error : dict
-            Validation error for each output.
-
-        """
-        MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-
-        # Set the number of samples
-        if n_samples:
-            self.n_samples = n_samples
-        elif samples is not None:
-            self.n_samples = samples.shape[0]
-        else:
-            raise Exception("Please provide either samples or pass number of "
-                            "samples!")
-
-        # Generate random samples if necessary
-        Samples = self._get_sample() if samples is None else samples
-
-        # Run the original model with the generated samples
-        if outputs is None:
-            outputs = self._eval_model(Samples, key_str='validSet')
-
-        # Run the PCE model with the generated samples
-        pce_outputs, _ = MetaModel.eval_metamodel(samples=Samples)
-
-        self.rmse = {}
-        self.valid_error = {}
-        # Loop over the keys and compute RMSE error.
-        for key in Model.Output.names:
-            # Root mena square
-            self.rmse[key] = mean_squared_error(outputs[key], pce_outputs[key],
-                                                squared=False,
-                                                multioutput='raw_values')
-            # Validation error
-            self.valid_error[key] = (self.rmse[key]**2) / \
-                np.var(outputs[key], ddof=1, axis=0)
-
-            # Print a report table
-            print("\n>>>>> Errors of {} <<<<<".format(key))
-            print("\nIndex  |  RMSE   |  Validation Error")
-            print('-'*35)
-            print('\n'.join(f'{i+1}  |  {k:.3e}  |  {j:.3e}' for i, (k, j)
-                            in enumerate(zip(self.rmse[key],
-                                             self.valid_error[key]))))
-        # Save error dicts in PCEModel object
-        self.MetaModel.rmse = self.rmse
-        self.MetaModel.valid_error = self.valid_error
-
-        return
-
-    # -------------------------------------------------------------------------
-    def plot_seq_design_diagnostics(self, ref_BME_KLD=None):
-        """
-        Plots the Bayesian Model Evidence (BME) and Kullback-Leibler divergence
-        (KLD) for the sequential design.
-
-        Parameters
-        ----------
-        ref_BME_KLD : array, optional
-            Reference BME and KLD . The default is `None`.
-
-        Returns
-        -------
-        None.
-
-        """
-        PCEModel = self.MetaModel
-        n_init_samples = PCEModel.ExpDesign.n_init_samples
-        n_total_samples = PCEModel.ExpDesign.X.shape[0]
-
-        newpath = f'Outputs_PostProcessing_{self.name}/seq_design_diagnostics/'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        plotList = ['Modified LOO error', 'Validation error', 'KLD', 'BME',
-                    'RMSEMean', 'RMSEStd', 'Hellinger distance']
-        seqList = [PCEModel.SeqModifiedLOO, PCEModel.seqValidError,
-                   PCEModel.SeqKLD, PCEModel.SeqBME, PCEModel.seqRMSEMean,
-                   PCEModel.seqRMSEStd, PCEModel.SeqDistHellinger]
-
-        markers = ('x', 'o', 'd', '*', '+')
-        colors = ('k', 'darkgreen', 'b', 'navy', 'darkred')
-
-        # Plot the evolution of the diagnostic criteria of the
-        # Sequential Experimental Design.
-        for plotidx, plot in enumerate(plotList):
-            fig, ax = plt.subplots()
-            seq_dict = seqList[plotidx]
-            name_util = list(seq_dict.keys())
-
-            if len(name_util) == 0:
-                continue
-
-            # Box plot when Replications have been detected.
-            if any(int(name.split("rep_", 1)[1]) > 1 for name in name_util):
-                # Extract the values from dict
-                sorted_seq_opt = {}
-                # Number of replications
-                n_reps = PCEModel.ExpDesign.n_replication
-
-                # Get the list of utility function names
-                # Handle if only one UtilityFunction is provided
-                if not isinstance(PCEModel.ExpDesign.util_func, list):
-                    util_funcs = [PCEModel.ExpDesign.util_func]
-                else:
-                    util_funcs = PCEModel.ExpDesign.util_func
-
-                for util in util_funcs:
-                    sortedSeq = {}
-                    # min number of runs available from reps
-                    n_runs = min([seq_dict[f'{util}_rep_{i+1}'].shape[0]
-                                 for i in range(n_reps)])
-
-                    for runIdx in range(n_runs):
-                        values = []
-                        for key in seq_dict.keys():
-                            if util in key:
-                                values.append(seq_dict[key][runIdx].mean())
-                        sortedSeq['SeqItr_'+str(runIdx)] = np.array(values)
-                    sorted_seq_opt[util] = sortedSeq
-
-                # BoxPlot
-                def draw_plot(data, labels, edge_color, fill_color, idx):
-                    pos = labels - (idx-1)
-                    bp = plt.boxplot(data, positions=pos, labels=labels,
-                                     patch_artist=True, sym='', widths=0.75)
-                    elements = ['boxes', 'whiskers', 'fliers', 'means',
-                                'medians', 'caps']
-                    for element in elements:
-                        plt.setp(bp[element], color=edge_color[idx])
-
-                    for patch in bp['boxes']:
-                        patch.set(facecolor=fill_color[idx])
-
-                if PCEModel.ExpDesign.n_new_samples != 1:
-                    step1 = PCEModel.ExpDesign.n_new_samples
-                    step2 = 1
-                else:
-                    step1 = 5
-                    step2 = 5
-                edge_color = ['red', 'blue', 'green']
-                fill_color = ['tan', 'cyan', 'lightgreen']
-                plot_label = plot
-                # Plot for different Utility Functions
-                for idx, util in enumerate(util_funcs):
-                    all_errors = np.empty((n_reps, 0))
-
-                    for key in list(sorted_seq_opt[util].keys()):
-                        errors = sorted_seq_opt.get(util, {}).get(key)[:, None]
-                        all_errors = np.hstack((all_errors, errors))
-
-                    # Special cases for BME and KLD
-                    if plot == 'KLD' or plot == 'BME':
-                        # BME convergence if refBME is provided
-                        if ref_BME_KLD is not None:
-                            if plot == 'BME':
-                                refValue = ref_BME_KLD[0]
-                                plot_label = r'BME/BME$^{Ref.}$'
-                            if plot == 'KLD':
-                                refValue = ref_BME_KLD[1]
-                                plot_label = '$D_{KL}[p(\\theta|y_*),p(\\theta)]'\
-                                    ' / D_{KL}^{Ref.}[p(\\theta|y_*), '\
-                                    'p(\\theta)]$'
-
-                            # Difference between BME/KLD and the ref. values
-                            all_errors = np.divide(all_errors,
-                                                   np.full((all_errors.shape),
-                                                           refValue))
-
-                            # Plot baseline for zero, i.e. no difference
-                            plt.axhline(y=1.0, xmin=0, xmax=1, c='green',
-                                        ls='--', lw=2)
-
-                    # Plot each UtilFuncs
-                    labels = np.arange(n_init_samples, n_total_samples+1, step1)
-                    draw_plot(all_errors[:, ::step2], labels, edge_color,
-                              fill_color, idx)
-
-                plt.xticks(labels, labels)
-                # Set the major and minor locators
-                ax.xaxis.set_major_locator(ticker.AutoLocator())
-                ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
-                ax.xaxis.grid(True, which='major', linestyle='-')
-                ax.xaxis.grid(True, which='minor', linestyle='--')
-
-                # Legend
-                legend_elements = []
-                for idx, util in enumerate(util_funcs):
-                    legend_elements.append(Patch(facecolor=fill_color[idx],
-                                                 edgecolor=edge_color[idx],
-                                                 label=util))
-                plt.legend(handles=legend_elements[::-1], loc='best')
-
-                if plot != 'BME' and plot != 'KLD':
-                    plt.yscale('log')
-                plt.autoscale(True)
-                plt.xlabel('\\# of training samples')
-                plt.ylabel(plot_label)
-                plt.title(plot)
-
-                # save the current figure
-                plot_name = plot.replace(' ', '_')
-                fig.savefig(
-                    f'./{newpath}/seq_{plot_name}.pdf',
-                    bbox_inches='tight'
-                    )
-                # Destroy the current plot
-                plt.clf()
-                # Save arrays into files
-                f = open(f'./{newpath}/seq_{plot_name}.txt', 'w')
-                f.write(str(sorted_seq_opt))
-                f.close()
-            else:
-                for idx, name in enumerate(name_util):
-                    seq_values = seq_dict[name]
-                    if PCEModel.ExpDesign.n_new_samples != 1:
-                        step = PCEModel.ExpDesign.n_new_samples
-                    else:
-                        step = 1
-                    x_idx = np.arange(n_init_samples, n_total_samples+1, step)
-                    if n_total_samples not in x_idx:
-                        x_idx = np.hstack((x_idx, n_total_samples))
-
-                    if plot == 'KLD' or plot == 'BME':
-                        # BME convergence if refBME is provided
-                        if ref_BME_KLD is not None:
-                            if plot == 'BME':
-                                refValue = ref_BME_KLD[0]
-                                plot_label = r'BME/BME$^{Ref.}$'
-                            if plot == 'KLD':
-                                refValue = ref_BME_KLD[1]
-                                plot_label = '$D_{KL}[p(\\theta|y_*),p(\\theta)]'\
-                                    ' / D_{KL}^{Ref.}[p(\\theta|y_*), '\
-                                    'p(\\theta)]$'
-
-                            # Difference between BME/KLD and the ref. values
-                            values = np.divide(seq_values,
-                                               np.full((seq_values.shape),
-                                                       refValue))
-
-                            # Plot baseline for zero, i.e. no difference
-                            plt.axhline(y=1.0, xmin=0, xmax=1, c='green',
-                                        ls='--', lw=2)
-
-                            # Set the limits
-                            plt.ylim([1e-1, 1e1])
-
-                            # Create the plots
-                            plt.semilogy(x_idx, values, marker=markers[idx],
-                                         color=colors[idx], ls='--', lw=2,
-                                         label=name.split("_rep", 1)[0])
-                        else:
-                            plot_label = plot
-
-                            # Create the plots
-                            plt.plot(x_idx, seq_values, marker=markers[idx],
-                                     color=colors[idx], ls='--', lw=2,
-                                     label=name.split("_rep", 1)[0])
-
-                    else:
-                        plot_label = plot
-                        seq_values = np.nan_to_num(seq_values)
-
-                        # Plot the error evolution for each output
-                        plt.semilogy(x_idx, seq_values.mean(axis=1),
-                                     marker=markers[idx], ls='--', lw=2,
-                                     color=colors[idx],
-                                     label=name.split("_rep", 1)[0])
-
-                # Set the major and minor locators
-                ax.xaxis.set_major_locator(ticker.AutoLocator())
-                ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
-                ax.xaxis.grid(True, which='major', linestyle='-')
-                ax.xaxis.grid(True, which='minor', linestyle='--')
-
-                ax.tick_params(axis='both', which='major', direction='in',
-                               width=3, length=10)
-                ax.tick_params(axis='both', which='minor', direction='in',
-                               width=2, length=8)
-                plt.xlabel('Number of runs')
-                plt.ylabel(plot_label)
-                plt.title(plot)
-                plt.legend(frameon=True)
-
-                # save the current figure
-                plot_name = plot.replace(' ', '_')
-                fig.savefig(
-                    f'./{newpath}/seq_{plot_name}.pdf',
-                    bbox_inches='tight'
-                    )
-                # Destroy the current plot
-                plt.clf()
-
-                # ---------------- Saving arrays into files ---------------
-                np.save(f'./{newpath}/seq_{plot_name}.npy', seq_values)
-
-        return
-
-    # -------------------------------------------------------------------------
-    def sobol_indices(self, xlabel=None, plot_type=None):
-        """
-        Provides Sobol indices as a sensitivity measure to infer the importance
-        of the input parameters. See Eq. 27 in [1] for more details. For the
-        case with Principal component analysis refer to [2].
-
-        [1] Global sensitivity analysis: A flexible and efficient framework
-        with an example from stochastic hydrogeology S. Oladyshkin, F.P.
-        de Barros, W. Nowak  https://doi.org/10.1016/j.advwatres.2011.11.001
-
-        [2] Nagel, J.B., Rieckermann, J. and Sudret, B., 2020. Principal
-        component analysis and sparse polynomial chaos expansions for global
-        sensitivity analysis and model calibration: Application to urban
-        drainage simulation. Reliability Engineering & System Safety, 195,
-        p.106737.
-
-        Parameters
-        ----------
-        xlabel : str, optional
-            Label of the x-axis. The default is `'Time [s]'`.
-        plot_type : str, optional
-            Plot type. The default is `None`. This corresponds to line plot.
-            Bar chart can be selected by `bar`.
-
-        Returns
-        -------
-        sobol_cell: dict
-            Sobol indices.
-        total_sobol: dict
-            Total Sobol indices.
-
-        """
-        #print('arrived')
-        if not xlabel:
-            xlabel = 'Time [s]' # test workaround
-        
-        # Extract the necessary variables
-        PCEModel = self.MetaModel
-        basis_dict = PCEModel.basis_dict
-        coeffs_dict = PCEModel.coeffs_dict
-        n_params = PCEModel.n_params
-        max_order = np.max(PCEModel.pce_deg)
-        sobol_cell_b = {}
-        total_sobol_b = {}
-        cov_Z_p_q = np.zeros((n_params))
-        #print('init done')
-        for b_i in range(PCEModel.n_bootstrap_itrs):
-
-            sobol_cell_, total_sobol_ = {}, {}
-
-            for output in PCEModel.ModelObj.Output.names:
-                #print(coeffs_dict[f'b_{b_i+1}'][output])
-                n_meas_points = len(coeffs_dict[f'b_{b_i+1}'][output])
-                #print(n_meas_points)
-                # Initialize the (cell) array containing the (total) Sobol indices.
-                sobol_array = dict.fromkeys(range(1, max_order+1), [])
-                sobol_cell_array = dict.fromkeys(range(1, max_order+1), [])
-
-                for i_order in range(1, max_order+1):
-                    n_comb = math.comb(n_params, i_order)
-
-                    sobol_cell_array[i_order] = np.zeros((n_comb, n_meas_points))
-
-                total_sobol_array = np.zeros((n_params, n_meas_points))
-
-                # Initialize the cell to store the names of the variables
-                TotalVariance = np.zeros((n_meas_points))
-                #print('stop1')
-                # Loop over all measurement points and calculate sobol indices
-                for pIdx in range(n_meas_points):
-
-                    # Extract the basis indices (alpha) and coefficients
-                    Basis = basis_dict[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
-
-                    try:
-                        clf_poly = PCEModel.clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
-                        PCECoeffs = clf_poly.coef_
-                    except:
-                        PCECoeffs = coeffs_dict[f'b_{b_i+1}'][output][f'y_{pIdx+1}']
-
-                    # Compute total variance
-                    TotalVariance[pIdx] = np.sum(np.square(PCECoeffs[1:]))
-
-                    nzidx = np.where(PCECoeffs != 0)[0]
-                    # Set all the Sobol indices equal to zero in the presence of a
-                    # null output.
-                    if len(nzidx) == 0:
-                        # This is buggy.
-                        for i_order in range(1, max_order+1):
-                            sobol_cell_array[i_order][:, pIdx] = 0
-
-                    # Otherwise compute them by summing well-chosen coefficients
-                    else:
-                        nz_basis = Basis[nzidx]
-                        for i_order in range(1, max_order+1):
-                            idx = np.where(np.sum(nz_basis > 0, axis=1) == i_order)
-                            subbasis = nz_basis[idx]
-                            Z = np.array(list(combinations(range(n_params), i_order)))
-
-                            for q in range(Z.shape[0]):
-                                Zq = Z[q]
-                                subsubbasis = subbasis[:, Zq]
-                                subidx = np.prod(subsubbasis, axis=1) > 0
-                                sum_ind = nzidx[idx[0][subidx]]
-                                if TotalVariance[pIdx] == 0.0:
-                                    sobol_cell_array[i_order][q, pIdx] = 0.0
-                                else:
-                                    sobol = np.sum(np.square(PCECoeffs[sum_ind]))
-                                    sobol /= TotalVariance[pIdx]
-                                    sobol_cell_array[i_order][q, pIdx] = sobol
-
-                        # Compute the TOTAL Sobol indices.
-                        for ParIdx in range(n_params):
-                            idx = nz_basis[:, ParIdx] > 0
-                            sum_ind = nzidx[idx]
-
-                            if TotalVariance[pIdx] == 0.0:
-                                total_sobol_array[ParIdx, pIdx] = 0.0
-                            else:
-                                sobol = np.sum(np.square(PCECoeffs[sum_ind]))
-                                sobol /= TotalVariance[pIdx]
-                                total_sobol_array[ParIdx, pIdx] = sobol
-
-                    # ----- if PCA selected: Compute covariance -----
-                    if PCEModel.dim_red_method.lower() == 'pca':
-                        # Extract the basis indices (alpha) and coefficients for
-                        # next component
-                        if pIdx < n_meas_points-1:
-                            nextBasis = basis_dict[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
-                            if PCEModel.bootstrap_method != 'fast' or b_i == 0:
-                                clf_poly = PCEModel.clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
-                                nextPCECoeffs = clf_poly.coef_
-                            else:
-                                nextPCECoeffs = coeffs_dict[f'b_{b_i+1}'][output][f'y_{pIdx+2}']
-
-                            # Choose the common non-zero basis
-                            mask = (Basis[:, None] == nextBasis).all(-1).any(-1)
-                            n_mask = (nextBasis[:, None] == Basis).all(-1).any(-1)
-
-                            # Compute the covariance in Eq 17.
-                            for ParIdx in range(n_params):
-                                idx = (mask) & (Basis[:, ParIdx] > 0)
-                                n_idx = (n_mask) & (nextBasis[:, ParIdx] > 0)
-                                try:
-                                    cov_Z_p_q[ParIdx] += np.sum(np.dot(
-                                        PCECoeffs[idx], nextPCECoeffs[n_idx])
-                                        )
-                                except:
-                                    pass
-
-                # Compute the sobol indices according to Ref. 2
-                if PCEModel.dim_red_method.lower() == 'pca':
-                    n_c_points = PCEModel.ExpDesign.Y[output].shape[1]
-                    PCA = PCEModel.pca[f'b_{b_i+1}'][output]
-                    compPCA = PCA.components_
-                    nComp = compPCA.shape[0]
-                    var_Z_p = PCA.explained_variance_
-
-                    # Extract the sobol index of the components
-                    for i_order in range(1, max_order+1):
-                        n_comb = math.comb(n_params, i_order)
-                        sobol_array[i_order] = np.zeros((n_comb, n_c_points))
-                        Z = np.array(list(combinations(range(n_params), i_order)))
-
-                        # Loop over parameters
-                        for q in range(Z.shape[0]):
-                            S_Z_i = sobol_cell_array[i_order][q]
-
-                            for tIdx in range(n_c_points):
-                                var_Y_t = np.var(
-                                    PCEModel.ExpDesign.Y[output][:, tIdx])
-                                if var_Y_t == 0.0:
-                                    term1, term2 = 0.0, 0.0
-                                else:
-                                    # Eq. 17
-                                    term1 = 0.0
-                                    for i in range(nComp):
-                                        a = S_Z_i[i] * var_Z_p[i]
-                                        a *= compPCA[i, tIdx]**2
-                                        term1 += a
-
-                                    # TODO: Term 2
-                                    # term2 = 0.0
-                                    # for i in range(nComp-1):
-                                    #     term2 += cov_Z_p_q[q] * compPCA[i, tIdx]
-                                    #     term2 *= compPCA[i+1, tIdx]
-                                    # term2 *= 2
-
-                                sobol_array[i_order][q, tIdx] = term1 #+ term2
-
-                                # Devide over total output variance Eq. 18
-                                sobol_array[i_order][q, tIdx] /= var_Y_t
-
-                    # Compute the TOTAL Sobol indices.
-                    total_sobol = np.zeros((n_params, n_c_points))
-                    for ParIdx in range(n_params):
-                        S_Z_i = total_sobol_array[ParIdx]
-
-                        for tIdx in range(n_c_points):
-                            var_Y_t = np.var(PCEModel.ExpDesign.Y[output][:, tIdx])
-                            if var_Y_t == 0.0:
-                                term1, term2 = 0.0, 0.0
-                            else:
-                                term1 = 0
-                                for i in range(nComp):
-                                    term1 += S_Z_i[i] * var_Z_p[i] * \
-                                        (compPCA[i, tIdx]**2)
-
-                                # Term 2
-                                term2 = 0
-                                for i in range(nComp-1):
-                                    term2 += cov_Z_p_q[ParIdx] * compPCA[i, tIdx] \
-                                        * compPCA[i+1, tIdx]
-                                term2 *= 2
-
-                            total_sobol[ParIdx, tIdx] = term1 #+ term2
-
-                            # Devide over total output variance Eq. 18
-                            total_sobol[ParIdx, tIdx] /= var_Y_t
-
-                    sobol_cell_[output] = sobol_array
-                    total_sobol_[output] = total_sobol
-                else:
-                    sobol_cell_[output] = sobol_cell_array
-                    total_sobol_[output] = total_sobol_array
-
-            # Save for each bootsrtap iteration
-            sobol_cell_b[b_i] = sobol_cell_
-            total_sobol_b[b_i] = total_sobol_
-
-        # Average total sobol indices
-        total_sobol_all = {}
-        for i in sorted(total_sobol_b):
-            for k, v in total_sobol_b[i].items():
-                if k not in total_sobol_all:
-                    total_sobol_all[k] = [None] * len(total_sobol_b)
-                total_sobol_all[k][i] = v
-
-        self.total_sobol = {}
-        for output in PCEModel.ModelObj.Output.names:
-            self.total_sobol[output] = np.mean(total_sobol_all[output], axis=0)
-
-        # ---------------- Plot -----------------------
-        par_names = PCEModel.ExpDesign.par_names
-        x_values_orig = PCEModel.ExpDesign.x_values
-
-        newpath = (f'Outputs_PostProcessing_{self.name}/')
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        fig = plt.figure()
-
-        # Do the plots and save sobol results - uses self.total_sobol
-        for outIdx, output in enumerate(PCEModel.ModelObj.Output.names):
-
-            # Extract total Sobol indices
-            total_sobol = self.total_sobol[output]
-
-            # Compute quantiles
-            q_5 = np.quantile(total_sobol_all[output], q=0.05, axis=0)
-            q_97_5 = np.quantile(total_sobol_all[output], q=0.975, axis=0)
-
-            # Extract a list of x values
-            if type(x_values_orig) is dict:
-                x = x_values_orig[output]
-            else:
-                x = x_values_orig
-
-            if plot_type == 'bar':
-                ax = fig.add_axes([0, 0, 1, 1])
-                dict1 = {xlabel: x}
-                dict2 = {param: sobolIndices for param, sobolIndices
-                         in zip(par_names, total_sobol)}
-
-                df = pd.DataFrame({**dict1, **dict2})
-                df.plot(x=xlabel, y=par_names, kind="bar", ax=ax, rot=0,
-                        colormap='Dark2', yerr=q_97_5-q_5)
-                ax.set_ylabel('Total Sobol indices, $S^T$')
-
-            else:
-                for i, sobolIndices in enumerate(total_sobol):
-                    plt.plot(x, sobolIndices, label=par_names[i],
-                             marker='x', lw=2.5)
-                    plt.fill_between(x, q_5[i], q_97_5[i], alpha=0.15)
-
-                plt.ylabel('Total Sobol indices, $S^T$')
-                plt.xlabel(xlabel)
-
-            plt.title(f'Sensitivity analysis of {output}')
-            if plot_type != 'bar':
-                plt.legend(loc='best', frameon=True)
-
-            # Save indices
-            np.savetxt(f'./{newpath}totalsobol_' +
-                       output.replace('/', '_') + '.csv',
-                       total_sobol.T, delimiter=',',
-                       header=','.join(par_names), comments='')
-
-            # save the current figure
-            fig.savefig(
-                f'./{newpath}Sobol_indices_{output}.pdf',
-                bbox_inches='tight'
-                )
-
-            # Destroy the current plot
-            plt.clf()
-
-        return self.total_sobol
-
-    # -------------------------------------------------------------------------
-    def check_reg_quality(self, n_samples=1000, samples=None):
-        """
-        Checks the quality of the metamodel for single output models based on:
-        https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
-
-
-        Parameters
-        ----------
-        n_samples : int, optional
-            Number of parameter sets to use for the check. The default is 1000.
-        samples : array of shape (n_samples, n_params), optional
-            Parameter sets to use for the check. The default is None.
-
-        Returns
-        -------
-        None.
-
-        """
-        MetaModel = self.MetaModel
-
-        if samples is None:
-            self.n_samples = n_samples
-            samples = self._get_sample()
-        else:
-            self.n_samples = samples.shape[0]
-
-        # Evaluate the original and the surrogate model
-        y_val = self._eval_model(samples, key_str='valid')
-        y_pce_val, _ = MetaModel.eval_metamodel(samples=samples)
-
-        # Open a pdf for the plots
-        newpath = f'Outputs_PostProcessing_{self.name}/'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        # Fit the data(train the model)
-        for key in y_pce_val.keys():
-            print(key)
-            y_pce_val_ = y_pce_val[key]
-            y_val_ = y_val[key]
-            residuals = y_val_ - y_pce_val_
-            if residuals.shape[1] != 0:
-                sum_residuals = np.mean(residuals, axis = 1)            # TODO: mean here? or sum?
-
-            # ------ Residuals vs. predicting variables ------
-            # Check the assumptions of linearity and independence
-            fig1 = plt.figure()
-            for i, par in enumerate(MetaModel.ExpDesign.par_names):
-                plt.title(f"{key}: Residuals vs. {par}")
-                #print(samples[:, i].shape)
-                #print(residuals.shape)
-                #print(MetaModel.ExpDesign.par_names)
-                plt.scatter(
-                    x=samples[:, i], y=sum_residuals, color='blue', edgecolor='k')  # TODO: issues here with sizes for different times
-                plt.grid(True)
-                xmin, xmax = min(samples[:, i]), max(samples[:, i])
-                plt.hlines(y=0, xmin=xmin*0.9, xmax=xmax*1.1, color='red',
-                           lw=3, linestyle='--')
-                plt.xlabel(par)
-                plt.ylabel('Residuals')
-                plt.show()
-
-                # save the current figure
-                fig1.savefig(f'./{newpath}/Residuals_vs_Par_{i+1}.pdf',
-                             bbox_inches='tight')
-                # Destroy the current plot
-                plt.clf()
-
-            # ------ Fitted vs. residuals ------
-            # Check the assumptions of linearity and independence
-            fig2 = plt.figure()
-            plt.title(f"{key}: Residuals vs. fitted values")
-            plt.scatter(x=y_pce_val_, y=residuals, color='blue', edgecolor='k')
-            plt.grid(True)
-            xmin, xmax = np.min(y_val_), np.max(y_val_)                # TODO: changed this here to np
-            plt.hlines(y=0, xmin=xmin*0.9, xmax=xmax*1.1, color='red', lw=3,
-                       linestyle='--')
-            plt.xlabel(key)
-            plt.ylabel('Residuals')
-            plt.show()
-
-            # save the current figure
-            fig2.savefig(f'./{newpath}/Fitted_vs_Residuals.pdf',
-                         bbox_inches='tight')
-            # Destroy the current plot
-            plt.clf()
-
-            # ------ Histogram of normalized residuals ------
-            fig3 = plt.figure()
-            resid_pearson = residuals / (np.max(residuals)-np.min(residuals)) # TODO: changed this here to np
-            plt.hist(resid_pearson, bins=20, edgecolor='k')
-            plt.ylabel('Count')
-            plt.xlabel('Normalized residuals')
-            plt.title(f"{key}: Histogram of normalized residuals")
-
-            # Normality (Shapiro-Wilk) test of the residuals
-            ax = plt.gca()
-            _, p = stats.shapiro(residuals)
-            if p < 0.01:
-                annText = "The residuals seem to come from Gaussian process."
-            else:
-                annText = "The normality assumption may not hold."
-            at = AnchoredText(annText, prop=dict(size=30), frameon=True,
-                              loc='upper left')
-            at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
-            ax.add_artist(at)
-
-            plt.show()
-
-            # save the current figure
-            fig3.savefig(f'./{newpath}/Hist_NormResiduals.pdf',
-                         bbox_inches='tight')
-            # Destroy the current plot
-            plt.clf()
-
-            # ------ Q-Q plot of the normalized residuals ------
-            plt.figure()
-            stats.probplot(residuals[:, 0], plot=plt)
-            plt.xticks()
-            plt.yticks()
-            plt.xlabel("Theoretical quantiles")
-            plt.ylabel("Sample quantiles")
-            plt.title(f"{key}: Q-Q plot of normalized residuals")
-            plt.grid(True)
-            plt.show()
-
-            # save the current figure
-            plt.savefig(f'./{newpath}/QQPlot_NormResiduals.pdf',
-                        bbox_inches='tight')
-            # Destroy the current plot
-            plt.clf()
-
-    # -------------------------------------------------------------------------
-    def eval_pce_model_3d(self):
-
-        self.n_samples = 1000
-
-        PCEModel = self.MetaModel
-        Model = self.MetaModel.ModelObj
-        n_samples = self.n_samples
-
-        # Create 3D-Grid
-        # TODO: Make it general
-        x = np.linspace(-5, 10, n_samples)
-        y = np.linspace(0, 15, n_samples)
-
-        X, Y = np.meshgrid(x, y)
-        PCE_Z = np.zeros((self.n_samples, self.n_samples))
-        Model_Z = np.zeros((self.n_samples, self.n_samples))
-
-        for idxMesh in range(self.n_samples):
-            sample_mesh = np.vstack((X[:, idxMesh], Y[:, idxMesh])).T
-
-            univ_p_val = PCEModel.univ_basis_vals(sample_mesh)
-
-            for Outkey, ValuesDict in PCEModel.coeffs_dict.items():
-
-                pce_out_mean = np.zeros((len(sample_mesh), len(ValuesDict)))
-                pce_out_std = np.zeros((len(sample_mesh), len(ValuesDict)))
-                model_outs = np.zeros((len(sample_mesh), len(ValuesDict)))
-
-                for Inkey, InIdxValues in ValuesDict.items():
-                    print(Inkey.split('_'))
-                    idx = int(Inkey.split('_')[1]) - 1
-                    basis_deg_ind = PCEModel.basis_dict[Outkey][Inkey]
-                    clf_poly = PCEModel.clf_poly[Outkey][Inkey]
-
-                    PSI_Val = PCEModel.create_psi(basis_deg_ind, univ_p_val)
-
-                    # Perdiction with error bar
-                    y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True)
-
-                    pce_out_mean[:, idx] = y_mean
-                    pce_out_std[:, idx] = y_std
-
-                    # Model evaluation
-                    model_out_dict, _ = Model.run_model_parallel(sample_mesh,
-                                                                 key_str='Valid3D')
-                    model_outs[:, idx] = model_out_dict[Outkey].T
-
-                PCE_Z[:, idxMesh] = y_mean
-                Model_Z[:, idxMesh] = model_outs[:, 0]
-
-        # ---------------- 3D plot for PCEModel -----------------------
-        fig_PCE = plt.figure()
-        ax = plt.axes(projection='3d')
-        ax.plot_surface(X, Y, PCE_Z, rstride=1, cstride=1,
-                        cmap='viridis', edgecolor='none')
-        ax.set_title('PCEModel')
-        ax.set_xlabel('$x_1$')
-        ax.set_ylabel('$x_2$')
-        ax.set_zlabel('$f(x_1,x_2)$')
-
-        plt.grid()
-        plt.show()
-
-        #  Saving the figure
-        newpath = f'Outputs_PostProcessing_{self.name}/'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        # save the figure to file
-        fig_PCE.savefig(f'./{newpath}/3DPlot_PCEModel.pdf',
-                        bbox_inches='tight')
-        plt.close(fig_PCE)
-
-        # ---------------- 3D plot for Model -----------------------
-        fig_Model = plt.figure()
-        ax = plt.axes(projection='3d')
-        ax.plot_surface(X, Y, PCE_Z, rstride=1, cstride=1,
-                        cmap='viridis', edgecolor='none')
-        ax.set_title('Model')
-        ax.set_xlabel('$x_1$')
-        ax.set_ylabel('$x_2$')
-        ax.set_zlabel('$f(x_1,x_2)$')
-
-        plt.grid()
-        plt.show()
-
-        # Save the figure
-        fig_Model.savefig(f'./{newpath}/3DPlot_Model.pdf',
-                          bbox_inches='tight')
-        plt.close(fig_Model)
-
-        return
-
-    # -------------------------------------------------------------------------
-    def compute_pce_moments(self):
-        """
-        Computes the first two moments using the PCE-based meta-model.
-
-        Returns
-        -------
-        pce_means: dict
-            The first moments (mean) of outpust.
-        pce_means: dict
-            The first moments (mean) of outpust.
-
-        """
-
-        MetaModel = self.MetaModel
-        outputs = MetaModel.ModelObj.Output.names
-        pce_means_b = {}
-        pce_stds_b = {}
-
-        # Loop over bootstrap iterations
-        for b_i in range(MetaModel.n_bootstrap_itrs):
-            # Loop over the metamodels
-            coeffs_dicts = MetaModel.coeffs_dict[f'b_{b_i+1}'].items()
-            means = {}
-            stds = {}
-            for output, coef_dict in coeffs_dicts:
-
-                pce_mean = np.zeros((len(coef_dict)))
-                pce_var = np.zeros((len(coef_dict)))
-
-                for index, values in coef_dict.items():
-                    idx = int(index.split('_')[1]) - 1
-                    coeffs = MetaModel.coeffs_dict[f'b_{b_i+1}'][output][index]
-
-                    # Mean = c_0
-                    if coeffs[0] != 0:
-                        pce_mean[idx] = coeffs[0]
-                    else:
-                        clf_poly = MetaModel.clf_poly[f'b_{b_i+1}'][output]
-                        pce_mean[idx] = clf_poly[index].intercept_
-                    # Var = sum(coeffs[1:]**2)
-                    pce_var[idx] = np.sum(np.square(coeffs[1:]))
-
-                # Save predictions for each output
-                if MetaModel.dim_red_method.lower() == 'pca':
-                    PCA = MetaModel.pca[f'b_{b_i+1}'][output]
-                    means[output] = PCA.inverse_transform(pce_mean)
-                    stds[output] = np.sqrt(np.dot(pce_var,
-                                                  PCA.components_**2))
-                else:
-                    means[output] = pce_mean
-                    stds[output] = np.sqrt(pce_var)
-
-            # Save predictions for each bootstrap iteration
-            pce_means_b[b_i] = means
-            pce_stds_b[b_i] = stds
-
-        # Change the order of nesting
-        mean_all = {}
-        for i in sorted(pce_means_b):
-            for k, v in pce_means_b[i].items():
-                if k not in mean_all:
-                    mean_all[k] = [None] * len(pce_means_b)
-                mean_all[k][i] = v
-        std_all = {}
-        for i in sorted(pce_stds_b):
-            for k, v in pce_stds_b[i].items():
-                if k not in std_all:
-                    std_all[k] = [None] * len(pce_stds_b)
-                std_all[k][i] = v
-
-        # Back transformation if PCA is selected.
-        pce_means, pce_stds = {}, {}
-        for output in outputs:
-            pce_means[output] = np.mean(mean_all[output], axis=0)
-            pce_stds[output] = np.mean(std_all[output], axis=0)
-
-            # Print a report table
-            print("\n>>>>> Moments of {} <<<<<".format(output))
-            print("\nIndex  |  Mean   |  Std. deviation")
-            print('-'*35)
-            print('\n'.join(f'{i+1}  |  {k:.3e}  |  {j:.3e}' for i, (k, j)
-                            in enumerate(zip(pce_means[output],
-                                             pce_stds[output]))))
-        print('-'*40)
-
-        return pce_means, pce_stds
-
-    # -------------------------------------------------------------------------
-    def _get_sample(self, n_samples=None):
-        """
-        Generates random samples taken from the input parameter space.
-
-        Returns
-        -------
-        samples : array of shape (n_samples, n_params)
-            Generated samples.
-
-        """
-        if n_samples is None:
-            n_samples = self.n_samples
-        MetaModel = self.MetaModel
-        self.samples = MetaModel.ExpDesign.generate_samples(
-            n_samples,
-            sampling_method='random')
-        return self.samples
-
-    # -------------------------------------------------------------------------
-    def _eval_model(self, samples=None, key_str='Valid'):
-        """
-        Evaluates Forward Model for the given number of self.samples or given
-        samples.
-
-        Parameters
-        ----------
-        samples : array of shape (n_samples, n_params), optional
-            Samples to evaluate the model at. The default is None.
-        key_str : str, optional
-            Key string pass to the model. The default is 'Valid'.
-
-        Returns
-        -------
-        model_outs : dict
-            Dictionary of results.
-
-        """
-        Model = self.MetaModel.ModelObj
-
-        if samples is None:
-            samples = self._get_sample()
-            self.samples = samples
-        else:
-            self.n_samples = len(samples)
-
-        model_outs, _ = Model.run_model_parallel(samples, key_str=key_str)
-
-        return model_outs
-
-    # -------------------------------------------------------------------------
-    def _plot_validation(self):
-        """
-        Plots outputs for visual comparison of metamodel outputs with that of
-        the (full) original model.
-
-        Returns
-        -------
-        None.
-
-        """
-        PCEModel = self.MetaModel
-
-        # get the samples
-        x_val = self.samples
-        y_pce_val = self.pce_out_mean
-        y_val = self.model_out_dict
-
-        # Open a pdf for the plots
-        newpath = f'Outputs_PostProcessing_{self.name}/'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        fig = plt.figure()
-        # Fit the data(train the model)
-        for key in y_pce_val.keys():
-
-            y_pce_val_ = y_pce_val[key]
-            y_val_ = y_val[key]
-
-            regression_model = LinearRegression()
-            regression_model.fit(y_pce_val_, y_val_)
-
-            # Predict
-            x_new = np.linspace(np.min(y_pce_val_), np.max(y_val_), 100)
-            y_predicted = regression_model.predict(x_new[:, np.newaxis])
-
-            plt.scatter(y_pce_val_, y_val_, color='gold', linewidth=2)
-            plt.plot(x_new, y_predicted, color='k')
-
-            # Calculate the adjusted R_squared and RMSE
-            # the total number of explanatory variables in the model
-            # (not including the constant term)
-            length_list = []
-            for key, value in PCEModel.coeffs_dict['b_1'][key].items():
-                length_list.append(len(value))
-            n_predictors = min(length_list)
-            n_samples = x_val.shape[0]
-
-            R2 = r2_score(y_pce_val_, y_val_)
-            AdjR2 = 1 - (1 - R2) * (n_samples - 1) / \
-                (n_samples - n_predictors - 1)
-            rmse = mean_squared_error(y_pce_val_, y_val_, squared=False)
-
-            plt.annotate(f'RMSE = {rmse:.3f}\n Adjusted $R^2$ = {AdjR2:.3f}',
-                         xy=(0.05, 0.85), xycoords='axes fraction')
-
-            plt.ylabel("Original Model")
-            plt.xlabel("PCE Model")
-            plt.grid()
-            plt.show()
-
-            # save the current figure
-            plot_name = key.replace(' ', '_')
-            fig.savefig(f'./{newpath}/Model_vs_PCEModel_{plot_name}.pdf',
-                        bbox_inches='tight')
-
-            # Destroy the current plot
-            plt.clf()
-
-    # -------------------------------------------------------------------------
-    def _plot_validation_multi(self, x_values=[], x_axis="x [m]"):
-        """
-        Plots outputs for visual comparison of metamodel outputs with that of
-        the (full) multioutput original model
-
-        Parameters
-        ----------
-        x_values : list or array, optional
-            List of x values. The default is [].
-        x_axis : str, optional
-            Label of the x axis. The default is "x [m]".
-
-        Returns
-        -------
-        None.
-
-        """
-        Model = self.MetaModel.ModelObj
-
-        newpath = f'Outputs_PostProcessing_{self.name}/'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        # List of markers and colors
-        color = cycle((['b', 'g', 'r', 'y', 'k']))
-        marker = cycle(('x', 'd', '+', 'o', '*'))
-
-        fig = plt.figure()
-        # Plot the model vs PCE model
-        for keyIdx, key in enumerate(Model.Output.names):
-
-            y_pce_val = self.pce_out_mean[key]
-            y_pce_val_std = self.pce_out_std[key]
-            y_val = self.model_out_dict[key]
-            try:
-                x = self.model_out_dict['x_values'][key]
-            except (TypeError, IndexError):
-                x = x_values
-
-            for idx in range(y_val.shape[0]):
-                Color = next(color)
-                Marker = next(marker)
-
-                plt.plot(x, y_val[idx], color=Color, marker=Marker,
-                         label='$Y_{%s}^M$'%(idx+1))
-
-                plt.plot(x, y_pce_val[idx], color=Color, marker=Marker,
-                         linestyle='--',
-                         label='$Y_{%s}^{PCE}$'%(idx+1))
-                plt.fill_between(x, y_pce_val[idx]-1.96*y_pce_val_std[idx],
-                                 y_pce_val[idx]+1.96*y_pce_val_std[idx],
-                                 color=Color, alpha=0.15)
-
-            # Calculate the RMSE
-            print(y_pce_val.shape)
-            print(y_val.shape)
-            rmse = mean_squared_error(y_pce_val, y_val, squared=False)
-            R2 = r2_score(y_pce_val[idx].reshape(-1, 1),
-                          y_val[idx].reshape(-1, 1))
-
-            plt.annotate(f'RMSE = {rmse:.3f}\n $R^2$ = {R2:.3f}',
-                         xy=(0.85, 0.1), xycoords='axes fraction')
-
-            plt.ylabel(key)
-            plt.xlabel(x_axis)
-            plt.legend(loc='best')
-            plt.grid()
-
-            # save the current figure
-            plot_name = key.replace(' ', '_')
-            fig.savefig(f'./{newpath}/Model_vs_PCEModel_{plot_name}.pdf',
-                        bbox_inches='tight')
-
-            # Destroy the current plot
-            plt.clf()
-
-        # Zip the subdirectories
-        Model.zip_subdirs(f'{Model.name}valid', f'{Model.name}valid_')
diff --git a/examples/only-model/bayesvalidrox/pylink/__init__.py b/examples/only-model/bayesvalidrox/pylink/__init__.py
deleted file mode 100644
index 4bd81739faf43956324b30f6d8e5365b29d55677..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/pylink/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-# -*- coding: utf-8 -*-
-
-from .pylink import PyLinkForwardModel
-
-__all__ = [
-    "PyLinkForwardModel"
-    ]
diff --git a/examples/only-model/bayesvalidrox/pylink/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/pylink/__pycache__/__init__.cpython-311.pyc
deleted file mode 100644
index 0e142124f5bff161ebaf8f9c632cd82465101bbd..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/pylink/__pycache__/__init__.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/pylink/__pycache__/pylink.cpython-311.pyc b/examples/only-model/bayesvalidrox/pylink/__pycache__/pylink.cpython-311.pyc
deleted file mode 100644
index 006f78d91ff411531d6e30040c2f8ef05bf10ab2..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/pylink/__pycache__/pylink.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/pylink/pylink.py b/examples/only-model/bayesvalidrox/pylink/pylink.py
deleted file mode 100644
index 2decb7da4b33565b0d1e4739f0351db66d0c55d6..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/pylink/pylink.py
+++ /dev/null
@@ -1,664 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-from dataclasses import dataclass
-
-import os
-import shutil
-import h5py
-import numpy as np
-import time
-import zipfile
-import pandas as pd
-import multiprocessing
-from functools import partial
-import tqdm
-
-
-class PyLinkForwardModel(object):
-    """
-    A forward model binder
-
-    This calss serves as a code wrapper. This wrapper allows the execution of
-    a third-party software/solver within the scope of BayesValidRox.
-
-    Attributes
-    ----------
-    link_type : str
-        The type of the wrapper. The default is `'pylink'`. This runs the
-        third-party software or an executable using a sell command with given
-        input files.
-        Second option is `'function'` which assumed that model can be run using
-        a function written separately in a Python script.
-    name : str
-        Name of the model.
-    py_file : str
-        Python file name without `.py` extension to be run for the `'function'`
-        wrapper. Note that the name of the python file and that of the function
-        must be simillar. This function must recieve the parameters in an array
-        of shape `(n_samples, n_params)` and returns a dictionary with the
-        x_values and output arrays for given output names.
-    func_args : dict
-        Additional arguments for the python file. The default is `{}`.
-    shell_command : str
-        Shell command to be executed for the `'pylink'` wrapper.
-    input_file : str or list
-        The input file to be passed to the `'pylink'` wrapper.
-    input_template : str or list
-        A template input file to be passed to the `'pylink'` wrapper. This file
-        must be a copy of `input_file` with `<Xi>` place holder for the input
-        parameters defined using `inputs` class, with i being the number of
-        parameter. The file name ending should include `.tpl` before the actual
-        extension of the input file, for example, `params.tpl.input`.
-    aux_file : str or list
-        The list of auxiliary files needed for the `'pylink'` wrapper.
-    exe_path : str
-        Execution path if you wish to run the model for the `'pylink'` wrapper
-        in another directory. The default is `None`, which corresponds to the
-        currecnt working directory.
-    output_file_names : list of str
-        List of the name of the model output text files for the `'pylink'`
-        wrapper.
-    output_names : list of str
-        List of the model outputs to be used for the analysis.
-    output_parser : str
-        Name of the model parser file (without `.py` extension) that recieves
-        the `output_file_names` and returns a 2d-array with the first row being
-        the x_values, e.g. x coordinates or time and the rest of raws pass the
-        simulation output for each model output defined in `output_names`. Note
-        that again here the name of the file and that of the function must be
-        the same.
-    multi_process: bool
-        Whether the model runs to be executed in parallel for the `'pylink'`
-        wrapper. The default is `True`.
-    n_cpus: int
-        The number of cpus to be used for the parallel model execution for the
-        `'pylink'` wrapper. The default is `None`, which corresponds to all
-        available cpus.
-    meas_file : str
-        The name of the measurement text-based file. This file must contain
-        x_values as the first column and one column for each model output. The
-        default is `None`. Only needed for the Bayesian Inference.
-    meas_file_valid : str
-        The name of the measurement text-based file for the validation. The
-        default is `None`. Only needed for the validation with Bayesian
-        Inference.
-    mc_ref_file : str
-        The name of the text file for the Monte-Carlo reference (mean and
-        standard deviation) values. It must contain `x_values` as the first
-        column, `mean` as the second column and `std` as the third. It can be
-        used to compare the estimated moments using meta-model in the post-
-        processing step. This is only available for one output.
-    obs_dict : dict
-        A dictionary containing the measurement text-based file. It must
-        contain `x_values` as the first item and one item for each model output
-        . The default is `{}`. Only needed for the Bayesian Inference.
-    obs_dict_valid : dict
-        A dictionary containing the validation measurement text-based file. It
-        must contain `x_values` as the first item and one item for each model
-        output. The default is `{}`.
-    mc_ref_dict : dict
-        A dictionary containing the Monte-Carlo reference (mean and standard
-        deviation) values. It must contain `x_values` as the first item and
-        `mean` as the second item and `std` as the third. The default is `{}`.
-        This is only available for one output.
-    """
-
-    # Nested class
-    @dataclass
-    class OutputData(object):
-        parser: str = ""
-        names: list = None
-        file_names: list = None
-
-    def __init__(self, link_type='pylink', name=None, py_file=None,
-                 func_args={}, shell_command='', input_file=None,
-                 input_template=None, aux_file=None, exe_path='',
-                 output_file_names=[], output_names=[], output_parser='',
-                 multi_process=True, n_cpus=None, meas_file=None,
-                 meas_file_valid=None, mc_ref_file=None, obs_dict={},
-                 obs_dict_valid={}, mc_ref_dict={}):
-        self.link_type = link_type
-        self.name = name
-        self.shell_command = shell_command
-        self.py_file = py_file
-        self.func_args = func_args
-        self.input_file = input_file
-        self.input_template = input_template
-        self.aux_file = aux_file
-        self.exe_path = exe_path
-        self.multi_process = multi_process
-        self.n_cpus = n_cpus
-        self.Output = self.OutputData(
-            parser=output_parser,
-            names=output_names,
-            file_names=output_file_names,
-        )
-        self.n_outputs = len(self.Output.names)
-        self.meas_file = meas_file
-        self.meas_file_valid = meas_file_valid
-        self.mc_ref_file = mc_ref_file
-        self.observations = obs_dict
-        self.observations_valid = obs_dict_valid
-        self.mc_reference = mc_ref_dict
-        
-        # added by Rebecca Kohlhaas
-        self.cellID = None
-
-    # -------------------------------------------------------------------------
-    def within_range(self, out, minout, maxout):
-        inside = False
-        if (out > minout).all() and (out < maxout).all():
-            inside = True
-        return inside
-
-    # -------------------------------------------------------------------------
-    def read_observation(self, case='calib'):
-        """
-        Reads/prepare the observation/measurement data for
-        calibration.
-
-        Returns
-        -------
-        DataFrame
-            A dataframe with the calibration data.
-
-        """
-        if case.lower() == 'calib':
-            if isinstance(self.observations, dict) and bool(self.observations):
-                obs = pd.DataFrame.from_dict(self.observations)
-            elif self.meas_file is not None:
-                file_path = os.path.join(os.getcwd(), self.meas_file)
-                obs = pd.read_csv(file_path, delimiter=',')
-            elif isinstance(self.observations, pd.DataFrame):
-                obs = self.observations
-            else:
-                raise Exception("Please provide the observation data as a "
-                                "dictionary via observations attribute or pass"
-                                " the csv-file path to MeasurementFile "
-                                "attribute")
-        elif case.lower() == 'valid':
-            if isinstance(self.observations_valid, dict) and \
-              bool(self.observations_valid):
-                obs = pd.DataFrame.from_dict(self.observations_valid)
-            elif self.meas_file_valid is not None:
-                file_path = os.path.join(os.getcwd(), self.meas_file_valid)
-                obs = pd.read_csv(file_path, delimiter=',')
-            elif isinstance(self.observations_valid, pd.DataFrame):
-                obs = self.observations_valid
-            else:
-                raise Exception("Please provide the observation data as a "
-                                "dictionary via Observations attribute or pass"
-                                " the csv-file path to MeasurementFile "
-                                "attribute")
-
-        # Compute the number of observation
-        n_obs = obs[self.Output.names].notnull().sum().values.sum()
-
-        if case.lower() == 'calib':
-            self.observations = obs
-            self.n_obs = n_obs
-            return self.observations
-        elif case.lower() == 'valid':
-            self.observations_valid = obs
-            self.n_obs_valid = n_obs
-            return self.observations_valid
-
-    # -------------------------------------------------------------------------
-    def read_mc_reference(self):
-        """
-        Is used, if a Monte-Carlo reference is available for
-        further in-depth post-processing after meta-model training.
-
-        Returns
-        -------
-        None
-
-        """
-        if self.mc_ref_file is None and \
-           isinstance(self.mc_reference, pd.DataFrame):
-            return self.mc_reference
-        elif isinstance(self.mc_reference, dict) and bool(self.mc_reference):
-            self.mc_reference = pd.DataFrame.from_dict(self.mc_reference)
-        elif self.mc_ref_file is not None:
-            file_path = os.path.join(os.getcwd(), self.mc_ref_file)
-            self.mc_reference = pd.read_csv(file_path, delimiter=',')
-        else:
-            self.mc_reference = None
-        return self.mc_reference
-
-    # -------------------------------------------------------------------------
-    def read_output(self):
-        """
-        Reads the the parser output file and returns it as an
-         executable function. It is required when the models returns the
-         simulation outputs in csv files.
-
-        Returns
-        -------
-        Output : func
-            Output parser function.
-
-        """
-        output_func_name = self.Output.parser
-
-        output_func = getattr(__import__(output_func_name), output_func_name)
-
-        file_names = []
-        for File in self.Output.file_names:
-            file_names.append(os.path.join(self.exe_path, File))
-        try:
-            output = output_func(self.name, file_names)
-        except TypeError:
-            output = output_func(file_names)
-        return output
-
-    # -------------------------------------------------------------------------
-    def update_input_params(self, new_input_file, param_set):
-        """
-        Finds this pattern with <X1> in the new_input_file and replace it with
-         the new value from the array param_sets.
-
-        Parameters
-        ----------
-        new_input_file : list
-            List of the input files with the adapted names.
-        param_set : array of shape (n_params)
-            Parameter set.
-
-        Returns
-        -------
-        None.
-
-        """
-        NofPa = param_set.shape[0]
-        text_to_search_list = [f'<X{i+1}>' for i in range(NofPa)]
-
-        for filename in new_input_file:
-            # Read in the file
-            with open(filename, 'r') as file:
-                filedata = file.read()
-
-            # Replace the target string
-            for text_to_search, params in zip(text_to_search_list, param_set):
-                filedata = filedata.replace(text_to_search, f'{params:0.4e}')
-
-            # Write the file out again
-            with open(filename, 'w') as file:
-                file.write(filedata)
-
-    # -------------------------------------------------------------------------
-    def run_command(self, command, output_file_names):
-        """
-        Runs the execution command given by the user to run the given model.
-        It checks if the output files have been generated. If yes, the jobe is
-        done and it extracts and returns the requested output(s). Otherwise,
-        it executes the command again.
-
-        Parameters
-        ----------
-        command : str
-            The shell command to be executed.
-        output_file_names : list
-            Name of the output file names.
-
-        Returns
-        -------
-        simulation_outputs : array of shape (n_obs, n_outputs)
-            Simulation outputs.
-
-        """
-
-        # Check if simulation is finished
-        while True:
-            time.sleep(3)
-            files = os.listdir(".")
-            if all(elem in files for elem in output_file_names):
-                break
-            else:
-                # Run command
-                Process = os.system(f'./../{command}')
-                if Process != 0:
-                    print('\nMessage 1:')
-                    print(f'\tIf value of \'{Process}\' is a non-zero value, '
-                          'then compilation problems \n' % Process)
-
-        os.chdir("..")
-
-        # Read the output
-        simulation_outputs = self.read_output()
-
-        return simulation_outputs
-
-    # -------------------------------------------------------------------------
-    def run_forwardmodel(self, xx):
-        """
-        This function creates subdirectory for the current run and copies the
-        necessary files to this directory and renames them. Next, it executes
-        the given command.
-
-        Parameters
-        ----------
-        xx : tuple
-            A tuple including parameter set, simulation number and key string.
-
-        Returns
-        -------
-        output : array of shape (n_outputs+1, n_obs)
-            An array passed by the output paraser containing the x_values as
-            the first row and the simulations results stored in the the rest of
-            the array.
-
-        """
-        c_points, run_no, key_str = xx
-
-        # Handle if only one imput file is provided
-        if not isinstance(self.input_template, list):
-            self.input_template = [self.input_template]
-        if not isinstance(self.input_file, list):
-            self.input_file = [self.input_file]
-
-        new_input_file = []
-        # Loop over the InputTemplates:
-        for in_temp in self.input_template:
-            if '/' in in_temp:
-                in_temp = in_temp.split('/')[-1]
-            new_input_file.append(in_temp.split('.tpl')[0] + key_str +
-                                  f"_{run_no+1}" + in_temp.split('.tpl')[1])
-
-        # Create directories
-        newpath = self.name + key_str + f'_{run_no+1}'
-        if not os.path.exists(newpath):
-            os.makedirs(newpath)
-
-        # Copy the necessary files to the directories
-        for in_temp in self.input_template:
-            # Input file(s) of the model
-            shutil.copy2(in_temp, newpath)
-        # Auxiliary file
-        if self.aux_file is not None:
-            shutil.copy2(self.aux_file, newpath)  # Auxiliary file
-
-        # Rename the Inputfile and/or auxiliary file
-        os.chdir(newpath)
-        for input_tem, input_file in zip(self.input_template, new_input_file):
-            if '/' in input_tem:
-                input_tem = input_tem.split('/')[-1]
-            os.rename(input_tem, input_file)
-
-        # Update the parametrs in Input file
-        self.update_input_params(new_input_file, c_points)
-
-        # Update the user defined command and the execution path
-        try:
-            new_command = self.shell_command.replace(self.input_file[0],
-                                                     new_input_file[0])
-            new_command = new_command.replace(self.input_file[1],
-                                              new_input_file[1])
-        except:
-            new_command = self.shell_command.replace(self.input_file[0],
-                                                     new_input_file[0])
-        # Set the exe path if not provided
-        if not bool(self.exe_path):
-            self.exe_path = os.getcwd()
-
-        # Run the model
-        output = self.run_command(new_command, self.Output.file_names)
-
-        return output
-
-    # -------------------------------------------------------------------------
-    def run_model_parallel(self, c_points, prevRun_No=0, key_str='',
-                           mp=True, verbose=True):
-        """
-        Runs model simulations. If mp is true (default), then the simulations
-         are started in parallel.
-
-        Parameters
-        ----------
-        c_points : array of shape (n_samples, n_params)
-            Collocation points (training set).
-        prevRun_No : int, optional
-            Previous run number, in case the sequential design is selected.
-            The default is `0`.
-        key_str : str, optional
-            A descriptive string for validation runs. The default is `''`.
-        mp : bool, optional
-            Multiprocessing. The default is `True`.
-        verbose: bool, optional
-            Verbosity. The default is `True`.
-
-        Returns
-        -------
-        all_outputs : dict
-            A dictionary with x values (time step or point id) and all outputs.
-            Each key contains an array of the shape `(n_samples, n_obs)`.
-        new_c_points : array
-            Updated collocation points (training set). If a simulation does not
-            executed successfully, the parameter set is removed.
-
-        """
-
-        # Initilization
-        n_c_points = len(c_points)
-        all_outputs = {}
-
-        # Extract the function
-        if self.link_type.lower() == 'function':
-            # Prepare the function
-            Function = getattr(__import__(self.py_file), self.py_file)
-        # ---------------------------------------------------------------
-        # -------------- Multiprocessing with Pool Class ----------------
-        # ---------------------------------------------------------------
-        # Start a pool with the number of CPUs
-        if self.n_cpus is None:
-            n_cpus = multiprocessing.cpu_count()
-        else:
-            n_cpus = self.n_cpus
-
-        # Run forward model
-        if n_c_points == 1 or not mp:
-            if self.link_type.lower() == 'function':
-                group_results = Function(c_points, **self.func_args)
-            else:
-                group_results = self.run_forwardmodel(
-                    (c_points[0], prevRun_No, key_str)
-                    )
-
-        elif self.multi_process or mp:
-            with multiprocessing.Pool(n_cpus) as p:
-
-                if self.link_type.lower() == 'function':
-                    imap_var = p.imap(partial(Function, **self.func_args),
-                                      c_points[:, np.newaxis])
-                else:
-                    args = zip(c_points,
-                               [prevRun_No+i for i in range(n_c_points)],
-                               [key_str]*n_c_points)
-                    imap_var = p.imap(self.run_forwardmodel, args)
-
-                if verbose:
-                    desc = f'Running forward model {key_str}'
-                    group_results = list(tqdm.tqdm(imap_var, total=n_c_points,
-                                                   desc=desc))
-                else:
-                    group_results = list(imap_var)
-
-        # Check for NaN
-        for var_i, var in enumerate(self.Output.names):
-            # If results are given as one dictionary
-            if isinstance(group_results, dict):
-                Outputs = np.asarray(group_results[var])
-            # If results are given as list of dictionaries
-            elif isinstance(group_results, list):
-                Outputs = np.asarray([item[var] for item in group_results],
-                                     dtype=np.float64)
-            NaN_idx = np.unique(np.argwhere(np.isnan(Outputs))[:, 0])
-            new_c_points = np.delete(c_points, NaN_idx, axis=0)
-            all_outputs[var] = np.atleast_2d(
-                np.delete(Outputs, NaN_idx, axis=0)
-                )
-
-        # Print the collocation points whose simulations crashed
-        if len(NaN_idx) != 0:
-            print('\n')
-            print('*'*20)
-            print("\nThe following parametersets have been removed:\n",
-                  c_points[NaN_idx])
-            print("\n")
-            print('*'*20)
-
-        # Save time steps or x-values
-        if isinstance(group_results, dict):
-            all_outputs["x_values"] = group_results["x_values"]
-        elif any(isinstance(i, dict) for i in group_results):
-            all_outputs["x_values"] = group_results[0]["x_values"]
-
-        # Store simulations in a hdf5 file
-        self._store_simulations(
-            c_points, all_outputs, NaN_idx, key_str, prevRun_No
-            )
-
-        return all_outputs, new_c_points
-
-    # -------------------------------------------------------------------------
-    def _store_simulations(self, c_points, all_outputs, NaN_idx, key_str,
-                           prevRun_No):
-
-        # Create hdf5 metadata
-        if key_str == '':
-            hdf5file = f'ExpDesign_{self.name}.hdf5'    # added _{self.ModelObj.func_args}
-        else:
-            hdf5file = f'ValidSet_{self.name}.hdf5'
-        hdf5_exist = os.path.exists(hdf5file)
-        file = h5py.File(hdf5file, 'a')
-
-        # ---------- Save time steps or x-values ----------
-        if not hdf5_exist:
-            if type(all_outputs["x_values"]) is dict:
-                grp_x_values = file.create_group("x_values/")
-                for varIdx, var in enumerate(self.Output.names):
-                    grp_x_values.create_dataset(
-                        var, data=all_outputs["x_values"][var]
-                        )
-            else:
-                file.create_dataset("x_values", data=all_outputs["x_values"])
-
-        # ---------- Save outputs ----------
-        for varIdx, var in enumerate(self.Output.names):
-
-            if not hdf5_exist:
-                grpY = file.create_group("EDY/"+var)
-            else:
-                grpY = file.get("EDY/"+var)
-
-            if prevRun_No == 0 and key_str == '':
-                grpY.create_dataset(f'init_{key_str}', data=all_outputs[var])
-            else:
-                try:
-                    oldEDY = np.array(file[f'EDY/{var}/adaptive_{key_str}'])
-                    del file[f'EDY/{var}/adaptive_{key_str}']
-                    data = np.vstack((oldEDY, all_outputs[var]))
-                except KeyError:
-                    data = all_outputs[var]
-                grpY.create_dataset('adaptive_'+key_str, data=data)
-
-            if prevRun_No == 0 and key_str == '':
-                grpY.create_dataset(f"New_init_{key_str}",
-                                    data=all_outputs[var])
-            else:
-                try:
-                    name = f'EDY/{var}/New_adaptive_{key_str}'
-                    oldEDY = np.array(file[name])
-                    del file[f'EDY/{var}/New_adaptive_{key_str}']
-                    data = np.vstack((oldEDY, all_outputs[var]))
-                except KeyError:
-                    data = all_outputs[var]
-                grpY.create_dataset(f'New_adaptive_{key_str}', data=data)
-
-        # ---------- Save CollocationPoints ----------
-        new_c_points = np.delete(c_points, NaN_idx, axis=0)
-        grpX = file.create_group("EDX") if not hdf5_exist else file.get("EDX")
-        if prevRun_No == 0 and key_str == '':
-            grpX.create_dataset("init_"+key_str, data=c_points)
-            if len(NaN_idx) != 0:
-                grpX.create_dataset("New_init_"+key_str, data=new_c_points)
-
-        else:
-            try:
-                name = f'EDX/adaptive_{key_str}'
-                oldCollocationPoints = np.array(file[name])
-                del file[f'EDX/adaptive_{key_str}']
-                data = np.vstack((oldCollocationPoints, new_c_points))
-            except KeyError:
-                data = new_c_points
-            grpX.create_dataset('adaptive_'+key_str, data=data)
-
-            if len(NaN_idx) != 0:
-                try:
-                    name = f'EDX/New_adaptive_{key_str}'
-                    oldCollocationPoints = np.array(file[name])
-                    del file[f'EDX/New_adaptive_{key_str}']
-                    data = np.vstack((oldCollocationPoints, new_c_points))
-                except KeyError:
-                    data = new_c_points
-                grpX.create_dataset('New_adaptive_'+key_str, data=data)
-
-        # Close h5py file
-        file.close()
-
-    # -------------------------------------------------------------------------
-    def zip_subdirs(self, dir_name, key):
-        """
-        Zips all the files containing the key(word).
-
-        Parameters
-        ----------
-        dir_name : str
-            Directory name.
-        key : str
-            Keyword to search for.
-
-        Returns
-        -------
-        None.
-
-        """
-        # setup file paths variable
-        dir_list = []
-        file_paths = []
-
-        # Read all directory, subdirectories and file lists
-        dir_path = os.getcwd()
-
-        for root, directories, files in os.walk(dir_path):
-            for directory in directories:
-                # Create the full filepath by using os module.
-                if key in directory:
-                    folderPath = os.path.join(dir_path, directory)
-                    dir_list.append(folderPath)
-
-        # Loop over the identified directories to store the file paths
-        for direct_name in dir_list:
-            for root, directories, files in os.walk(direct_name):
-                for filename in files:
-                    # Create the full filepath by using os module.
-                    filePath = os.path.join(root, filename)
-                    file_paths.append('.'+filePath.split(dir_path)[1])
-
-        # writing files to a zipfile
-        if len(file_paths) != 0:
-            zip_file = zipfile.ZipFile(dir_name+'.zip', 'w')
-            with zip_file:
-                # writing each file one by one
-                for file in file_paths:
-                    zip_file.write(file)
-
-            file_paths = [path for path in os.listdir('.') if key in path]
-
-            for path in file_paths:
-                shutil.rmtree(path)
-
-            print("\n")
-            print(f'{dir_name}.zip file has been created successfully!\n')
-
-        return
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__init__.py b/examples/only-model/bayesvalidrox/surrogate_models/__init__.py
deleted file mode 100644
index 70bfb20f570464c2907a0a4128f4ed99b6c13736..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/__init__.py
+++ /dev/null
@@ -1,7 +0,0 @@
-# -*- coding: utf-8 -*-
-
-from .surrogate_models import MetaModel
-
-__all__ = [
-    "MetaModel"
-    ]
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/__init__.cpython-311.pyc
deleted file mode 100644
index 61571bd1e2bf0c8b5ec4faf4c27e71b0526bc80a..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/__init__.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/apoly_construction.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/apoly_construction.cpython-311.pyc
deleted file mode 100644
index 3820b6ebf286b68cd5bedabe083f98a933a04823..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/apoly_construction.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/bayes_linear.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/bayes_linear.cpython-311.pyc
deleted file mode 100644
index 2111e7b45606ee6d23ec37bdc6af982cf6812b80..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/bayes_linear.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/eval_rec_rule.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/eval_rec_rule.cpython-311.pyc
deleted file mode 100644
index fa3d7416568a694823e30bb7eaea6b06ebab9d3d..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/eval_rec_rule.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exp_designs.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exp_designs.cpython-311.pyc
deleted file mode 100644
index af55ca5d94d223a3244bc9ce745720acc2da05dd..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exp_designs.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exploration.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exploration.cpython-311.pyc
deleted file mode 100644
index 092cdd70d05ca0bbad7579aae82369478a7b8ae1..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exploration.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/glexindex.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/glexindex.cpython-311.pyc
deleted file mode 100644
index a8a22b9f5698e86415d782ab9609abda6c9b4508..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/glexindex.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/inputs.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/inputs.cpython-311.pyc
deleted file mode 100644
index 5f8c85996a9c8d48326d736211a004c9f09844fd..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/inputs.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/meta_model_engine.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/meta_model_engine.cpython-311.pyc
deleted file mode 100644
index ad054a2ed1f2ab163a883333d0bcc716526bc051..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/meta_model_engine.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/orthogonal_matching_pursuit.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/orthogonal_matching_pursuit.cpython-311.pyc
deleted file mode 100644
index def10cfc2a4359d25ec4f385e263aff0d27884ed..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/orthogonal_matching_pursuit.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_ard.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_ard.cpython-311.pyc
deleted file mode 100644
index 87e325f39519c87f046e35417898743d42e70b28..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_ard.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_laplace.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_laplace.cpython-311.pyc
deleted file mode 100644
index 9ea9fec9d079257a40ae2d8117854c9516d47a2c..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_laplace.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/surrogate_models.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/surrogate_models.cpython-311.pyc
deleted file mode 100644
index 62a8185dbf2cc3a241d95a03e74c778ad96ec8c5..0000000000000000000000000000000000000000
Binary files a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/surrogate_models.cpython-311.pyc and /dev/null differ
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/adaptPlot.py b/examples/only-model/bayesvalidrox/surrogate_models/adaptPlot.py
deleted file mode 100644
index 102f0373c1086ba4420ada2fb2fc723b78bbd53f..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/adaptPlot.py
+++ /dev/null
@@ -1,109 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Thu Aug 13 13:46:24 2020
-
-@author: farid
-"""
-import os
-from sklearn.metrics import mean_squared_error, r2_score
-from itertools import cycle
-from matplotlib.backends.backend_pdf import PdfPages
-import matplotlib.pyplot as plt
-
-
-def adaptPlot(PCEModel, Y_Val, Y_PC_Val, Y_PC_Val_std, x_values=[],
-              plotED=False, SaveFig=True):
-
-    NrofSamples = PCEModel.ExpDesign.n_new_samples
-    initNSamples = PCEModel.ExpDesign.n_init_samples
-    itrNr = 1 + (PCEModel.ExpDesign.X.shape[0] - initNSamples)//NrofSamples
-
-    oldEDY = PCEModel.ExpDesign.Y
-
-    if SaveFig:
-        newpath = 'adaptivePlots'
-        os.makedirs(newpath, exist_ok=True)
-
-        # create a PdfPages object
-        pdf = PdfPages(f'./{newpath}/Model_vs_PCEModel_itr_{itrNr}.pdf')
-
-    # List of markers and colors
-    color = cycle((['b', 'g', 'r', 'y', 'k']))
-    marker = cycle(('x', 'd', '+', 'o', '*'))
-
-    OutNames = list(Y_Val.keys())
-    x_axis = 'Time [s]'
-
-    if len(OutNames) == 1:
-        OutNames.insert(0, x_axis)
-    try:
-        x_values = Y_Val['x_values']
-    except KeyError:
-        x_values = x_values
-
-    fig = plt.figure(figsize=(24, 16))
-
-    # Plot the model vs PCE model
-    for keyIdx, key in enumerate(PCEModel.ModelObj.Output.names):
-        Y_PC_Val_ = Y_PC_Val[key]
-        Y_PC_Val_std_ = Y_PC_Val_std[key]
-        Y_Val_ = Y_Val[key]
-        if Y_Val_.ndim == 1:
-            Y_Val_ = Y_Val_.reshape(1, -1)
-        old_EDY = oldEDY[key]
-        if isinstance(x_values, dict):
-            x = x_values[key]
-        else:
-            x = x_values
-
-        for idx, y in enumerate(Y_Val_):
-            Color = next(color)
-            Marker = next(marker)
-
-            plt.plot(
-                x, y, color=Color, marker=Marker,
-                lw=2.0, label='$Y_{%s}^{M}$'%(idx+itrNr)
-                )
-
-            plt.plot(
-                x, Y_PC_Val_[idx], color=Color, marker=Marker,
-                lw=2.0, linestyle='--', label='$Y_{%s}^{PCE}$'%(idx+itrNr)
-                )
-            plt.fill_between(
-                x, Y_PC_Val_[idx]-1.96*Y_PC_Val_std_[idx],
-                Y_PC_Val_[idx]+1.96*Y_PC_Val_std_[idx], color=Color,
-                alpha=0.15
-                )
-
-            if plotED:
-                for output in old_EDY:
-                    plt.plot(x, output, color='grey', alpha=0.1)
-
-        # Calculate the RMSE
-        RMSE = mean_squared_error(Y_PC_Val_, Y_Val_, squared=False)
-        R2 = r2_score(Y_PC_Val_.reshape(-1, 1), Y_Val_.reshape(-1, 1))
-
-        plt.ylabel(key)
-        plt.xlabel(x_axis)
-        plt.title(key)
-
-        ax = fig.axes[0]
-        ax.legend(loc='best', frameon=True)
-        fig.canvas.draw()
-        ax.text(0.65, 0.85,
-                f'RMSE = {round(RMSE, 3)}\n$R^2$ = {round(R2, 3)}',
-                transform=ax.transAxes, color='black',
-                bbox=dict(facecolor='none',
-                          edgecolor='black',
-                          boxstyle='round,pad=1')
-                )
-        plt.grid()
-
-        if SaveFig:
-            # save the current figure
-            pdf.savefig(fig, bbox_inches='tight')
-
-            # Destroy the current plot
-            plt.clf()
-    pdf.close()
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/apoly_construction.py b/examples/only-model/bayesvalidrox/surrogate_models/apoly_construction.py
deleted file mode 100644
index a7914c7deac51c2180aa6858207ccf0bac5c1f02..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/apoly_construction.py
+++ /dev/null
@@ -1,122 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-import numpy as np
-
-
-def apoly_construction(Data, degree):
-    """
-    Construction of Data-driven Orthonormal Polynomial Basis
-    Author: Dr.-Ing. habil. Sergey Oladyshkin
-    Department of Stochastic Simulation and Safety Research for Hydrosystems
-    Institute for Modelling Hydraulic and Environmental Systems
-    Universitaet Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart
-    E-mail: Sergey.Oladyshkin@iws.uni-stuttgart.de
-    http://www.iws-ls3.uni-stuttgart.de
-    The current script is based on definition of arbitrary polynomial chaos
-    expansion (aPC), which is presented in the following manuscript:
-    Oladyshkin, S. and W. Nowak. Data-driven uncertainty quantification using
-    the arbitrary polynomial chaos expansion. Reliability Engineering & System
-    Safety, Elsevier, V. 106, P.  179-190, 2012.
-    DOI: 10.1016/j.ress.2012.05.002.
-
-    Parameters
-    ----------
-    Data : array
-        Raw data.
-    degree : int
-        Maximum polynomial degree.
-
-    Returns
-    -------
-    Polynomial : array
-        The coefficients of the univariate orthonormal polynomials.
-
-    """
-
-    # Initialization
-    dd = degree + 1
-    nsamples = len(Data)
-
-    # Forward linear transformation (Avoiding numerical issues)
-    MeanOfData = np.mean(Data)
-    Data = Data/MeanOfData
-
-    # Compute raw moments of input data
-    raw_moments = [np.sum(np.power(Data, p))/nsamples for p in range(2*dd+2)]
-
-    # Main Loop for Polynomial with degree up to dd
-    PolyCoeff_NonNorm = np.empty((0, 1))
-    Polynomial = np.zeros((dd+1, dd+1))
-
-    for degree in range(dd+1):
-        Mm = np.zeros((degree+1, degree+1))
-        Vc = np.zeros((degree+1))
-
-        # Define Moments Matrix Mm
-        for i in range(degree+1):
-            for j in range(degree+1):
-                if (i < degree):
-                    Mm[i, j] = raw_moments[i+j]
-
-                elif (i == degree) and (j == degree):
-                    Mm[i, j] = 1
-
-            # Numerical Optimization for Matrix Solver
-            Mm[i] = Mm[i] / max(abs(Mm[i]))
-
-        # Defenition of Right Hand side ortogonality conditions: Vc
-        for i in range(degree+1):
-            Vc[i] = 1 if i == degree else 0
-
-        # Solution: Coefficients of Non-Normal Orthogonal Polynomial: Vp Eq.(4)
-        try:
-            Vp = np.linalg.solve(Mm, Vc)
-        except:
-            inv_Mm = np.linalg.pinv(Mm)
-            Vp = np.dot(inv_Mm, Vc.T)
-
-        if degree == 0:
-            PolyCoeff_NonNorm = np.append(PolyCoeff_NonNorm, Vp)
-
-        if degree != 0:
-            if degree == 1:
-                zero = [0]
-            else:
-                zero = np.zeros((degree, 1))
-            PolyCoeff_NonNorm = np.hstack((PolyCoeff_NonNorm, zero))
-
-            PolyCoeff_NonNorm = np.vstack((PolyCoeff_NonNorm, Vp))
-
-        if 100*abs(sum(abs(np.dot(Mm, Vp)) - abs(Vc))) > 0.5:
-            print('\n---> Attention: Computational Error too high !')
-            print('\n---> Problem: Convergence of Linear Solver')
-
-        # Original Numerical Normalization of Coefficients with Norm and
-        # orthonormal Basis computation Matrix Storrage
-        # Note: Polynomial(i,j) correspont to coefficient number "j-1"
-        # of polynomial degree "i-1"
-        P_norm = 0
-        for i in range(nsamples):
-            Poly = 0
-            for k in range(degree+1):
-                if degree == 0:
-                    Poly += PolyCoeff_NonNorm[k] * (Data[i]**k)
-                else:
-                    Poly += PolyCoeff_NonNorm[degree, k] * (Data[i]**k)
-
-            P_norm += Poly**2 / nsamples
-
-        P_norm = np.sqrt(P_norm)
-
-        for k in range(degree+1):
-            if degree == 0:
-                Polynomial[degree, k] = PolyCoeff_NonNorm[k]/P_norm
-            else:
-                Polynomial[degree, k] = PolyCoeff_NonNorm[degree, k]/P_norm
-
-    # Backward linear transformation to the real data space
-    Data *= MeanOfData
-    for k in range(len(Polynomial)):
-        Polynomial[:, k] = Polynomial[:, k] / (MeanOfData**(k))
-
-    return Polynomial
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/bayes_linear.py b/examples/only-model/bayesvalidrox/surrogate_models/bayes_linear.py
deleted file mode 100644
index a7d6b5929a83fc89d15d7ab8f369187d0542923c..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/bayes_linear.py
+++ /dev/null
@@ -1,523 +0,0 @@
-import numpy as np
-from sklearn.base import RegressorMixin
-from sklearn.linear_model._base import LinearModel
-from sklearn.utils import check_X_y, check_array, as_float_array
-from sklearn.utils.validation import check_is_fitted
-from scipy.linalg import svd
-import warnings
-from sklearn.preprocessing import normalize as f_normalize
-
-
-
-class BayesianLinearRegression(RegressorMixin,LinearModel):
-    '''
-    Superclass for Empirical Bayes and Variational Bayes implementations of 
-    Bayesian Linear Regression Model
-    '''
-    def __init__(self, n_iter, tol, fit_intercept,copy_X, verbose):
-        self.n_iter        = n_iter
-        self.fit_intercept = fit_intercept
-        self.copy_X        = copy_X
-        self.verbose       = verbose
-        self.tol           = tol
-        
-        
-    def _check_convergence(self, mu, mu_old):
-        '''
-        Checks convergence of algorithm using changes in mean of posterior
-        distribution of weights
-        '''
-        return np.sum(abs(mu-mu_old)>self.tol) == 0
-        
-        
-    def _center_data(self,X,y):
-        ''' Centers data'''
-        X     = as_float_array(X,self.copy_X)
-        # normalisation should be done in preprocessing!
-        X_std = np.ones(X.shape[1], dtype = X.dtype)
-        if self.fit_intercept:
-            X_mean = np.average(X,axis = 0)
-            y_mean = np.average(y,axis = 0)
-            X     -= X_mean
-            y      = y - y_mean
-        else:
-            X_mean = np.zeros(X.shape[1],dtype = X.dtype)
-            y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype)
-        return X,y, X_mean, y_mean, X_std
-        
-        
-    def predict_dist(self,X):
-        '''
-        Calculates  mean and variance of predictive distribution for each data 
-        point of test set.(Note predictive distribution for each data point is 
-        Gaussian, therefore it is uniquely determined by mean and variance)                    
-                    
-        Parameters
-        ----------
-        x: array-like of size (n_test_samples, n_features)
-            Set of features for which corresponding responses should be predicted
-
-        Returns
-        -------
-        :list of two numpy arrays [mu_pred, var_pred]
-        
-            mu_pred : numpy array of size (n_test_samples,)
-                      Mean of predictive distribution
-                      
-            var_pred: numpy array of size (n_test_samples,)
-                      Variance of predictive distribution        
-        '''
-        # Note check_array and check_is_fitted are done within self._decision_function(X)
-        mu_pred     = self._decision_function(X)
-        data_noise  = 1./self.beta_
-        model_noise = np.sum(np.dot(X,self.eigvecs_)**2 * self.eigvals_,1)
-        var_pred    =  data_noise + model_noise
-        return [mu_pred,var_pred]
-    
-        
-        
-
-class EBLinearRegression(BayesianLinearRegression):
-    '''
-    Bayesian Regression with type II maximum likelihood (Empirical Bayes)
-    
-    Parameters:
-    -----------  
-    n_iter: int, optional (DEFAULT = 300)
-       Maximum number of iterations
-         
-    tol: float, optional (DEFAULT = 1e-3)
-       Threshold for convergence
-       
-    optimizer: str, optional (DEFAULT = 'fp')
-       Method for optimization , either Expectation Maximization or 
-       Fixed Point Gull-MacKay {'em','fp'}. Fixed point iterations are
-       faster, but can be numerically unstable (especially in case of near perfect fit).
-       
-    fit_intercept: bool, optional (DEFAULT = True)
-       If True includes bias term in model
-       
-    perfect_fit_tol: float (DEAFAULT = 1e-5)
-       Prevents overflow of precision parameters (this is smallest value RSS can have).
-       ( !!! Note if using EM instead of fixed-point, try smaller values
-       of perfect_fit_tol, for better estimates of variance of predictive distribution )
-
-    alpha: float (DEFAULT = 1)
-       Initial value of precision paramter for coefficients ( by default we define 
-       very broad distribution )
-       
-    copy_X : boolean, optional (DEFAULT = True)
-        If True, X will be copied, otherwise will be 
-        
-    verbose: bool, optional (Default = False)
-       If True at each iteration progress report is printed out
-    
-    Attributes
-    ----------
-    coef_  : array, shape = (n_features)
-        Coefficients of the regression model (mean of posterior distribution)
-        
-    intercept_: float
-        Value of bias term (if fit_intercept is False, then intercept_ = 0)
-        
-    alpha_ : float
-        Estimated precision of coefficients
-       
-    beta_  : float 
-        Estimated precision of noise
-        
-    eigvals_ : array, shape = (n_features, )
-        Eigenvalues of covariance matrix (from posterior distribution of weights)
-        
-    eigvecs_ : array, shape = (n_features, n_featues)
-        Eigenvectors of covariance matrix (from posterior distribution of weights)
-
-    '''
-    
-    def __init__(self,n_iter = 300, tol = 1e-3, optimizer = 'fp', fit_intercept = True,
-                 normalize=True, perfect_fit_tol = 1e-6, alpha = 1, copy_X = True, verbose = False):
-        super(EBLinearRegression,self).__init__(n_iter, tol, fit_intercept, copy_X, verbose)
-        if optimizer not in ['em','fp']:
-            raise ValueError('Optimizer can be either "em" of "fp" ')
-        self.optimizer     =  optimizer 
-        self.alpha         =  alpha 
-        self.perfect_fit   =  False
-        self.normalize     = True
-        self.scores_       =  [np.NINF]
-        self.perfect_fit_tol = perfect_fit_tol
-    
-    def _check_convergence(self, mu, mu_old):
-        '''
-        Checks convergence of algorithm using changes in mean of posterior
-        distribution of weights
-        '''
-        return np.sum(abs(mu-mu_old)>self.tol) == 0
-        
-        
-    def _center_data(self,X,y):
-        ''' Centers data'''
-        X     = as_float_array(X,self.copy_X)
-        # normalisation should be done in preprocessing!
-        X_std = np.ones(X.shape[1], dtype = X.dtype)
-        if self.fit_intercept:
-            X_mean = np.average(X, axis=0)
-            X -= X_mean
-            if self.normalize:
-                X, X_std = f_normalize(X, axis=0, copy=False,
-                                         return_norm=True)
-            else:
-                X_std = np.ones(X.shape[1], dtype=X.dtype)
-            y_mean = np.average(y, axis=0)
-            y = y - y_mean
-        else:
-            X_mean = np.zeros(X.shape[1],dtype = X.dtype)
-            y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype)
-        return X,y, X_mean, y_mean, X_std
-            
-    def fit(self, X, y):
-        '''
-        Fits Bayesian Linear Regression using Empirical Bayes
-        
-        Parameters
-        ----------
-        X: array-like of size [n_samples,n_features]
-           Matrix of explanatory variables (should not include bias term)
-       
-        y: array-like of size [n_features]
-           Vector of dependent variables.
-           
-        Returns
-        -------
-        object: self
-          self
-    
-        '''
-        # preprocess data
-        X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True)
-        n_samples, n_features = X.shape
-        X, y, X_mean, y_mean, X_std = self._center_data(X, y)
-        self._x_mean_ = X_mean
-        self._y_mean  = y_mean
-        self._x_std   = X_std
-        
-        #  precision of noise & and coefficients
-        alpha   =  self.alpha
-        var_y  = np.var(y)
-        # check that variance is non zero !!!
-        if var_y == 0 :
-            beta = 1e-2
-        else:
-            beta = 1. / np.var(y)
-
-        # to speed all further computations save svd decomposition and reuse it later
-        u,d,vt   = svd(X, full_matrices = False)
-        Uy      = np.dot(u.T,y)
-        dsq     = d**2
-        mu      = 0
-    
-        for i in range(self.n_iter):
-            
-            # find mean for posterior of w ( for EM this is E-step)
-            mu_old  =  mu
-            if n_samples > n_features:
-                 mu =  vt.T *  d/(dsq+alpha/beta) 
-            else:
-                 # clever use of SVD here , faster for large n_features
-                 mu =  u * 1./(dsq + alpha/beta)
-                 mu =  np.dot(X.T,mu)
-            mu =  np.dot(mu,Uy)
-
-            # precompute errors, since both methods use it in estimation
-            error   = y - np.dot(X,mu)
-            sqdErr  = np.sum(error**2)
-            
-            if sqdErr / n_samples < self.perfect_fit_tol:
-                self.perfect_fit = True
-                warnings.warn( ('Almost perfect fit!!! Estimated values of variance '
-                                'for predictive distribution are computed using only RSS'))
-                break
-            
-            if self.optimizer == "fp":           
-                gamma      =  np.sum(beta*dsq/(beta*dsq + alpha))
-                # use updated mu and gamma parameters to update alpha and beta
-                # !!! made computation numerically stable for perfect fit case
-                alpha      =   gamma  / (np.sum(mu**2) + np.finfo(np.float32).eps )
-                beta       =  ( n_samples - gamma ) / (sqdErr + np.finfo(np.float32).eps )
-            else:             
-                # M-step, update parameters alpha and beta to maximize ML TYPE II
-                eigvals    = 1. / (beta * dsq + alpha)
-                alpha      = n_features / ( np.sum(mu**2) + np.sum(1/eigvals) )
-                beta       = n_samples / ( sqdErr + np.sum(dsq/eigvals) )
-
-            # if converged or exceeded maximum number of iterations => terminate
-            converged = self._check_convergence(mu_old,mu)
-            if self.verbose:
-                print( "Iteration {0} completed".format(i) )
-                if converged is True:
-                    print("Algorithm converged after {0} iterations".format(i))
-            if converged or i==self.n_iter -1:
-                break
-        eigvals       = 1./(beta * dsq + alpha)
-        self.coef_    = beta*np.dot(vt.T*d*eigvals ,Uy)
-        self._set_intercept(X_mean,y_mean,X_std)
-        self.beta_    = beta
-        self.alpha_   = alpha
-        self.eigvals_ = eigvals
-        self.eigvecs_ = vt.T
-        
-        # set intercept_
-        if self.fit_intercept:
-            self.coef_ = self.coef_ / X_std
-            self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T)
-        else:
-            self.intercept_ = 0.
-
-        return self
-    
-    def predict(self,X, return_std=False):
-        '''
-        Computes predictive distribution for test set.
-        Predictive distribution for each data point is one dimensional
-        Gaussian and therefore is characterised by mean and variance.
-        
-        Parameters
-        -----------
-        X: {array-like, sparse} (n_samples_test, n_features)
-           Test data, matrix of explanatory variables
-           
-        Returns
-        -------
-        : list of length two [y_hat, var_hat]
-        
-             y_hat: numpy array of size (n_samples_test,)
-                    Estimated values of targets on test set (i.e. mean of predictive
-                    distribution)
-           
-             var_hat: numpy array of size (n_samples_test,)
-                    Variance of predictive distribution
-        '''
-        y_hat     = np.dot(X,self.coef_) + self.intercept_
-        
-        if return_std:
-            if self.normalize:
-                X   = (X - self._x_mean_) / self._x_std
-            data_noise  = 1./self.beta_
-            model_noise = np.sum(np.dot(X,self.eigvecs_)**2 * self.eigvals_,1)
-            var_pred    =  data_noise + model_noise
-            std_hat = np.sqrt(var_pred)
-            return y_hat, std_hat
-        else:
-            return y_hat
-            
-            
-# ==============================  VBLR  =========================================
-
-def gamma_mean(a,b):
-    '''
-    Computes mean of gamma distribution
-    
-    Parameters
-    ----------
-    a: float
-      Shape parameter of Gamma distribution
-    
-    b: float
-      Rate parameter of Gamma distribution
-      
-    Returns
-    -------
-    : float
-      Mean of Gamma distribution
-    '''
-    return float(a) / b 
-    
-
-
-class VBLinearRegression(BayesianLinearRegression):
-    '''
-    Implements Bayesian Linear Regression using mean-field approximation.
-    Assumes gamma prior on precision parameters of coefficients and noise.
-
-    Parameters:
-    -----------
-    n_iter: int, optional (DEFAULT = 100)
-       Maximum number of iterations for KL minimization
-
-    tol: float, optional (DEFAULT = 1e-3)
-       Convergence threshold
-       
-    fit_intercept: bool, optional (DEFAULT = True)
-       If True will use bias term in model fitting
-
-    a: float, optional (Default = 1e-4)
-       Shape parameter of Gamma prior for precision of coefficients
-       
-    b: float, optional (Default = 1e-4)
-       Rate parameter of Gamma prior for precision coefficients
-       
-    c: float, optional (Default = 1e-4)
-       Shape parameter of  Gamma prior for precision of noise
-       
-    d: float, optional (Default = 1e-4)
-       Rate parameter of  Gamma prior for precision of noise
-       
-    verbose: bool, optional (Default = False)
-       If True at each iteration progress report is printed out
-       
-    Attributes
-    ----------
-    coef_  : array, shape = (n_features)
-        Coefficients of the regression model (mean of posterior distribution)
-        
-    intercept_: float
-        Value of bias term (if fit_intercept is False, then intercept_ = 0)
-        
-    alpha_ : float
-        Mean of precision of coefficients
-       
-    beta_  : float 
-        Mean of precision of noise
-
-    eigvals_ : array, shape = (n_features, )
-        Eigenvalues of covariance matrix (from posterior distribution of weights)
-        
-    eigvecs_ : array, shape = (n_features, n_featues)
-        Eigenvectors of covariance matrix (from posterior distribution of weights)
-
-    '''
-    
-    def __init__(self, n_iter = 100, tol =1e-4, fit_intercept = True, 
-                 a = 1e-4, b = 1e-4, c = 1e-4, d = 1e-4, copy_X = True,
-                 verbose = False):
-        super(VBLinearRegression,self).__init__(n_iter, tol, fit_intercept, copy_X,
-                                                verbose)
-        self.a,self.b   =  a, b
-        self.c,self.d   =  c, d
-
-        
-    def fit(self,X,y):
-        '''
-        Fits Variational Bayesian Linear Regression Model
-        
-        Parameters
-        ----------
-        X: array-like of size [n_samples,n_features]
-           Matrix of explanatory variables (should not include bias term)
-       
-        Y: array-like of size [n_features]
-           Vector of dependent variables.
-           
-        Returns
-        -------
-        object: self
-          self
-        '''
-        # preprocess data
-        X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True)
-        n_samples, n_features = X.shape
-        X, y, X_mean, y_mean, X_std = self._center_data(X, y)
-        self._x_mean_ = X_mean
-        self._y_mean  = y_mean
-        self._x_std   = X_std
-        
-        # SVD decomposition, done once , reused at each iteration
-        u,D,vt = svd(X, full_matrices = False)
-        dsq    = D**2
-        UY     = np.dot(u.T,y)
-        
-        # some parameters of Gamma distribution have closed form solution
-        a      = self.a + 0.5 * n_features
-        c      = self.c + 0.5 * n_samples
-        b,d    = self.b,  self.d
-        
-        # initial mean of posterior for coefficients
-        mu     = 0
-                
-        for i in range(self.n_iter):
-            
-            # update parameters of distribution Q(weights)
-            e_beta       = gamma_mean(c,d)
-            e_alpha      = gamma_mean(a,b)
-            mu_old       = np.copy(mu)
-            mu,eigvals   = self._posterior_weights(e_beta,e_alpha,UY,dsq,u,vt,D,X)
-            
-            # update parameters of distribution Q(precision of weights) 
-            b            = self.b + 0.5*( np.sum(mu**2) + np.sum(eigvals))
-            
-            # update parameters of distribution Q(precision of likelihood)
-            sqderr       = np.sum((y - np.dot(X,mu))**2)
-            xsx          = np.sum(dsq*eigvals)
-            d            = self.d + 0.5*(sqderr + xsx)
- 
-            # check convergence 
-            converged = self._check_convergence(mu,mu_old)
-            if self.verbose is True:
-                print("Iteration {0} is completed".format(i))
-                if converged is True:
-                    print("Algorithm converged after {0} iterations".format(i))
-               
-            # terminate if convergence or maximum number of iterations are achieved
-            if converged or i==(self.n_iter-1):
-                break
-            
-        # save necessary parameters    
-        self.beta_   = gamma_mean(c,d)
-        self.alpha_  = gamma_mean(a,b)
-        self.coef_, self.eigvals_ = self._posterior_weights(self.beta_, self.alpha_, UY,
-                                                            dsq, u, vt, D, X)
-        self._set_intercept(X_mean,y_mean,X_std)
-        self.eigvecs_ = vt.T
-        return self
-        
-
-    def _posterior_weights(self, e_beta, e_alpha, UY, dsq, u, vt, d, X):
-        '''
-        Calculates parameters of approximate posterior distribution 
-        of weights
-        '''
-        # eigenvalues of covariance matrix
-        sigma = 1./ (e_beta*dsq + e_alpha)
-        
-        # mean of approximate posterior distribution
-        n_samples, n_features = X.shape
-        if n_samples > n_features:
-             mu =  vt.T *  d/(dsq + e_alpha/e_beta)# + np.finfo(np.float64).eps) 
-        else:
-             mu =  u * 1./(dsq + e_alpha/e_beta)# + np.finfo(np.float64).eps)
-             mu =  np.dot(X.T,mu)
-        mu =  np.dot(mu,UY)
-        return mu,sigma
-        
-    def predict(self,X, return_std=False):
-        '''
-        Computes predictive distribution for test set.
-        Predictive distribution for each data point is one dimensional
-        Gaussian and therefore is characterised by mean and variance.
-        
-        Parameters
-        -----------
-        X: {array-like, sparse} (n_samples_test, n_features)
-           Test data, matrix of explanatory variables
-           
-        Returns
-        -------
-        : list of length two [y_hat, var_hat]
-        
-             y_hat: numpy array of size (n_samples_test,)
-                    Estimated values of targets on test set (i.e. mean of predictive
-                    distribution)
-           
-             var_hat: numpy array of size (n_samples_test,)
-                    Variance of predictive distribution
-        '''
-        x         = (X - self._x_mean_) / self._x_std
-        y_hat     = np.dot(x,self.coef_) + self._y_mean
-        
-        if return_std:
-            data_noise  = 1./self.beta_
-            model_noise = np.sum(np.dot(X,self.eigvecs_)**2 * self.eigvals_,1)
-            var_pred    =  data_noise + model_noise
-            std_hat = np.sqrt(var_pred)
-            return y_hat, std_hat
-        else:
-            return y_hat
\ No newline at end of file
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/desktop.ini b/examples/only-model/bayesvalidrox/surrogate_models/desktop.ini
deleted file mode 100644
index 632de13ae6b61cecf0d9fdbf9c97cfb16bfb51a4..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/desktop.ini
+++ /dev/null
@@ -1,2 +0,0 @@
-[LocalizedFileNames]
-exploration.py=@exploration.py,0
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/eval_rec_rule.py b/examples/only-model/bayesvalidrox/surrogate_models/eval_rec_rule.py
deleted file mode 100644
index b583c7eb2ec58d55d19b34130812730d21a12368..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/eval_rec_rule.py
+++ /dev/null
@@ -1,197 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-
-
-Based on the implementation in UQLab [1].
-
-References:
-1. S. Marelli, and B. Sudret, UQLab: A framework for uncertainty quantification
-in Matlab, Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management
-(ICVRAM2014), Liverpool, United Kingdom, 2014, 2554-2563.
-
-2. S. Marelli, N. Lüthen, B. Sudret, UQLab user manual – Polynomial chaos
-expansions, Report # UQLab-V1.4-104, Chair of Risk, Safety and Uncertainty
-Quantification, ETH Zurich, Switzerland, 2021.
-
-Author: Farid Mohammadi, M.Sc.
-E-Mail: farid.mohammadi@iws.uni-stuttgart.de
-Department of Hydromechanics and Modelling of Hydrosystems (LH2)
-Institute for Modelling Hydraulic and Environmental Systems (IWS), University
-of Stuttgart, www.iws.uni-stuttgart.de/lh2/
-Pfaffenwaldring 61
-70569 Stuttgart
-
-Created on Fri Jan 14 2022
-"""
-import numpy as np
-from numpy.polynomial.polynomial import polyval
-
-
-def poly_rec_coeffs(n_max, poly_type, params=None):
-    """
-    Computes the recurrence coefficients for classical Wiener-Askey orthogonal
-    polynomials.
-
-    Parameters
-    ----------
-    n_max : int
-        Maximum polynomial degree.
-    poly_type : string
-        Polynomial type.
-    params : list, optional
-        Parameters required for `laguerre` poly type. The default is None.
-
-    Returns
-    -------
-    AB : dict
-        The 3 term recursive coefficients and the applicable ranges.
-
-    """
-
-    if poly_type == 'legendre':
-
-        def an(n):
-            return np.zeros((n+1, 1))
-
-        def sqrt_bn(n):
-            sq_bn = np.zeros((n+1, 1))
-            sq_bn[0, 0] = 1
-            for i in range(1, n+1):
-                sq_bn[i, 0] = np.sqrt(1./(4-i**-2))
-            return sq_bn
-
-        bounds = [-1, 1]
-
-    elif poly_type == 'hermite':
-
-        def an(n):
-            return np.zeros((n+1, 1))
-
-        def sqrt_bn(n):
-            sq_bn = np.zeros((n+1, 1))
-            sq_bn[0, 0] = 1
-            for i in range(1, n+1):
-                sq_bn[i, 0] = np.sqrt(i)
-            return sq_bn
-
-        bounds = [-np.inf, np.inf]
-
-    elif poly_type == 'laguerre':
-
-        def an(n):
-            a = np.zeros((n+1, 1))
-            for i in range(1, n+1):
-                a[i] = 2*n + params[1]
-            return a
-
-        def sqrt_bn(n):
-            sq_bn = np.zeros((n+1, 1))
-            sq_bn[0, 0] = 1
-            for i in range(1, n+1):
-                sq_bn[i, 0] = -np.sqrt(i * (i+params[1]-1))
-            return sq_bn
-
-        bounds = [0, np.inf]
-
-    AB = {'alpha_beta': np.concatenate((an(n_max), sqrt_bn(n_max)), axis=1),
-          'bounds': bounds}
-
-    return AB
-
-
-def eval_rec_rule(x, max_deg, poly_type):
-    """
-    Evaluates the polynomial that corresponds to the Jacobi matrix defined
-    from the AB.
-
-    Parameters
-    ----------
-    x : array (n_samples)
-        Points where the polynomials are evaluated.
-    max_deg : int
-        Maximum degree.
-    poly_type : string
-        Polynomial type.
-
-    Returns
-    -------
-    values : array of shape (n_samples, max_deg+1)
-        Polynomials corresponding to the Jacobi matrix.
-
-    """
-    AB = poly_rec_coeffs(max_deg, poly_type)
-    AB = AB['alpha_beta']
-
-    values = np.zeros((len(x), AB.shape[0]+1))
-    values[:, 1] = 1 / AB[0, 1]
-
-    for k in range(AB.shape[0]-1):
-        values[:, k+2] = np.multiply((x - AB[k, 0]), values[:, k+1]) - \
-                         np.multiply(values[:, k], AB[k, 1])
-        values[:, k+2] = np.divide(values[:, k+2], AB[k+1, 1])
-    return values[:, 1:]
-
-
-def eval_rec_rule_arbitrary(x, max_deg, poly_coeffs):
-    """
-    Evaluates the polynomial at sample array x.
-
-    Parameters
-    ----------
-    x : array (n_samples)
-        Points where the polynomials are evaluated.
-    max_deg : int
-        Maximum degree.
-    poly_coeffs : dict
-        Polynomial coefficients computed based on moments.
-
-    Returns
-    -------
-    values : array of shape (n_samples, max_deg+1)
-        Univariate Polynomials evaluated at samples.
-
-    """
-    values = np.zeros((len(x), max_deg+1))
-
-    for deg in range(max_deg+1):
-        values[:, deg] = polyval(x, poly_coeffs[deg]).T
-
-    return values
-
-
-def eval_univ_basis(x, max_deg, poly_types, apoly_coeffs=None):
-    """
-    Evaluates univariate regressors along input directions.
-
-    Parameters
-    ----------
-    x : array of shape (n_samples, n_params)
-        Training samples.
-    max_deg : int
-        Maximum polynomial degree.
-    poly_types : list of strings
-        List of polynomial types for all parameters.
-    apoly_coeffs : dict , optional
-        Polynomial coefficients computed based on moments. The default is None.
-
-    Returns
-    -------
-    univ_vals : array of shape (n_samples, n_params, max_deg+1)
-        Univariate polynomials for all degrees and parameters evaluated at x.
-
-    """
-    # Initilize the output array
-    n_samples, n_params = x.shape
-    univ_vals = np.zeros((n_samples, n_params, max_deg+1))
-
-    for i in range(n_params):
-
-        if poly_types[i] == 'arbitrary':
-            polycoeffs = apoly_coeffs[f'p_{i+1}']
-            univ_vals[:, i] = eval_rec_rule_arbitrary(x[:, i], max_deg,
-                                                      polycoeffs)
-        else:
-            univ_vals[:, i] = eval_rec_rule(x[:, i], max_deg, poly_types[i])
-
-    return univ_vals
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/exp_designs.py b/examples/only-model/bayesvalidrox/surrogate_models/exp_designs.py
deleted file mode 100644
index a078aec9c19c5a85a637ba50d02c48459ceea6d3..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/exp_designs.py
+++ /dev/null
@@ -1,737 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import numpy as np
-import math
-import itertools
-import chaospy
-import scipy.stats as st
-from tqdm import tqdm
-
-from .apoly_construction import apoly_construction
-
-
-class ExpDesigns:
-    """
-    This class generates samples from the prescribed marginals for the model
-    parameters using the `Input` object.
-
-    Attributes
-    ----------
-    Input : obj
-        Input object containing the parameter marginals, i.e. name,
-        distribution type and distribution parameters or available raw data.
-    method : str
-        Type of the experimental design. The default is `'normal'`. Other
-        option is `'sequential'`.
-    meta_Model : str
-        Type of the meta_model.
-    sampling_method : str
-        Name of the sampling method for the experimental design. The following
-        sampling method are supported:
-
-        * random
-        * latin_hypercube
-        * sobol
-        * halton
-        * hammersley
-        * chebyshev(FT)
-        * grid(FT)
-        * user
-    hdf5_file : str
-        Name of the hdf5 file that contains the experimental design.
-    n_new_samples : int
-        Number of (initial) training points.
-    n_max_samples : int
-        Number of maximum training points.
-    mod_LOO_threshold : float
-        The modified leave-one-out cross validation threshold where the
-        sequential design stops.
-    tradeoff_scheme : str
-        Trade-off scheme to assign weights to the exploration and exploitation
-        scores in the sequential design.
-    n_canddidate : int
-        Number of candidate training sets to calculate the scores for.
-    explore_method : str
-        Type of the exploration method for the sequential design. The following
-        methods are supported:
-
-        * Voronoi
-        * random
-        * latin_hypercube
-        * LOOCV
-        * dual annealing
-    exploit_method : str
-        Type of the exploitation method for the sequential design. The
-        following methods are supported:
-
-        * BayesOptDesign
-        * BayesActDesign
-        * VarOptDesign
-        * alphabetic
-        * Space-filling
-    util_func : str or list
-        The utility function to be specified for the `exploit_method`. For the
-        available utility functions see Note section.
-    n_cand_groups : int
-        Number of candidate groups. Each group of candidate training sets will
-        be evaulated separately in parallel.
-    n_replication : int
-        Number of replications. Only for comparison. The default is 1.
-    post_snapshot : int
-        Whether to plot the posterior in the sequential design. The default is
-        `True`.
-    step_snapshot : int
-        The number of steps to plot the posterior in the sequential design. The
-        default is 1.
-    max_a_post : list or array
-        Maximum a posteriori of the posterior distribution, if known. The
-        default is `[]`.
-    adapt_verbose : bool
-        Whether to plot the model response vs that of metamodel for the new
-        trining point in the sequential design.
-
-    Note
-    ----------
-    The following utiliy functions for the **exploitation** methods are
-    supported:
-
-    #### BayesOptDesign (when data is available)
-    - DKL (Kullback-Leibler Divergence)
-    - DPP (D-Posterior-percision)
-    - APP (A-Posterior-percision)
-
-    #### VarBasedOptDesign -> when data is not available
-    - Entropy (Entropy/MMSE/active learning)
-    - EIGF (Expected Improvement for Global fit)
-    - LOOCV (Leave-one-out Cross Validation)
-
-    #### alphabetic
-    - D-Opt (D-Optimality)
-    - A-Opt (A-Optimality)
-    - K-Opt (K-Optimality)
-    """
-
-    def __init__(self, Input, method='normal', meta_Model='pce',
-                 sampling_method='random', hdf5_file=None,
-                 n_new_samples=1, n_max_samples=None, mod_LOO_threshold=1e-16,
-                 tradeoff_scheme=None, n_canddidate=1, explore_method='random',
-                 exploit_method='Space-filling', util_func='Space-filling',
-                 n_cand_groups=4, n_replication=1, post_snapshot=False,
-                 step_snapshot=1, max_a_post=[], adapt_verbose=False):
-
-        self.InputObj = Input
-        self.method = method
-        self.meta_Model = meta_Model
-        self.sampling_method = sampling_method
-        self.hdf5_file = hdf5_file
-        self.n_new_samples = n_new_samples
-        self.n_max_samples = n_max_samples
-        self.mod_LOO_threshold = mod_LOO_threshold
-        self.explore_method = explore_method
-        self.exploit_method = exploit_method
-        self.util_func = util_func
-        self.tradeoff_scheme = tradeoff_scheme
-        self.n_canddidate = n_canddidate
-        self.n_cand_groups = n_cand_groups
-        self.n_replication = n_replication
-        self.post_snapshot = post_snapshot
-        self.step_snapshot = step_snapshot
-        self.max_a_post = max_a_post
-        self.adapt_verbose = adapt_verbose
-
-    # -------------------------------------------------------------------------
-    def generate_samples(self, n_samples, sampling_method='random',
-                         transform=False):
-        """
-        Generates samples with given sampling method
-
-        Parameters
-        ----------
-        n_samples : int
-            Number of requested samples.
-        sampling_method : str, optional
-            Sampling method. The default is `'random'`.
-        transform : bool, optional
-            Transformation via an isoprobabilistic transformation method. The
-            default is `False`.
-
-        Returns
-        -------
-        samples: array of shape (n_samples, n_params)
-            Generated samples from defined model input object.
-
-        """
-        try:
-            samples = chaospy.generate_samples(
-                int(n_samples), domain=self.origJDist, rule=sampling_method
-                )
-        except:
-            samples = self.random_sampler(int(n_samples)).T
-
-        return samples.T
-
-    # -------------------------------------------------------------------------
-    def generate_ED(self, n_samples, sampling_method='random', transform=False,
-                    max_pce_deg=None):
-        """
-        Generates experimental designs (training set) with the given method.
-
-        Parameters
-        ----------
-        n_samples : int
-            Number of requested training points.
-        sampling_method : str, optional
-            Sampling method. The default is `'random'`.
-        transform : bool, optional
-            Isoprobabilistic transformation. The default is `False`.
-        max_pce_deg : int, optional
-            Maximum PCE polynomial degree. The default is `None`.
-
-        Returns
-        -------
-        samples : array of shape (n_samples, n_params)
-            Selected training samples.
-
-        """
-        Inputs = self.InputObj
-        self.ndim = len(Inputs.Marginals)
-        if not hasattr(self, 'n_init_samples'):
-            self.n_init_samples = self.ndim + 1
-        n_samples = int(n_samples)
-
-        # Check if PCE or aPCE metamodel is selected.
-        if self.meta_Model.lower() == 'apce':
-            self.apce = True
-        else:
-            self.apce = False
-
-        # Check if input is given as dist or input_data.
-        if len(Inputs.Marginals[0].input_data):
-            self.input_data_given = True
-        else:
-            self.input_data_given = False
-
-        # Get the bounds if input_data are directly defined by user:
-        if self.input_data_given:
-            for i in range(self.ndim):
-                low_bound = np.min(Inputs.Marginals[i].input_data)
-                up_bound = np.max(Inputs.Marginals[i].input_data)
-                Inputs.Marginals[i].parameters = [low_bound, up_bound]
-
-        # Generate the samples based on requested method
-        self.raw_data, self.bound_tuples = self.init_param_space(max_pce_deg)
-
-        # Pass user-defined samples as ED
-        if sampling_method == 'user':
-            samples = self.X
-            self.n_samples = len(samples)
-
-        # Sample the distribution of parameters
-        elif self.input_data_given:
-            # Case II: Input values are directly given by the user.
-
-            if sampling_method == 'random':
-                samples = self.random_sampler(n_samples)
-
-            elif sampling_method == 'PCM' or \
-                    sampling_method == 'LSCM':
-                samples = self.pcm_sampler(max_pce_deg)
-
-            else:
-                # Create ExpDesign in the actual space using chaospy
-                try:
-                    samples = chaospy.generate_samples(n_samples,
-                                                       domain=self.JDist,
-                                                       rule=sampling_method).T
-                except:
-                    samples = self.JDist.resample(n_samples).T
-
-        elif not self.input_data_given:
-            # Case I = User passed known distributions
-            samples = chaospy.generate_samples(n_samples, domain=self.JDist,
-                                               rule=sampling_method).T
-
-        # Transform samples to the original space
-        if transform:
-            tr_samples = self.transform(
-                samples,
-                method=sampling_method
-                )
-            if sampling_method == 'user' or not self.apce:
-                return samples, tr_samples
-            else:
-                return tr_samples, samples
-        else:
-            return samples
-
-    # -------------------------------------------------------------------------
-    def init_param_space(self, max_deg=None):
-        """
-        Initializes parameter space.
-
-        Parameters
-        ----------
-        max_deg : int, optional
-            Maximum degree. The default is `None`.
-
-        Returns
-        -------
-        raw_data : array of shape (n_params, n_samples)
-            Raw data.
-        bound_tuples : list of tuples
-            A list containing lower and upper bounds of parameters.
-
-        """
-        Inputs = self.InputObj
-        ndim = self.ndim
-        rosenblatt_flag = Inputs.Rosenblatt
-        mc_size = 50000
-
-        # Save parameter names
-        self.par_names = []
-        for parIdx in range(ndim):
-            self.par_names.append(Inputs.Marginals[parIdx].name)
-
-        # Create a multivariate probability distribution
-        if max_deg is not None:
-            JDist, poly_types = self.build_dist(rosenblatt=rosenblatt_flag)
-            self.JDist, self.poly_types = JDist, poly_types
-
-        if self.input_data_given:
-
-            self.MCSize = len(Inputs.Marginals[0].input_data)
-            self.raw_data = np.zeros((ndim, self.MCSize))
-
-            for parIdx in range(ndim):
-                # Save parameter names
-                try:
-                    self.raw_data[parIdx] = np.array(
-                        Inputs.Marginals[parIdx].input_data)
-                except:
-                    self.raw_data[parIdx] = self.JDist[parIdx].sample(mc_size)
-
-        else:
-            # Generate random samples based on parameter distributions
-            self.raw_data = chaospy.generate_samples(mc_size,
-                                                     domain=self.JDist)
-
-        # Create orthogonal polynomial coefficients if necessary
-        if self.apce and max_deg is not None and Inputs.poly_coeffs_flag:
-            self.polycoeffs = {}
-            for parIdx in tqdm(range(ndim), ascii=True,
-                               desc="Computing orth. polynomial coeffs"):
-                poly_coeffs = apoly_construction(
-                    self.raw_data[parIdx],
-                    max_deg
-                    )
-                self.polycoeffs[f'p_{parIdx+1}'] = poly_coeffs
-
-        # Extract moments
-        for parIdx in range(ndim):
-            mu = np.mean(self.raw_data[parIdx])
-            std = np.std(self.raw_data[parIdx])
-            self.InputObj.Marginals[parIdx].moments = [mu, std]
-
-        # Generate the bounds based on given inputs for marginals
-        bound_tuples = []
-        for i in range(ndim):
-            if Inputs.Marginals[i].dist_type == 'unif':
-                low_bound, up_bound = Inputs.Marginals[i].parameters
-            else:
-                low_bound = np.min(self.raw_data[i])
-                up_bound = np.max(self.raw_data[i])
-
-            bound_tuples.append((low_bound, up_bound))
-
-        self.bound_tuples = tuple(bound_tuples)
-
-        return self.raw_data, self.bound_tuples
-
-    # -------------------------------------------------------------------------
-    def build_dist(self, rosenblatt):
-        """
-        Creates the polynomial types to be passed to univ_basis_vals method of
-        the MetaModel object.
-
-        Parameters
-        ----------
-        rosenblatt : bool
-            Rosenblatt transformation flag.
-
-        Returns
-        -------
-        orig_space_dist : object
-            A chaospy JDist object or a gaussian_kde object.
-        poly_types : list
-            List of polynomial types for the parameters.
-
-        """
-        Inputs = self.InputObj
-        all_data = []
-        all_dist_types = []
-        orig_joints = []
-        poly_types = []
-
-        for parIdx in range(self.ndim):
-
-            if Inputs.Marginals[parIdx].dist_type is None:
-                data = Inputs.Marginals[parIdx].input_data
-                all_data.append(data)
-                dist_type = None
-            else:
-                dist_type = Inputs.Marginals[parIdx].dist_type
-                params = Inputs.Marginals[parIdx].parameters
-
-            if rosenblatt:
-                polytype = 'hermite'
-                dist = chaospy.Normal()
-
-            elif dist_type is None:
-                polytype = 'arbitrary'
-                dist = None
-
-            elif 'unif' in dist_type.lower():
-                polytype = 'legendre'
-                dist = chaospy.Uniform(lower=params[0], upper=params[1])
-
-            elif 'norm' in dist_type.lower() and \
-                 'log' not in dist_type.lower():
-                polytype = 'hermite'
-                dist = chaospy.Normal(mu=params[0], sigma=params[1])
-
-            elif 'gamma' in dist_type.lower():
-                polytype = 'laguerre'
-                dist = chaospy.Gamma(shape=params[0],
-                                     scale=params[1],
-                                     shift=params[2])
-
-            elif 'beta' in dist_type.lower():
-                polytype = 'jacobi'
-                dist = chaospy.Beta(alpha=params[0], beta=params[1],
-                                    lower=params[2], upper=params[3])
-
-            elif 'lognorm' in dist_type.lower():
-                polytype = 'hermite'
-                mu = np.log(params[0]**2/np.sqrt(params[0]**2 + params[1]**2))
-                sigma = np.sqrt(np.log(1 + params[1]**2 / params[0]**2))
-                dist = chaospy.LogNormal(mu, sigma)
-                # dist = chaospy.LogNormal(mu=params[0], sigma=params[1])
-
-            elif 'expon' in dist_type.lower():
-                polytype = 'arbitrary'
-                dist = chaospy.Exponential(scale=params[0], shift=params[1])
-
-            elif 'weibull' in dist_type.lower():
-                polytype = 'arbitrary'
-                dist = chaospy.Weibull(shape=params[0], scale=params[1],
-                                       shift=params[2])
-
-            else:
-                message = (f"DistType {dist_type} for parameter"
-                           f"{parIdx+1} is not available.")
-                raise ValueError(message)
-
-            if self.input_data_given or self.apce:
-                polytype = 'arbitrary'
-
-            # Store dists and poly_types
-            orig_joints.append(dist)
-            poly_types.append(polytype)
-            all_dist_types.append(dist_type)
-
-        # Prepare final output to return
-        if None in all_dist_types:
-            # Naive approach: Fit a gaussian kernel to the provided data
-            Data = np.asarray(all_data)
-            orig_space_dist = st.gaussian_kde(Data)
-            self.prior_space = orig_space_dist
-        else:
-            orig_space_dist = chaospy.J(*orig_joints)
-            self.prior_space = st.gaussian_kde(orig_space_dist.sample(10000))
-
-        return orig_space_dist, poly_types
-
-    # -------------------------------------------------------------------------
-    def random_sampler(self, n_samples):
-        """
-        Samples the given raw data randomly.
-
-        Parameters
-        ----------
-        n_samples : int
-            Number of requested samples.
-
-        Returns
-        -------
-        samples: array of shape (n_samples, n_params)
-            The sampling locations in the input space.
-
-        """
-        samples = np.zeros((n_samples, self.ndim))
-        sample_size = self.raw_data.shape[1]
-
-        # Use a combination of raw data
-        if n_samples < sample_size:
-            for pa_idx in range(self.ndim):
-                # draw random indices
-                rand_idx = np.random.randint(0, sample_size, n_samples)
-                # store the raw data with given random indices
-                samples[:, pa_idx] = self.raw_data[pa_idx, rand_idx]
-        else:
-            try:
-                samples = self.JDist.resample(int(n_samples)).T
-            except AttributeError:
-                samples = self.JDist.sample(int(n_samples)).T
-            # Check if all samples are in the bound_tuples
-            for idx, param_set in enumerate(samples):
-                if not self._check_ranges(param_set, self.bound_tuples):
-                    try:
-                        proposed_sample = chaospy.generate_samples(
-                            1, domain=self.JDist, rule='random').T[0]
-                    except:
-                        proposed_sample = self.JDist.resample(1).T[0]
-                    while not self._check_ranges(proposed_sample,
-                                                 self.bound_tuples):
-                        try:
-                            proposed_sample = chaospy.generate_samples(
-                                1, domain=self.JDist, rule='random').T[0]
-                        except:
-                            proposed_sample = self.JDist.resample(1).T[0]
-                    samples[idx] = proposed_sample
-
-        return samples
-
-    # -------------------------------------------------------------------------
-    def pcm_sampler(self, max_deg):
-        """
-        Generates collocation points based on the root of the polynomial
-        degrees.
-
-        Parameters
-        ----------
-        max_deg : int
-            Maximum degree defined by user.
-
-        Returns
-        -------
-        opt_col_points: array of shape (n_samples, n_params)
-            Collocation points.
-
-        """
-
-        raw_data = self.raw_data
-
-        # Guess the closest degree to self.n_samples
-        def M_uptoMax(deg):
-            result = []
-            for d in range(1, deg+1):
-                result.append(math.factorial(self.ndim+d) //
-                              (math.factorial(self.ndim) * math.factorial(d)))
-            return np.array(result)
-
-        guess_Deg = np.where(M_uptoMax(max_deg) > self.n_samples)[0][0]
-
-        c_points = np.zeros((guess_Deg+1, self.ndim))
-
-        def PolynomialPa(parIdx):
-            return apoly_construction(self.raw_data[parIdx], max_deg)
-
-        for i in range(self.ndim):
-            poly_coeffs = PolynomialPa(i)[guess_Deg+1][::-1]
-            c_points[:, i] = np.trim_zeros(np.roots(poly_coeffs))
-
-        #  Construction of optimal integration points
-        Prod = itertools.product(np.arange(1, guess_Deg+2), repeat=self.ndim)
-        sort_dig_unique_combos = np.array(list(filter(lambda x: x, Prod)))
-
-        # Ranking relatively mean
-        Temp = np.empty(shape=[0, guess_Deg+1])
-        for j in range(self.ndim):
-            s = abs(c_points[:, j]-np.mean(raw_data[j]))
-            Temp = np.append(Temp, [s], axis=0)
-        temp = Temp.T
-
-        index_CP = np.sort(temp, axis=0)
-        sort_cpoints = np.empty((0, guess_Deg+1))
-
-        for j in range(self.ndim):
-            sort_cp = c_points[index_CP[:, j], j]
-            sort_cpoints = np.vstack((sort_cpoints, sort_cp))
-
-        # Mapping of Combination to Cpoint Combination
-        sort_unique_combos = np.empty(shape=[0, self.ndim])
-        for i in range(len(sort_dig_unique_combos)):
-            sort_un_comb = []
-            for j in range(self.ndim):
-                SortUC = sort_cpoints[j, sort_dig_unique_combos[i, j]-1]
-                sort_un_comb.append(SortUC)
-                sort_uni_comb = np.asarray(sort_un_comb)
-            sort_unique_combos = np.vstack((sort_unique_combos, sort_uni_comb))
-
-        # Output the collocation points
-        if self.sampling_method.lower() == 'lscm':
-            opt_col_points = sort_unique_combos
-        else:
-            opt_col_points = sort_unique_combos[0:self.n_samples]
-
-        return opt_col_points
-
-    # -------------------------------------------------------------------------
-    def transform(self, X, params=None, method=None):
-        """
-        Transform the samples via either a Rosenblatt or an isoprobabilistic
-        transformation.
-
-        Parameters
-        ----------
-        X : array of shape (n_samples,n_params)
-            Samples to be transformed.
-        method : string
-            If transformation method is 'user' transform X, else just pass X.
-
-        Returns
-        -------
-        tr_X: array of shape (n_samples,n_params)
-            Transformed samples.
-
-        """
-        if self.InputObj.Rosenblatt:
-            self.origJDist, _ = self.build_dist(False)
-            if method == 'user':
-                tr_X = self.JDist.inv(self.origJDist.fwd(X.T)).T
-            else:
-                # Inverse to original spcace -- generate sample ED
-                tr_X = self.origJDist.inv(self.JDist.fwd(X.T)).T
-        else:
-            # Transform samples via an isoprobabilistic transformation
-            n_samples, n_params = X.shape
-            Inputs = self.InputObj
-            origJDist = self.JDist
-            poly_types = self.poly_types
-
-            disttypes = []
-            for par_i in range(n_params):
-                disttypes.append(Inputs.Marginals[par_i].dist_type)
-
-            # Pass non-transformed X, if arbitrary PCE is selected.
-            if None in disttypes or self.input_data_given or self.apce:
-                return X
-
-            cdfx = np.zeros((X.shape))
-            tr_X = np.zeros((X.shape))
-
-            for par_i in range(n_params):
-
-                # Extract the parameters of the original space
-                disttype = disttypes[par_i]
-                if disttype is not None:
-                    dist = origJDist[par_i]
-                else:
-                    dist = None
-                polytype = poly_types[par_i]
-                cdf = np.vectorize(lambda x: dist.cdf(x))
-
-                # Extract the parameters of the transformation space based on
-                # polyType
-                if polytype == 'legendre' or disttype == 'uniform':
-                    # Generate Y_Dists based
-                    params_Y = [-1, 1]
-                    dist_Y = st.uniform(loc=params_Y[0],
-                                        scale=params_Y[1]-params_Y[0])
-                    inv_cdf = np.vectorize(lambda x: dist_Y.ppf(x))
-
-                elif polytype == 'hermite' or disttype == 'norm':
-                    params_Y = [0, 1]
-                    dist_Y = st.norm(loc=params_Y[0], scale=params_Y[1])
-                    inv_cdf = np.vectorize(lambda x: dist_Y.ppf(x))
-
-                elif polytype == 'laguerre' or disttype == 'gamma':
-                    params_Y = [1, params[1]]
-                    dist_Y = st.gamma(loc=params_Y[0], scale=params_Y[1])
-                    inv_cdf = np.vectorize(lambda x: dist_Y.ppf(x))
-
-                # Compute CDF_x(X)
-                cdfx[:, par_i] = cdf(X[:, par_i])
-
-                # Compute invCDF_y(cdfx)
-                tr_X[:, par_i] = inv_cdf(cdfx[:, par_i])
-
-        return tr_X
-
-    # -------------------------------------------------------------------------
-    def fit_dist(self, y):
-        """
-        Fits the known distributions to the data.
-
-        Parameters
-        ----------
-        y : array of shape (n_samples)
-            Data to be fitted.
-
-        Returns
-        -------
-        sel_dist: string
-            Selected distribution type from `lognorm`, `norm`, `uniform` or
-            `expon`.
-        params : list
-            Parameters corresponding to the selected distibution type.
-
-        """
-        dist_results = []
-        params = {}
-        dist_names = ['lognorm', 'norm', 'uniform', 'expon']
-        for dist_name in dist_names:
-            dist = getattr(st, dist_name)
-
-            try:
-                if dist_name != 'lognorm':
-                    param = dist.fit(y)
-                else:
-                    param = dist.fit(np.exp(y), floc=0)
-            except:
-                param = dist.fit(y)
-
-            params[dist_name] = param
-            # Applying the Kolmogorov-Smirnov test
-            D, p = st.kstest(y, dist_name, args=param)
-            dist_results.append((dist_name, D))
-
-        # select the best fitted distribution
-        sel_dist, D = (min(dist_results, key=lambda item: item[1]))
-
-        if sel_dist == 'uniform':
-            params[sel_dist] = [params[sel_dist][0], params[sel_dist][0] +
-                                params[sel_dist][1]]
-        if D < 0.05:
-            return sel_dist, params[sel_dist]
-        else:
-            return None, None
-
-    # -------------------------------------------------------------------------
-    def _check_ranges(self, theta, ranges):
-        """
-        This function checks if theta lies in the given ranges.
-
-        Parameters
-        ----------
-        theta : array
-            Proposed parameter set.
-        ranges : nested list
-            List of the praremeter ranges.
-
-        Returns
-        -------
-        c : bool
-            If it lies in the given range, it return True else False.
-
-        """
-        c = True
-        # traverse in the list1
-        for i, bounds in enumerate(ranges):
-            x = theta[i]
-            # condition check
-            if x < bounds[0] or x > bounds[1]:
-                c = False
-                return c
-        return c
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/exploration.py b/examples/only-model/bayesvalidrox/surrogate_models/exploration.py
deleted file mode 100644
index cb3ccfcd4a15e26b2292973167d01efedd5a9a62..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/exploration.py
+++ /dev/null
@@ -1,468 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import numpy as np
-from scipy.spatial import distance
-
-
-class Exploration:
-    """
-    Created based on the Surrogate Modeling Toolbox (SUMO) [1].
-
-    [1] Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T. and Crombecq, K.,
-        2010. A surrogate modeling and adaptive sampling toolbox for computer
-        based design. Journal of machine learning research.-Cambridge, Mass.,
-        11, pp.2051-2055. sumo@sumo.intec.ugent.be - http://sumo.intec.ugent.be
-
-    Attributes
-    ----------
-    MetaModel : obj
-        MetaModel object.
-    n_candidate : int
-        Number of candidate samples.
-    mc_criterion : str
-        Selection crieterion. The default is `'mc-intersite-proj-th'`. Another
-        option is `'mc-intersite-proj'`.
-    w : int
-        Number of random points in the domain for each sample of the
-        training set.
-    """
-
-    def __init__(self, MetaModel, n_candidate,
-                 mc_criterion='mc-intersite-proj-th'):
-        self.MetaModel = MetaModel
-        self.Marginals = []
-        self.n_candidate = n_candidate
-        self.mc_criterion = mc_criterion
-        self.w = 100
-
-    def get_exploration_samples(self):
-        """
-        This function generates candidates to be selected as new design and
-        their associated exploration scores.
-
-        Returns
-        -------
-        all_candidates : array of shape (n_candidate, n_params)
-            A list of samples.
-        exploration_scores: arrays of shape (n_candidate)
-            Exploration scores.
-        """
-        MetaModel = self.MetaModel
-        explore_method = MetaModel.ExpDesign.explore_method
-
-        print("\n")
-        print(f' The {explore_method}-Method is selected as the exploration '
-              'method.')
-        print("\n")
-
-        if explore_method == 'Voronoi':
-            # Generate samples using the Voronoi method
-            all_candidates, exploration_scores = self.get_vornoi_samples()
-        else:
-            # Generate samples using the MC method
-            all_candidates, exploration_scores = self.get_mc_samples()
-
-        return all_candidates, exploration_scores
-
-    # -------------------------------------------------------------------------
-    def get_vornoi_samples(self):
-        """
-        This function generates samples based on voronoi cells and their
-        corresponding scores
-
-        Returns
-        -------
-        new_samples : array of shape (n_candidate, n_params)
-            A list of samples.
-        exploration_scores: arrays of shape (n_candidate)
-            Exploration scores.
-        """
-
-        mc_criterion = self.mc_criterion
-        n_candidate = self.n_candidate
-        # Get the Old ExpDesign #samples
-        old_ED_X = self.MetaModel.ExpDesign.X
-        ndim = old_ED_X.shape[1]
-
-        # calculate error #averageErrors
-        error_voronoi, all_candidates = self.approximate_voronoi(
-            self.w, old_ED_X
-            )
-
-        # Pick the best candidate point in the voronoi cell
-        # for each best sample
-        selected_samples = np.empty((0, ndim))
-        bad_samples = []
-
-        for index in range(len(error_voronoi)):
-
-            # get candidate new samples from voronoi tesselation
-            candidates = self.closest_points[index]
-
-            # get total number of candidates
-            n_new_samples = candidates.shape[0]
-
-            # still no candidate samples around this one, skip it!
-            if n_new_samples == 0:
-                print('The following sample has been skipped because there '
-                      'were no candidate samples around it...')
-                print(old_ED_X[index])
-                bad_samples.append(index)
-                continue
-
-            # find candidate that is farthest away from any existing sample
-            max_min_distance = 0
-            best_candidate = 0
-            min_intersite_dist = np.zeros((n_new_samples))
-            min_projected_dist = np.zeros((n_new_samples))
-
-            for j in range(n_new_samples):
-
-                new_samples = np.vstack((old_ED_X, selected_samples))
-
-                # find min distorted distance from all other samples
-                euclidean_dist = self._build_dist_matrix_point(
-                    new_samples, candidates[j], do_sqrt=True)
-                min_euclidean_dist = np.min(euclidean_dist)
-                min_intersite_dist[j] = min_euclidean_dist
-
-                # Check if this is the maximum minimum distance from all other
-                # samples
-                if min_euclidean_dist >= max_min_distance:
-                    max_min_distance = min_euclidean_dist
-                    best_candidate = j
-
-                # Projected distance
-                projected_dist = distance.cdist(
-                    new_samples, [candidates[j]], 'chebyshev')
-                min_projected_dist[j] = np.min(projected_dist)
-
-            if mc_criterion == 'mc-intersite-proj':
-                weight_euclidean_dist = 0.5 * ((n_new_samples+1)**(1/ndim) - 1)
-                weight_projected_dist = 0.5 * (n_new_samples+1)
-                total_dist_scores = weight_euclidean_dist * min_intersite_dist
-                total_dist_scores += weight_projected_dist * min_projected_dist
-
-            elif mc_criterion == 'mc-intersite-proj-th':
-                alpha = 0.5  # chosen (tradeoff)
-                d_min = 2 * alpha / n_new_samples
-                if any(min_projected_dist < d_min):
-                    candidates = np.delete(
-                        candidates, [min_projected_dist < d_min], axis=0
-                        )
-                    total_dist_scores = np.delete(
-                        min_intersite_dist, [min_projected_dist < d_min],
-                        axis=0
-                        )
-                else:
-                    total_dist_scores = min_intersite_dist
-            else:
-                raise NameError(
-                    'The MC-Criterion you requested is not available.'
-                    )
-
-            # Add the best candidate to the list of new samples
-            best_candidate = np.argsort(total_dist_scores)[::-1][:n_candidate]
-            selected_samples = np.vstack(
-                (selected_samples, candidates[best_candidate])
-                )
-
-        self.new_samples = selected_samples
-        self.exploration_scores = np.delete(error_voronoi, bad_samples, axis=0)
-
-        return self.new_samples, self.exploration_scores
-
-    # -------------------------------------------------------------------------
-    def get_mc_samples(self, all_candidates=None):
-        """
-        This function generates random samples based on Global Monte Carlo
-        methods and their corresponding scores, based on [1].
-
-        [1] Crombecq, K., Laermans, E. and Dhaene, T., 2011. Efficient
-            space-filling and non-collapsing sequential design strategies for
-            simulation-based modeling. European Journal of Operational Research
-            , 214(3), pp.683-696.
-            DOI: https://doi.org/10.1016/j.ejor.2011.05.032
-
-        Implemented methods to compute scores:
-            1) mc-intersite-proj
-            2) mc-intersite-proj-th
-
-        Arguments
-        ---------
-        all_candidates : array, optional
-            Samples to compute the scores for. The default is `None`. In this
-            case, samples will be generated by defined model input marginals.
-
-        Returns
-        -------
-        new_samples : array of shape (n_candidate, n_params)
-            A list of samples.
-        exploration_scores: arrays of shape (n_candidate)
-            Exploration scores.
-        """
-        MetaModel = self.MetaModel
-        explore_method = MetaModel.ExpDesign.explore_method
-        mc_criterion = self.mc_criterion
-        if all_candidates is None:
-            n_candidate = self.n_candidate
-        else:
-            n_candidate = all_candidates.shape[0]
-
-        # Get the Old ExpDesign #samples
-        old_ED_X = MetaModel.ExpDesign.X
-        ndim = old_ED_X.shape[1]
-
-        # ----- Compute the number of random points -----
-        if all_candidates is None:
-            # Generate MC Samples
-            all_candidates = MetaModel.ExpDesign.generate_samples(
-                self.n_candidate, explore_method
-                )
-        self.all_candidates = all_candidates
-
-        # initialization
-        min_intersite_dist = np.zeros((n_candidate))
-        min_projected_dist = np.zeros((n_candidate))
-
-        for i, candidate in enumerate(all_candidates):
-
-            # find candidate that is farthest away from any existing sample
-            maxMinDistance = 0
-
-            # find min distorted distance from all other samples
-            euclidean_dist = self._build_dist_matrix_point(
-                old_ED_X, candidate, do_sqrt=True
-                )
-            min_euclidean_dist = np.min(euclidean_dist)
-            min_intersite_dist[i] = min_euclidean_dist
-
-            # Check if this is the maximum minimum distance from all other
-            # samples
-            if min_euclidean_dist >= maxMinDistance:
-                maxMinDistance = min_euclidean_dist
-
-            # Projected distance
-            projected_dist = self._build_dist_matrix_point(
-                old_ED_X, candidate, 'chebyshev'
-                )
-            min_projected_dist[i] = np.min(projected_dist)
-
-        if mc_criterion == 'mc-intersite-proj':
-            weight_euclidean_dist = ((n_candidate+1)**(1/ndim) - 1) * 0.5
-            weight_projected_dist = (n_candidate+1) * 0.5
-            total_dist_scores = weight_euclidean_dist * min_intersite_dist
-            total_dist_scores += weight_projected_dist * min_projected_dist
-
-        elif mc_criterion == 'mc-intersite-proj-th':
-            alpha = 0.5  # chosen (tradeoff)
-            d_min = 2 * alpha / n_candidate
-            if any(min_projected_dist < d_min):
-                all_candidates = np.delete(
-                    all_candidates, [min_projected_dist < d_min], axis=0
-                    )
-                total_dist_scores = np.delete(
-                    min_intersite_dist, [min_projected_dist < d_min], axis=0
-                    )
-            else:
-                total_dist_scores = min_intersite_dist
-        else:
-            raise NameError('The MC-Criterion you requested is not available.')
-
-        self.new_samples = all_candidates
-        self.exploration_scores = total_dist_scores
-        self.exploration_scores /= np.nansum(total_dist_scores)
-
-        return self.new_samples, self.exploration_scores
-
-    # -------------------------------------------------------------------------
-    def approximate_voronoi(self, w, samples):
-        """
-        An approximate (monte carlo) version of Matlab's voronoi command.
-
-        Arguments
-        ---------
-        samples : array
-            Old experimental design to be used as center points for voronoi
-            cells.
-
-        Returns
-        -------
-        areas : array
-            An approximation of the voronoi cells' areas.
-        all_candidates: list of arrays
-            A list of samples in each voronoi cell.
-        """
-        MetaModel = self.MetaModel
-
-        n_samples = samples.shape[0]
-        ndim = samples.shape[1]
-
-        # Compute the number of random points
-        n_points = w * samples.shape[0]
-        # Generate w random points in the domain for each sample
-        points = MetaModel.ExpDesign.generate_samples(n_points, 'random')
-        self.all_candidates = points
-
-        # Calculate the nearest sample to each point
-        self.areas = np.zeros((n_samples))
-        self.closest_points = [np.empty((0, ndim)) for i in range(n_samples)]
-
-        # Compute the minimum distance from all the samples of old_ED_X for
-        # each test point
-        for idx in range(n_points):
-            # calculate the minimum distance
-            distances = self._build_dist_matrix_point(
-                samples, points[idx], do_sqrt=True
-                )
-            closest_sample = np.argmin(distances)
-
-            # Add to the voronoi list of the closest sample
-            self.areas[closest_sample] = self.areas[closest_sample] + 1
-            prev_closest_points = self.closest_points[closest_sample]
-            self.closest_points[closest_sample] = np.vstack(
-                (prev_closest_points, points[idx])
-                )
-
-        # Divide by the amount of points to get the estimated volume of each
-        # voronoi cell
-        self.areas /= n_points
-
-        self.perc = np.max(self.areas * 100)
-
-        self.errors = self.areas
-
-        return self.areas, self.all_candidates
-
-    # -------------------------------------------------------------------------
-    def _build_dist_matrix_point(self, samples, point, method='euclidean',
-                                 do_sqrt=False):
-        """
-        Calculates the intersite distance of all points in samples from point.
-
-        Parameters
-        ----------
-        samples : array of shape (n_samples, n_params)
-            The old experimental design.
-        point : array
-            A candidate point.
-        method : str
-            Distance method.
-        do_sqrt : bool, optional
-            Whether to return distances or squared distances. The default is
-            `False`.
-
-        Returns
-        -------
-        distances : array
-            Distances.
-
-        """
-        distances = distance.cdist(samples, np.array([point]), method)
-
-        # do square root?
-        if do_sqrt:
-            return distances
-        else:
-            return distances**2
-
-#if __name__ == "__main__":
-#    import scipy.stats as stats
-#    import matplotlib.pyplot as plt
-#    import matplotlib as mpl
-#    import matplotlib.cm as cm
-#    plt.rc('font', family='sans-serif', serif='Arial')
-#    plt.rc('figure', figsize = (12, 8))
-#    
-#    def plotter(old_ED_X, all_candidates, exploration_scores):
-#        global Bounds
-#        
-#        from scipy.spatial import Voronoi, voronoi_plot_2d
-#        vor = Voronoi(old_ED_X)
-#        
-#        fig = voronoi_plot_2d(vor)
-#        
-#        # find min/max values for normalization
-##        minima = min(exploration_scores)
-##        maxima = max(exploration_scores)
-##        
-##        # normalize chosen colormap
-##        norm = mpl.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
-##        mapper = cm.ScalarMappable(norm=norm, cmap=cm.Blues_r)
-##        
-##        for r in range(len(vor.point_region)):
-##            region = vor.regions[vor.point_region[r]]
-##            if not -1 in region:
-##                polygon = [vor.vertices[i] for i in region]
-##                plt.fill(*zip(*polygon), color=mapper.to_rgba(exploration_scores[r]))
-#        
-#        
-#        ax1 = fig.add_subplot(111)
-#        
-#        ax1.scatter(old_ED_X[:,0], old_ED_X[:,1], s=10, c='r', marker="s", label='Old Design Points')
-#        for i in range(old_ED_X.shape[0]):
-#            txt = 'p'+str(i+1)
-#            ax1.annotate(txt, (old_ED_X[i,0],old_ED_X[i,1]))
-#            
-##        for i in range(NrofCandGroups):
-##            Candidates = all_candidates['group_'+str(i+1)]
-##            ax1.scatter(Candidates[:,0],Candidates[:,1], s=10, c='b', marker="o", label='Design candidates')
-#        ax1.scatter(all_candidates[:,0],all_candidates[:,1], s=10, c='b', marker="o", label='Design candidates')
-#        
-#        ax1.set_xlim(Bounds[0][0], Bounds[0][1])
-#        ax1.set_ylim(Bounds[1][0], Bounds[1][1])
-#        
-#        plt.legend(loc='best');
-#        plt.show()
-#        
-#    def voronoi_volumes(points):
-#        from scipy.spatial import Voronoi, ConvexHull
-#        v = Voronoi(points)
-#        vol = np.zeros(v.npoints)
-#        
-#        for i, reg_num in enumerate(v.point_region):
-#            indices = v.regions[reg_num]
-#            if -1 in indices: # some regions can be opened
-#                vol[i] = np.inf
-#            else:
-#                
-#                #print("reg_num={0: 3.3f} X1={1: 3.3f} X2={2: 3.3f}".format(reg_num, v.points[reg_num-1, 0], v.points[reg_num-1, 1]))
-#                vol[i] = ConvexHull(v.vertices[indices]).volume
-#        
-#        print('-'*40)
-#        for i in range(nrofSamples):
-#            print("idx={0:d} X1={1: 3.3f} X2={2: 3.3f} Volume={3: 3.3f}".format(i+1, v.points[i, 0], v.points[i, 1], vol[i]))
-#        
-#        return vol    
-#    
-#    NofPa = 2
-#    
-#    Bounds = ((-5,10), (0,15))
-#    
-#    nrofSamples = 10
-#    old_ED_X = np.zeros((nrofSamples, NofPa))
-#    for idx in range(NofPa):
-#        Loc = Bounds[idx][0]
-#        Scale = Bounds[idx][1] - Bounds[idx][0]
-#        old_ED_X[:,idx] = stats.uniform(loc=Loc, scale=Scale).rvs(size=nrofSamples)
-#    
-#    
-#    nNewCandidate = 40
-#    
-#    # New Function
-#    volumes = voronoi_volumes(old_ED_X)
-#    
-#    
-#    # SUMO
-#    Exploration = Exploration(Bounds, old_ED_X, nNewCandidate)
-#    
-#    #all_candidates, Score = Exploration.get_vornoi_samples()
-#    all_candidates, Score = Exploration.get_mc_samples()
-#    
-#    print('-'*40)
-##    for i in range(nrofSamples):
-##        print("idx={0:d} X1={1: 3.3f} X2={2: 3.3f} Volume={3: 3.3f}".format(i+1, old_ED_X[i,0], old_ED_X[i,1], vornoi.areas[i]))
-#        
-#    plotter(old_ED_X, all_candidates, volumes)
-    
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/glexindex.py b/examples/only-model/bayesvalidrox/surrogate_models/glexindex.py
deleted file mode 100644
index 6d9ba3c2f3c02be8e2ca04be6f95779ed0825ad8..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/glexindex.py
+++ /dev/null
@@ -1,210 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Multi indices for monomial exponents.
-Credit: Jonathan Feinberg
-https://github.com/jonathf/numpoly/blob/master/numpoly/utils/glexindex.py
-"""
-
-import numpy
-import numpy.typing
-
-
-def glexindex(start, stop=None, dimensions=1, cross_truncation=1.,
-              graded=False, reverse=False):
-    """
-    Generate graded lexicographical multi-indices for the monomial exponents.
-    Args:
-        start (Union[int, numpy.ndarray]):
-            The lower order of the indices. If array of int, counts as lower
-            bound for each axis.
-        stop (Union[int, numpy.ndarray, None]):
-            The maximum shape included. If omitted: stop <- start; start <- 0
-            If int is provided, set as largest total order. If array of int,
-            set as upper bound for each axis.
-        dimensions (int):
-            The number of dimensions in the expansion.
-        cross_truncation (float, Tuple[float, float]):
-            Use hyperbolic cross truncation scheme to reduce the number of
-            terms in expansion. If two values are provided, first is low bound
-            truncation, while the latter upper bound. If only one value, upper
-            bound is assumed.
-        graded (bool):
-            Graded sorting, meaning the indices are always sorted by the index
-            sum. E.g. ``(2, 2, 2)`` has a sum of 6, and will therefore be
-            consider larger than both ``(3, 1, 1)`` and ``(1, 1, 3)``.
-        reverse (bool):
-            Reversed lexicographical sorting meaning that ``(1, 3)`` is
-            considered smaller than ``(3, 1)``, instead of the opposite.
-    Returns:
-        list:
-            Order list of indices.
-    Examples:
-        >>> numpoly.glexindex(4).tolist()
-        [[0], [1], [2], [3]]
-        >>> numpoly.glexindex(2, dimensions=2).tolist()
-        [[0, 0], [1, 0], [0, 1]]
-        >>> numpoly.glexindex(start=2, stop=3, dimensions=2).tolist()
-        [[2, 0], [1, 1], [0, 2]]
-        >>> numpoly.glexindex([1, 2, 3]).tolist()
-        [[0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 2]]
-        >>> numpoly.glexindex([1, 2, 3], cross_truncation=numpy.inf).tolist()
-        [[0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [0, 0, 2], [0, 1, 2]]
-    """
-    if stop is None:
-        start, stop = 0, start
-    start = numpy.array(start, dtype=int).flatten()
-    stop = numpy.array(stop, dtype=int).flatten()
-    start, stop, _ = numpy.broadcast_arrays(start, stop, numpy.empty(dimensions))
-
-    cross_truncation = cross_truncation*numpy.ones(2)
-    indices = _glexindex(start, stop, cross_truncation)
-    if indices.size:
-        indices = indices[glexsort(indices.T, graded=graded, reverse=reverse)]
-    return indices
-
-
-def _glexindex(start, stop, cross_truncation=1.):
-    """Backend for the glexindex function."""
-    # At the beginning the current list of indices just ranges over the
-    # last dimension.
-    bound = stop.max()
-    dimensions = len(start)
-    start = numpy.clip(start, a_min=0, a_max=None)
-    dtype = numpy.uint8 if bound < 256 else numpy.uint16
-    range_ = numpy.arange(bound, dtype=dtype)
-    indices = range_[:, numpy.newaxis]
-
-    for idx in range(dimensions-1):
-
-        # Truncate at each step to keep memory usage low
-        if idx:
-            indices = indices[cross_truncate(indices, bound-1, cross_truncation[1])]
-
-        # Repeats the current set of indices.
-        # e.g. [0,1,2] -> [0,1,2,0,1,2,...,0,1,2]
-        indices = numpy.tile(indices, (bound, 1))
-
-        # Stretches ranges over the new dimension.
-        # e.g. [0,1,2] -> [0,0,...,0,1,1,...,1,2,2,...,2]
-        front = range_.repeat(len(indices)//bound)[:, numpy.newaxis]
-
-        # Puts them two together.
-        indices = numpy.column_stack((front, indices))
-
-    # Complete the truncation scheme
-    if dimensions == 1:
-        indices = indices[(indices >= start) & (indices < bound)]
-    else:
-        lower = cross_truncate(indices, start-1, cross_truncation[0])
-        upper = cross_truncate(indices, stop-1, cross_truncation[1])
-        indices = indices[lower ^ upper]
-
-    return numpy.array(indices, dtype=int).reshape(-1, dimensions)
-
-
-def cross_truncate(indices, bound, norm):
-    r"""
-    Truncate of indices using L_p norm.
-    .. math:
-        L_p(x) = \sum_i |x_i/b_i|^p ^{1/p} \leq 1
-    where :math:`b_i` are bounds that each :math:`x_i` should follow.
-    Args:
-        indices (Sequence[int]):
-            Indices to be truncated.
-        bound (int, Sequence[int]):
-            The bound function for witch the indices can not be larger than.
-        norm (float, Sequence[float]):
-            The `p` in the `L_p`-norm. Support includes both `L_0` and `L_inf`.
-    Returns:
-        Boolean indices to ``indices`` with True for each index where the
-        truncation criteria holds.
-    Examples:
-        >>> indices = numpy.array(numpy.mgrid[:10, :10]).reshape(2, -1).T
-        >>> indices[cross_truncate(indices, 2, norm=0)].T
-        array([[0, 0, 0, 1, 2],
-               [0, 1, 2, 0, 0]])
-        >>> indices[cross_truncate(indices, 2, norm=1)].T
-        array([[0, 0, 0, 1, 1, 2],
-               [0, 1, 2, 0, 1, 0]])
-        >>> indices[cross_truncate(indices, [0, 1], norm=1)].T
-        array([[0, 0],
-               [0, 1]])
-    """
-    assert norm >= 0, "negative L_p norm not allowed"
-    bound = numpy.asfarray(bound).flatten()*numpy.ones(indices.shape[1])
-
-    if numpy.any(bound < 0):
-        return numpy.zeros((len(indices),), dtype=bool)
-
-    if numpy.any(bound == 0):
-        out = numpy.all(indices[:, bound == 0] == 0, axis=-1)
-        if numpy.any(bound):
-            out &= cross_truncate(indices[:, bound != 0], bound[bound != 0], norm=norm)
-        return out
-
-    if norm == 0:
-        out = numpy.sum(indices > 0, axis=-1) <= 1
-        out[numpy.any(indices > bound, axis=-1)] = False
-    elif norm == numpy.inf:
-        out = numpy.max(indices/bound, axis=-1) <= 1
-    else:
-        out = numpy.sum((indices/bound)**norm, axis=-1)**(1./norm) <= 1
-
-    assert numpy.all(out[numpy.all(indices == 0, axis=-1)])
-
-    return out
-
-
-def glexsort(
-    keys: numpy.typing.ArrayLike,
-    graded: bool = False,
-    reverse: bool = False,
-) -> numpy.ndarray:
-    """
-    Sort keys using graded lexicographical ordering.
-    Same as ``numpy.lexsort``, but also support graded and reverse
-    lexicographical ordering.
-    Args:
-        keys:
-            Values to sort.
-        graded:
-            Graded sorting, meaning the indices are always sorted by the index
-            sum. E.g. ``(2, 2, 2)`` has a sum of 6, and will therefore be
-            consider larger than both ``(3, 1, 1)`` and ``(1, 1, 3)``.
-        reverse:
-            Reverse lexicographical sorting meaning that ``(1, 3)`` is
-            considered smaller than ``(3, 1)``, instead of the opposite.
-    Returns:
-        Array of indices that sort the keys along the specified axis.
-    Examples:
-        >>> indices = numpy.array([[0, 0, 0, 1, 2, 1],
-        ...                        [1, 2, 0, 0, 0, 1]])
-        >>> indices[:, numpy.lexsort(indices)]
-        array([[0, 1, 2, 0, 1, 0],
-               [0, 0, 0, 1, 1, 2]])
-        >>> indices[:, numpoly.glexsort(indices)]
-        array([[0, 1, 2, 0, 1, 0],
-               [0, 0, 0, 1, 1, 2]])
-        >>> indices[:, numpoly.glexsort(indices, reverse=True)]
-        array([[0, 0, 0, 1, 1, 2],
-               [0, 1, 2, 0, 1, 0]])
-        >>> indices[:, numpoly.glexsort(indices, graded=True)]
-        array([[0, 1, 0, 2, 1, 0],
-               [0, 0, 1, 0, 1, 2]])
-        >>> indices[:, numpoly.glexsort(indices, graded=True, reverse=True)]
-        array([[0, 0, 1, 0, 1, 2],
-               [0, 1, 0, 2, 1, 0]])
-        >>> indices = numpy.array([4, 5, 6, 3, 2, 1])
-        >>> indices[numpoly.glexsort(indices)]
-        array([1, 2, 3, 4, 5, 6])
-    """
-    keys_ = numpy.atleast_2d(keys)
-    if reverse:
-        keys_ = keys_[::-1]
-
-    indices = numpy.array(numpy.lexsort(keys_))
-    if graded:
-        indices = indices[numpy.argsort(
-            numpy.sum(keys_[:, indices], axis=0))].T
-    return indices
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/inputs.py b/examples/only-model/bayesvalidrox/surrogate_models/inputs.py
deleted file mode 100644
index 783e82b053cc458be712b588b7fde3a0f3c8decb..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/inputs.py
+++ /dev/null
@@ -1,76 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-class Input:
-    """
-    A class to define the uncertain input parameters.
-
-    Attributes
-    ----------
-    Marginals : obj
-        Marginal objects. See `inputs.Marginal`.
-    Rosenblatt : bool
-        If Rossenblatt transformation is required for the dependent input
-        parameters.
-
-    Examples
-    -------
-    Marginals can be defined as following:
-
-    >>> Inputs.add_marginals()
-    >>> Inputs.Marginals[0].name = 'X_1'
-    >>> Inputs.Marginals[0].dist_type = 'uniform'
-    >>> Inputs.Marginals[0].parameters = [-5, 5]
-
-    If there is no common data is avaliable, the input data can be given
-    as following:
-
-    >>> Inputs.add_marginals()
-    >>> Inputs.Marginals[0].name = 'X_1'
-    >>> Inputs.Marginals[0].input_data = input_data
-    """
-    poly_coeffs_flag = True
-
-    def __init__(self):
-        self.Marginals = []
-        self.Rosenblatt = False
-
-    def add_marginals(self):
-        """
-        Adds a new Marginal object to the input object.
-
-        Returns
-        -------
-        None.
-
-        """
-        self.Marginals.append(Marginal())
-
-
-# Nested class
-class Marginal:
-    """
-    An object containing the specifications of the marginals for each uncertain
-    parameter.
-
-    Attributes
-    ----------
-    name : string
-        Name of the parameter. The default is `'$x_1$'`.
-    dist_type : string
-        Name of the distribution. The default is `None`.
-    parameters : list
-        List of the parameters corresponding to the distribution type. The
-        default is `None`.
-    input_data : array
-        Available input data. The default is `[]`.
-    moments : list
-        List of the moments.
-    """
-
-    def __init__(self):
-        self.name = '$x_1$'
-        self.dist_type = None
-        self.parameters = None
-        self.input_data = []
-        self.moments = None
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/meta_model_engine.py b/examples/only-model/bayesvalidrox/surrogate_models/meta_model_engine.py
deleted file mode 100644
index 7ca9e9cca220f2efa4c964a067a8f839cd188e1a..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/meta_model_engine.py
+++ /dev/null
@@ -1,2175 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Jan 28 09:21:18 2022
-
-@author: farid
-"""
-import numpy as np
-from scipy import stats, signal, linalg, sparse
-from scipy.spatial import distance
-from copy import deepcopy, copy
-from tqdm import tqdm
-import scipy.optimize as opt
-from sklearn.metrics import mean_squared_error
-import multiprocessing
-import matplotlib.pyplot as plt
-import sys
-import os
-import gc
-import seaborn as sns
-from joblib import Parallel, delayed
-
-import bayesvalidrox
-from .exploration import Exploration
-from bayesvalidrox.bayes_inference.bayes_inference import BayesInference
-from bayesvalidrox.bayes_inference.discrepancy import Discrepancy
-import pandas as pd
-
-
-class MetaModelEngine():
-    """ Sequential experimental design
-    This class provieds method for trainig the meta-model in an iterative
-    manners.
-    The main method to execute the task is `train_seq_design`, which
-      recieves a model object and returns the trained metamodel.
-    """
-
-    def __init__(self, meta_model_opts):
-        self.MetaModel = meta_model_opts
-
-    # -------------------------------------------------------------------------
-    def run(self):
-
-        Model = self.MetaModel.ModelObj
-        self.MetaModel.n_params = len(self.MetaModel.input_obj.Marginals)
-        self.MetaModel.ExpDesignFlag = 'normal'
-        # --- Prepare pce degree ---
-        if self.MetaModel.meta_model_type.lower() == 'pce':
-            if type(self.MetaModel.pce_deg) is not np.ndarray:
-                self.MetaModel.pce_deg = np.array(self.MetaModel.pce_deg)
-
-        if self.MetaModel.ExpDesign.method == 'normal':
-            self.MetaModel.ExpDesignFlag = 'normal'
-            self.MetaModel.train_norm_design(parallel = False)
-
-        elif self.MetaModel.ExpDesign.method == 'sequential':
-            self.train_seq_design()
-        else:
-            raise Exception("The method for experimental design you requested"
-                            " has not been implemented yet.")
-
-        # Zip the model run directories
-        if self.MetaModel.ModelObj.link_type.lower() == 'pylink' and\
-           self.MetaModel.ExpDesign.sampling_method.lower() != 'user':
-            Model.zip_subdirs(Model.name, f'{Model.name}_')
-
-    # -------------------------------------------------------------------------
-    def train_seq_design(self):
-        """
-        Starts the adaptive sequential design for refining the surrogate model
-        by selecting training points in a sequential manner.
-
-        Returns
-        -------
-        MetaModel : object
-            Meta model object.
-
-        """
-        # Set model to have shorter call 
-        Model = self.MetaModel.ModelObj
-        # MetaModel = self.MetaModel
-        self.Model = Model
-
-        # Initialization
-        self.MetaModel.SeqModifiedLOO = {}
-        self.MetaModel.seqValidError = {}
-        self.MetaModel.SeqBME = {}
-        self.MetaModel.SeqKLD = {}
-        self.MetaModel.SeqDistHellinger = {}
-        self.MetaModel.seqRMSEMean = {}
-        self.MetaModel.seqRMSEStd = {}
-        self.MetaModel.seqMinDist = []
-
-        # Determine the metamodel type
-        if self.MetaModel.meta_model_type.lower() != 'gpe':
-            pce = True
-        else:
-            pce = False
-        # If given, use mc reference data
-        mc_ref = True if bool(Model.mc_reference) else False
-        if mc_ref:
-            Model.read_mc_reference()
-
-        # if valid_samples not defined, do so now
-        if not hasattr(self.MetaModel, 'valid_samples'):
-            self.MetaModel.valid_samples = []
-            self.MetaModel.valid_model_runs = []
-            self.MetaModel.valid_likelihoods = []
-
-        # Get the parameters
-        max_n_samples = self.MetaModel.ExpDesign.n_max_samples
-        mod_LOO_threshold = self.MetaModel.ExpDesign.mod_LOO_threshold
-        n_canddidate = self.MetaModel.ExpDesign.n_canddidate
-        post_snapshot = self.MetaModel.ExpDesign.post_snapshot
-        n_replication = self.MetaModel.ExpDesign.n_replication
-        util_func = self.MetaModel.ExpDesign.util_func
-        output_name = Model.Output.names
-        validError = None
-        # Handle if only one UtilityFunctions is provided
-        if not isinstance(util_func, list):
-            util_func = [self.MetaModel.ExpDesign.util_func]
-
-        # Read observations or MCReference
-        if len(Model.observations) != 0 or Model.meas_file is not None:
-            self.observations = Model.read_observation()
-            obs_data = self.observations
-        else:
-            obs_data = []
-            TotalSigma2 = {}
-            
-        # TODO: ---------- Initial self.MetaModel ----------
-        # First run MetaModel on non-sequential design
-        self.MetaModel.train_norm_design(parallel = False)
-        initMetaModel = deepcopy(self.MetaModel)
-
-        # Validation error if validation set is provided. - use as initial errors
-        if self.MetaModel.valid_model_runs:
-            init_rmse, init_valid_error = self.__validError(initMetaModel)
-            init_valid_error = list(init_valid_error.values())
-        else:
-            init_rmse = None
-
-        # Check if discrepancy is provided
-        if len(obs_data) != 0 and hasattr(self.MetaModel, 'Discrepancy'):
-            TotalSigma2 = self.MetaModel.Discrepancy.parameters
-
-            # Calculate the initial BME
-            out = self.__BME_Calculator(
-                initMetaModel, obs_data, TotalSigma2, init_rmse)
-            init_BME, init_KLD, init_post, init_likes, init_dist_hellinger = out
-            print(f"\nInitial BME: {init_BME:.2f}")
-            print(f"Initial KLD: {init_KLD:.2f}")
-
-            # Posterior snapshot (initial)
-            if post_snapshot:
-                parNames = self.MetaModel.ExpDesign.par_names
-                print('Posterior snapshot (initial) is being plotted...')
-                self.__posteriorPlot(init_post, parNames, 'SeqPosterior_init')
-
-        # Check the convergence of the Mean & Std
-        if mc_ref and pce:
-            init_rmse_mean, init_rmse_std = self.__error_Mean_Std()
-            print(f"Initial Mean and Std error: {init_rmse_mean:.2f},"
-                  f" {init_rmse_std:.2f}")
-
-        # Read the initial experimental design
-        # TODO: this sequential, or the non-sequential samples??
-        Xinit = initMetaModel.ExpDesign.X
-        init_n_samples = len(initMetaModel.ExpDesign.X)
-        initYprev = initMetaModel.ModelOutputDict
-        initLCerror = initMetaModel.LCerror
-        n_itrs = max_n_samples - init_n_samples
-
-        # Read the initial ModifiedLOO
-        if pce:
-            Scores_all, varExpDesignY = [], []
-            for out_name in output_name:
-                y = self.MetaModel.ExpDesign.Y[out_name]
-                Scores_all.append(list(
-                    self.MetaModel.score_dict['b_1'][out_name].values()))
-                if self.MetaModel.dim_red_method.lower() == 'pca':
-                    pca = self.MetaModel.pca['b_1'][out_name]
-                    components = pca.transform(y)
-                    varExpDesignY.append(np.var(components, axis=0))
-                else:
-                    varExpDesignY.append(np.var(y, axis=0))
-
-            Scores = [item for sublist in Scores_all for item in sublist]
-            weights = [item for sublist in varExpDesignY for item in sublist]
-            init_mod_LOO = [np.average([1-score for score in Scores],
-                                       weights=weights)]
-
-        prevMetaModel_dict = {}
-        # Replicate the sequential design
-        for repIdx in range(n_replication):                     # TODO: what does this do?
-            print(f'\n>>>> Replication: {repIdx+1}<<<<')
-
-            # To avoid changes ub original aPCE object
-            self.MetaModel.ExpDesign.X = Xinit
-            self.MetaModel.ExpDesign.Y = initYprev
-            self.MetaModel.LCerror = initLCerror
-
-            for util_f in util_func:                            # TODO: recheck choices for this
-                print(f'\n>>>> Utility Function: {util_f} <<<<')
-                # To avoid changes ub original aPCE object
-                self.MetaModel.ExpDesign.X = Xinit
-                self.MetaModel.ExpDesign.Y = initYprev
-                self.MetaModel.LCerror = initLCerror
-
-                # Set the experimental design
-                Xprev = Xinit
-                total_n_samples = init_n_samples
-                Yprev = initYprev
-
-                Xfull = []
-                Yfull = []
-
-                # Store the initial ModifiedLOO
-                if pce:
-                    print("\nInitial ModifiedLOO:", init_mod_LOO)
-                    SeqModifiedLOO = np.array(init_mod_LOO)
-
-                if len(self.MetaModel.valid_model_runs) != 0:
-                    SeqValidError = np.array(init_valid_error)
-
-                # Check if data is provided
-                if len(obs_data) != 0:
-                    SeqBME = np.array([init_BME])
-                    SeqKLD = np.array([init_KLD])
-                    SeqDistHellinger = np.array([init_dist_hellinger])
-
-                if mc_ref and pce:
-                    seqRMSEMean = np.array([init_rmse_mean])
-                    seqRMSEStd = np.array([init_rmse_std])
-
-                # ------- Start Sequential Experimental Design -------
-                postcnt = 1
-                for itr_no in range(1, n_itrs+1):
-                    print(f'\n>>>> Iteration number {itr_no} <<<<')
-
-                    # Save the metamodel prediction before updating
-                    prevMetaModel_dict[itr_no] = deepcopy(self.MetaModel)           # Write last MetaModel here
-                    if itr_no > 1:
-                        pc_model = prevMetaModel_dict[itr_no-1]                     
-                        self._y_hat_prev, _ = pc_model.eval_metamodel(              # What's the use of this here??
-                            samples=Xfull[-1].reshape(1, -1))
-                        del prevMetaModel_dict[itr_no-1]                            # Delete second to last metamodel here?
-
-                    # Optimal Bayesian Design
-                    self.MetaModel.ExpDesignFlag = 'sequential'
-                    Xnew, updatedPrior = self.opt_SeqDesign(TotalSigma2,            # TODO: check in this!!
-                                                            n_canddidate,
-                                                            util_f)
-                    S = np.min(distance.cdist(Xinit, Xnew, 'euclidean'))
-                    self.MetaModel.seqMinDist.append(S)
-                    print(f"\nmin Dist from OldExpDesign: {S:2f}")
-                    print("\n")
-
-                    # Evaluate the full model response at the new sample
-                    Ynew, _ = Model.run_model_parallel(
-                        Xnew, prevRun_No=total_n_samples
-                        )
-                    total_n_samples += Xnew.shape[0]
-
-                    # ------ Plot the surrogate model vs Origninal Model ------
-                    if hasattr(self.MetaModel, 'adapt_verbose') and \
-                       self.MetaModel.adapt_verbose:
-                        from .adaptPlot import adaptPlot
-                        y_hat, std_hat = self.MetaModel.eval_metamodel(
-                            samples=Xnew
-                            )
-                        adaptPlot(
-                            self.MetaModel, Ynew, y_hat, std_hat,
-                            plotED=False
-                            )
-
-                    # -------- Retrain the surrogate model -------
-                    # Extend new experimental design
-                    Xfull = np.vstack((Xprev, Xnew))
-
-                    # Updating experimental design Y
-                    for out_name in output_name:
-                        Yfull = np.vstack((Yprev[out_name], Ynew[out_name]))
-                        self.MetaModel.ModelOutputDict[out_name] = Yfull
-
-                    # Pass new design to the metamodel object
-                    self.MetaModel.ExpDesign.sampling_method = 'user'
-                    self.MetaModel.ExpDesign.X = Xfull
-                    self.MetaModel.ExpDesign.Y = self.MetaModel.ModelOutputDict
-
-                    # Save the Experimental Design for next iteration
-                    Xprev = Xfull
-                    Yprev = self.MetaModel.ModelOutputDict
-
-                    # Pass the new prior as the input
-                    self.MetaModel.input_obj.poly_coeffs_flag = False
-                    if updatedPrior is not None:
-                        self.MetaModel.input_obj.poly_coeffs_flag = True
-                        print("updatedPrior:", updatedPrior.shape)
-                        # Arbitrary polynomial chaos
-                        for i in range(updatedPrior.shape[1]):
-                            self.MetaModel.input_obj.Marginals[i].dist_type = None
-                            x = updatedPrior[:, i]
-                            self.MetaModel.input_obj.Marginals[i].raw_data = x
-
-                    # Train the surrogate model for new ExpDesign
-                    self.MetaModel.train_norm_design(parallel=False)
-
-                    # -------- Evaluate the retrained surrogate model -------
-                    # Extract Modified LOO from Output
-                    if pce:
-                        Scores_all, varExpDesignY = [], []
-                        for out_name in output_name:
-                            y = self.MetaModel.ExpDesign.Y[out_name]
-                            Scores_all.append(list(
-                                self.MetaModel.score_dict['b_1'][out_name].values()))
-                            if self.MetaModel.dim_red_method.lower() == 'pca':
-                                pca = self.MetaModel.pca['b_1'][out_name]
-                                components = pca.transform(y)
-                                varExpDesignY.append(np.var(components,
-                                                            axis=0))
-                            else:
-                                varExpDesignY.append(np.var(y, axis=0))
-                        Scores = [item for sublist in Scores_all for item
-                                  in sublist]
-                        weights = [item for sublist in varExpDesignY for item
-                                   in sublist]
-                        ModifiedLOO = [np.average(
-                            [1-score for score in Scores], weights=weights)]
-
-                        print('\n')
-                        print(f"Updated ModifiedLOO {util_f}:\n", ModifiedLOO)
-                        print('\n')
-
-                    # Compute the validation error
-                    if self.MetaModel.valid_model_runs:
-                        rmse, validError = self.__validError(self.MetaModel)
-                        ValidError = list(validError.values())
-                    else:
-                        rmse = None
-
-                    # Store updated ModifiedLOO
-                    if pce:
-                        SeqModifiedLOO = np.vstack(
-                            (SeqModifiedLOO, ModifiedLOO))
-                        if len(self.MetaModel.valid_model_runs) != 0:
-                            SeqValidError = np.vstack(
-                                (SeqValidError, ValidError))
-                    # -------- Caclulation of BME as accuracy metric -------
-                    # Check if data is provided
-                    if len(obs_data) != 0:
-                        # Calculate the initial BME
-                        out = self.__BME_Calculator(self.MetaModel, obs_data,
-                                                    TotalSigma2, rmse)
-                        BME, KLD, Posterior, likes, DistHellinger = out
-                        print('\n')
-                        print(f"Updated BME: {BME:.2f}")
-                        print(f"Updated KLD: {KLD:.2f}")
-                        print('\n')
-
-                        # Plot some snapshots of the posterior
-                        step_snapshot = self.MetaModel.ExpDesign.step_snapshot
-                        if post_snapshot and postcnt % step_snapshot == 0:
-                            parNames = self.MetaModel.ExpDesign.par_names
-                            print('Posterior snapshot is being plotted...')
-                            self.__posteriorPlot(Posterior, parNames,
-                                                 f'SeqPosterior_{postcnt}')
-                        postcnt += 1
-
-                    # Check the convergence of the Mean&Std
-                    if mc_ref and pce:
-                        print('\n')
-                        RMSE_Mean, RMSE_std = self.__error_Mean_Std()
-                        print(f"Updated Mean and Std error: {RMSE_Mean:.2f}, "
-                              f"{RMSE_std:.2f}")
-                        print('\n')
-
-                    # Store the updated BME & KLD
-                    # Check if data is provided
-                    if len(obs_data) != 0:
-                        SeqBME = np.vstack((SeqBME, BME))
-                        SeqKLD = np.vstack((SeqKLD, KLD))
-                        SeqDistHellinger = np.vstack((SeqDistHellinger,
-                                                      DistHellinger))
-                    if mc_ref and pce:
-                        seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean))
-                        seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std))
-
-                    if pce and any(LOO < mod_LOO_threshold
-                                   for LOO in ModifiedLOO):
-                        break
-
-                    # Clean up
-                    if len(obs_data) != 0:
-                        del out
-                    print()
-                    print('-'*50)
-                    print()
-
-                # Store updated ModifiedLOO and BME in dictonary
-                strKey = f'{util_f}_rep_{repIdx+1}'
-                if pce:
-                    self.MetaModel.SeqModifiedLOO[strKey] = SeqModifiedLOO
-                if len(self.MetaModel.valid_model_runs) != 0:
-                    self.MetaModel.seqValidError[strKey] = SeqValidError
-
-                # Check if data is provided
-                if len(obs_data) != 0:
-                    self.MetaModel.SeqBME[strKey] = SeqBME
-                    self.MetaModel.SeqKLD[strKey] = SeqKLD
-                if hasattr(self.MetaModel, 'valid_likelihoods') and \
-                   self.MetaModel.valid_likelihoods:
-                    self.MetaModel.SeqDistHellinger[strKey] = SeqDistHellinger
-                if mc_ref and pce:
-                    self.MetaModel.seqRMSEMean[strKey] = seqRMSEMean
-                    self.MetaModel.seqRMSEStd[strKey] = seqRMSEStd
-
-        # return self.MetaModel
-
-    # -------------------------------------------------------------------------
-    def util_VarBasedDesign(self, X_can, index, util_func='Entropy'):
-        """
-        Computes the exploitation scores based on:
-        active learning MacKay(ALM) and active learning Cohn (ALC)
-        Paper: Sequential Design with Mutual Information for Computer
-        Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas
-        (2016)
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        index : int
-            Model output index.
-        UtilMethod : string, optional
-            Exploitation utility function. The default is 'Entropy'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-        MetaModel = self.MetaModel
-        ED_X = MetaModel.ExpDesign.X
-        out_dict_y = MetaModel.ExpDesign.Y
-        out_names = MetaModel.ModelObj.Output.names
-
-        # Run the Metamodel for the candidate
-        X_can = X_can.reshape(1, -1)
-        Y_PC_can, std_PC_can = MetaModel.eval_metamodel(samples=X_can)
-
-        if util_func.lower() == 'alm':
-            # ----- Entropy/MMSE/active learning MacKay(ALM)  -----
-            # Compute perdiction variance of the old model
-            canPredVar = {key: std_PC_can[key]**2 for key in out_names}
-
-            varPCE = np.zeros((len(out_names), X_can.shape[0]))
-            for KeyIdx, key in enumerate(out_names):
-                varPCE[KeyIdx] = np.max(canPredVar[key], axis=1)
-            score = np.max(varPCE, axis=0)
-
-        elif util_func.lower() == 'eigf':
-            # ----- Expected Improvement for Global fit -----
-            # Find closest EDX to the candidate
-            distances = distance.cdist(ED_X, X_can, 'euclidean')
-            index = np.argmin(distances)
-
-            # Compute perdiction error and variance of the old model
-            predError = {key: Y_PC_can[key] for key in out_names}
-            canPredVar = {key: std_PC_can[key]**2 for key in out_names}
-
-            # Compute perdiction error and variance of the old model
-            # Eq (5) from Liu et al.(2018)
-            EIGF_PCE = np.zeros((len(out_names), X_can.shape[0]))
-            for KeyIdx, key in enumerate(out_names):
-                residual = predError[key] - out_dict_y[key][int(index)]
-                var = canPredVar[key]
-                EIGF_PCE[KeyIdx] = np.max(residual**2 + var, axis=1)
-            score = np.max(EIGF_PCE, axis=0)
-
-        return -1 * score   # -1 is for minimization instead of maximization
-
-    # -------------------------------------------------------------------------
-    def util_BayesianActiveDesign(self, y_hat, std, sigma2Dict, var='DKL'):
-        """
-        Computes scores based on Bayesian active design criterion (var).
-
-        It is based on the following paper:
-        Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak.
-        "Bayesian3 active learning for the gaussian process emulator using
-        information theory." Entropy 22, no. 8 (2020): 890.
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        var : string, optional
-            BAL design criterion. The default is 'DKL'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-
-        # Get the data
-        obs_data = self.observations
-        n_obs = self.Model.n_obs
-        mc_size = 10000
-
-        # Sample a distribution for a normal dist
-        # with Y_mean_can as the mean and Y_std_can as std.
-        Y_MC, std_MC = {}, {}
-        logPriorLikelihoods = np.zeros((mc_size))
-        for key in list(y_hat):
-            cov = np.diag(std[key]**2)
-            rv = stats.multivariate_normal(mean=y_hat[key], cov=cov)
-            Y_MC[key] = rv.rvs(size=mc_size)
-            logPriorLikelihoods += rv.logpdf(Y_MC[key])
-            std_MC[key] = np.zeros((mc_size, y_hat[key].shape[0]))
-
-        #  Likelihood computation (Comparison of data and simulation
-        #  results via PCE with candidate design)
-        likelihoods = self.__normpdf(Y_MC, std_MC, obs_data, sigma2Dict)
-
-        # Rejection Step
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, mc_size)[0]
-
-        # Reject the poorly performed prior
-        accepted = (likelihoods/np.max(likelihoods)) >= unif
-
-        # Prior-based estimation of BME
-        logBME = np.log(np.nanmean(likelihoods), dtype=np.longdouble)
-
-        # Posterior-based expectation of likelihoods
-        postLikelihoods = likelihoods[accepted]
-        postExpLikelihoods = np.mean(np.log(postLikelihoods))
-
-        # Posterior-based expectation of prior densities
-        postExpPrior = np.mean(logPriorLikelihoods[accepted])
-
-        # Utility function Eq.2 in Ref. (2)
-        # Posterior covariance matrix after observing data y
-        # Kullback-Leibler Divergence (Sergey's paper)
-        if var == 'DKL':
-
-            # TODO: Calculate the correction factor for BME
-            # BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can,
-            #                                      ObservationData, sigma2Dict)
-            # BME += BMECorrFactor
-            # Haun et al implementation
-            # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME)
-            U_J_d = postExpLikelihoods - logBME
-
-        # Marginal log likelihood
-        elif var == 'BME':
-            U_J_d = np.nanmean(likelihoods)
-
-        # Entropy-based information gain
-        elif var == 'infEntropy':
-            logBME = np.log(np.nanmean(likelihoods))
-            infEntropy = logBME - postExpPrior - postExpLikelihoods
-            U_J_d = infEntropy * -1  # -1 for minimization
-
-        # Bayesian information criterion
-        elif var == 'BIC':
-            coeffs = self.MetaModel.coeffs_dict.values()
-            nModelParams = max(len(v) for val in coeffs for v in val.values())
-            maxL = np.nanmax(likelihoods)
-            U_J_d = -2 * np.log(maxL) + np.log(n_obs) * nModelParams
-
-        # Akaike information criterion
-        elif var == 'AIC':
-            coeffs = self.MetaModel.coeffs_dict.values()
-            nModelParams = max(len(v) for val in coeffs for v in val.values())
-            maxlogL = np.log(np.nanmax(likelihoods))
-            AIC = -2 * maxlogL + 2 * nModelParams
-            # 2 * nModelParams * (nModelParams+1) / (n_obs-nModelParams-1)
-            penTerm = 0
-            U_J_d = 1*(AIC + penTerm)
-
-        # Deviance information criterion
-        elif var == 'DIC':
-            # D_theta_bar = np.mean(-2 * Likelihoods)
-            N_star_p = 0.5 * np.var(np.log(likelihoods[likelihoods != 0]))
-            Likelihoods_theta_mean = self.__normpdf(
-                y_hat, std, obs_data, sigma2Dict
-                )
-            DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p
-
-            U_J_d = DIC
-
-        else:
-            print('The algorithm you requested has not been implemented yet!')
-
-        # Handle inf and NaN (replace by zero)
-        if np.isnan(U_J_d) or U_J_d == -np.inf or U_J_d == np.inf:
-            U_J_d = 0.0
-
-        # Clear memory
-        del likelihoods
-        del Y_MC
-        del std_MC
-
-        return -1 * U_J_d   # -1 is for minimization instead of maximization
-
-    # -------------------------------------------------------------------------
-    def update_metamodel(self, MetaModel, output, y_hat_can, univ_p_val, index,
-                         new_pca=False):
-        BasisIndices = MetaModel.basis_dict[output]["y_"+str(index+1)]
-        clf_poly = MetaModel.clf_poly[output]["y_"+str(index+1)]
-        Mn = clf_poly.coef_
-        Sn = clf_poly.sigma_
-        beta = clf_poly.alpha_
-        active = clf_poly.active_
-        Psi = self.MetaModel.create_psi(BasisIndices, univ_p_val)
-
-        Sn_new_inv = np.linalg.inv(Sn)
-        Sn_new_inv += beta * np.dot(Psi[:, active].T, Psi[:, active])
-        Sn_new = np.linalg.inv(Sn_new_inv)
-
-        Mn_new = np.dot(Sn_new_inv, Mn[active]).reshape(-1, 1)
-        Mn_new += beta * np.dot(Psi[:, active].T, y_hat_can)
-        Mn_new = np.dot(Sn_new, Mn_new).flatten()
-
-        # Compute the old and new moments of PCEs
-        mean_old = Mn[0]
-        mean_new = Mn_new[0]
-        std_old = np.sqrt(np.sum(np.square(Mn[1:])))
-        std_new = np.sqrt(np.sum(np.square(Mn_new[1:])))
-
-        # Back transformation if PCA is selected.
-        if MetaModel.dim_red_method.lower() == 'pca':
-            old_pca = MetaModel.pca[output]
-            mean_old = old_pca.mean_[index]
-            mean_old += np.sum(mean_old * old_pca.components_[:, index])
-            std_old = np.sqrt(np.sum(std_old**2 *
-                                     old_pca.components_[:, index]**2))
-            mean_new = new_pca.mean_[index]
-            mean_new += np.sum(mean_new * new_pca.components_[:, index])
-            std_new = np.sqrt(np.sum(std_new**2 *
-                                     new_pca.components_[:, index]**2))
-            # print(f"mean_old: {mean_old:.2f} mean_new: {mean_new:.2f}")
-            # print(f"std_old: {std_old:.2f} std_new: {std_new:.2f}")
-        # Store the old and new moments of PCEs
-        results = {
-            'mean_old': mean_old,
-            'mean_new': mean_new,
-            'std_old': std_old,
-            'std_new': std_new
-            }
-        return results
-
-    # -------------------------------------------------------------------------
-    def util_BayesianDesign_old(self, X_can, X_MC, sigma2Dict, var='DKL'):
-        """
-        Computes scores based on Bayesian sequential design criterion (var).
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        var : string, optional
-            Bayesian design criterion. The default is 'DKL'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-
-        # To avoid changes ub original aPCE object
-        Model = self.Model
-        MetaModel = deepcopy(self.MetaModel)
-        old_EDY = MetaModel.ExpDesign.Y
-
-        # Evaluate the PCE metamodels using the candidate design
-        Y_PC_can, Y_std_can = self.MetaModel.eval_metamodel(
-            samples=np.array([X_can])
-            )
-
-        # Generate y from posterior predictive
-        m_size = 100
-        y_hat_samples = {}
-        for idx, key in enumerate(Model.Output.names):
-            means, stds = Y_PC_can[key][0], Y_std_can[key][0]
-            y_hat_samples[key] = np.random.multivariate_normal(
-                means, np.diag(stds), m_size)
-
-        # Create the SparseBayes-based PCE metamodel:
-        MetaModel.input_obj.poly_coeffs_flag = False
-        univ_p_val = self.MetaModel.univ_basis_vals(X_can)
-        G_n_m_all = np.zeros((m_size, len(Model.Output.names), Model.n_obs))
-
-        for i in range(m_size):
-            for idx, key in enumerate(Model.Output.names):
-                if MetaModel.dim_red_method.lower() == 'pca':
-                    # Equal number of components
-                    new_outputs = np.vstack(
-                        (old_EDY[key], y_hat_samples[key][i])
-                        )
-                    new_pca, _ = MetaModel.pca_transformation(new_outputs)
-                    target = new_pca.transform(
-                        y_hat_samples[key][i].reshape(1, -1)
-                        )[0]
-                else:
-                    new_pca, target = False, y_hat_samples[key][i]
-
-                for j in range(len(target)):
-
-                    # Update surrogate
-                    result = self.update_metamodel(
-                        MetaModel, key, target[j], univ_p_val, j, new_pca)
-
-                    # Compute Expected Information Gain (Eq. 39)
-                    G_n_m = np.log(result['std_old']/result['std_new']) - 1./2
-                    G_n_m += result['std_new']**2 / (2*result['std_old']**2)
-                    G_n_m += (result['mean_new'] - result['mean_old'])**2 /\
-                        (2*result['std_old']**2)
-
-                    G_n_m_all[i, idx, j] = G_n_m
-
-        U_J_d = G_n_m_all.mean(axis=(1, 2)).mean()
-        return -1 * U_J_d
-
-    # -------------------------------------------------------------------------
-    def util_BayesianDesign(self, X_can, X_MC, sigma2Dict, var='DKL'):
-        """
-        Computes scores based on Bayesian sequential design criterion (var).
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        var : string, optional
-            Bayesian design criterion. The default is 'DKL'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-
-        # To avoid changes ub original aPCE object
-        MetaModel = self.MetaModel
-        out_names = MetaModel.ModelObj.Output.names
-        if X_can.ndim == 1:
-            X_can = X_can.reshape(1, -1)
-
-        # Compute the mean and std based on the MetaModel
-        # pce_means, pce_stds = self._compute_pce_moments(MetaModel)
-        if var == 'ALC':
-            Y_MC, Y_MC_std = MetaModel.eval_metamodel(samples=X_MC)
-
-        # Old Experimental design
-        oldExpDesignX = MetaModel.ExpDesign.X
-        oldExpDesignY = MetaModel.ExpDesign.Y
-
-        # Evaluate the PCE metamodels at that location ???
-        Y_PC_can, Y_std_can = MetaModel.eval_metamodel(samples=X_can)
-        PCE_Model_can = deepcopy(MetaModel)
-        # Add the candidate to the ExpDesign
-        NewExpDesignX = np.vstack((oldExpDesignX, X_can))
-
-        NewExpDesignY = {}
-        for key in oldExpDesignY.keys():
-            NewExpDesignY[key] = np.vstack(
-                (oldExpDesignY[key], Y_PC_can[key])
-                )
-
-        PCE_Model_can.ExpDesign.sampling_method = 'user'
-        PCE_Model_can.ExpDesign.X = NewExpDesignX
-        PCE_Model_can.ModelOutputDict = NewExpDesignY
-        PCE_Model_can.ExpDesign.Y = NewExpDesignY
-
-        # Train the model for the observed data using x_can
-        PCE_Model_can.input_obj.poly_coeffs_flag = False
-        PCE_Model_can.train_norm_design(parallel=False)
-
-        # Set the ExpDesign to its original values
-        PCE_Model_can.ExpDesign.X = oldExpDesignX
-        PCE_Model_can.ModelOutputDict = oldExpDesignY
-        PCE_Model_can.ExpDesign.Y = oldExpDesignY
-
-        if var.lower() == 'mi':
-            # Mutual information based on Krause et al
-            # Adapted from Beck & Guillas (MICE) paper
-            _, std_PC_can = PCE_Model_can.eval_metamodel(samples=X_can)
-            std_can = {key: std_PC_can[key] for key in out_names}
-
-            std_old = {key: Y_std_can[key] for key in out_names}
-
-            varPCE = np.zeros((len(out_names)))
-            for i, key in enumerate(out_names):
-                varPCE[i] = np.mean(std_old[key]**2/std_can[key]**2)
-            score = np.mean(varPCE)
-
-            return -1 * score
-
-        elif var.lower() == 'alc':
-            # Active learning based on Gramyc and Lee
-            # Adaptive design and analysis of supercomputer experiments Techno-
-            # metrics, 51 (2009), pp. 130–145.
-
-            # Evaluate the MetaModel at the given samples
-            Y_MC_can, Y_MC_std_can = PCE_Model_can.eval_metamodel(samples=X_MC)
-
-            # Compute the score
-            score = []
-            for i, key in enumerate(out_names):
-                pce_var = Y_MC_std_can[key]**2
-                pce_var_can = Y_MC_std[key]**2
-                score.append(np.mean(pce_var-pce_var_can, axis=0))
-            score = np.mean(score)
-
-            return -1 * score
-
-        # ---------- Inner MC simulation for computing Utility Value ----------
-        # Estimation of the integral via Monte Varlo integration
-        MCsize = X_MC.shape[0]
-        ESS = 0
-
-        while ((ESS > MCsize) or (ESS < 1)):
-
-            # Enriching Monte Carlo samples if need be
-            if ESS != 0:
-                X_MC = self.MetaModel.ExpDesign.generate_samples(
-                    MCsize, 'random'
-                    )
-
-            # Evaluate the MetaModel at the given samples
-            Y_MC, std_MC = PCE_Model_can.eval_metamodel(samples=X_MC)
-
-            # Likelihood computation (Comparison of data and simulation
-            # results via PCE with candidate design)
-            likelihoods = self.__normpdf(
-                Y_MC, std_MC, self.observations, sigma2Dict
-                )
-
-            # Check the Effective Sample Size (1<ESS<MCsize)
-            ESS = 1 / np.sum(np.square(likelihoods/np.sum(likelihoods)))
-
-            # Enlarge sample size if it doesn't fulfill the criteria
-            if ((ESS > MCsize) or (ESS < 1)):
-                print("--- increasing MC size---")
-                MCsize *= 10
-                ESS = 0
-
-        # Rejection Step
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, MCsize)[0]
-
-        # Reject the poorly performed prior
-        accepted = (likelihoods/np.max(likelihoods)) >= unif
-
-        # -------------------- Utility functions --------------------
-        # Utility function Eq.2 in Ref. (2)
-        # Kullback-Leibler Divergence (Sergey's paper)
-        if var == 'DKL':
-
-            # Prior-based estimation of BME
-            logBME = np.log(np.nanmean(likelihoods, dtype=np.longdouble))
-
-            # Posterior-based expectation of likelihoods
-            postLikelihoods = likelihoods[accepted]
-            postExpLikelihoods = np.mean(np.log(postLikelihoods))
-
-            # Haun et al implementation
-            U_J_d = np.mean(np.log(likelihoods[likelihoods != 0]) - logBME)
-
-            # U_J_d = np.sum(G_n_m_all)
-            # Ryan et al (2014) implementation
-            # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0])
-            # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME
-
-            # U_J_d = postExpLikelihoods - logBME
-
-        # Marginal likelihood
-        elif var == 'BME':
-
-            # Prior-based estimation of BME
-            logBME = np.log(np.nanmean(likelihoods))
-            U_J_d = logBME
-
-        # Bayes risk likelihood
-        elif var == 'BayesRisk':
-
-            U_J_d = -1 * np.var(likelihoods)
-
-        # Entropy-based information gain
-        elif var == 'infEntropy':
-            # Prior-based estimation of BME
-            logBME = np.log(np.nanmean(likelihoods))
-
-            # Posterior-based expectation of likelihoods
-            postLikelihoods = likelihoods[accepted]
-            postLikelihoods /= np.nansum(likelihoods[accepted])
-            postExpLikelihoods = np.mean(np.log(postLikelihoods))
-
-            # Posterior-based expectation of prior densities
-            postExpPrior = np.mean(logPriorLikelihoods[accepted])
-
-            infEntropy = logBME - postExpPrior - postExpLikelihoods
-
-            U_J_d = infEntropy * -1  # -1 for minimization
-
-        # D-Posterior-precision
-        elif var == 'DPP':
-            X_Posterior = X_MC[accepted]
-            # covariance of the posterior parameters
-            U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior)))
-
-        # A-Posterior-precision
-        elif var == 'APP':
-            X_Posterior = X_MC[accepted]
-            # trace of the posterior parameters
-            U_J_d = -np.log(np.trace(np.cov(X_Posterior)))
-
-        else:
-            print('The algorithm you requested has not been implemented yet!')
-
-        # Clear memory
-        del likelihoods
-        del Y_MC
-        del std_MC
-
-        return -1 * U_J_d   # -1 is for minimization instead of maximization
-
-    # -------------------------------------------------------------------------
-    def subdomain(self, Bounds, n_new_samples):
-        """
-        Divides a domain defined by Bounds into sub domains.
-
-        Parameters
-        ----------
-        Bounds : list of tuples
-            List of lower and upper bounds.
-        n_new_samples : TYPE
-            DESCRIPTION.
-
-        Returns
-        -------
-        Subdomains : TYPE
-            DESCRIPTION.
-
-        """
-        n_params = self.MetaModel.n_params
-        n_subdomains = n_new_samples + 1
-        LinSpace = np.zeros((n_params, n_subdomains))
-
-        for i in range(n_params):
-            LinSpace[i] = np.linspace(start=Bounds[i][0], stop=Bounds[i][1],
-                                      num=n_subdomains)
-        Subdomains = []
-        for k in range(n_subdomains-1):
-            mylist = []
-            for i in range(n_params):
-                mylist.append((LinSpace[i, k+0], LinSpace[i, k+1]))
-            Subdomains.append(tuple(mylist))
-
-        return Subdomains
-
-    # -------------------------------------------------------------------------
-    def run_util_func(self, method, candidates, index, sigma2Dict=None,
-                      var=None, X_MC=None):
-        """
-        Runs the utility function based on the given method.
-
-        Parameters
-        ----------
-        method : string
-            Exploitation method: `VarOptDesign`, `BayesActDesign` and
-            `BayesOptDesign`.
-        candidates : array of shape (n_samples, n_params)
-            All candidate parameter sets.
-        index : int
-            ExpDesign index.
-        sigma2Dict : dict, optional
-            A dictionary containing the measurement errors (sigma^2). The
-            default is None.
-        var : string, optional
-            Utility function. The default is None.
-        X_MC : TYPE, optional
-            DESCRIPTION. The default is None.
-
-        Returns
-        -------
-        index : TYPE
-            DESCRIPTION.
-        List
-            Scores.
-
-        """
-
-        if method.lower() == 'varoptdesign':
-            # U_J_d = self.util_VarBasedDesign(candidates, index, var)
-            U_J_d = np.zeros((candidates.shape[0]))
-            for idx, X_can in tqdm(enumerate(candidates), ascii=True,
-                                   desc="varoptdesign"):
-                U_J_d[idx] = self.util_VarBasedDesign(X_can, index, var)
-
-        elif method.lower() == 'bayesactdesign':
-            NCandidate = candidates.shape[0]
-            U_J_d = np.zeros((NCandidate))
-            # Evaluate all candidates
-            y_can, std_can = self.MetaModel.eval_metamodel(samples=candidates)
-            # loop through candidates
-            for idx, X_can in tqdm(enumerate(candidates), ascii=True,
-                                   desc="BAL Design"):
-                y_hat = {key: items[idx] for key, items in y_can.items()}
-                std = {key: items[idx] for key, items in std_can.items()}
-                U_J_d[idx] = self.util_BayesianActiveDesign(
-                    y_hat, std, sigma2Dict, var)
-
-        elif method.lower() == 'bayesoptdesign':
-            NCandidate = candidates.shape[0]
-            U_J_d = np.zeros((NCandidate))
-            for idx, X_can in tqdm(enumerate(candidates), ascii=True,
-                                   desc="OptBayesianDesign"):
-                U_J_d[idx] = self.util_BayesianDesign(X_can, X_MC, sigma2Dict,
-                                                      var)
-        return (index, -1 * U_J_d)
-
-    # -------------------------------------------------------------------------
-    def dual_annealing(self, method, Bounds, sigma2Dict, var, Run_No,
-                       verbose=False):
-        """
-        Exploration algorithim to find the optimum parameter space.
-
-        Parameters
-        ----------
-        method : string
-            Exploitation method: `VarOptDesign`, `BayesActDesign` and
-            `BayesOptDesign`.
-        Bounds : list of tuples
-            List of lower and upper boundaries of parameters.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        Run_No : int
-            Run number.
-        verbose : bool, optional
-            Print out a summary. The default is False.
-
-        Returns
-        -------
-        Run_No : int
-            Run number.
-        array
-            Optimial candidate.
-
-        """
-
-        Model = self.Model
-        max_func_itr = self.MetaModel.ExpDesign.max_func_itr
-
-        if method == 'VarOptDesign':
-            Res_Global = opt.dual_annealing(self.util_VarBasedDesign,
-                                            bounds=Bounds,
-                                            args=(Model, var),
-                                            maxfun=max_func_itr)
-
-        elif method == 'BayesOptDesign':
-            Res_Global = opt.dual_annealing(self.util_BayesianDesign,
-                                            bounds=Bounds,
-                                            args=(Model, sigma2Dict, var),
-                                            maxfun=max_func_itr)
-
-        if verbose:
-            print(f"global minimum: xmin = {Res_Global.x}, "
-                  f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}")
-
-        return (Run_No, Res_Global.x)
-
-    # -------------------------------------------------------------------------
-    def tradoff_weights(self, tradeoff_scheme, old_EDX, old_EDY):
-        """
-        Calculates weights for exploration scores based on the requested
-        scheme: `None`, `equal`, `epsilon-decreasing` and `adaptive`.
-
-        `None`: No exploration.
-        `equal`: Same weights for exploration and exploitation scores.
-        `epsilon-decreasing`: Start with more exploration and increase the
-            influence of exploitation along the way with a exponential decay
-            function
-        `adaptive`: An adaptive method based on:
-            Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. "An adaptive sampling
-            approach for Kriging metamodeling by maximizing expected prediction
-            error." Computers & Chemical Engineering 106 (2017): 171-182.
-
-        Parameters
-        ----------
-        tradeoff_scheme : string
-            Trade-off scheme for exloration and exploitation scores.
-        old_EDX : array (n_samples, n_params)
-            Old experimental design (training points).
-        old_EDY : dict
-            Old model responses (targets).
-
-        Returns
-        -------
-        exploration_weight : float
-            Exploration weight.
-        exploitation_weight: float
-            Exploitation weight.
-
-        """
-        if tradeoff_scheme is None:
-            exploration_weight = 0
-
-        elif tradeoff_scheme == 'equal':
-            exploration_weight = 0.5
-
-        elif tradeoff_scheme == 'epsilon-decreasing':
-            # epsilon-decreasing scheme
-            # Start with more exploration and increase the influence of
-            # exploitation along the way with a exponential decay function
-            initNSamples = self.MetaModel.ExpDesign.n_init_samples
-            n_max_samples = self.MetaModel.ExpDesign.n_max_samples
-
-            itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples)
-            itrNumber //= self.MetaModel.ExpDesign.n_new_samples
-
-            tau2 = -(n_max_samples-initNSamples-1) / np.log(1e-8)
-            exploration_weight = signal.exponential(n_max_samples-initNSamples,
-                                                    0, tau2, False)[itrNumber]
-
-        elif tradeoff_scheme == 'adaptive':
-
-            # Extract itrNumber
-            initNSamples = self.MetaModel.ExpDesign.n_init_samples
-            n_max_samples = self.MetaModel.ExpDesign.n_max_samples
-            itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples)
-            itrNumber //= self.MetaModel.ExpDesign.n_new_samples
-
-            if itrNumber == 0:
-                exploration_weight = 0.5
-            else:
-                # New adaptive trade-off according to Liu et al. (2017)
-                # Mean squared error for last design point
-                last_EDX = old_EDX[-1].reshape(1, -1)
-                lastPCEY, _ = self.MetaModel.eval_metamodel(samples=last_EDX)
-                pce_y = np.array(list(lastPCEY.values()))[:, 0]
-                y = np.array(list(old_EDY.values()))[:, -1, :]
-                mseError = mean_squared_error(pce_y, y)
-
-                # Mean squared CV - error for last design point
-                pce_y_prev = np.array(list(self._y_hat_prev.values()))[:, 0]
-                mseCVError = mean_squared_error(pce_y_prev, y)
-
-                exploration_weight = min([0.5*mseError/mseCVError, 1])
-
-        # Exploitation weight
-        exploitation_weight = 1 - exploration_weight
-
-        return exploration_weight, exploitation_weight
-
-    # -------------------------------------------------------------------------
-    def opt_SeqDesign(self, sigma2, n_candidates=5, var='DKL'):
-        """
-        Runs optimal sequential design.
-
-        Parameters
-        ----------
-        sigma2 : dict, optional
-            A dictionary containing the measurement errors (sigma^2). The
-            default is None.
-        n_candidates : int, optional
-            Number of candidate samples. The default is 5.
-        var : string, optional
-            Utility function. The default is None.
-
-        Raises
-        ------
-        NameError
-            Wrong utility function.
-
-        Returns
-        -------
-        Xnew : array (n_samples, n_params)
-            Selected new training point(s).
-        """
-
-        # Initialization
-        MetaModel = self.MetaModel
-        Bounds = MetaModel.bound_tuples
-        n_new_samples = MetaModel.ExpDesign.n_new_samples
-        explore_method = MetaModel.ExpDesign.explore_method
-        exploit_method = MetaModel.ExpDesign.exploit_method
-        n_cand_groups = MetaModel.ExpDesign.n_cand_groups
-        tradeoff_scheme = MetaModel.ExpDesign.tradeoff_scheme
-
-        old_EDX = MetaModel.ExpDesign.X
-        old_EDY = MetaModel.ExpDesign.Y.copy()
-        ndim = MetaModel.ExpDesign.X.shape[1]
-        OutputNames = MetaModel.ModelObj.Output.names
-
-        # -----------------------------------------
-        # ----------- CUSTOMIZED METHODS ----------
-        # -----------------------------------------
-        # Utility function exploit_method provided by user
-        if exploit_method.lower() == 'user':
-
-            Xnew, filteredSamples = MetaModel.ExpDesign.ExploitFunction(self)
-
-            print("\n")
-            print("\nXnew:\n", Xnew)
-
-            return Xnew, filteredSamples
-
-        # -----------------------------------------
-        # ---------- EXPLORATION METHODS ----------
-        # -----------------------------------------
-        if explore_method == 'dual annealing':
-            # ------- EXPLORATION: OPTIMIZATION -------
-            import time
-            start_time = time.time()
-
-            # Divide the domain to subdomains
-            args = []
-            subdomains = self.subdomain(Bounds, n_new_samples)
-            for i in range(n_new_samples):
-                args.append((exploit_method, subdomains[i], sigma2, var, i))
-
-            # Multiprocessing
-            pool = multiprocessing.Pool(multiprocessing.cpu_count())
-
-            # With Pool.starmap_async()
-            results = pool.starmap_async(self.dual_annealing, args).get()
-
-            # Close the pool
-            pool.close()
-
-            Xnew = np.array([results[i][1] for i in range(n_new_samples)])
-
-            print("\nXnew:\n", Xnew)
-
-            elapsed_time = time.time() - start_time
-            print("\n")
-            print(f"elapsed_time: {round(elapsed_time,2)} sec.")
-            print('-'*20)
-
-        elif explore_method == 'LOOCV':
-            # -----------------------------------------------------------------
-            # TODO: LOOCV model construnction based on Feng et al. (2020)
-            # 'LOOCV':
-            # Initilize the ExploitScore array
-
-            # Generate random samples
-            allCandidates = MetaModel.ExpDesign.generate_samples(n_candidates,
-                                                                'random')
-
-            # Construct error model based on LCerror
-            errorModel = MetaModel.create_ModelError(old_EDX, self.LCerror)
-            self.errorModel.append(copy(errorModel))
-
-            # Evaluate the error models for allCandidates
-            eLCAllCands, _ = errorModel.eval_errormodel(allCandidates)
-            # Select the maximum as the representative error
-            eLCAllCands = np.dstack(eLCAllCands.values())
-            eLCAllCandidates = np.max(eLCAllCands, axis=1)[:, 0]
-
-            # Normalize the error w.r.t the maximum error
-            scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates)
-
-        else:
-            # ------- EXPLORATION: SPACE-FILLING DESIGN -------
-            # Generate candidate samples from Exploration class
-            explore = Exploration(MetaModel, n_candidates)
-            explore.w = 100  # * ndim #500
-            # Select criterion (mc-intersite-proj-th, mc-intersite-proj)
-            explore.mc_criterion = 'mc-intersite-proj'
-            allCandidates, scoreExploration = explore.get_exploration_samples()
-
-            # Temp: ---- Plot all candidates -----
-            if ndim == 2:
-                def plotter(points, allCandidates, Method,
-                            scoreExploration=None):
-                    if Method == 'Voronoi':
-                        from scipy.spatial import Voronoi, voronoi_plot_2d
-                        vor = Voronoi(points)
-                        fig = voronoi_plot_2d(vor)
-                        ax1 = fig.axes[0]
-                    else:
-                        fig = plt.figure()
-                        ax1 = fig.add_subplot(111)
-                    ax1.scatter(points[:, 0], points[:, 1], s=10, c='r',
-                                marker="s", label='Old Design Points')
-                    ax1.scatter(allCandidates[:, 0], allCandidates[:, 1], s=10,
-                                c='b', marker="o", label='Design candidates')
-                    for i in range(points.shape[0]):
-                        txt = 'p'+str(i+1)
-                        ax1.annotate(txt, (points[i, 0], points[i, 1]))
-                    if scoreExploration is not None:
-                        for i in range(allCandidates.shape[0]):
-                            txt = str(round(scoreExploration[i], 5))
-                            ax1.annotate(txt, (allCandidates[i, 0],
-                                               allCandidates[i, 1]))
-
-                    plt.xlim(self.bound_tuples[0])
-                    plt.ylim(self.bound_tuples[1])
-                    # plt.show()
-                    plt.legend(loc='upper left')
-
-        # -----------------------------------------
-        # --------- EXPLOITATION METHODS ----------
-        # -----------------------------------------
-        if exploit_method == 'BayesOptDesign' or\
-           exploit_method == 'BayesActDesign':
-
-            # ------- Calculate Exoploration weight -------
-            # Compute exploration weight based on trade off scheme
-            explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme,
-                                                        old_EDX,
-                                                        old_EDY)
-            print(f"\n Exploration weight={explore_w:0.3f} "
-                  f"Exploitation weight={exploit_w:0.3f}\n")
-
-            # ------- EXPLOITATION: BayesOptDesign & ActiveLearning -------
-            if explore_w != 1.0:
-
-                # Create a sample pool for rejection sampling
-                MCsize = 15000
-                X_MC = MetaModel.ExpDesign.generate_samples(MCsize, 'random')
-                candidates = MetaModel.ExpDesign.generate_samples(
-                    MetaModel.ExpDesign.max_func_itr, 'latin_hypercube')
-
-                # Split the candidates in groups for multiprocessing
-                split_cand = np.array_split(
-                    candidates, n_cand_groups, axis=0
-                    )
-
-                results = Parallel(n_jobs=-1, backend='multiprocessing')(
-                        delayed(self.run_util_func)(
-                            exploit_method, split_cand[i], i, sigma2, var, X_MC)
-                        for i in range(n_cand_groups))
-                # out = map(self.run_util_func,
-                #           [exploit_method]*n_cand_groups,
-                #           split_cand,
-                #           range(n_cand_groups),
-                #           [sigma2] * n_cand_groups,
-                #           [var] * n_cand_groups,
-                #           [X_MC] * n_cand_groups
-                #           )
-                # results = list(out)
-
-                # Retrieve the results and append them
-                U_J_d = np.concatenate([results[NofE][1] for NofE in
-                                        range(n_cand_groups)])
-
-                # Check if all scores are inf
-                if np.isinf(U_J_d).all() or np.isnan(U_J_d).all():
-                    U_J_d = np.ones(len(U_J_d))
-
-                # Get the expected value (mean) of the Utility score
-                # for each cell
-                if explore_method == 'Voronoi':
-                    U_J_d = np.mean(U_J_d.reshape(-1, n_candidates), axis=1)
-
-                # create surrogate model for U_J_d
-                # from sklearn.preprocessing import MinMaxScaler
-                # # Take care of inf entries
-                # good_indices = [i for i, arr in enumerate(U_J_d)
-                #                 if np.isfinite(arr).all()]
-                # scaler = MinMaxScaler()
-                # X_S = scaler.fit_transform(candidates[good_indices])
-                # gp = MetaModel.gaussian_process_emulator(
-                #     X_S, U_J_d[good_indices], autoSelect=False
-                #     )
-                # U_J_d = gp.predict(scaler.transform(allCandidates))
-
-                # Normalize U_J_d
-                norm_U_J_d = U_J_d / np.sum(U_J_d)
-            else:
-                norm_U_J_d = np.zeros((len(scoreExploration)))
-
-            # ------- Calculate Total score -------
-            # ------- Trade off between EXPLORATION & EXPLOITATION -------
-            # Accumulate the samples
-            # TODO: added this, recheck!!
-            finalCandidates = np.concatenate((allCandidates, candidates), axis = 0)   
-            finalCandidates = np.unique(finalCandidates, axis = 0)
-            
-            # TODO: changed this from the above to take into account both exploration and exploitation samples without duplicates
-            totalScore = np.zeros(finalCandidates.shape[0])
-            #self.totalScore = totalScore
-            
-            for cand_idx in range(finalCandidates.shape[0]):
-                # find candidate indices
-                idx1 = np.where(allCandidates == finalCandidates[cand_idx])[0]
-                idx2 = np.where(candidates == finalCandidates[cand_idx])[0]
-                
-                # exploration 
-                if idx1 != []:
-                    idx1 = idx1[0]
-                    totalScore[cand_idx] += explore_w * scoreExploration[idx1]
-                    
-                # exploitation
-                if idx2 != []:
-                    idx2 = idx2[0]
-                    totalScore[cand_idx] += exploit_w * norm_U_J_d[idx2]
-                
-
-            # temp: Plot
-            # dim = self.ExpDesign.X.shape[1]
-            # if dim == 2:
-            #     plotter(self.ExpDesign.X, allCandidates, explore_method)
-
-            # ------- Select the best candidate -------
-            # find an optimal point subset to add to the initial design by
-            # maximization of the utility score and taking care of NaN values
-            temp = totalScore.copy()
-            temp[np.isnan(totalScore)] = -np.inf
-            sorted_idxtotalScore = np.argsort(temp)[::-1]
-            bestIdx = sorted_idxtotalScore[:n_new_samples]
-
-            # select the requested number of samples
-            if explore_method == 'Voronoi':
-                Xnew = np.zeros((n_new_samples, ndim))
-                for i, idx in enumerate(bestIdx):
-                    X_can = explore.closestPoints[idx]
-
-                    # Calculate the maxmin score for the region of interest
-                    newSamples, maxminScore = explore.get_mc_samples(X_can)
-
-                    # select the requested number of samples
-                    Xnew[i] = newSamples[np.argmax(maxminScore)]
-            else:
-                # TODO: changed this from allCandiates to full set of candidates - still not changed for e.g. 'Voronoi'
-                Xnew = finalCandidates[sorted_idxtotalScore[:n_new_samples]]          # here candidates(exploitation) vs allCandidates (exploration)!!
-
-        elif exploit_method == 'VarOptDesign':
-            # ------- EXPLOITATION: VarOptDesign -------
-            UtilMethod = var
-
-            # ------- Calculate Exoploration weight -------
-            # Compute exploration weight based on trade off scheme
-            explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme,
-                                                        old_EDX,
-                                                        old_EDY)
-            print(f"\nweightExploration={explore_w:0.3f} "
-                  f"weightExploitation={exploit_w:0.3f}")
-
-            # Generate candidate samples from Exploration class
-            nMeasurement = old_EDY[OutputNames[0]].shape[1]
-
-            # Find sensitive region
-            if UtilMethod == 'LOOCV':
-                LCerror = MetaModel.LCerror
-                allModifiedLOO = np.zeros((len(old_EDX), len(OutputNames),
-                                           nMeasurement))
-                for y_idx, y_key in enumerate(OutputNames):
-                    for idx, key in enumerate(LCerror[y_key].keys()):
-                        allModifiedLOO[:, y_idx, idx] = abs(
-                            LCerror[y_key][key])
-
-                ExploitScore = np.max(np.max(allModifiedLOO, axis=1), axis=1)
-
-            elif UtilMethod in ['EIGF', 'ALM']:
-                # ----- All other in  ['EIGF', 'ALM'] -----
-                # Initilize the ExploitScore array
-                ExploitScore = np.zeros((len(old_EDX), len(OutputNames)))
-
-                # Split the candidates in groups for multiprocessing
-                if explore_method != 'Voronoi':
-                    split_cand = np.array_split(allCandidates,
-                                                n_cand_groups,
-                                                axis=0)
-                    goodSampleIdx = range(n_cand_groups)
-                else:
-                    # Find indices of the Vornoi cells with samples
-                    goodSampleIdx = []
-                    for idx in range(len(explore.closest_points)):
-                        if len(explore.closest_points[idx]) != 0:
-                            goodSampleIdx.append(idx)
-                    split_cand = explore.closest_points
-
-                # Split the candidates in groups for multiprocessing
-                args = []
-                for index in goodSampleIdx:
-                    args.append((exploit_method, split_cand[index], index,
-                                 sigma2, var))
-
-                # Multiprocessing
-                pool = multiprocessing.Pool(multiprocessing.cpu_count())
-                # With Pool.starmap_async()
-                results = pool.starmap_async(self.run_util_func, args).get()
-
-                # Close the pool
-                pool.close()
-                # out = map(self.run_util_func,
-                #           [exploit_method]*len(goodSampleIdx),
-                #           split_cand,
-                #           range(len(goodSampleIdx)),
-                #           [sigma2] * len(goodSampleIdx),
-                #           [var] * len(goodSampleIdx)
-                #           )
-                # results = list(out)
-
-                # Retrieve the results and append them
-                if explore_method == 'Voronoi':
-                    ExploitScore = [np.mean(results[k][1]) for k in
-                                    range(len(goodSampleIdx))]
-                else:
-                    ExploitScore = np.concatenate(
-                        [results[k][1] for k in range(len(goodSampleIdx))])
-
-            else:
-                raise NameError('The requested utility function is not '
-                                'available.')
-
-            # find an optimal point subset to add to the initial design by
-            # maximization of the utility score and taking care of NaN values
-            # Total score
-            # Normalize U_J_d
-            ExploitScore = ExploitScore / np.sum(ExploitScore)
-            totalScore = exploit_w * ExploitScore
-            totalScore += explore_w * scoreExploration
-
-            temp = totalScore.copy()
-            sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1]
-            bestIdx = sorted_idxtotalScore[:n_new_samples]
-
-            Xnew = np.zeros((n_new_samples, ndim))
-            if explore_method != 'Voronoi':
-                Xnew = allCandidates[bestIdx]
-            else:
-                for i, idx in enumerate(bestIdx.flatten()):
-                    X_can = explore.closest_points[idx]
-                    # plotter(self.ExpDesign.X, X_can, explore_method,
-                    # scoreExploration=None)
-
-                    # Calculate the maxmin score for the region of interest
-                    newSamples, maxminScore = explore.get_mc_samples(X_can)
-
-                    # select the requested number of samples
-                    Xnew[i] = newSamples[np.argmax(maxminScore)]
-
-        elif exploit_method == 'alphabetic':
-            # ------- EXPLOITATION: ALPHABETIC -------
-            Xnew = self.util_AlphOptDesign(allCandidates, var)
-
-        elif exploit_method == 'Space-filling':
-            # ------- EXPLOITATION: SPACE-FILLING -------
-            totalScore = scoreExploration
-
-            # ------- Select the best candidate -------
-            # find an optimal point subset to add to the initial design by
-            # maximization of the utility score and taking care of NaN values
-            temp = totalScore.copy()
-            temp[np.isnan(totalScore)] = -np.inf
-            sorted_idxtotalScore = np.argsort(temp)[::-1]
-
-            # select the requested number of samples
-            Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]]
-
-        else:
-            raise NameError('The requested design method is not available.')
-
-        print("\n")
-        print("\nRun No. {}:".format(old_EDX.shape[0]+1))
-        print("Xnew:\n", Xnew)
-
-        return Xnew, None
-
-    # -------------------------------------------------------------------------
-    def util_AlphOptDesign(self, candidates, var='D-Opt'):
-        """
-        Enriches the Experimental design with the requested alphabetic
-        criterion based on exploring the space with number of sampling points.
-
-        Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos
-        expansion: A review of sampling strategies., Computer Methods in
-        Applied Mechanics and Engineering, 332, 382-407.
-
-        Arguments
-        ---------
-        NCandidate : int
-            Number of candidate points to be searched
-
-        var : string
-            Alphabetic optimality criterion
-
-        Returns
-        -------
-        X_new : array of shape (1, n_params)
-            The new sampling location in the input space.
-        """
-        MetaModelOrig = self
-        Model = self.Model
-        n_new_samples = MetaModelOrig.ExpDesign.n_new_samples
-        NCandidate = candidates.shape[0]
-
-        # TODO: Loop over outputs
-        OutputName = Model.Output.names[0]
-
-        # To avoid changes ub original aPCE object
-        MetaModel = deepcopy(MetaModelOrig)
-
-        # Old Experimental design
-        oldExpDesignX = MetaModel.ExpDesign.X
-
-        # TODO: Only one psi can be selected.
-        # Suggestion: Go for the one with the highest LOO error
-        Scores = list(MetaModel.score_dict[OutputName].values())
-        ModifiedLOO = [1-score for score in Scores]
-        outIdx = np.argmax(ModifiedLOO)
-
-        # Initialize Phi to save the criterion's values
-        Phi = np.zeros((NCandidate))
-
-        BasisIndices = MetaModelOrig.basis_dict[OutputName]["y_"+str(outIdx+1)]
-        P = len(BasisIndices)
-
-        # ------ Old Psi ------------
-        univ_p_val = MetaModelOrig.univ_basis_vals(oldExpDesignX)
-        Psi = MetaModelOrig.create_psi(BasisIndices, univ_p_val)
-
-        # ------ New candidates (Psi_c) ------------
-        # Assemble Psi_c
-        univ_p_val_c = self.univ_basis_vals(candidates)
-        Psi_c = self.create_psi(BasisIndices, univ_p_val_c)
-
-        for idx in range(NCandidate):
-
-            # Include the new row to the original Psi
-            Psi_cand = np.vstack((Psi, Psi_c[idx]))
-
-            # Information matrix
-            PsiTPsi = np.dot(Psi_cand.T, Psi_cand)
-            M = PsiTPsi / (len(oldExpDesignX)+1)
-
-            if np.linalg.cond(PsiTPsi) > 1e-12 \
-               and np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon:
-                # faster
-                invM = linalg.solve(M, sparse.eye(PsiTPsi.shape[0]).toarray())
-            else:
-                # stabler
-                invM = np.linalg.pinv(M)
-
-            # ---------- Calculate optimality criterion ----------
-            # Optimality criteria according to Section 4.5.1 in Ref.
-
-            # D-Opt
-            if var == 'D-Opt':
-                Phi[idx] = (np.linalg.det(invM)) ** (1/P)
-
-            # A-Opt
-            elif var == 'A-Opt':
-                Phi[idx] = np.trace(invM)
-
-            # K-Opt
-            elif var == 'K-Opt':
-                Phi[idx] = np.linalg.cond(M)
-
-            else:
-                raise Exception('The optimality criterion you requested has '
-                      'not been implemented yet!')
-
-        # find an optimal point subset to add to the initial design
-        # by minimization of the Phi
-        sorted_idxtotalScore = np.argsort(Phi)
-
-        # select the requested number of samples
-        Xnew = candidates[sorted_idxtotalScore[:n_new_samples]]
-
-        return Xnew
-
-    # -------------------------------------------------------------------------
-    def __normpdf(self, y_hat_pce, std_pce, obs_data, total_sigma2s,
-                  rmse=None):
-
-        Model = self.Model
-        likelihoods = 1.0
-
-        # Loop over the outputs
-        for idx, out in enumerate(Model.Output.names):
-
-            # (Meta)Model Output
-            nsamples, nout = y_hat_pce[out].shape
-
-            # Prepare data and remove NaN
-            try:
-                data = obs_data[out].values[~np.isnan(obs_data[out])]
-            except AttributeError:
-                data = obs_data[out][~np.isnan(obs_data[out])]
-
-            # Prepare sigma2s
-            non_nan_indices = ~np.isnan(total_sigma2s[out])
-            tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout].values
-
-            # Surrogate error if valid dataset is given.
-            if rmse is not None:
-                tot_sigma2s += rmse[out]**2
-            else:
-                tot_sigma2s += np.mean(std_pce[out])**2
-
-            likelihoods *= stats.multivariate_normal.pdf(
-                y_hat_pce[out], data, np.diag(tot_sigma2s),
-                allow_singular=True)
-
-        self.Likelihoods = likelihoods
-
-        return likelihoods
-
-    # -------------------------------------------------------------------------
-    def __corr_factor_BME(self, obs_data, total_sigma2s, logBME):
-        """
-        Calculates the correction factor for BMEs.
-        """
-        MetaModel = self.MetaModel
-        samples = MetaModel.ExpDesign.X  # valid_samples
-        model_outputs = MetaModel.ExpDesign.Y  # valid_model_runs
-        Model = MetaModel.ModelObj
-        n_samples = samples.shape[0]
-
-        # Extract the requested model outputs for likelihood calulation
-        output_names = Model.Output.names
-
-        # TODO: Evaluate MetaModel on the experimental design and ValidSet
-        OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples)
-
-        logLik_data = np.zeros((n_samples))
-        logLik_model = np.zeros((n_samples))
-        # Loop over the outputs
-        for idx, out in enumerate(output_names):
-
-            # (Meta)Model Output
-            nsamples, nout = model_outputs[out].shape
-
-            # Prepare data and remove NaN
-            try:
-                data = obs_data[out].values[~np.isnan(obs_data[out])]
-            except AttributeError:
-                data = obs_data[out][~np.isnan(obs_data[out])]
-
-            # Prepare sigma2s
-            non_nan_indices = ~np.isnan(total_sigma2s[out])
-            tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout]
-
-            # Covariance Matrix
-            covMatrix_data = np.diag(tot_sigma2s)
-
-            for i, sample in enumerate(samples):
-
-                # Simulation run
-                y_m = model_outputs[out][i]
-
-                # Surrogate prediction
-                y_m_hat = OutputRS[out][i]
-
-                # CovMatrix with the surrogate error
-                # covMatrix = np.diag(stdOutputRS[out][i]**2)
-                covMatrix = np.diag((y_m-y_m_hat)**2)
-                covMatrix = np.diag(
-                    np.mean((model_outputs[out]-OutputRS[out]), axis=0)**2
-                    )
-
-                # Compute likelilhood output vs data
-                logLik_data[i] += self.__logpdf(
-                    y_m_hat, data, covMatrix_data
-                    )
-
-                # Compute likelilhood output vs surrogate
-                logLik_model[i] += self.__logpdf(y_m_hat, y_m, covMatrix)
-
-        # Weight
-        logLik_data -= logBME
-        weights = np.exp(logLik_model+logLik_data)
-
-        return np.log(np.mean(weights))
-
-    # -------------------------------------------------------------------------
-    def __logpdf(self, x, mean, cov):
-        """
-        computes the likelihood based on a multivariate normal distribution.
-
-        Parameters
-        ----------
-        x : TYPE
-            DESCRIPTION.
-        mean : array_like
-            Observation data.
-        cov : 2d array
-            Covariance matrix of the distribution.
-
-        Returns
-        -------
-        log_lik : float
-            Log likelihood.
-
-        """
-        n = len(mean)
-        L = linalg.cholesky(cov, lower=True)
-        beta = np.sum(np.log(np.diag(L)))
-        dev = x - mean
-        alpha = dev.dot(linalg.cho_solve((L, True), dev))
-        log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi)
-
-        return log_lik
-
-    # -------------------------------------------------------------------------
-    def __posteriorPlot(self, posterior, par_names, key):
-
-        # Initialization
-        newpath = (r'Outputs_SeqPosteriorComparison/posterior')
-        os.makedirs(newpath, exist_ok=True)
-
-        bound_tuples = self.MetaModel.bound_tuples
-        n_params = len(par_names)
-        font_size = 40
-        if n_params == 2:
-
-            figPosterior, ax = plt.subplots(figsize=(15, 15))
-
-            sns.kdeplot(x=posterior[:, 0], y=posterior[:, 1],
-                        fill=True, ax=ax, cmap=plt.cm.jet,
-                        clip=bound_tuples)
-            # Axis labels
-            plt.xlabel(par_names[0], fontsize=font_size)
-            plt.ylabel(par_names[1], fontsize=font_size)
-
-            # Set axis limit
-            plt.xlim(bound_tuples[0])
-            plt.ylim(bound_tuples[1])
-
-            # Increase font size
-            plt.xticks(fontsize=font_size)
-            plt.yticks(fontsize=font_size)
-
-            # Switch off the grids
-            plt.grid(False)
-
-        else:
-            import corner
-            figPosterior = corner.corner(posterior, labels=par_names,
-                                         title_fmt='.2e', show_titles=True,
-                                         title_kwargs={"fontsize": 12})
-
-        figPosterior.savefig(f'./{newpath}/{key}.pdf', bbox_inches='tight')
-        plt.close()
-
-        # Save the posterior as .npy
-        np.save(f'./{newpath}/{key}.npy', posterior)
-
-        return figPosterior
-
-    # -------------------------------------------------------------------------
-    def __hellinger_distance(self, P, Q):
-        """
-        Hellinger distance between two continuous distributions.
-
-        The maximum distance 1 is achieved when P assigns probability zero to
-        every set to which Q assigns a positive probability, and vice versa.
-        0 (identical) and 1 (maximally different)
-
-        Parameters
-        ----------
-        P : array
-            Reference likelihood.
-        Q : array
-            Estimated likelihood.
-
-        Returns
-        -------
-        float
-            Hellinger distance of two distributions.
-
-        """
-        mu1 = P.mean()
-        Sigma1 = np.std(P)
-
-        mu2 = Q.mean()
-        Sigma2 = np.std(Q)
-
-        term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2))
-
-        term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2))
-
-        H_squared = 1 - term1 * term2
-
-        return np.sqrt(H_squared)
-
-    # -------------------------------------------------------------------------
-    def __BME_Calculator(self, MetaModel, obs_data, sigma2Dict, rmse=None):
-        """
-        This function computes the Bayesian model evidence (BME) via Monte
-        Carlo integration.
-
-        """
-        # Initializations
-        if hasattr(MetaModel, 'valid_likelihoods'):
-            valid_likelihoods = MetaModel.valid_likelihoods
-        else:
-            valid_likelihoods = []
-
-        post_snapshot = MetaModel.ExpDesign.post_snapshot
-        #print(f'post_snapshot: {post_snapshot}')
-        if post_snapshot or len(valid_likelihoods) != 0:
-            newpath = (r'Outputs_SeqPosteriorComparison/likelihood_vs_ref')
-            os.makedirs(newpath, exist_ok=True)
-
-        SamplingMethod = 'random'
-        MCsize = 10000
-        ESS = 0
-
-        # Estimation of the integral via Monte Varlo integration
-        while (ESS > MCsize) or (ESS < 1):
-
-            # Generate samples for Monte Carlo simulation
-            X_MC = MetaModel.ExpDesign.generate_samples(
-                MCsize, SamplingMethod
-                )
-
-            # Monte Carlo simulation for the candidate design
-            Y_MC, std_MC = MetaModel.eval_metamodel(samples=X_MC)
-
-            # Likelihood computation (Comparison of data and
-            # simulation results via PCE with candidate design)
-            Likelihoods = self.__normpdf(
-                Y_MC, std_MC, obs_data, sigma2Dict, rmse
-                )
-
-            # Check the Effective Sample Size (1000<ESS<MCsize)
-            ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods)))
-
-            # Enlarge sample size if it doesn't fulfill the criteria
-            if (ESS > MCsize) or (ESS < 1):
-                print(f'ESS={ESS} MC size should be larger.')
-                MCsize *= 10
-                ESS = 0
-
-        # Rejection Step
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, MCsize)[0]
-
-        # Reject the poorly performed prior
-        accepted = (Likelihoods/np.max(Likelihoods)) >= unif
-        X_Posterior = X_MC[accepted]
-
-        # ------------------------------------------------------------
-        # --- Kullback-Leibler Divergence & Information Entropy ------
-        # ------------------------------------------------------------
-        # Prior-based estimation of BME
-        logBME = np.log(np.nanmean(Likelihoods))
-
-        # TODO: Correction factor
-        # log_weight = self.__corr_factor_BME(obs_data, sigma2Dict, logBME)
-
-        # Posterior-based expectation of likelihoods
-        postExpLikelihoods = np.mean(np.log(Likelihoods[accepted]))
-
-        # Posterior-based expectation of prior densities
-        postExpPrior = np.mean(
-            np.log(MetaModel.ExpDesign.JDist.pdf(X_Posterior.T))
-            )
-
-        # Calculate Kullback-Leibler Divergence
-        # KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME)
-        KLD = postExpLikelihoods - logBME
-
-        # Information Entropy based on Entropy paper Eq. 38
-        infEntropy = logBME - postExpPrior - postExpLikelihoods
-
-        # If post_snapshot is True, plot likelihood vs refrence
-        if post_snapshot or valid_likelihoods:
-            # Hellinger distance
-            valid_likelihoods = np.array(valid_likelihoods)
-            ref_like = np.log(valid_likelihoods[(valid_likelihoods > 0)])
-            est_like = np.log(Likelihoods[Likelihoods > 0])
-            distHellinger = self.__hellinger_distance(ref_like, est_like)
-
-            idx = len([name for name in os.listdir(newpath) if 'Likelihoods_'
-                       in name and os.path.isfile(os.path.join(newpath, name))])
-            fig, ax = plt.subplots()
-            try:
-                sns.kdeplot(np.log(valid_likelihoods[valid_likelihoods > 0]),
-                            shade=True, color="g", label='Ref. Likelihood')
-                sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), shade=True,
-                            color="b", label='Likelihood with PCE')
-            except:
-                pass
-
-            text = f"Hellinger Dist.={distHellinger:.3f}\n logBME={logBME:.3f}"
-            "\n DKL={KLD:.3f}"
-
-            plt.text(0.05, 0.75, text, bbox=dict(facecolor='wheat',
-                                                 edgecolor='black',
-                                                 boxstyle='round,pad=1'),
-                     transform=ax.transAxes)
-
-            fig.savefig(f'./{newpath}/Likelihoods_{idx}.pdf',
-                        bbox_inches='tight')
-            plt.close()
-
-        else:
-            distHellinger = 0.0
-
-        # Bayesian inference with Emulator only for 2D problem
-        if post_snapshot and MetaModel.n_params == 2 and not idx % 5:
-            BayesOpts = BayesInference(MetaModel)
-            BayesOpts.emulator = True
-            BayesOpts.plot_post_pred = False
-
-            # Select the inference method
-            import emcee
-            BayesOpts.inference_method = "MCMC"
-            # Set the MCMC parameters passed to self.mcmc_params
-            BayesOpts.mcmc_params = {
-                'n_steps': 1e5,
-                'n_walkers': 30,
-                'moves': emcee.moves.KDEMove(),
-                'verbose': False
-                }
-
-            # ----- Define the discrepancy model -------
-            obs_data = pd.DataFrame(obs_data, columns=self.Model.Output.names)
-            BayesOpts.measurement_error = obs_data
-
-            # # -- (Option B) --
-            DiscrepancyOpts = Discrepancy('')
-            DiscrepancyOpts.type = 'Gaussian'
-            DiscrepancyOpts.parameters = obs_data**2
-            BayesOpts.Discrepancy = DiscrepancyOpts
-            # Start the calibration/inference
-            Bayes_PCE = BayesOpts.create_inference()
-            X_Posterior = Bayes_PCE.posterior_df.values
-
-        return (logBME, KLD, X_Posterior, Likelihoods, distHellinger)
-
-    # -------------------------------------------------------------------------
-    def __validError(self, MetaModel):
-
-        # MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-        OutputName = Model.Output.names
-
-        # Extract the original model with the generated samples
-        valid_samples = MetaModel.valid_samples
-        valid_model_runs = MetaModel.valid_model_runs
-
-        # Run the PCE model with the generated samples
-        valid_PCE_runs, _ = MetaModel.eval_metamodel(samples=valid_samples)
-
-        rms_error = {}
-        valid_error = {}
-        # Loop over the keys and compute RMSE error.
-        for key in OutputName:
-            rms_error[key] = mean_squared_error(
-                valid_model_runs[key], valid_PCE_runs[key],
-                multioutput='raw_values',
-                sample_weight=None,
-                squared=False)
-            # Validation error
-            valid_error[key] = (rms_error[key]**2)
-            valid_error[key] /= np.var(valid_model_runs[key], ddof=1, axis=0)
-
-            # Print a report table
-            print("\n>>>>> Updated Errors of {} <<<<<".format(key))
-            print("\nIndex  |  RMSE   |  Validation Error")
-            print('-'*35)
-            print('\n'.join(f'{i+1}  |  {k:.3e}  |  {j:.3e}' for i, (k, j)
-                            in enumerate(zip(rms_error[key],
-                                             valid_error[key]))))
-
-        return rms_error, valid_error
-
-    # -------------------------------------------------------------------------
-    def __error_Mean_Std(self):
-
-        MetaModel = self.MetaModel
-        # Extract the mean and std provided by user
-        df_MCReference = MetaModel.ModelObj.mc_reference
-
-        # Compute the mean and std based on the MetaModel
-        pce_means, pce_stds = self._compute_pce_moments(MetaModel)
-
-        # Compute the root mean squared error
-        for output in MetaModel.ModelObj.Output.names:
-
-            # Compute the error between mean and std of MetaModel and OrigModel
-            RMSE_Mean = mean_squared_error(
-                df_MCReference['mean'], pce_means[output], squared=False
-                )
-            RMSE_std = mean_squared_error(
-                df_MCReference['std'], pce_means[output], squared=False
-                )
-
-        return RMSE_Mean, RMSE_std
-
-    # -------------------------------------------------------------------------
-    def _compute_pce_moments(self, MetaModel):
-        """
-        Computes the first two moments using the PCE-based meta-model.
-
-        Returns
-        -------
-        pce_means: dict
-            The first moment (mean) of the surrogate.
-        pce_stds: dict
-            The second moment (standard deviation) of the surrogate.
-
-        """
-        outputs = MetaModel.ModelObj.Output.names
-        pce_means_b = {}
-        pce_stds_b = {}
-
-        # Loop over bootstrap iterations
-        for b_i in range(MetaModel.n_bootstrap_itrs):
-            # Loop over the metamodels
-            coeffs_dicts = MetaModel.coeffs_dict[f'b_{b_i+1}'].items()
-            means = {}
-            stds = {}
-            for output, coef_dict in coeffs_dicts:
-
-                pce_mean = np.zeros((len(coef_dict)))
-                pce_var = np.zeros((len(coef_dict)))
-
-                for index, values in coef_dict.items():
-                    idx = int(index.split('_')[1]) - 1
-                    coeffs = MetaModel.coeffs_dict[f'b_{b_i+1}'][output][index]
-
-                    # Mean = c_0
-                    if coeffs[0] != 0:
-                        pce_mean[idx] = coeffs[0]
-                    else:
-                        clf_poly = MetaModel.clf_poly[f'b_{b_i+1}'][output]
-                        pce_mean[idx] = clf_poly[index].intercept_
-                    # Var = sum(coeffs[1:]**2)
-                    pce_var[idx] = np.sum(np.square(coeffs[1:]))
-
-                # Save predictions for each output
-                if MetaModel.dim_red_method.lower() == 'pca':
-                    PCA = MetaModel.pca[f'b_{b_i+1}'][output]
-                    means[output] = PCA.inverse_transform(pce_mean)
-                    stds[output] = PCA.inverse_transform(np.sqrt(pce_var))
-                else:
-                    means[output] = pce_mean
-                    stds[output] = np.sqrt(pce_var)
-
-            # Save predictions for each bootstrap iteration
-            pce_means_b[b_i] = means
-            pce_stds_b[b_i] = stds
-
-        # Change the order of nesting
-        mean_all = {}
-        for i in sorted(pce_means_b):
-            for k, v in pce_means_b[i].items():
-                if k not in mean_all:
-                    mean_all[k] = [None] * len(pce_means_b)
-                mean_all[k][i] = v
-        std_all = {}
-        for i in sorted(pce_stds_b):
-            for k, v in pce_stds_b[i].items():
-                if k not in std_all:
-                    std_all[k] = [None] * len(pce_stds_b)
-                std_all[k][i] = v
-
-        # Back transformation if PCA is selected.
-        pce_means, pce_stds = {}, {}
-        for output in outputs:
-            pce_means[output] = np.mean(mean_all[output], axis=0)
-            pce_stds[output] = np.mean(std_all[output], axis=0)
-
-        return pce_means, pce_stds
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/orthogonal_matching_pursuit.py b/examples/only-model/bayesvalidrox/surrogate_models/orthogonal_matching_pursuit.py
deleted file mode 100644
index d4f99b8a19bb5dbdf41f093bd454c80c63a321bb..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/orthogonal_matching_pursuit.py
+++ /dev/null
@@ -1,366 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Jul 15 14:08:59 2022
-
-@author: farid
-"""
-import numpy as np
-from sklearn.base import RegressorMixin
-from sklearn.linear_model._base import LinearModel
-from sklearn.utils import check_X_y
-
-
-def corr(x, y):
-    return abs(x.dot(y))/np.sqrt((x**2).sum())
-
-
-class OrthogonalMatchingPursuit(LinearModel, RegressorMixin):
-    '''
-    Regression with Orthogonal Matching Pursuit [1].
-
-    Parameters
-    ----------
-    fit_intercept : boolean, optional (DEFAULT = True)
-        whether to calculate the intercept for this model. If set
-        to false, no intercept will be used in calculations
-        (e.g. data is expected to be already centered).
-
-    copy_X : boolean, optional (DEFAULT = True)
-        If True, X will be copied; else, it may be overwritten.
-
-    verbose : boolean, optional (DEFAULT = FALSE)
-        Verbose mode when fitting the model
-
-    Attributes
-    ----------
-    coef_ : array, shape = (n_features)
-        Coefficients of the regression model (mean of posterior distribution)
-
-    active_ : array, dtype = np.bool, shape = (n_features)
-       True for non-zero coefficients, False otherwise
-
-    References
-    ----------
-    [1] Pati, Y., Rezaiifar, R., Krishnaprasad, P. (1993). Orthogonal matching
-        pursuit: recursive function approximation with application to wavelet
-        decomposition. Proceedings of 27th Asilomar Conference on Signals,
-        Systems and Computers, 40-44.
-    '''
-
-    def __init__(self, fit_intercept=True, normalize=False, copy_X=True,
-                 verbose=False):
-        self.fit_intercept   = fit_intercept
-        self.normalize       = normalize
-        self.copy_X          = copy_X
-        self.verbose         = verbose
-
-    def _preprocess_data(self, X, y):
-        """Center and scale data.
-        Centers data to have mean zero along axis 0. If fit_intercept=False or
-        if the X is a sparse matrix, no centering is done, but normalization
-        can still be applied. The function returns the statistics necessary to
-        reconstruct the input data, which are X_offset, y_offset, X_scale, such
-        that the output
-            X = (X - X_offset) / X_scale
-        X_scale is the L2 norm of X - X_offset.
-        """
-
-        if self.copy_X:
-            X = X.copy(order='K')
-
-        y = np.asarray(y, dtype=X.dtype)
-
-        if self.fit_intercept:
-            X_offset = np.average(X, axis=0)
-            X -= X_offset
-            if self.normalize:
-                X_scale = np.ones(X.shape[1], dtype=X.dtype)
-                std = np.sqrt(np.sum(X**2, axis=0)/(len(X)-1))
-                X_scale[std != 0] = std[std != 0]
-                X /= X_scale
-            else:
-                X_scale = np.ones(X.shape[1], dtype=X.dtype)
-            y_offset = np.mean(y)
-            y = y - y_offset
-        else:
-            X_offset = np.zeros(X.shape[1], dtype=X.dtype)
-            X_scale = np.ones(X.shape[1], dtype=X.dtype)
-            if y.ndim == 1:
-                y_offset = X.dtype.type(0)
-            else:
-                y_offset = np.zeros(y.shape[1], dtype=X.dtype)
-
-        return X, y, X_offset, y_offset, X_scale
-
-    def fit(self, X, y):
-        '''
-        Fits Regression with Orthogonal Matching Pursuit Algorithm.
-
-        Parameters
-        -----------
-        X: {array-like, sparse matrix} of size (n_samples, n_features)
-           Training data, matrix of explanatory variables
-
-        y: array-like of size [n_samples, n_features]
-           Target values
-
-        Returns
-        -------
-        self : object
-            Returns self.
-        '''
-        X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True)
-        n_samples, n_features = X.shape
-
-        X, y, X_mean, y_mean, X_std = self._preprocess_data(X, y)
-        self._x_mean_ = X_mean
-        self._y_mean = y_mean
-        self._x_std = X_std
-
-        # Normalize columns of Psi, so that each column has norm = 1
-        norm_X = np.linalg.norm(X, axis=0)
-        X_norm = X/norm_X
-
-        # Initialize residual vector to full model response and normalize
-        R = y
-        norm_y = np.sqrt(np.dot(y, y))
-        r = y/norm_y
-
-        # Check for constant regressors
-        const_indices = np.where(~np.diff(X, axis=0).any(axis=0))[0]
-        bool_const = not const_indices
-
-        # Start regression using OPM algorithm
-        precision = 0        # Set precision criterion to precision of program
-        early_stop = True
-        cond_early = True    # Initialize condition for early stop
-        ind = []
-        iindx = []           # index of selected columns
-        indtot = np.arange(n_features)  # Full index set for remaining columns
-        kmax = min(n_samples, n_features)  # Maximum number of iterations
-        LOO = np.PINF * np.ones(kmax)  # Store LOO error at each iteration
-        LOOmin = np.PINF               # Initialize minimum value of LOO
-        coeff = np.zeros((n_features, kmax))
-        count = 0
-        k = 0.1                # Percentage of iteration history for early stop
-
-        # Begin iteration over regressors set (Matrix X)
-        while (np.linalg.norm(R) > precision) and (count <= kmax-1) and \
-              ((cond_early or early_stop) ^ ~cond_early):
-
-            # Update index set of columns yet to select
-            if count != 0:
-                indtot = np.delete(indtot, iindx)
-
-            # Find column of X that is most correlated with residual
-            h = abs(np.dot(r, X_norm))
-            iindx = np.argmax(h[indtot])
-            indx = indtot[iindx]
-
-            # initialize with the constant regressor, if it exists in the basis
-            if (count == 0) and bool_const:
-                # overwrite values for iindx and indx
-                iindx = const_indices[0]
-                indx = indtot[iindx]
-
-            # Invert the information matrix at the first iteration, later only
-            # update its value on the basis of the previously inverted one,
-            if count == 0:
-                M = 1 / np.dot(X[:, indx], X[:, indx])
-            else:
-                x = np.dot(X[:, ind].T, X[:, indx])
-                r = np.dot(X[:, indx], X[:, indx])
-                M = self.blockwise_inverse(M, x, x.T, r)
-
-            # Add newly found index to the selected indexes set
-            ind.append(indx)
-
-            # Select regressors subset (Projection subspace)
-            Xpro = X[:, ind]
-
-            # Obtain coefficient by performing OLS
-            TT = np.dot(y, Xpro)
-            beta = np.dot(M, TT)
-            coeff[ind, count] = beta
-
-            # Compute LOO error
-            LOO[count] = self.loo_error(Xpro, M, y, beta)
-
-            # Compute new residual due to new projection
-            R = y - np.dot(Xpro, beta)
-
-            # Normalize residual
-            norm_R = np.sqrt(np.dot(R, R))
-            r = R / norm_R
-
-            # Update counters and early-stop criterions
-            countinf = max(0, int(count-k*kmax))
-            LOOmin = min(LOOmin, LOO[count])
-
-            if count == 0:
-                cond_early = (LOO[0] <= LOOmin)
-            else:
-                cond_early = (min(LOO[countinf:count+1]) <= LOOmin)
-
-            if self.verbose:
-                print(f'Iteration: {count+1}, mod. LOOCV error : '
-                      f'{LOO[count]:.2e}')
-
-            # Update counter
-            count += 1
-
-        # Select projection with smallest cross-validation error
-        countmin = np.argmin(LOO[:-1])
-        self.coef_ = coeff[:, countmin]
-        self.active = coeff[:, countmin] != 0.0
-
-        # set intercept_
-        if self.fit_intercept:
-            self.coef_ = self.coef_ / X_std
-            self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T)
-        else:
-            self.intercept_ = 0.
-
-        return self
-
-    def predict(self, X):
-        '''
-        Computes predictive distribution for test set.
-
-        Parameters
-        -----------
-        X: {array-like, sparse} (n_samples_test, n_features)
-           Test data, matrix of explanatory variables
-
-        Returns
-        -------
-        y_hat: numpy array of size (n_samples_test,)
-               Estimated values of targets on test set (i.e. mean of
-               predictive distribution)
-        '''
-
-        y_hat = np.dot(X, self.coef_) + self.intercept_
-
-        return y_hat
-
-    def loo_error(self, psi, inv_inf_matrix, y, coeffs):
-        """
-        Calculates the corrected LOO error for regression on regressor
-        matrix `psi` that generated the coefficients based on [1] and [2].
-
-        [1] Blatman, G., 2009. Adaptive sparse polynomial chaos expansions for
-            uncertainty propagation and sensitivity analysis (Doctoral
-            dissertation, Clermont-Ferrand 2).
-
-        [2] Blatman, G. and Sudret, B., 2011. Adaptive sparse polynomial chaos
-            expansion based on least angle regression. Journal of computational
-            Physics, 230(6), pp.2345-2367.
-
-        Parameters
-        ----------
-        psi : array of shape (n_samples, n_feature)
-            Orthogonal bases evaluated at the samples.
-        inv_inf_matrix : array
-            Inverse of the information matrix.
-        y : array of shape (n_samples, )
-            Targets.
-        coeffs : array
-            Computed regresssor cofficients.
-
-        Returns
-        -------
-        loo_error : float
-            Modified LOOCV error.
-
-        """
-
-        # NrEvaluation (Size of experimental design)
-        N, P = psi.shape
-
-        # h factor (the full matrix is not calculated explicitly,
-        # only the trace is, to save memory)
-        PsiM = np.dot(psi, inv_inf_matrix)
-
-        h = np.sum(np.multiply(PsiM, psi), axis=1, dtype=np.float128)
-
-        # ------ Calculate Error Loocv for each measurement point ----
-        # Residuals
-        residual = np.dot(psi, coeffs) - y
-
-        # Variance
-        varY = np.var(y)
-
-        if varY == 0:
-            norm_emp_error = 0
-            loo_error = 0
-        else:
-            norm_emp_error = np.mean(residual**2)/varY
-
-            loo_error = np.mean(np.square(residual / (1-h))) / varY
-
-            # if there are NaNs, just return an infinite LOO error (this
-            # happens, e.g., when a strongly underdetermined problem is solved)
-            if np.isnan(loo_error):
-                loo_error = np.inf
-
-        # Corrected Error for over-determined system
-        tr_M = np.trace(np.atleast_2d(inv_inf_matrix))
-        if tr_M < 0 or abs(tr_M) > 1e6:
-            tr_M = np.trace(np.linalg.pinv(np.dot(psi.T, psi)))
-
-        # Over-determined system of Equation
-        if N > P:
-            T_factor = N/(N-P) * (1 + tr_M)
-
-        # Under-determined system of Equation
-        else:
-            T_factor = np.inf
-
-        loo_error *= T_factor
-
-        return loo_error
-
-    def blockwise_inverse(self, Ainv, B, C, D):
-        """
-        non-singular square matrix M defined as M = [[A B]; [C D]] .
-        B, C and D can have any dimension, provided their combination defines
-        a square matrix M.
-
-        Parameters
-        ----------
-        Ainv : float or array
-            inverse of the square-submatrix A.
-        B : float or array
-            Information matrix with all new regressor.
-        C : float or array
-            Transpose of B.
-        D : float or array
-            Information matrix with all selected regressors.
-
-        Returns
-        -------
-        M : array
-            Inverse of the information matrix.
-
-        """
-        if np.isscalar(D):
-            # Inverse of D
-            Dinv = 1/D
-            # Schur complement
-            SCinv = 1/(D - np.dot(C, np.dot(Ainv, B[:, None])))[0]
-        else:
-            # Inverse of D
-            Dinv = np.linalg.solve(D, np.eye(D.shape))
-            # Schur complement
-            SCinv = np.linalg.solve((D - C*Ainv*B), np.eye(D.shape))
-
-        T1 = np.dot(Ainv, np.dot(B[:, None], SCinv))
-        T2 = np.dot(C, Ainv)
-
-        # Assemble the inverse matrix
-        M = np.vstack((
-            np.hstack((Ainv+T1*T2, -T1)),
-            np.hstack((-(SCinv)*T2, SCinv))
-            ))
-        return M
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_ard.py b/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_ard.py
deleted file mode 100644
index 44073da8e78642ba3b3914f6ce55a2d01986b1f1..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_ard.py
+++ /dev/null
@@ -1,475 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Tue Mar 24 19:41:45 2020
-
-@author: farid
-"""
-import numpy as np
-from scipy.linalg import solve_triangular
-from numpy.linalg import LinAlgError
-from sklearn.base import RegressorMixin
-from sklearn.linear_model._base import LinearModel
-import warnings
-from sklearn.utils import check_X_y
-from scipy.linalg import pinvh
-
-
-def update_precisions(Q,S,q,s,A,active,tol,n_samples,clf_bias):
-    '''
-    Selects one feature to be added/recomputed/deleted to model based on
-    effect it will have on value of log marginal likelihood.
-    '''
-    # initialise vector holding changes in log marginal likelihood
-    deltaL = np.zeros(Q.shape[0])
-
-    # identify features that can be added , recomputed and deleted in model
-    theta        =  q**2 - s
-    add          =  (theta > 0) * (active == False)
-    recompute    =  (theta > 0) * (active == True)
-    delete       = ~(add + recompute)
-
-    # compute sparsity & quality parameters corresponding to features in
-    # three groups identified above
-    Qadd,Sadd      = Q[add], S[add]
-    Qrec,Srec,Arec = Q[recompute], S[recompute], A[recompute]
-    Qdel,Sdel,Adel = Q[delete], S[delete], A[delete]
-
-    # compute new alpha's (precision parameters) for features that are
-    # currently in model and will be recomputed
-    Anew           = s[recompute]**2/ ( theta[recompute] + np.finfo(np.float32).eps)
-    delta_alpha    = (1./Anew - 1./Arec)
-
-    # compute change in log marginal likelihood
-    deltaL[add]       = ( Qadd**2 - Sadd ) / Sadd + np.log(Sadd/Qadd**2 )
-    deltaL[recompute] = Qrec**2 / (Srec + 1. / delta_alpha) - np.log(1 + Srec*delta_alpha)
-    deltaL[delete]    = Qdel**2 / (Sdel - Adel) - np.log(1 - Sdel / Adel)
-    deltaL            = deltaL  / n_samples
-
-    # find feature which caused largest change in likelihood
-    feature_index = np.argmax(deltaL)
-
-    # no deletions or additions
-    same_features  = np.sum( theta[~recompute] > 0) == 0
-
-    # changes in precision for features already in model is below threshold
-    no_delta       = np.sum( abs( Anew - Arec ) > tol ) == 0
-    # if same_features: print(abs( Anew - Arec ))
-    # print("same_features = {} no_delta = {}".format(same_features,no_delta))
-    # check convergence: if no features to add or delete and small change in
-    #                    precision for current features then terminate
-    converged = False
-    if same_features and no_delta:
-        converged = True
-        return [A,converged]
-
-    # if not converged update precision parameter of weights and return
-    if theta[feature_index] > 0:
-        A[feature_index] = s[feature_index]**2 / theta[feature_index]
-        if active[feature_index] == False:
-            active[feature_index] = True
-    else:
-        # at least two active features
-        if active[feature_index] == True and np.sum(active) >= 2:
-            # do not remove bias term in classification
-            # (in regression it is factored in through centering)
-            if not (feature_index == 0 and clf_bias):
-                active[feature_index] = False
-                A[feature_index]      = np.PINF
-
-    return [A,converged]
-
-
-class RegressionFastARD(LinearModel, RegressorMixin):
-    '''
-    Regression with Automatic Relevance Determination (Fast Version uses
-    Sparse Bayesian Learning)
-    https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py
-
-    Parameters
-    ----------
-    n_iter: int, optional (DEFAULT = 100)
-        Maximum number of iterations
-
-    start: list, optional (DEFAULT = None)
-        Initial selected features.
-
-    tol: float, optional (DEFAULT = 1e-3)
-        If absolute change in precision parameter for weights is below threshold
-        algorithm terminates.
-
-    fit_intercept : boolean, optional (DEFAULT = True)
-        whether to calculate the intercept for this model. If set
-        to false, no intercept will be used in calculations
-        (e.g. data is expected to be already centered).
-
-    copy_X : boolean, optional (DEFAULT = True)
-        If True, X will be copied; else, it may be overwritten.
-
-    compute_score : bool, default=False
-        If True, compute the log marginal likelihood at each iteration of the
-        optimization.
-
-    verbose : boolean, optional (DEFAULT = FALSE)
-        Verbose mode when fitting the model
-
-    Attributes
-    ----------
-    coef_ : array, shape = (n_features)
-        Coefficients of the regression model (mean of posterior distribution)
-
-    alpha_ : float
-       estimated precision of the noise
-
-    active_ : array, dtype = np.bool, shape = (n_features)
-       True for non-zero coefficients, False otherwise
-
-    lambda_ : array, shape = (n_features)
-       estimated precisions of the coefficients
-
-    sigma_ : array, shape = (n_features, n_features)
-        estimated covariance matrix of the weights, computed only
-        for non-zero coefficients
-
-    scores_ : array-like of shape (n_iter_+1,)
-        If computed_score is True, value of the log marginal likelihood (to be
-        maximized) at each iteration of the optimization.
-
-    References
-    ----------
-    [1] Fast marginal likelihood maximisation for sparse Bayesian models
-    (Tipping & Faul 2003) (http://www.miketipping.com/papers/met-fastsbl.pdf)
-    [2] Analysis of sparse Bayesian learning (Tipping & Faul 2001)
-        (http://www.miketipping.com/abstracts.htm#Faul:NIPS01)
-    '''
-
-    def __init__(self, n_iter=300, start=None, tol=1e-3, fit_intercept=True,
-                 normalize=False, copy_X=True, compute_score=False, verbose=False):
-        self.n_iter          = n_iter
-        self.start           = start
-        self.tol             = tol
-        self.scores_         = list()
-        self.fit_intercept   = fit_intercept
-        self.normalize       = normalize
-        self.copy_X          = copy_X
-        self.compute_score   = compute_score
-        self.verbose         = verbose
-
-    def _preprocess_data(self, X, y):
-        """Center and scale data.
-        Centers data to have mean zero along axis 0. If fit_intercept=False or
-        if the X is a sparse matrix, no centering is done, but normalization
-        can still be applied. The function returns the statistics necessary to
-        reconstruct the input data, which are X_offset, y_offset, X_scale, such
-        that the output
-            X = (X - X_offset) / X_scale
-        X_scale is the L2 norm of X - X_offset.
-        """
-
-        if self.copy_X:
-            X = X.copy(order='K')
-
-        y = np.asarray(y, dtype=X.dtype)
-
-        if self.fit_intercept:
-            X_offset = np.average(X, axis=0)
-            X -= X_offset
-            if self.normalize:
-                X_scale = np.ones(X.shape[1], dtype=X.dtype)
-                std = np.sqrt(np.sum(X**2, axis=0)/(len(X)-1))
-                X_scale[std != 0] = std[std != 0]
-                X /= X_scale
-            else:
-                X_scale = np.ones(X.shape[1], dtype=X.dtype)
-            y_offset = np.mean(y)
-            y = y - y_offset
-        else:
-            X_offset = np.zeros(X.shape[1], dtype=X.dtype)
-            X_scale = np.ones(X.shape[1], dtype=X.dtype)
-            if y.ndim == 1:
-                y_offset = X.dtype.type(0)
-            else:
-                y_offset = np.zeros(y.shape[1], dtype=X.dtype)
-
-        return X, y, X_offset, y_offset, X_scale
-
-    def fit(self, X, y):
-        '''
-        Fits ARD Regression with Sequential Sparse Bayes Algorithm.
-
-        Parameters
-        -----------
-        X: {array-like, sparse matrix} of size (n_samples, n_features)
-           Training data, matrix of explanatory variables
-
-        y: array-like of size [n_samples, n_features]
-           Target values
-
-        Returns
-        -------
-        self : object
-            Returns self.
-        '''
-        X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True)
-        n_samples, n_features = X.shape
-
-        X, y, X_mean, y_mean, X_std = self._preprocess_data(X, y)
-        self._x_mean_ = X_mean
-        self._y_mean = y_mean
-        self._x_std = X_std
-
-        #  precompute X'*Y , X'*X for faster iterations & allocate memory for
-        #  sparsity & quality vectors
-        XY = np.dot(X.T, y)
-        XX = np.dot(X.T, X)
-        XXd = np.diag(XX)
-
-        #  initialise precision of noise & and coefficients
-        var_y = np.var(y)
-
-        # check that variance is non zero !!!
-        if var_y == 0:
-            beta = 1e-2
-            self.var_y = True
-        else:
-            beta = 1. / np.var(y)
-            self.var_y = False
-
-        A = np.PINF * np.ones(n_features)
-        active = np.zeros(n_features, dtype=np.bool)
-
-        if self.start is not None and not hasattr(self, 'active_'):
-            start = self.start
-            # start from a given start basis vector
-            proj = XY**2 / XXd
-            active[start] = True
-            A[start] = XXd[start]/(proj[start] - var_y)
-
-        else:
-            # in case of almost perfect multicollinearity between some features
-            # start from feature 0
-            if np.sum(XXd - X_mean**2 < np.finfo(np.float32).eps) > 0:
-                A[0] = np.finfo(np.float16).eps
-                active[0] = True
-
-            else:
-                # start from a single basis vector with largest projection on
-                # targets
-                proj = XY**2 / XXd
-                start = np.argmax(proj)
-                active[start] = True
-                A[start] = XXd[start]/(proj[start] - var_y +
-                                       np.finfo(np.float32).eps)
-
-        warning_flag = 0
-        scores_ = []
-        for i in range(self.n_iter):
-            # Handle variance zero
-            if self.var_y:
-                A[0] = y_mean
-                active[0] = True
-                converged = True
-                break
-
-            XXa = XX[active, :][:, active]
-            XYa = XY[active]
-            Aa = A[active]
-
-            # mean & covariance of posterior distribution
-            Mn, Ri, cholesky = self._posterior_dist(Aa, beta, XXa, XYa)
-            if cholesky:
-                Sdiag = np.sum(Ri**2, 0)
-            else:
-                Sdiag = np.copy(np.diag(Ri))
-                warning_flag += 1
-
-            # raise warning in case cholesky fails
-            if warning_flag == 1:
-                warnings.warn(("Cholesky decomposition failed! Algorithm uses "
-                               "pinvh, which is significantly slower, if you "
-                               "use RVR it is advised to change parameters of "
-                               "kernel"))
-
-            # compute quality & sparsity parameters
-            s, q, S, Q = self._sparsity_quality(XX, XXd, XY, XYa, Aa, Ri,
-                                                active, beta, cholesky)
-
-            # update precision parameter for noise distribution
-            rss = np.sum((y - np.dot(X[:, active], Mn))**2)
-
-            # if near perfect fit , then terminate
-            if (rss / n_samples/var_y) < self.tol:
-                warnings.warn('Early termination due to near perfect fit')
-                converged = True
-                break
-            beta = n_samples - np.sum(active) + np.sum(Aa * Sdiag)
-            beta /= rss
-            # beta /= (rss + np.finfo(np.float32).eps)
-
-            # update precision parameters of coefficients
-            A, converged = update_precisions(Q, S, q, s, A, active, self.tol,
-                                             n_samples, False)
-
-            if self.compute_score:
-                scores_.append(self.log_marginal_like(XXa, XYa, Aa, beta))
-
-            if self.verbose:
-                print(('Iteration: {0}, number of features '
-                       'in the model: {1}').format(i, np.sum(active)))
-
-            if converged or i == self.n_iter - 1:
-                if converged and self.verbose:
-                    print('Algorithm converged !')
-                break
-
-        # after last update of alpha & beta update parameters
-        # of posterior distribution
-        XXa, XYa, Aa = XX[active, :][:, active], XY[active], A[active]
-        Mn, Sn, cholesky = self._posterior_dist(Aa, beta, XXa, XYa, True)
-        self.coef_ = np.zeros(n_features)
-        self.coef_[active] = Mn
-        self.sigma_ = Sn
-        self.active_ = active
-        self.lambda_ = A
-        self.alpha_ = beta
-        self.converged = converged
-        if self.compute_score:
-            self.scores_ = np.array(scores_)
-
-        # set intercept_
-        if self.fit_intercept:
-            self.coef_ = self.coef_ / X_std
-            self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T)
-        else:
-            self.intercept_ = 0.
-        return self
-
-    def log_marginal_like(self, XXa, XYa, Aa, beta):
-        """Computes the log of the marginal likelihood."""
-        N, M = XXa.shape
-        A = np.diag(Aa)
-
-        Mn, sigma_, cholesky = self._posterior_dist(Aa, beta, XXa, XYa,
-                                                    full_covar=True)
-
-        C = sigma_ + np.dot(np.dot(XXa.T, np.linalg.pinv(A)), XXa)
-
-        score = np.dot(np.dot(XYa.T, np.linalg.pinv(C)), XYa) +\
-            np.log(np.linalg.det(C)) + N * np.log(2 * np.pi)
-
-        return -0.5 * score
-
-    def predict(self, X, return_std=False):
-        '''
-        Computes predictive distribution for test set.
-        Predictive distribution for each data point is one dimensional
-        Gaussian and therefore is characterised by mean and variance based on
-        Ref.[1] Section 3.3.2.
-
-        Parameters
-        -----------
-        X: {array-like, sparse} (n_samples_test, n_features)
-           Test data, matrix of explanatory variables
-
-        Returns
-        -------
-        : list of length two [y_hat, var_hat]
-
-             y_hat: numpy array of size (n_samples_test,)
-                    Estimated values of targets on test set (i.e. mean of
-                    predictive distribution)
-
-                var_hat: numpy array of size (n_samples_test,)
-                    Variance of predictive distribution
-        References
-        ----------
-        [1] Bishop, C. M. (2006). Pattern recognition and machine learning.
-        springer.
-        '''
-
-        y_hat = np.dot(X, self.coef_) + self.intercept_
-
-        if return_std:
-            # Handle the zero variance case
-            if self.var_y:
-                return y_hat, np.zeros_like(y_hat)
-
-            if self.normalize:
-                X -= self._x_mean_[self.active_]
-                X /= self._x_std[self.active_]
-            var_hat = 1./self.alpha_
-            var_hat += np.sum(X.dot(self.sigma_) * X, axis=1)
-            std_hat = np.sqrt(var_hat)
-            return y_hat, std_hat
-        else:
-            return y_hat
-
-    def _posterior_dist(self, A, beta, XX, XY, full_covar=False):
-        '''
-        Calculates mean and covariance matrix of posterior distribution
-        of coefficients.
-        '''
-        # compute precision matrix for active features
-        Sinv = beta * XX
-        np.fill_diagonal(Sinv, np.diag(Sinv) + A)
-        cholesky = True
-
-        # try cholesky, if it fails go back to pinvh
-        try:
-            # find posterior mean : R*R.T*mean = beta*X.T*Y
-            # solve(R*z = beta*X.T*Y) =>find z=> solve(R.T*mean = z)=>find mean
-            R = np.linalg.cholesky(Sinv)
-            Z = solve_triangular(R, beta*XY, check_finite=True, lower=True)
-            Mn = solve_triangular(R.T, Z, check_finite=True, lower=False)
-
-            # invert lower triangular matrix from cholesky decomposition
-            Ri = solve_triangular(R, np.eye(A.shape[0]), check_finite=False,
-                                  lower=True)
-            if full_covar:
-                Sn = np.dot(Ri.T, Ri)
-                return Mn, Sn, cholesky
-            else:
-                return Mn, Ri, cholesky
-        except LinAlgError:
-            cholesky = False
-            Sn = pinvh(Sinv)
-            Mn = beta*np.dot(Sinv, XY)
-            return Mn, Sn, cholesky
-
-    def _sparsity_quality(self, XX, XXd, XY, XYa, Aa, Ri, active, beta, cholesky):
-        '''
-        Calculates sparsity and quality parameters for each feature
-
-        Theoretical Note:
-        -----------------
-        Here we used Woodbury Identity for inverting covariance matrix
-        of target distribution
-        C    = 1/beta + 1/alpha * X' * X
-        C^-1 = beta - beta^2 * X * Sn * X'
-        '''
-        bxy = beta*XY
-        bxx = beta*XXd
-        if cholesky:
-            # here Ri is inverse of lower triangular matrix obtained from
-            # cholesky decomp
-            xxr = np.dot(XX[:, active], Ri.T)
-            rxy = np.dot(Ri, XYa)
-            S = bxx - beta**2 * np.sum(xxr**2, axis=1)
-            Q = bxy - beta**2 * np.dot(xxr, rxy)
-        else:
-            # here Ri is covariance matrix
-            XXa = XX[:, active]
-            XS = np.dot(XXa, Ri)
-            S = bxx - beta**2 * np.sum(XS*XXa, 1)
-            Q = bxy - beta**2 * np.dot(XS, XYa)
-        # Use following:
-        # (EQ 1) q = A*Q/(A - S) ; s = A*S/(A-S)
-        # so if A = np.PINF q = Q, s = S
-        qi = np.copy(Q)
-        si = np.copy(S)
-        # If A is not np.PINF, then it should be 'active' feature => use (EQ 1)
-        Qa, Sa = Q[active], S[active]
-        qi[active] = Aa * Qa / (Aa - Sa)
-        si[active] = Aa * Sa / (Aa - Sa)
-
-        return [si, qi, S, Q]
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_laplace.py b/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_laplace.py
deleted file mode 100644
index bdff324ede818a42d226e9aa55aaf01666ca8fc8..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_laplace.py
+++ /dev/null
@@ -1,452 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-import numpy as np
-from sklearn.utils import as_float_array
-from sklearn.model_selection import KFold
-
-
-class RegressionFastLaplace():
-    '''
-    Sparse regression with Bayesian Compressive Sensing as described in Alg. 1
-    (Fast Laplace) of Ref.[1], which updated formulas from [2].
-
-    sigma2: noise precision (sigma^2)
-    nu fixed to 0
-
-    uqlab/lib/uq_regression/BCS/uq_bsc.m
-
-    Parameters
-    ----------
-    n_iter: int, optional (DEFAULT = 1000)
-        Maximum number of iterations
-
-    tol: float, optional (DEFAULT = 1e-7)
-        If absolute change in precision parameter for weights is below
-        threshold algorithm terminates.
-
-    fit_intercept : boolean, optional (DEFAULT = True)
-        whether to calculate the intercept for this model. If set
-        to false, no intercept will be used in calculations
-        (e.g. data is expected to be already centered).
-
-    copy_X : boolean, optional (DEFAULT = True)
-        If True, X will be copied; else, it may be overwritten.
-
-    verbose : boolean, optional (DEFAULT = FALSE)
-        Verbose mode when fitting the model
-
-    Attributes
-    ----------
-    coef_ : array, shape = (n_features)
-        Coefficients of the regression model (mean of posterior distribution)
-
-    alpha_ : float
-       estimated precision of the noise
-
-    active_ : array, dtype = np.bool, shape = (n_features)
-       True for non-zero coefficients, False otherwise
-
-    lambda_ : array, shape = (n_features)
-       estimated precisions of the coefficients
-
-    sigma_ : array, shape = (n_features, n_features)
-        estimated covariance matrix of the weights, computed only
-        for non-zero coefficients
-
-    References
-    ----------
-    [1] Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2009). Bayesian
-        compressive sensing using Laplace priors. IEEE Transactions on image
-        processing, 19(1), 53-63.
-    [2] Fast marginal likelihood maximisation for sparse Bayesian models
-        (Tipping & Faul 2003).
-        (http://www.miketipping.com/papers/met-fastsbl.pdf)
-    '''
-
-    def __init__(self, n_iter=1000, n_Kfold=10, tol=1e-7, fit_intercept=False,
-                 bias_term=True, copy_X=True, verbose=False):
-        self.n_iter = n_iter
-        self.n_Kfold = n_Kfold
-        self.tol = tol
-        self.fit_intercept = fit_intercept
-        self.bias_term = bias_term
-        self.copy_X = copy_X
-        self.verbose = verbose
-
-    def _center_data(self, X, y):
-        ''' Centers data'''
-        X = as_float_array(X, self.copy_X)
-
-        # normalisation should be done in preprocessing!
-        X_std = np.ones(X.shape[1], dtype=X.dtype)
-        if self.fit_intercept:
-            X_mean = np.average(X, axis=0)
-            y_mean = np.average(y, axis=0)
-            X -= X_mean
-            y -= y_mean
-        else:
-            X_mean = np.zeros(X.shape[1], dtype=X.dtype)
-            y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype)
-        return X, y, X_mean, y_mean, X_std
-
-    def fit(self, X, y):
-
-        k_fold = KFold(n_splits=self.n_Kfold)
-
-        varY = np.var(y, ddof=1) if np.var(y, ddof=1) != 0 else 1.0
-        sigma2s = len(y)*varY*(10**np.linspace(-16, -1, self.n_Kfold))
-
-        errors = np.zeros((len(sigma2s), self.n_Kfold))
-        for s, sigma2 in enumerate(sigma2s):
-            for k, (train, test) in enumerate(k_fold.split(X, y)):
-                self.fit_(X[train], y[train], sigma2)
-                errors[s, k] = np.linalg.norm(
-                    y[test] - self.predict(X[test])
-                    )**2/len(test)
-
-        KfCVerror = np.sum(errors, axis=1)/self.n_Kfold/varY
-        i_minCV = np.argmin(KfCVerror)
-
-        self.kfoldCVerror = np.min(KfCVerror)
-
-        return self.fit_(X, y, sigma2s[i_minCV])
-
-    def fit_(self, X, y, sigma2):
-
-        N, P = X.shape
-        # n_samples, n_features = X.shape
-
-        X, y, X_mean, y_mean, X_std = self._center_data(X, y)
-        self._x_mean_ = X_mean
-        self._y_mean = y_mean
-        self._x_std = X_std
-
-        # check that variance is non zero !!!
-        if np.var(y) == 0:
-            self.var_y = True
-        else:
-            self.var_y = False
-        beta = 1./sigma2
-
-        #  precompute X'*Y , X'*X for faster iterations & allocate memory for
-        #  sparsity & quality vectors X=Psi
-        PsiTY = np.dot(X.T, y)
-        PsiTPsi = np.dot(X.T, X)
-        XXd = np.diag(PsiTPsi)
-
-        # initialize with constant regressor, or if that one does not exist,
-        # with the one that has the largest correlation with Y
-        ind_global_to_local = np.zeros(P, dtype=np.int32)
-
-        # identify constant regressors
-        constidx = np.where(~np.diff(X, axis=0).all(axis=0))[0]
-
-        if self.bias_term and constidx.size != 0:
-            ind_start = constidx[0]
-            ind_global_to_local[ind_start] = True
-        else:
-            # start from a single basis vector with largest projection on
-            # targets
-            proj = np.divide(np.square(PsiTY), XXd)
-            ind_start = np.argmax(proj)
-            ind_global_to_local[ind_start] = True
-
-        num_active = 1
-        active_indices = [ind_start]
-        deleted_indices = []
-        bcs_path = [ind_start]
-        gamma = np.zeros(P)
-        # for the initial value of gamma(ind_start), use the RVM formula
-        #   gamma = (q^2 - s) / (s^2)
-        # and the fact that initially s = S = beta*Psi_i'*Psi_i and q = Q =
-        # beta*Psi_i'*Y
-        gamma[ind_start] = np.square(PsiTY[ind_start])
-        gamma[ind_start] -= sigma2 * PsiTPsi[ind_start, ind_start]
-        gamma[ind_start] /= np.square(PsiTPsi[ind_start, ind_start])
-
-        Sigma = 1. / (beta * PsiTPsi[ind_start, ind_start]
-                      + 1./gamma[ind_start])
-
-        mu = Sigma * PsiTY[ind_start] * beta
-        tmp1 = beta * PsiTPsi[ind_start]
-        S = beta * np.diag(PsiTPsi).T - Sigma * np.square(tmp1)
-        Q = beta * PsiTY.T - mu*(tmp1)
-
-        tmp2 = np.ones(P)  # alternative computation for the initial s,q
-        q0tilde = PsiTY[ind_start]
-        s0tilde = PsiTPsi[ind_start, ind_start]
-        tmp2[ind_start] = s0tilde / (q0tilde**2) / beta
-        s = np.divide(S, tmp2)
-        q = np.divide(Q, tmp2)
-        Lambda = 2*(num_active - 1) / np.sum(gamma)
-
-        Delta_L_max = []
-        for i in range(self.n_iter):
-            # Handle variance zero
-            if self.var_y:
-                mu = np.mean(y)
-                break
-
-            if self.verbose:
-                print('    lambda = {0:.6e}\n'.format(Lambda))
-
-            # Calculate the potential updated value of each gamma[i]
-            if Lambda == 0.0:  # RVM
-                gamma_potential = np.multiply((
-                    (q**2 - s) > Lambda),
-                    np.divide(q**2 - s, s**2)
-                    )
-            else:
-                a = Lambda * s**2
-                b = s**2 + 2*Lambda*s
-                c = Lambda + s - q**2
-                gamma_potential = np.multiply(
-                    (c < 0), np.divide(
-                        -b + np.sqrt(b**2 - 4*np.multiply(a, c)), 2*a)
-                    )
-
-            l_gamma = - np.log(np.absolute(1 + np.multiply(gamma, s)))
-            l_gamma += np.divide(np.multiply(q**2, gamma),
-                                 (1 + np.multiply(gamma, s)))
-            l_gamma -= Lambda*gamma  # omitted the factor 1/2
-
-            # Contribution of each updated gamma(i) to L(gamma)
-            l_gamma_potential = - np.log(
-                np.absolute(1 + np.multiply(gamma_potential, s))
-                )
-            l_gamma_potential += np.divide(
-                np.multiply(q**2, gamma_potential),
-                (1 + np.multiply(gamma_potential, s))
-                )
-            # omitted the factor 1/2
-            l_gamma_potential -= Lambda*gamma_potential
-
-            # Check how L(gamma) would change if we replaced gamma(i) by the
-            # updated gamma_potential(i), for each i separately
-            Delta_L_potential = l_gamma_potential - l_gamma
-
-            # deleted indices should not be chosen again
-            if len(deleted_indices) != 0:
-                values = -np.inf * np.ones(len(deleted_indices))
-                Delta_L_potential[deleted_indices] = values
-
-            Delta_L_max.append(np.nanmax(Delta_L_potential))
-            ind_L_max = np.nanargmax(Delta_L_potential)
-
-            # in case there is only 1 regressor in the model and it would now
-            # be deleted
-            if len(active_indices) == 1 and ind_L_max == active_indices[0] \
-               and gamma_potential[ind_L_max] == 0.0:
-                Delta_L_potential[ind_L_max] = -np.inf
-                Delta_L_max[i] = np.max(Delta_L_potential)
-                ind_L_max = np.argmax(Delta_L_potential)
-
-            # If L did not change significantly anymore, break
-            if Delta_L_max[i] <= 0.0 or\
-                    (i > 0 and all(np.absolute(Delta_L_max[i-1:])
-                                   < sum(Delta_L_max)*self.tol)) or \
-                    (i > 0 and all(np.diff(bcs_path)[i-1:] == 0.0)):
-                if self.verbose:
-                    print('Increase in L: {0:.6e} (eta = {1:.3e})\
-                          -- break\n'.format(Delta_L_max[i], self.tol))
-                break
-
-            # Print information
-            if self.verbose:
-                print('    Delta L = {0:.6e} \n'.format(Delta_L_max[i]))
-
-            what_changed = int(gamma[ind_L_max] == 0.0)
-            what_changed -= int(gamma_potential[ind_L_max] == 0.0)
-
-            # Print information
-            if self.verbose:
-                if what_changed < 0:
-                    print(f'{i+1} - Remove regressor #{ind_L_max+1}..\n')
-                elif what_changed == 0:
-                    print(f'{i+1} - Recompute regressor #{ind_L_max+1}..\n')
-                else:
-                    print(f'{i+1} - Add regressor #{ind_L_max+1}..\n')
-
-            # --- Update all quantities ----
-            if what_changed == 1:
-                # adding a regressor
-
-                # update gamma
-                gamma[ind_L_max] = gamma_potential[ind_L_max]
-
-                Sigma_ii = 1.0 / (1.0/gamma[ind_L_max] + S[ind_L_max])
-                try:
-                    x_i = np.matmul(
-                        Sigma, PsiTPsi[active_indices, ind_L_max].reshape(-1, 1)
-                        )
-                except ValueError:
-                    x_i = Sigma * PsiTPsi[active_indices, ind_L_max]
-                tmp_1 = - (beta * Sigma_ii) * x_i
-                Sigma = np.vstack(
-                    (np.hstack(((beta**2 * Sigma_ii) * np.dot(x_i, x_i.T)
-                                + Sigma, tmp_1)), np.append(tmp_1.T, Sigma_ii))
-                    )
-                mu_i = Sigma_ii * Q[ind_L_max]
-                mu = np.vstack((mu - (beta * mu_i) * x_i, mu_i))
-
-                tmp2_1 = PsiTPsi[:, ind_L_max] - beta * np.squeeze(
-                    np.matmul(PsiTPsi[:, active_indices], x_i)
-                    )
-                if i == 0:
-                    tmp2_1[0] /= 2
-                tmp2 = beta * tmp2_1.T
-                S = S - Sigma_ii * np.square(tmp2)
-                Q = Q - mu_i * tmp2
-
-                num_active += 1
-                ind_global_to_local[ind_L_max] = num_active
-                active_indices.append(ind_L_max)
-                bcs_path.append(ind_L_max)
-
-            elif what_changed == 0:
-                # recomputation
-                # zero if regressor has not been chosen yet
-                if not ind_global_to_local[ind_L_max]:
-                    raise Exception('cannot recompute index{0} -- not yet\
-                                    part of the model!'.format(ind_L_max))
-                Sigma = np.atleast_2d(Sigma)
-                mu = np.atleast_2d(mu)
-                gamma_i_new = gamma_potential[ind_L_max]
-                gamma_i_old = gamma[ind_L_max]
-                # update gamma
-                gamma[ind_L_max] = gamma_potential[ind_L_max]
-
-                # index of regressor in Sigma
-                local_ind = ind_global_to_local[ind_L_max]-1
-
-                kappa_i = (1.0/gamma_i_new - 1.0/gamma_i_old)
-                kappa_i = 1.0 / kappa_i
-                kappa_i += Sigma[local_ind, local_ind]
-                kappa_i = 1 / kappa_i
-                Sigma_i_col = Sigma[:, local_ind]
-
-                Sigma = Sigma - kappa_i * (Sigma_i_col * Sigma_i_col.T)
-                mu_i = mu[local_ind]
-                mu = mu - (kappa_i * mu_i) * Sigma_i_col[:, None]
-
-                tmp1 = beta * np.dot(
-                    Sigma_i_col.reshape(1, -1), PsiTPsi[active_indices])[0]
-                S = S + kappa_i * np.square(tmp1)
-                Q = Q + (kappa_i * mu_i) * tmp1
-
-                # no change in active_indices or ind_global_to_local
-                bcs_path.append(ind_L_max + 0.1)
-
-            elif what_changed == -1:
-                gamma[ind_L_max] = 0
-
-                # index of regressor in Sigma
-                local_ind = ind_global_to_local[ind_L_max]-1
-
-                Sigma_ii_inv = 1. / Sigma[local_ind, local_ind]
-                Sigma_i_col = Sigma[:, local_ind]
-
-                Sigma = Sigma - Sigma_ii_inv * (Sigma_i_col * Sigma_i_col.T)
-
-                Sigma = np.delete(
-                    np.delete(Sigma, local_ind, axis=0), local_ind, axis=1)
-
-                mu = mu - (mu[local_ind] * Sigma_ii_inv) * Sigma_i_col[:, None]
-                mu = np.delete(mu, local_ind, axis=0)
-
-                tmp1 = beta * np.dot(Sigma_i_col, PsiTPsi[active_indices])
-                S = S + Sigma_ii_inv * np.square(tmp1)
-                Q = Q + (mu_i * Sigma_ii_inv) * tmp1
-
-                num_active -= 1
-                ind_global_to_local[ind_L_max] = 0.0
-                v = ind_global_to_local[ind_global_to_local > local_ind] - 1
-                ind_global_to_local[ind_global_to_local > local_ind] = v
-                del active_indices[local_ind]
-                deleted_indices.append(ind_L_max)
-                # and therefore ineligible
-                bcs_path.append(-ind_L_max)
-
-            # same for all three cases
-            tmp3 = 1 - np.multiply(gamma, S)
-            s = np.divide(S, tmp3)
-            q = np.divide(Q, tmp3)
-
-            # Update lambda
-            Lambda = 2*(num_active - 1) / np.sum(gamma)
-
-        # Prepare the result object
-        self.coef_ = np.zeros(P)
-        self.coef_[active_indices] = np.squeeze(mu)
-        self.sigma_ = Sigma
-        self.active_ = active_indices
-        self.gamma = gamma
-        self.Lambda = Lambda
-        self.beta = beta
-        self.bcs_path = bcs_path
-
-        # set intercept_
-        if self.fit_intercept:
-            self.coef_ = self.coef_ / X_std
-            self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T)
-        else:
-            self.intercept_ = 0.
-
-        return self
-
-    def predict(self, X, return_std=False):
-        '''
-        Computes predictive distribution for test set.
-        Predictive distribution for each data point is one dimensional
-        Gaussian and therefore is characterised by mean and variance based on
-        Ref.[1] Section 3.3.2.
-
-        Parameters
-        -----------
-        X: {array-like, sparse} (n_samples_test, n_features)
-           Test data, matrix of explanatory variables
-
-        Returns
-        -------
-        : list of length two [y_hat, var_hat]
-
-             y_hat: numpy array of size (n_samples_test,)
-                    Estimated values of targets on test set (i.e. mean of
-                    predictive distribution)
-
-                var_hat: numpy array of size (n_samples_test,)
-                    Variance of predictive distribution
-
-        References
-        ----------
-        [1] Bishop, C. M. (2006). Pattern recognition and machine learning.
-        springer.
-        '''
-        y_hat = np.dot(X, self.coef_) + self.intercept_
-
-        if return_std:
-            # Handle the zero variance case
-            if self.var_y:
-                return y_hat, np.zeros_like(y_hat)
-
-            var_hat = 1./self.beta
-            var_hat += np.sum(X.dot(self.sigma_) * X, axis=1)
-            std_hat = np.sqrt(var_hat)
-            return y_hat, std_hat
-        else:
-            return y_hat
-
-# l2norm = 0.0
-# for idx in range(10):
-#     sigma2 = np.genfromtxt('./test/sigma2_{0}.csv'.format(idx+1), delimiter=',')
-#     Psi_train = np.genfromtxt('./test/Psi_train_{0}.csv'.format(idx+1), delimiter=',')
-#     Y_train = np.genfromtxt('./test/Y_train_{0}.csv'.format(idx+1))
-#     Psi_test = np.genfromtxt('./test/Psi_test_{0}.csv'.format(idx+1), delimiter=',')
-#     Y_test = np.genfromtxt('./test/Y_test_{0}.csv'.format(idx+1))
-
-#     clf = RegressionFastLaplace(verbose=True)
-#     clf.fit_(Psi_train, Y_train, sigma2)
-#     coeffs_fold = np.genfromtxt('./test/coeffs_fold_{0}.csv'.format(idx+1))
-#     print("coeffs error: {0:.4g}".format(np.linalg.norm(clf.coef_ - coeffs_fold)))
-#     l2norm += np.linalg.norm(Y_test - clf.predict(Psi_test))**2/len(Y_test)
-#     print("l2norm error: {0:.4g}".format(l2norm))
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/sequential_design.py b/examples/only-model/bayesvalidrox/surrogate_models/sequential_design.py
deleted file mode 100644
index fc81dcd4529ca0708dfba47385aef4415992eb3e..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/sequential_design.py
+++ /dev/null
@@ -1,2187 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-"""
-Created on Fri Jan 28 09:21:18 2022
-
-@author: farid
-"""
-import numpy as np
-from scipy import stats, signal, linalg, sparse
-from scipy.spatial import distance
-from copy import deepcopy, copy
-from tqdm import tqdm
-import scipy.optimize as opt
-from sklearn.metrics import mean_squared_error
-import multiprocessing
-import matplotlib.pyplot as plt
-import sys
-import os
-import gc
-import seaborn as sns
-from joblib import Parallel, delayed
-import resource
-from .exploration import Exploration
-
-
-class SeqDesign():
-    """ Sequential experimental design
-    This class provieds method for trainig the meta-model in an iterative
-    manners.
-    The main method to execute the task is `train_seq_design`, which
-      recieves a model object and returns the trained metamodel.
-    """
-
-    # -------------------------------------------------------------------------
-    def train_seq_design(self, MetaModel):
-        """
-        Starts the adaptive sequential design for refining the surrogate model
-        by selecting training points in a sequential manner.
-
-        Parameters
-        ----------
-        Model : object
-            An object containing all model specifications.
-
-        Returns
-        -------
-        MetaModel : object
-            Meta model object.
-
-        """
-        # MetaModel = self
-        Model = MetaModel.ModelObj
-        self.MetaModel = MetaModel
-        self.Model = Model
-
-        # Initialization
-        MetaModel.SeqModifiedLOO = {}
-        MetaModel.seqValidError = {}
-        MetaModel.SeqBME = {}
-        MetaModel.SeqKLD = {}
-        MetaModel.SeqDistHellinger = {}
-        MetaModel.seqRMSEMean = {}
-        MetaModel.seqRMSEStd = {}
-        MetaModel.seqMinDist = []
-        pce = True if MetaModel.meta_model_type.lower() != 'gpe' else False
-        mc_ref = True if bool(Model.mc_reference) else False
-        if mc_ref:
-            Model.read_mc_reference()
-
-        if not hasattr(MetaModel, 'valid_likelihoods'):
-            MetaModel.valid_samples = []
-            MetaModel.valid_model_runs = []
-            MetaModel.valid_likelihoods = []
-
-        # Get the parameters
-        max_n_samples = MetaModel.ExpDesign.n_max_samples
-        mod_LOO_threshold = MetaModel.ExpDesign.mod_LOO_threshold
-        n_canddidate = MetaModel.ExpDesign.n_canddidate
-        post_snapshot = MetaModel.ExpDesign.post_snapshot
-        n_replication = MetaModel.ExpDesign.n_replication
-        util_func = MetaModel.ExpDesign.util_func
-        output_name = Model.Output.names
-        validError = None
-        # Handle if only one UtilityFunctions is provided
-        if not isinstance(util_func, list):
-            util_func = [MetaModel.ExpDesign.util_func]
-
-        # Read observations or MCReference
-        if len(Model.observations) != 0 or Model.meas_file is not None:
-            self.observations = Model.read_observation()
-            obs_data = self.observations
-        else:
-            obs_data = []
-            TotalSigma2 = {}
-        # ---------- Initial MetaModel ----------
-        initMetaModel = deepcopy(MetaModel)
-
-        # Validation error if validation set is provided.
-        if len(MetaModel.valid_model_runs) != 0:
-            init_rmse, init_valid_error = self.__validError(initMetaModel)
-            init_valid_error = list(init_valid_error.values())
-        else:
-            init_rmse = None
-
-        # Check if discrepancy is provided
-        if len(obs_data) != 0 and hasattr(MetaModel, 'Discrepancy'):
-            TotalSigma2 = MetaModel.Discrepancy.parameters
-
-            # Calculate the initial BME
-            out = self.__BME_Calculator(
-                initMetaModel, obs_data, TotalSigma2, init_rmse)
-            init_BME, init_KLD, init_post, init_likes, init_dist_hellinger = out
-            print(f"\nInitial BME: {init_BME:.2f}")
-            print(f"Initial KLD: {init_KLD:.2f}")
-
-            # Posterior snapshot (initial)
-            if post_snapshot:
-                parNames = MetaModel.ExpDesign.par_names
-                print('Posterior snapshot (initial) is being plotted...')
-                self.__posteriorPlot(init_post, parNames, 'SeqPosterior_init')
-
-        # Check the convergence of the Mean & Std
-        if mc_ref and pce:
-            init_rmse_mean, init_rmse_std = self.__error_Mean_Std()
-            print(f"Initial Mean and Std error: {init_rmse_mean},"
-                  f" {init_rmse_std}")
-
-        # Read the initial experimental design
-        Xinit = initMetaModel.ExpDesign.X
-        init_n_samples = len(MetaModel.ExpDesign.X)
-        initYprev = initMetaModel.ModelOutputDict
-        initLCerror = initMetaModel.LCerror
-        n_itrs = max_n_samples - init_n_samples
-
-        # Read the initial ModifiedLOO
-        if pce:
-            Scores_all, varExpDesignY = [], []
-            for out_name in output_name:
-                y = initMetaModel.ExpDesign.Y[out_name]
-                Scores_all.append(list(
-                    initMetaModel.score_dict['b_1'][out_name].values()))
-                if MetaModel.dim_red_method.lower() == 'pca':
-                    pca = MetaModel.pca['b_1'][out_name]
-                    components = pca.transform(y)
-                    varExpDesignY.append(np.var(components, axis=0))
-                else:
-                    varExpDesignY.append(np.var(y, axis=0))
-
-            Scores = [item for sublist in Scores_all for item in sublist]
-            weights = [item for sublist in varExpDesignY for item in sublist]
-            init_mod_LOO = [np.average([1-score for score in Scores],
-                                       weights=weights)]
-
-        prevMetaModel_dict = {}
-        # Replicate the sequential design
-        for repIdx in range(n_replication):
-            print(f'\n>>>> Replication: {repIdx+1}<<<<')
-
-            # To avoid changes ub original aPCE object
-            MetaModel.ExpDesign.X = Xinit
-            MetaModel.ExpDesign.Y = initYprev
-            MetaModel.LCerror = initLCerror
-
-            for util_f in util_func:
-                print(f'\n>>>> Utility Function: {util_f} <<<<')
-                # To avoid changes ub original aPCE object
-                MetaModel.ExpDesign.X = Xinit
-                MetaModel.ExpDesign.Y = initYprev
-                MetaModel.LCerror = initLCerror
-
-                # Set the experimental design
-                Xprev = Xinit
-                total_n_samples = init_n_samples
-                Yprev = initYprev
-
-                Xfull = []
-                Yfull = []
-
-                # Store the initial ModifiedLOO
-                if pce:
-                    print("\nInitial ModifiedLOO:", init_mod_LOO)
-                    SeqModifiedLOO = np.array(init_mod_LOO)
-
-                if len(MetaModel.valid_model_runs) != 0:
-                    SeqValidError = np.array(init_valid_error)
-
-                # Check if data is provided
-                if len(obs_data) != 0:
-                    SeqBME = np.array([init_BME])
-                    SeqKLD = np.array([init_KLD])
-                    SeqDistHellinger = np.array([init_dist_hellinger])
-
-                if mc_ref and pce:
-                    seqRMSEMean = np.array([init_rmse_mean])
-                    seqRMSEStd = np.array([init_rmse_std])
-
-                # ------- Start Sequential Experimental Design -------
-                postcnt = 1
-                for itr_no in range(1, n_itrs+1):
-                    print(f'\n>>>> Iteration number {itr_no} <<<<')
-
-                    # Save the metamodel prediction before updating
-                    prevMetaModel_dict[itr_no] = deepcopy(MetaModel)
-                    if itr_no > 1:
-                        pc_model = prevMetaModel_dict[itr_no-1]
-                        self._y_hat_prev, _ = pc_model.eval_metamodel(
-                            samples=Xfull[-1].reshape(1, -1))
-
-                    # Optimal Bayesian Design
-                    m_1 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-                    MetaModel.ExpDesignFlag = 'sequential'
-                    Xnew, updatedPrior = self.opt_SeqDesign(TotalSigma2,
-                                                            n_canddidate,
-                                                            util_f)
-                    m_2 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-                    S = np.min(distance.cdist(Xinit, Xnew, 'euclidean'))
-                    MetaModel.seqMinDist.append(S)
-                    print(f"\nmin Dist from OldExpDesign: {S:2f}")
-                    print("\n")
-
-                    # Evaluate the full model response at the new sample
-                    Ynew, _ = Model.run_model_parallel(
-                        Xnew, prevRun_No=total_n_samples
-                        )
-                    total_n_samples += Xnew.shape[0]
-                    # ------ Plot the surrogate model vs Origninal Model ------
-                    if hasattr(MetaModel, 'adapt_verbose') and \
-                       MetaModel.adapt_verbose:
-                        from .adaptPlot import adaptPlot
-                        y_hat, std_hat = MetaModel.eval_metamodel(samples=Xnew)
-                        adaptPlot(MetaModel, Ynew, y_hat, std_hat, plotED=False)
-
-                    # -------- Retrain the surrogate model -------
-                    # Extend new experimental design
-                    Xfull = np.vstack((Xprev, Xnew))
-
-                    # Updating experimental design Y
-                    for out_name in output_name:
-                        Yfull = np.vstack((Yprev[out_name], Ynew[out_name]))
-                        MetaModel.ModelOutputDict[out_name] = Yfull
-
-                    # Pass new design to the metamodel object
-                    MetaModel.ExpDesign.sampling_method = 'user'
-                    MetaModel.ExpDesign.X = Xfull
-                    MetaModel.ExpDesign.Y = MetaModel.ModelOutputDict
-
-                    # Save the Experimental Design for next iteration
-                    Xprev = Xfull
-                    Yprev = MetaModel.ModelOutputDict
-
-                    # Pass the new prior as the input
-                    MetaModel.input_obj.poly_coeffs_flag = False
-                    if updatedPrior is not None:
-                        MetaModel.input_obj.poly_coeffs_flag = True
-                        print("updatedPrior:", updatedPrior.shape)
-                        # Arbitrary polynomial chaos
-                        for i in range(updatedPrior.shape[1]):
-                            MetaModel.input_obj.Marginals[i].dist_type = None
-                            x = updatedPrior[:, i]
-                            MetaModel.input_obj.Marginals[i].raw_data = x
-
-                    # Train the surrogate model for new ExpDesign
-                    MetaModel.train_norm_design(parallel=False)
-                    m_3 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-
-                    # -------- Evaluate the retrained surrogate model -------
-                    # Extract Modified LOO from Output
-                    if pce:
-                        Scores_all, varExpDesignY = [], []
-                        for out_name in output_name:
-                            y = MetaModel.ExpDesign.Y[out_name]
-                            Scores_all.append(list(
-                                MetaModel.score_dict['b_1'][out_name].values()))
-                            if MetaModel.dim_red_method.lower() == 'pca':
-                                pca = MetaModel.pca['b_1'][out_name]
-                                components = pca.transform(y)
-                                varExpDesignY.append(np.var(components,
-                                                            axis=0))
-                            else:
-                                varExpDesignY.append(np.var(y, axis=0))
-                        Scores = [item for sublist in Scores_all for item
-                                  in sublist]
-                        weights = [item for sublist in varExpDesignY for item
-                                   in sublist]
-                        ModifiedLOO = [np.average(
-                            [1-score for score in Scores], weights=weights)]
-
-                        print('\n')
-                        print(f"Updated ModifiedLOO {util_f}:\n", ModifiedLOO)
-                        print('\n')
-
-                    # Compute the validation error
-                    if len(MetaModel.valid_model_runs) != 0:
-                        rmse, validError = self.__validError(MetaModel)
-                        ValidError = list(validError.values())
-                    else:
-                        rmse = None
-
-                    # Store updated ModifiedLOO
-                    if pce:
-                        SeqModifiedLOO = np.vstack(
-                            (SeqModifiedLOO, ModifiedLOO))
-                        if len(MetaModel.valid_model_runs) != 0:
-                            SeqValidError = np.vstack(
-                                (SeqValidError, ValidError))
-                    m_4 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-                    # -------- Caclulation of BME as accuracy metric -------
-                    # Check if data is provided
-                    if len(obs_data) != 0:
-                        # Calculate the initial BME
-                        out = self.__BME_Calculator(MetaModel, obs_data,
-                                                    TotalSigma2, rmse)
-                        BME, KLD, Posterior, likes, DistHellinger = out
-                        print('\n')
-                        print(f"Updated BME: {BME:.2f}")
-                        print(f"Updated KLD: {KLD:.2f}")
-                        print('\n')
-
-                        # Plot some snapshots of the posterior
-                        step_snapshot = MetaModel.ExpDesign.step_snapshot
-                        if post_snapshot and postcnt % step_snapshot == 0:
-                            parNames = MetaModel.ExpDesign.par_names
-                            print('Posterior snapshot is being plotted...')
-                            self.__posteriorPlot(Posterior, parNames,
-                                                 f'SeqPosterior_{postcnt}')
-                        postcnt += 1
-                    m_5 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-
-                    # Check the convergence of the Mean&Std
-                    if mc_ref and pce:
-                        print('\n')
-                        RMSE_Mean, RMSE_std = self.__error_Mean_Std()
-                        print(f"Updated Mean and Std error: {RMSE_Mean:.2f}, "
-                              f"{RMSE_std:.2f}")
-                        print('\n')
-
-                    # Store the updated BME & KLD
-                    # Check if data is provided
-                    if len(obs_data) != 0:
-                        SeqBME = np.vstack((SeqBME, BME))
-                        SeqKLD = np.vstack((SeqKLD, KLD))
-                        SeqDistHellinger = np.vstack((SeqDistHellinger,
-                                                      DistHellinger))
-                    if mc_ref and pce:
-                        seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean))
-                        seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std))
-
-                    if pce and any(LOO < mod_LOO_threshold
-                                   for LOO in ModifiedLOO):
-                        break
-
-                    print(f"Memory itr {itr_no}: I: {m_2-m_1:.2f} MB")
-                    print(f"Memory itr {itr_no}: II: {m_3-m_2:.2f} MB")
-                    print(f"Memory itr {itr_no}: III: {m_4-m_3:.2f} MB")
-                    print(f"Memory itr {itr_no}: IV: {m_5-m_4:.2f} MB")
-                    m_6 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-                    print(f"Memory itr {itr_no}: total: {m_6:.2f} MB")
-
-                    # Clean up
-                    if len(obs_data) != 0:
-                        del out
-                    gc.collect()
-                    print()
-                    print('-'*50)
-                    print()
-
-                # Store updated ModifiedLOO and BME in dictonary
-                strKey = f'{util_f}_rep_{repIdx+1}'
-                if pce:
-                    MetaModel.SeqModifiedLOO[strKey] = SeqModifiedLOO
-                if len(MetaModel.valid_model_runs) != 0:
-                    MetaModel.seqValidError[strKey] = SeqValidError
-
-                # Check if data is provided
-                if len(obs_data) != 0:
-                    MetaModel.SeqBME[strKey] = SeqBME
-                    MetaModel.SeqKLD[strKey] = SeqKLD
-                if len(MetaModel.valid_likelihoods) != 0:
-                    MetaModel.SeqDistHellinger[strKey] = SeqDistHellinger
-                if mc_ref and pce:
-                    MetaModel.seqRMSEMean[strKey] = seqRMSEMean
-                    MetaModel.seqRMSEStd[strKey] = seqRMSEStd
-
-        return MetaModel
-
-    # -------------------------------------------------------------------------
-    def util_VarBasedDesign(self, X_can, index, util_func='Entropy'):
-        """
-        Computes the exploitation scores based on:
-        active learning MacKay(ALM) and active learning Cohn (ALC)
-        Paper: Sequential Design with Mutual Information for Computer
-        Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas
-        (2016)
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        index : int
-            Model output index.
-        UtilMethod : string, optional
-            Exploitation utility function. The default is 'Entropy'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-        MetaModel = self.MetaModel
-        ED_X = MetaModel.ExpDesign.X
-        out_dict_y = MetaModel.ExpDesign.Y
-        out_names = MetaModel.ModelObj.Output.names
-
-        # Run the Metamodel for the candidate
-        X_can = X_can.reshape(1, -1)
-        Y_PC_can, std_PC_can = MetaModel.eval_metamodel(samples=X_can)
-
-        if util_func.lower() == 'alm':
-            # ----- Entropy/MMSE/active learning MacKay(ALM)  -----
-            # Compute perdiction variance of the old model
-            canPredVar = {key: std_PC_can[key]**2 for key in out_names}
-
-            varPCE = np.zeros((len(out_names), X_can.shape[0]))
-            for KeyIdx, key in enumerate(out_names):
-                varPCE[KeyIdx] = np.max(canPredVar[key], axis=1)
-            score = np.max(varPCE, axis=0)
-
-        elif util_func.lower() == 'eigf':
-            # ----- Expected Improvement for Global fit -----
-            # Find closest EDX to the candidate
-            distances = distance.cdist(ED_X, X_can, 'euclidean')
-            index = np.argmin(distances)
-
-            # Compute perdiction error and variance of the old model
-            predError = {key: Y_PC_can[key] for key in out_names}
-            canPredVar = {key: std_PC_can[key]**2 for key in out_names}
-
-            # Compute perdiction error and variance of the old model
-            # Eq (5) from Liu et al.(2018)
-            EIGF_PCE = np.zeros((len(out_names), X_can.shape[0]))
-            for KeyIdx, key in enumerate(out_names):
-                residual = predError[key] - out_dict_y[key][int(index)]
-                var = canPredVar[key]
-                EIGF_PCE[KeyIdx] = np.max(residual**2 + var, axis=1)
-            score = np.max(EIGF_PCE, axis=0)
-
-        return -1 * score   # -1 is for minimization instead of maximization
-
-    # -------------------------------------------------------------------------
-    def util_BayesianActiveDesign(self, X_can, sigma2Dict, var='DKL'):
-        """
-        Computes scores based on Bayesian active design criterion (var).
-
-        It is based on the following paper:
-        Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak.
-        "Bayesian3 active learning for the gaussian process emulator using
-        information theory." Entropy 22, no. 8 (2020): 890.
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        var : string, optional
-            BAL design criterion. The default is 'DKL'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-
-        # Evaluate the PCE metamodels at that location ???
-        Y_mean_can, Y_std_can = self.MetaModel.eval_metamodel(
-            samples=np.array([X_can])
-            )
-
-        # Get the data
-        obs_data = self.observations
-        n_obs = self.Model.n_obs
-        # TODO: Analytical DKL
-        # Sample a distribution for a normal dist
-        # with Y_mean_can as the mean and Y_std_can as std.
-
-        # priorMean, priorSigma2, Obs = np.empty((0)),np.empty((0)),np.empty((0))
-
-        # for key in list(Y_mean_can):
-        #     # concatenate the measurement error
-        #     Obs = np.hstack((Obs,ObservationData[key]))
-
-        #     # concatenate the mean and variance of prior predictive
-        #     means, stds = Y_mean_can[key][0], Y_std_can[key][0]
-        #     priorMean = np.hstack((priorSigma2,means))
-        #     priorSigma2 = np.hstack((priorSigma2,stds**2))
-
-        # # Covariance Matrix of prior
-        # covPrior = np.zeros((priorSigma2.shape[0], priorSigma2.shape[0]), float)
-        # np.fill_diagonal(covPrior, priorSigma2)
-
-        # # Covariance Matrix of Likelihood
-        # covLikelihood = np.zeros((sigma2Dict.shape[0], sigma2Dict.shape[0]), float)
-        # np.fill_diagonal(covLikelihood, sigma2Dict)
-
-        # # Calculate moments of the posterior (Analytical derivation)
-        # n = priorSigma2.shape[0]
-        # covPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))),covLikelihood/n)
-
-        # meanPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))) , Obs) + \
-        #             np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))),
-        #                     priorMean/n)
-        # # Compute DKL from prior to posterior
-        # term1 = np.trace(np.dot(np.linalg.inv(covPrior),covPost))
-        # deltaMean = priorMean-meanPost
-        # term2 = np.dot(np.dot(deltaMean,np.linalg.inv(covPrior)),deltaMean[:,None])
-        # term3 = np.log(np.linalg.det(covPrior)/np.linalg.det(covPost))
-        # DKL = 0.5 * (term1 + term2 - n + term3)[0]
-
-        # ---------- Inner MC simulation for computing Utility Value ----------
-        # Estimation of the integral via Monte Varlo integration
-        MCsize = 20000
-        ESS = 0
-
-        while ((ESS > MCsize) or (ESS < 1)):
-
-            # Sample a distribution for a normal dist
-            # with Y_mean_can as the mean and Y_std_can as std.
-            Y_MC, std_MC = {}, {}
-            logPriorLikelihoods = np.zeros((MCsize))
-            for key in list(Y_mean_can):
-                means, stds = Y_mean_can[key][0], Y_std_can[key][0]
-                # cov = np.zeros((means.shape[0], means.shape[0]), float)
-                # np.fill_diagonal(cov, stds**2)
-
-                Y_MC[key] = np.zeros((MCsize, n_obs))
-                logsamples = np.zeros((MCsize, n_obs))
-                for i in range(n_obs):
-                    NormalDensity = stats.norm(means[i], stds[i])
-                    Y_MC[key][:, i] = NormalDensity.rvs(MCsize)
-                    logsamples[:, i] = NormalDensity.logpdf(Y_MC[key][:, i])
-
-                logPriorLikelihoods = np.sum(logsamples, axis=1)
-                std_MC[key] = np.zeros((MCsize, means.shape[0]))
-
-            #  Likelihood computation (Comparison of data and simulation
-            #  results via PCE with candidate design)
-            likelihoods = self.__normpdf(Y_MC, std_MC, obs_data, sigma2Dict)
-
-            # Check the Effective Sample Size (1<ESS<MCsize)
-            ESS = 1 / np.sum(np.square(likelihoods/np.nansum(likelihoods)))
-
-            # Enlarge sample size if it doesn't fulfill the criteria
-            if ((ESS > MCsize) or (ESS < 1)):
-                MCsize *= 10
-                ESS = 0
-
-        # Rejection Step
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, MCsize)[0]
-
-        # Reject the poorly performed prior
-        accepted = (likelihoods/np.max(likelihoods)) >= unif
-
-        # Prior-based estimation of BME
-        logBME = np.log(np.nanmean(likelihoods))
-
-        # Posterior-based expectation of likelihoods
-        postLikelihoods = likelihoods[accepted]
-        postExpLikelihoods = np.mean(np.log(postLikelihoods))
-
-        # Posterior-based expectation of prior densities
-        postExpPrior = np.mean(logPriorLikelihoods[accepted])
-
-        # Utility function Eq.2 in Ref. (2)
-        # Posterior covariance matrix after observing data y
-        # Kullback-Leibler Divergence (Sergey's paper)
-        if var == 'DKL':
-
-            # TODO: Calculate the correction factor for BME
-            # BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can,
-            #                                      ObservationData, sigma2Dict)
-            # BME += BMECorrFactor
-            # Haun et al implementation
-            # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME)
-            U_J_d = postExpLikelihoods - logBME
-
-        # Marginal log likelihood
-        elif var == 'BME':
-            U_J_d = logBME
-
-        # Entropy-based information gain
-        elif var == 'infEntropy':
-            logBME = np.log(np.nanmean(likelihoods))
-            infEntropy = logBME - postExpPrior - postExpLikelihoods
-            U_J_d = infEntropy * -1  # -1 for minimization
-
-        # Bayesian information criterion
-        elif var == 'BIC':
-            coeffs = self.MetaModel.coeffs_dict.values()
-            nModelParams = max(len(v) for val in coeffs for v in val.values())
-            maxL = np.nanmax(likelihoods)
-            U_J_d = -2 * np.log(maxL) + np.log(n_obs) * nModelParams
-
-        # Akaike information criterion
-        elif var == 'AIC':
-            coeffs = self.MetaModel.coeffs_dict.values()
-            nModelParams = max(len(v) for val in coeffs for v in val.values())
-            maxlogL = np.log(np.nanmax(likelihoods))
-            AIC = -2 * maxlogL + 2 * nModelParams
-            # 2 * nModelParams * (nModelParams+1) / (n_obs-nModelParams-1)
-            penTerm = 0
-            U_J_d = 1*(AIC + penTerm)
-
-        # Deviance information criterion
-        elif var == 'DIC':
-            # D_theta_bar = np.mean(-2 * Likelihoods)
-            N_star_p = 0.5 * np.var(np.log(likelihoods[likelihoods != 0]))
-            Likelihoods_theta_mean = self.__normpdf(
-                Y_mean_can, Y_std_can, obs_data, sigma2Dict
-                )
-            DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p
-
-            U_J_d = DIC
-
-        else:
-            print('The algorithm you requested has not been implemented yet!')
-
-        # Handle inf and NaN (replace by zero)
-        if np.isnan(U_J_d) or U_J_d == -np.inf or U_J_d == np.inf:
-            U_J_d = 0.0
-
-        # Clear memory
-        del likelihoods
-        del Y_MC
-        del std_MC
-        gc.collect(generation=2)
-
-        return -1 * U_J_d   # -1 is for minimization instead of maximization
-
-    # -------------------------------------------------------------------------
-    def update_metamodel(self, MetaModel, output, y_hat_can, univ_p_val, index,
-                         new_pca=False):
-        BasisIndices = MetaModel.basis_dict[output]["y_"+str(index+1)]
-        clf_poly = MetaModel.clf_poly[output]["y_"+str(index+1)]
-        Mn = clf_poly.coef_
-        Sn = clf_poly.sigma_
-        beta = clf_poly.alpha_
-        active = clf_poly.active_
-        Psi = self.MetaModel.create_psi(BasisIndices, univ_p_val)
-
-        Sn_new_inv = np.linalg.inv(Sn)
-        Sn_new_inv += beta * np.dot(Psi[:, active].T, Psi[:, active])
-        Sn_new = np.linalg.inv(Sn_new_inv)
-
-        Mn_new = np.dot(Sn_new_inv, Mn[active]).reshape(-1, 1)
-        Mn_new += beta * np.dot(Psi[:, active].T, y_hat_can)
-        Mn_new = np.dot(Sn_new, Mn_new).flatten()
-
-        # Compute the old and new moments of PCEs
-        mean_old = Mn[0]
-        mean_new = Mn_new[0]
-        std_old = np.sqrt(np.sum(np.square(Mn[1:])))
-        std_new = np.sqrt(np.sum(np.square(Mn_new[1:])))
-
-        # Back transformation if PCA is selected.
-        if MetaModel.dim_red_method.lower() == 'pca':
-            old_pca = MetaModel.pca[output]
-            mean_old = old_pca.mean_[index]
-            mean_old += np.sum(mean_old * old_pca.components_[:, index])
-            std_old = np.sqrt(np.sum(std_old**2 *
-                                     old_pca.components_[:, index]**2))
-            mean_new = new_pca.mean_[index]
-            mean_new += np.sum(mean_new * new_pca.components_[:, index])
-            std_new = np.sqrt(np.sum(std_new**2 *
-                                     new_pca.components_[:, index]**2))
-            # print(f"mean_old: {mean_old:.2f} mean_new: {mean_new:.2f}")
-            # print(f"std_old: {std_old:.2f} std_new: {std_new:.2f}")
-        # Store the old and new moments of PCEs
-        results = {
-            'mean_old': mean_old,
-            'mean_new': mean_new,
-            'std_old': std_old,
-            'std_new': std_new
-            }
-        return results
-
-    # -------------------------------------------------------------------------
-    def util_BayesianDesign_old(self, X_can, X_MC, sigma2Dict, var='DKL'):
-        """
-        Computes scores based on Bayesian sequential design criterion (var).
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        var : string, optional
-            Bayesian design criterion. The default is 'DKL'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-
-        # To avoid changes ub original aPCE object
-        Model = self.Model
-        MetaModel = deepcopy(self.MetaModel)
-        old_EDY = MetaModel.ExpDesign.Y
-
-        # Evaluate the PCE metamodels using the candidate design
-        Y_PC_can, Y_std_can = self.MetaModel.eval_metamodel(
-            samples=np.array([X_can])
-            )
-
-        # Generate y from posterior predictive
-        m_size = 100
-        y_hat_samples = {}
-        for idx, key in enumerate(Model.Output.names):
-            means, stds = Y_PC_can[key][0], Y_std_can[key][0]
-            y_hat_samples[key] = np.random.multivariate_normal(
-                means, np.diag(stds), m_size)
-
-        # Create the SparseBayes-based PCE metamodel:
-        MetaModel.input_obj.poly_coeffs_flag = False
-        univ_p_val = self.MetaModel.univ_basis_vals(X_can)
-        G_n_m_all = np.zeros((m_size, len(Model.Output.names), Model.n_obs))
-
-        for i in range(m_size):
-            for idx, key in enumerate(Model.Output.names):
-                if MetaModel.dim_red_method.lower() == 'pca':
-                    # Equal number of components
-                    new_outputs = np.vstack(
-                        (old_EDY[key], y_hat_samples[key][i])
-                        )
-                    new_pca, _ = MetaModel.pca_transformation(new_outputs)
-                    target = new_pca.transform(
-                        y_hat_samples[key][i].reshape(1, -1)
-                        )[0]
-                else:
-                    new_pca, target = False, y_hat_samples[key][i]
-
-                for j in range(len(target)):
-
-                    # Update surrogate
-                    result = self.update_metamodel(
-                        MetaModel, key, target[j], univ_p_val, j, new_pca)
-
-                    # Compute Expected Information Gain (Eq. 39)
-                    G_n_m = np.log(result['std_old']/result['std_new']) - 1./2
-                    G_n_m += result['std_new']**2 / (2*result['std_old']**2)
-                    G_n_m += (result['mean_new'] - result['mean_old'])**2 /\
-                        (2*result['std_old']**2)
-
-                    G_n_m_all[i, idx, j] = G_n_m
-
-        U_J_d = G_n_m_all.mean(axis=(1, 2)).mean()
-        return -1 * U_J_d
-
-    # -------------------------------------------------------------------------
-    def util_BayesianDesign(self, X_can, X_MC, sigma2Dict, var='DKL'):
-        """
-        Computes scores based on Bayesian sequential design criterion (var).
-
-        Parameters
-        ----------
-        X_can : array of shape (n_samples, n_params)
-            Candidate samples.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        var : string, optional
-            Bayesian design criterion. The default is 'DKL'.
-
-        Returns
-        -------
-        float
-            Score.
-
-        """
-
-        # To avoid changes ub original aPCE object
-        Model = self.Model
-        MetaModel = deepcopy(self.MetaModel)
-        out_names = MetaModel.ModelObj.Output.names
-        if X_can.ndim == 1:
-            X_can = X_can.reshape(1, -1)
-
-        # Compute the mean and std based on the MetaModel
-        # pce_means, pce_stds = self._compute_pce_moments(MetaModel)
-        if var == 'ALC':
-            Y_MC, Y_MC_std = MetaModel.eval_metamodel(samples=X_MC)
-
-        # Old Experimental design
-        oldExpDesignX = MetaModel.ExpDesign.X
-        oldExpDesignY = MetaModel.ExpDesign.Y
-
-        # Evaluate the PCE metamodels at that location ???
-        Y_PC_can, Y_std_can = MetaModel.eval_metamodel(samples=X_can)
-
-        # Add all suggestion as new ExpDesign
-        NewExpDesignX = np.vstack((oldExpDesignX, X_can))
-
-        NewExpDesignY = {}
-        for key in oldExpDesignY.keys():
-            try:
-                NewExpDesignY[key] = np.vstack((oldExpDesignY[key],
-                                                Y_PC_can[key]))
-            except:
-                NewExpDesignY[key] = oldExpDesignY[key]
-
-        MetaModel.ExpDesign.sampling_method = 'user'
-        MetaModel.ExpDesign.X = NewExpDesignX
-        MetaModel.ExpDesign.Y = NewExpDesignY
-
-        # Train the model for the observed data using x_can
-        MetaModel.input_obj.poly_coeffs_flag = False
-        MetaModel.train_norm_design(parallel=False)
-        PCE_Model_can = MetaModel
-
-        if var.lower() == 'mi':
-            # Mutual information based on Krause et al
-            # Adapted from Beck & Guillas (MICE) paper
-            _, std_PC_can = PCE_Model_can.eval_metamodel(samples=X_can)
-            std_can = {key: std_PC_can[key] for key in out_names}
-
-            std_old = {key: Y_std_can[key] for key in out_names}
-
-            varPCE = np.zeros((len(out_names)))
-            for i, key in enumerate(out_names):
-                varPCE[i] = np.mean(std_old[key]**2/std_can[key]**2)
-            score = np.mean(varPCE)
-
-            return -1 * score
-
-        elif var.lower() == 'alc':
-            # Active learning based on Gramyc and Lee
-            # Adaptive design and analysis of supercomputer experiments Techno-
-            # metrics, 51 (2009), pp. 130–145.
-
-            # Evaluate the MetaModel at the given samples
-            Y_MC_can, Y_MC_std_can = PCE_Model_can.eval_metamodel(samples=X_MC)
-
-            # Compute the score
-            score = []
-            for i, key in enumerate(out_names):
-                pce_var = Y_MC_std_can[key]**2
-                pce_var_can = Y_MC_std[key]**2
-                score.append(np.mean(pce_var-pce_var_can, axis=0))
-            score = np.mean(score)
-
-            return -1 * score
-
-        # ---------- Inner MC simulation for computing Utility Value ----------
-        # Estimation of the integral via Monte Varlo integration
-        MCsize = X_MC.shape[0]
-        ESS = 0
-
-        while ((ESS > MCsize) or (ESS < 1)):
-
-            # Enriching Monte Carlo samples if need be
-            if ESS != 0:
-                X_MC = self.MetaModel.ExpDesign.generate_samples(
-                    MCsize, 'random'
-                    )
-
-            # Evaluate the MetaModel at the given samples
-            Y_MC, std_MC = PCE_Model_can.eval_metamodel(samples=X_MC)
-
-            # Likelihood computation (Comparison of data and simulation
-            # results via PCE with candidate design)
-            likelihoods = self.__normpdf(
-                Y_MC, std_MC, self.observations, sigma2Dict
-                )
-
-            # Check the Effective Sample Size (1<ESS<MCsize)
-            ESS = 1 / np.sum(np.square(likelihoods/np.sum(likelihoods)))
-
-            # Enlarge sample size if it doesn't fulfill the criteria
-            if ((ESS > MCsize) or (ESS < 1)):
-                print("--- increasing MC size---")
-                MCsize *= 10
-                ESS = 0
-
-        # Rejection Step
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, MCsize)[0]
-
-        # Reject the poorly performed prior
-        accepted = (likelihoods/np.max(likelihoods)) >= unif
-
-        # -------------------- Utility functions --------------------
-        # Utility function Eq.2 in Ref. (2)
-        # Kullback-Leibler Divergence (Sergey's paper)
-        if var == 'DKL':
-
-            # Prior-based estimation of BME
-            logBME = np.log(np.nanmean(likelihoods, dtype=np.float128))
-
-            # Posterior-based expectation of likelihoods
-            postLikelihoods = likelihoods[accepted]
-            postExpLikelihoods = np.mean(np.log(postLikelihoods))
-
-            # Haun et al implementation
-            U_J_d = np.mean(np.log(likelihoods[likelihoods != 0]) - logBME)
-
-            # U_J_d = np.sum(G_n_m_all)
-            # Ryan et al (2014) implementation
-            # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0])
-            # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME
-
-            # U_J_d = postExpLikelihoods - logBME
-
-        # Marginal likelihood
-        elif var == 'BME':
-
-            # Prior-based estimation of BME
-            logBME = np.log(np.nanmean(likelihoods))
-            U_J_d = logBME
-
-        # Bayes risk likelihood
-        elif var == 'BayesRisk':
-
-            U_J_d = -1 * np.var(likelihoods)
-
-        # Entropy-based information gain
-        elif var == 'infEntropy':
-            # Prior-based estimation of BME
-            logBME = np.log(np.nanmean(likelihoods))
-
-            # Posterior-based expectation of likelihoods
-            postLikelihoods = likelihoods[accepted] / np.nansum(likelihoods[accepted])
-            postExpLikelihoods = np.mean(np.log(postLikelihoods))
-
-            # Posterior-based expectation of prior densities
-            postExpPrior = np.mean(logPriorLikelihoods[accepted])
-
-            infEntropy = logBME - postExpPrior - postExpLikelihoods
-
-            U_J_d = infEntropy * -1  # -1 for minimization
-
-        # D-Posterior-precision
-        elif var == 'DPP':
-            X_Posterior = X_MC[accepted]
-            # covariance of the posterior parameters
-            U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior)))
-
-        # A-Posterior-precision
-        elif var == 'APP':
-            X_Posterior = X_MC[accepted]
-            # trace of the posterior parameters
-            U_J_d = -np.log(np.trace(np.cov(X_Posterior)))
-
-        else:
-            print('The algorithm you requested has not been implemented yet!')
-
-        # Clear memory
-        del likelihoods
-        del Y_MC
-        del std_MC
-        gc.collect(generation=2)
-
-        return -1 * U_J_d   # -1 is for minimization instead of maximization
-
-    # -------------------------------------------------------------------------
-    def subdomain(self, Bounds, n_new_samples):
-        """
-        Divides a domain defined by Bounds into sub domains.
-
-        Parameters
-        ----------
-        Bounds : list of tuples
-            List of lower and upper bounds.
-        n_new_samples : TYPE
-            DESCRIPTION.
-
-        Returns
-        -------
-        Subdomains : TYPE
-            DESCRIPTION.
-
-        """
-        n_params = self.MetaModel.n_params
-        n_subdomains = n_new_samples + 1
-        LinSpace = np.zeros((n_params, n_subdomains))
-
-        for i in range(n_params):
-            LinSpace[i] = np.linspace(start=Bounds[i][0], stop=Bounds[i][1],
-                                      num=n_subdomains)
-        Subdomains = []
-        for k in range(n_subdomains-1):
-            mylist = []
-            for i in range(n_params):
-                mylist.append((LinSpace[i, k+0], LinSpace[i, k+1]))
-            Subdomains.append(tuple(mylist))
-
-        return Subdomains
-
-    # -------------------------------------------------------------------------
-    def run_util_func(self, method, candidates, index, sigma2Dict=None,
-                      var=None, X_MC=None):
-        """
-        Runs the utility function based on the given method.
-
-        Parameters
-        ----------
-        method : string
-            Exploitation method: `VarOptDesign`, `BayesActDesign` and
-            `BayesOptDesign`.
-        candidates : array of shape (n_samples, n_params)
-            All candidate parameter sets.
-        index : int
-            ExpDesign index.
-        sigma2Dict : dict, optional
-            A dictionary containing the measurement errors (sigma^2). The
-            default is None.
-        var : string, optional
-            Utility function. The default is None.
-        X_MC : TYPE, optional
-            DESCRIPTION. The default is None.
-
-        Returns
-        -------
-        index : TYPE
-            DESCRIPTION.
-        List
-            Scores.
-
-        """
-
-        if method.lower() == 'varoptdesign':
-            # U_J_d = self.util_VarBasedDesign(candidates, index, var)
-            U_J_d = np.zeros((candidates.shape[0]))
-            for idx, X_can in tqdm(enumerate(candidates), ascii=True,
-                                   desc="varoptdesign"):
-                U_J_d[idx] = self.util_VarBasedDesign(X_can, index, var)
-
-        elif method.lower() == 'bayesactdesign':
-            NCandidate = candidates.shape[0]
-            U_J_d = np.zeros((NCandidate))
-            for idx, X_can in tqdm(enumerate(candidates), ascii=True,
-                                   desc="OptBayesianDesign"):
-                U_J_d[idx] = self.util_BayesianActiveDesign(X_can, sigma2Dict,
-                                                            var)
-        elif method.lower() == 'bayesoptdesign':
-            NCandidate = candidates.shape[0]
-            U_J_d = np.zeros((NCandidate))
-            for idx, X_can in tqdm(enumerate(candidates), ascii=True,
-                                   desc="OptBayesianDesign"):
-                U_J_d[idx] = self.util_BayesianDesign(X_can, X_MC, sigma2Dict,
-                                                      var)
-        return (index, -1 * U_J_d)
-
-    # -------------------------------------------------------------------------
-    def dual_annealing(self, method, Bounds, sigma2Dict, var, Run_No,
-                       verbose=False):
-        """
-        Exploration algorithim to find the optimum parameter space.
-
-        Parameters
-        ----------
-        method : string
-            Exploitation method: `VarOptDesign`, `BayesActDesign` and
-            `BayesOptDesign`.
-        Bounds : list of tuples
-            List of lower and upper boundaries of parameters.
-        sigma2Dict : dict
-            A dictionary containing the measurement errors (sigma^2).
-        Run_No : int
-            Run number.
-        verbose : bool, optional
-            Print out a summary. The default is False.
-
-        Returns
-        -------
-        Run_No : int
-            Run number.
-        array
-            Optimial candidate.
-
-        """
-
-        Model = self.Model
-        max_func_itr = self.MetaModel.ExpDesign.max_func_itr
-
-        if method == 'VarOptDesign':
-            Res_Global = opt.dual_annealing(self.util_VarBasedDesign,
-                                            bounds=Bounds,
-                                            args=(Model, var),
-                                            maxfun=max_func_itr)
-
-        elif method == 'BayesOptDesign':
-            Res_Global = opt.dual_annealing(self.util_BayesianDesign,
-                                            bounds=Bounds,
-                                            args=(Model, sigma2Dict, var),
-                                            maxfun=max_func_itr)
-
-        if verbose:
-            print(f"global minimum: xmin = {Res_Global.x}, "
-                  f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}")
-
-        return (Run_No, Res_Global.x)
-
-    # -------------------------------------------------------------------------
-    def tradoff_weights(self, tradeoff_scheme, old_EDX, old_EDY):
-        """
-        Calculates weights for exploration scores based on the requested
-        scheme: `None`, `equal`, `epsilon-decreasing` and `adaptive`.
-
-        `None`: No exploration.
-        `equal`: Same weights for exploration and exploitation scores.
-        `epsilon-decreasing`: Start with more exploration and increase the
-            influence of exploitation along the way with a exponential decay
-            function
-        `adaptive`: An adaptive method based on:
-            Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. "An adaptive sampling
-            approach for Kriging metamodeling by maximizing expected prediction
-            error." Computers & Chemical Engineering 106 (2017): 171-182.
-
-        Parameters
-        ----------
-        tradeoff_scheme : string
-            Trade-off scheme for exloration and exploitation scores.
-        old_EDX : array (n_samples, n_params)
-            Old experimental design (training points).
-        old_EDY : dict
-            Old model responses (targets).
-
-        Returns
-        -------
-        exploration_weight : float
-            Exploration weight.
-        exploitation_weight: float
-            Exploitation weight.
-
-        """
-        if tradeoff_scheme is None:
-            exploration_weight = 0
-
-        elif tradeoff_scheme == 'equal':
-            exploration_weight = 0.5
-
-        elif tradeoff_scheme == 'epsilon-decreasing':
-            # epsilon-decreasing scheme
-            # Start with more exploration and increase the influence of
-            # exploitation along the way with a exponential decay function
-            initNSamples = self.MetaModel.ExpDesign.n_init_samples
-            n_max_samples = self.MetaModel.ExpDesign.n_max_samples
-
-            itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples)
-            itrNumber //= self.MetaModel.ExpDesign.n_new_samples
-
-            tau2 = -(n_max_samples-initNSamples-1) / np.log(1e-8)
-            exploration_weight = signal.exponential(n_max_samples-initNSamples,
-                                                    0, tau2, False)[itrNumber]
-
-        elif tradeoff_scheme == 'adaptive':
-
-            # Extract itrNumber
-            initNSamples = self.MetaModel.ExpDesign.n_init_samples
-            n_max_samples = self.MetaModel.ExpDesign.n_max_samples
-            itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples)
-            itrNumber //= self.MetaModel.ExpDesign.n_new_samples
-
-            if itrNumber == 0:
-                exploration_weight = 0.5
-            else:
-                # New adaptive trade-off according to Liu et al. (2017)
-                # Mean squared error for last design point
-                last_EDX = old_EDX[-1].reshape(1, -1)
-                lastPCEY, _ = self.MetaModel.eval_metamodel(samples=last_EDX)
-                pce_y = np.array(list(lastPCEY.values()))[:, 0]
-                y = np.array(list(old_EDY.values()))[:, -1, :]
-                mseError = mean_squared_error(pce_y, y)
-
-                # Mean squared CV - error for last design point
-                pce_y_prev = np.array(list(self._y_hat_prev.values()))[:, 0]
-                mseCVError = mean_squared_error(pce_y_prev, y)
-
-                exploration_weight = min([0.5*mseError/mseCVError, 1])
-
-        # Exploitation weight
-        exploitation_weight = 1 - exploration_weight
-
-        return exploration_weight, exploitation_weight
-
-    # -------------------------------------------------------------------------
-    def opt_SeqDesign(self, sigma2, n_candidates=5, var='DKL'):
-        """
-        Runs optimal sequential design.
-
-        Parameters
-        ----------
-        sigma2 : dict, optional
-            A dictionary containing the measurement errors (sigma^2). The
-            default is None.
-        n_candidates : int, optional
-            Number of candidate samples. The default is 5.
-        var : string, optional
-            Utility function. The default is None.
-
-        Raises
-        ------
-        NameError
-            Wrong utility function.
-
-        Returns
-        -------
-        Xnew : array (n_samples, n_params)
-            Selected new training point(s).
-        """
-
-        # Initialization
-        MetaModel = self.MetaModel
-        Bounds = MetaModel.bound_tuples
-        n_new_samples = MetaModel.ExpDesign.n_new_samples
-        explore_method = MetaModel.ExpDesign.explore_method
-        exploit_method = MetaModel.ExpDesign.exploit_method
-        n_cand_groups = MetaModel.ExpDesign.n_cand_groups
-        tradeoff_scheme = MetaModel.ExpDesign.tradeoff_scheme
-
-        old_EDX = MetaModel.ExpDesign.X
-        old_EDY = MetaModel.ExpDesign.Y.copy()
-        ndim = MetaModel.ExpDesign.X.shape[1]
-        OutputNames = MetaModel.ModelObj.Output.names
-
-        # -----------------------------------------
-        # ----------- CUSTOMIZED METHODS ----------
-        # -----------------------------------------
-        # Utility function exploit_method provided by user
-        if exploit_method.lower() == 'user':
-
-            Xnew, filteredSamples = MetaModel.ExpDesign.ExploitFunction(self)
-
-            print("\n")
-            print("\nXnew:\n", Xnew)
-
-            return Xnew, filteredSamples
-
-        # -----------------------------------------
-        # ---------- EXPLORATION METHODS ----------
-        # -----------------------------------------
-        if explore_method == 'dual annealing':
-            # ------- EXPLORATION: OPTIMIZATION -------
-            import time
-            start_time = time.time()
-
-            # Divide the domain to subdomains
-            args = []
-            subdomains = self.subdomain(Bounds, n_new_samples)
-            for i in range(n_new_samples):
-                args.append((exploit_method, subdomains[i], sigma2, var, i))
-
-            # Multiprocessing
-            pool = multiprocessing.Pool(multiprocessing.cpu_count())
-
-            # With Pool.starmap_async()
-            results = pool.starmap_async(self.dual_annealing, args).get()
-
-            # Close the pool
-            pool.close()
-
-            Xnew = np.array([results[i][1] for i in range(n_new_samples)])
-
-            print("\nXnew:\n", Xnew)
-
-            elapsed_time = time.time() - start_time
-            print("\n")
-            print(f"elapsed_time: {round(elapsed_time,2)} sec.")
-            print('-'*20)
-
-        elif explore_method == 'LOOCV':
-            # -----------------------------------------------------------------
-            # TODO: LOOCV model construnction based on Feng et al. (2020)
-            # 'LOOCV':
-            # Initilize the ExploitScore array
-
-            # Generate random samples
-            allCandidates = MetaModel.ExpDesign.generate_samples(n_candidates,
-                                                                'random')
-
-            # Construct error model based on LCerror
-            errorModel = MetaModel.create_ModelError(old_EDX, self.LCerror)
-            self.errorModel.append(copy(errorModel))
-
-            # Evaluate the error models for allCandidates
-            eLCAllCands, _ = errorModel.eval_errormodel(allCandidates)
-            # Select the maximum as the representative error
-            eLCAllCands = np.dstack(eLCAllCands.values())
-            eLCAllCandidates = np.max(eLCAllCands, axis=1)[:, 0]
-
-            # Normalize the error w.r.t the maximum error
-            scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates)
-
-        else:
-            # ------- EXPLORATION: SPACE-FILLING DESIGN -------
-            # Generate candidate samples from Exploration class
-            explore = Exploration(MetaModel, n_candidates)
-            explore.w = 100  # * ndim #500
-            # Select criterion (mc-intersite-proj-th, mc-intersite-proj)
-            explore.mc_criterion = 'mc-intersite-proj'
-            allCandidates, scoreExploration = explore.get_exploration_samples()
-
-            # Temp: ---- Plot all candidates -----
-            if ndim == 2:
-                def plotter(points, allCandidates, Method,
-                            scoreExploration=None):
-                    if Method == 'Voronoi':
-                        from scipy.spatial import Voronoi, voronoi_plot_2d
-                        vor = Voronoi(points)
-                        fig = voronoi_plot_2d(vor)
-                        ax1 = fig.axes[0]
-                    else:
-                        fig = plt.figure()
-                        ax1 = fig.add_subplot(111)
-                    ax1.scatter(points[:, 0], points[:, 1], s=10, c='r',
-                                marker="s", label='Old Design Points')
-                    ax1.scatter(allCandidates[:, 0], allCandidates[:, 1], s=10,
-                                c='b', marker="o", label='Design candidates')
-                    for i in range(points.shape[0]):
-                        txt = 'p'+str(i+1)
-                        ax1.annotate(txt, (points[i, 0], points[i, 1]))
-                    if scoreExploration is not None:
-                        for i in range(allCandidates.shape[0]):
-                            txt = str(round(scoreExploration[i], 5))
-                            ax1.annotate(txt, (allCandidates[i, 0],
-                                               allCandidates[i, 1]))
-
-                    plt.xlim(self.bound_tuples[0])
-                    plt.ylim(self.bound_tuples[1])
-                    # plt.show()
-                    plt.legend(loc='upper left')
-
-        # -----------------------------------------
-        # --------- EXPLOITATION METHODS ----------
-        # -----------------------------------------
-        if exploit_method == 'BayesOptDesign' or\
-           exploit_method == 'BayesActDesign':
-
-            # ------- Calculate Exoploration weight -------
-            # Compute exploration weight based on trade off scheme
-            explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme,
-                                                        old_EDX,
-                                                        old_EDY)
-            print(f"\n Exploration weight={explore_w:0.3f} "
-                  f"Exploitation weight={exploit_w:0.3f}\n")
-
-            # ------- EXPLOITATION: BayesOptDesign & ActiveLearning -------
-            if explore_w != 1.0:
-
-                # Create a sample pool for rejection sampling
-                MCsize = 15000
-                X_MC = MetaModel.ExpDesign.generate_samples(MCsize, 'random')
-                candidates = MetaModel.ExpDesign.generate_samples(
-                    MetaModel.ExpDesign.max_func_itr, 'latin_hypercube')
-
-                # Split the candidates in groups for multiprocessing
-                split_cand = np.array_split(
-                    candidates, n_cand_groups, axis=0
-                    )
-
-                results = Parallel(n_jobs=-1, backend='threading')(
-                        delayed(self.run_util_func)(
-                            exploit_method, split_cand[i], i, sigma2, var, X_MC)
-                        for i in range(n_cand_groups))
-                # out = map(self.run_util_func,
-                #           [exploit_method]*n_cand_groups,
-                #           split_cand,
-                #           range(n_cand_groups),
-                #           [sigma2] * n_cand_groups,
-                #           [var] * n_cand_groups,
-                #           [X_MC] * n_cand_groups
-                #           )
-                # results = list(out)
-
-                # Retrieve the results and append them
-                U_J_d = np.concatenate([results[NofE][1] for NofE in
-                                        range(n_cand_groups)])
-
-                # Check if all scores are inf
-                if np.isinf(U_J_d).all() or np.isnan(U_J_d).all():
-                    U_J_d = np.ones(len(U_J_d))
-
-                # Get the expected value (mean) of the Utility score
-                # for each cell
-                if explore_method == 'Voronoi':
-                    U_J_d = np.mean(U_J_d.reshape(-1, n_candidates), axis=1)
-
-                # create surrogate model for U_J_d
-                from sklearn.preprocessing import MinMaxScaler
-                # Take care of inf entries
-                good_indices = [i for i, arr in enumerate(U_J_d)
-                                if np.isfinite(arr).all()]
-                scaler = MinMaxScaler()
-                X_S = scaler.fit_transform(candidates[good_indices])
-                gp = MetaModel.gaussian_process_emulator(
-                    X_S, U_J_d[good_indices], autoSelect=True
-                    )
-                U_J_d = gp.predict(scaler.transform(allCandidates))
-
-                # Normalize U_J_d
-                norm_U_J_d = U_J_d / np.sum(U_J_d)
-                print("norm_U_J_d:\n", norm_U_J_d)
-            else:
-                norm_U_J_d = np.zeros((len(scoreExploration)))
-
-            # ------- Calculate Total score -------
-            # ------- Trade off between EXPLORATION & EXPLOITATION -------
-            # Total score
-            totalScore = exploit_w * norm_U_J_d
-            totalScore += explore_w * scoreExploration
-
-            # temp: Plot
-            # dim = self.ExpDesign.X.shape[1]
-            # if dim == 2:
-            #     plotter(self.ExpDesign.X, allCandidates, explore_method)
-
-            # ------- Select the best candidate -------
-            # find an optimal point subset to add to the initial design by
-            # maximization of the utility score and taking care of NaN values
-            temp = totalScore.copy()
-            temp[np.isnan(totalScore)] = -np.inf
-            sorted_idxtotalScore = np.argsort(temp)[::-1]
-            bestIdx = sorted_idxtotalScore[:n_new_samples]
-
-            # select the requested number of samples
-            if explore_method == 'Voronoi':
-                Xnew = np.zeros((n_new_samples, ndim))
-                for i, idx in enumerate(bestIdx):
-                    X_can = explore.closestPoints[idx]
-
-                    # Calculate the maxmin score for the region of interest
-                    newSamples, maxminScore = explore.get_mc_samples(X_can)
-
-                    # select the requested number of samples
-                    Xnew[i] = newSamples[np.argmax(maxminScore)]
-            else:
-                Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]]
-
-        elif exploit_method == 'VarOptDesign':
-            # ------- EXPLOITATION: VarOptDesign -------
-            UtilMethod = var
-
-            # ------- Calculate Exoploration weight -------
-            # Compute exploration weight based on trade off scheme
-            explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme,
-                                                        old_EDX,
-                                                        old_EDY)
-            print(f"\nweightExploration={explore_w:0.3f} "
-                  f"weightExploitation={exploit_w:0.3f}")
-
-            # Generate candidate samples from Exploration class
-            nMeasurement = old_EDY[OutputNames[0]].shape[1]
-
-            # Find sensitive region
-            if UtilMethod == 'LOOCV':
-                LCerror = MetaModel.LCerror
-                allModifiedLOO = np.zeros((len(old_EDX), len(OutputNames),
-                                           nMeasurement))
-                for y_idx, y_key in enumerate(OutputNames):
-                    for idx, key in enumerate(LCerror[y_key].keys()):
-                        allModifiedLOO[:, y_idx, idx] = abs(
-                            LCerror[y_key][key])
-
-                ExploitScore = np.max(np.max(allModifiedLOO, axis=1), axis=1)
-
-            elif UtilMethod in ['EIGF', 'ALM']:
-                # ----- All other in  ['EIGF', 'ALM'] -----
-                # Initilize the ExploitScore array
-                ExploitScore = np.zeros((len(old_EDX), len(OutputNames)))
-
-                # Split the candidates in groups for multiprocessing
-                if explore_method != 'Voronoi':
-                    split_cand = np.array_split(allCandidates,
-                                                n_cand_groups,
-                                                axis=0)
-                    goodSampleIdx = range(n_cand_groups)
-                else:
-                    # Find indices of the Vornoi cells with samples
-                    goodSampleIdx = []
-                    for idx in range(len(explore.closest_points)):
-                        if len(explore.closest_points[idx]) != 0:
-                            goodSampleIdx.append(idx)
-                    split_cand = explore.closest_points
-
-                # Split the candidates in groups for multiprocessing
-                args = []
-                for index in goodSampleIdx:
-                    args.append((exploit_method, split_cand[index], index,
-                                 sigma2, var))
-
-                # Multiprocessing
-                pool = multiprocessing.Pool(multiprocessing.cpu_count())
-                # With Pool.starmap_async()
-                results = pool.starmap_async(self.run_util_func, args).get()
-
-                # Close the pool
-                pool.close()
-                # out = map(self.run_util_func,
-                #           [exploit_method]*len(goodSampleIdx),
-                #           split_cand,
-                #           range(len(goodSampleIdx)),
-                #           [sigma2] * len(goodSampleIdx),
-                #           [var] * len(goodSampleIdx)
-                #           )
-                # results = list(out)
-
-                # Retrieve the results and append them
-                if explore_method == 'Voronoi':
-                    ExploitScore = [np.mean(results[k][1]) for k in
-                                    range(len(goodSampleIdx))]
-                else:
-                    ExploitScore = np.concatenate(
-                        [results[k][1] for k in range(len(goodSampleIdx))])
-
-            else:
-                raise NameError('The requested utility function is not '
-                                'available.')
-
-            # print("ExploitScore:\n", ExploitScore)
-
-            # find an optimal point subset to add to the initial design by
-            # maximization of the utility score and taking care of NaN values
-            # Total score
-            # Normalize U_J_d
-            ExploitScore = ExploitScore / np.sum(ExploitScore)
-            totalScore = exploit_w * ExploitScore
-            totalScore += explore_w * scoreExploration
-
-            temp = totalScore.copy()
-            sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1]
-            bestIdx = sorted_idxtotalScore[:n_new_samples]
-
-            Xnew = np.zeros((n_new_samples, ndim))
-            if explore_method != 'Voronoi':
-                Xnew = allCandidates[bestIdx]
-            else:
-                for i, idx in enumerate(bestIdx.flatten()):
-                    X_can = explore.closest_points[idx]
-                    # plotter(self.ExpDesign.X, X_can, explore_method,
-                    # scoreExploration=None)
-
-                    # Calculate the maxmin score for the region of interest
-                    newSamples, maxminScore = explore.get_mc_samples(X_can)
-
-                    # select the requested number of samples
-                    Xnew[i] = newSamples[np.argmax(maxminScore)]
-
-        elif exploit_method == 'alphabetic':
-            # ------- EXPLOITATION: ALPHABETIC -------
-            Xnew = self.util_AlphOptDesign(allCandidates, var)
-
-        elif exploit_method == 'Space-filling':
-            # ------- EXPLOITATION: SPACE-FILLING -------
-            totalScore = scoreExploration
-
-            # ------- Select the best candidate -------
-            # find an optimal point subset to add to the initial design by
-            # maximization of the utility score and taking care of NaN values
-            temp = totalScore.copy()
-            temp[np.isnan(totalScore)] = -np.inf
-            sorted_idxtotalScore = np.argsort(temp)[::-1]
-
-            # select the requested number of samples
-            Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]]
-
-        else:
-            raise NameError('The requested design method is not available.')
-
-        print("\n")
-        print("\nRun No. {}:".format(old_EDX.shape[0]+1))
-        print("Xnew:\n", Xnew)
-        gc.collect()
-
-        return Xnew, None
-
-    # -------------------------------------------------------------------------
-    def util_AlphOptDesign(self, candidates, var='D-Opt'):
-        """
-        Enriches the Experimental design with the requested alphabetic
-        criterion based on exploring the space with number of sampling points.
-
-        Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos
-        expansion: A review of sampling strategies., Computer Methods in
-        Applied Mechanics and Engineering, 332, 382-407.
-
-        Arguments
-        ---------
-        NCandidate : int
-            Number of candidate points to be searched
-
-        var : string
-            Alphabetic optimality criterion
-
-        Returns
-        -------
-        X_new : array of shape (1, n_params)
-            The new sampling location in the input space.
-        """
-        MetaModelOrig = self
-        Model = self.Model
-        n_new_samples = MetaModelOrig.ExpDesign.n_new_samples
-        NCandidate = candidates.shape[0]
-
-        # TODO: Loop over outputs
-        OutputName = Model.Output.names[0]
-
-        # To avoid changes ub original aPCE object
-        MetaModel = deepcopy(MetaModelOrig)
-
-        # Old Experimental design
-        oldExpDesignX = MetaModel.ExpDesign.X
-
-        # TODO: Only one psi can be selected.
-        # Suggestion: Go for the one with the highest LOO error
-        Scores = list(MetaModel.score_dict[OutputName].values())
-        ModifiedLOO = [1-score for score in Scores]
-        outIdx = np.argmax(ModifiedLOO)
-
-        # Initialize Phi to save the criterion's values
-        Phi = np.zeros((NCandidate))
-
-        BasisIndices = MetaModelOrig.basis_dict[OutputName]["y_"+str(outIdx+1)]
-        P = len(BasisIndices)
-
-        # ------ Old Psi ------------
-        univ_p_val = MetaModelOrig.univ_basis_vals(oldExpDesignX)
-        Psi = MetaModelOrig.create_psi(BasisIndices, univ_p_val)
-
-        # ------ New candidates (Psi_c) ------------
-        # Assemble Psi_c
-        univ_p_val_c = self.univ_basis_vals(candidates)
-        Psi_c = self.create_psi(BasisIndices, univ_p_val_c)
-
-        for idx in range(NCandidate):
-
-            # Include the new row to the original Psi
-            Psi_cand = np.vstack((Psi, Psi_c[idx]))
-
-            # Information matrix
-            PsiTPsi = np.dot(Psi_cand.T, Psi_cand)
-            M = PsiTPsi / (len(oldExpDesignX)+1)
-
-            if np.linalg.cond(PsiTPsi) > 1e-12 \
-               and np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon:
-                # faster
-                invM = linalg.solve(M, sparse.eye(PsiTPsi.shape[0]).toarray())
-            else:
-                # stabler
-                invM = np.linalg.pinv(M)
-
-            # ---------- Calculate optimality criterion ----------
-            # Optimality criteria according to Section 4.5.1 in Ref.
-
-            # D-Opt
-            if var == 'D-Opt':
-                Phi[idx] = (np.linalg.det(invM)) ** (1/P)
-
-            # A-Opt
-            elif var == 'A-Opt':
-                Phi[idx] = np.trace(invM)
-
-            # K-Opt
-            elif var == 'K-Opt':
-                Phi[idx] = np.linalg.cond(M)
-
-            else:
-                raise Exception('The optimality criterion you requested has '
-                      'not been implemented yet!')
-
-        # find an optimal point subset to add to the initial design
-        # by minimization of the Phi
-        sorted_idxtotalScore = np.argsort(Phi)
-
-        # select the requested number of samples
-        Xnew = candidates[sorted_idxtotalScore[:n_new_samples]]
-
-        return Xnew
-
-    # -------------------------------------------------------------------------
-    def __normpdf(self, y_hat_pce, std_pce, obs_data, total_sigma2s,
-                  rmse=None):
-
-        Model = self.Model
-        likelihoods = 1.0
-
-        # Loop over the outputs
-        for idx, out in enumerate(Model.Output.names):
-
-            # (Meta)Model Output
-            nsamples, nout = y_hat_pce[out].shape
-
-            # Prepare data and remove NaN
-            try:
-                data = obs_data[out].values[~np.isnan(obs_data[out])]
-            except AttributeError:
-                data = obs_data[out][~np.isnan(obs_data[out])]
-
-            # Prepare sigma2s
-            non_nan_indices = ~np.isnan(total_sigma2s[out])
-            tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout].values
-
-            # Surrogate error if valid dataset is given.
-            if rmse is not None:
-                tot_sigma2s += rmse[out]**2
-
-            likelihoods *= stats.multivariate_normal.pdf(
-                y_hat_pce[out], data, np.diag(tot_sigma2s),
-                allow_singular=True)
-        self.Likelihoods = likelihoods
-
-        return likelihoods
-
-    # -------------------------------------------------------------------------
-    def __corr_factor_BME(self, obs_data, total_sigma2s, logBME):
-        """
-        Calculates the correction factor for BMEs.
-        """
-        MetaModel = self.MetaModel
-        samples = MetaModel.ExpDesign.X  # valid_samples
-        model_outputs = MetaModel.ExpDesign.Y  # valid_model_runs
-        Model = MetaModel.ModelObj
-        n_samples = samples.shape[0]
-
-        # Extract the requested model outputs for likelihood calulation
-        output_names = Model.Output.names
-
-        # TODO: Evaluate MetaModel on the experimental design and ValidSet
-        OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples)
-
-        logLik_data = np.zeros((n_samples))
-        logLik_model = np.zeros((n_samples))
-        # Loop over the outputs
-        for idx, out in enumerate(output_names):
-
-            # (Meta)Model Output
-            nsamples, nout = model_outputs[out].shape
-
-            # Prepare data and remove NaN
-            try:
-                data = obs_data[out].values[~np.isnan(obs_data[out])]
-            except AttributeError:
-                data = obs_data[out][~np.isnan(obs_data[out])]
-
-            # Prepare sigma2s
-            non_nan_indices = ~np.isnan(total_sigma2s[out])
-            tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout]
-
-            # Covariance Matrix
-            covMatrix_data = np.diag(tot_sigma2s)
-
-            for i, sample in enumerate(samples):
-
-                # Simulation run
-                y_m = model_outputs[out][i]
-
-                # Surrogate prediction
-                y_m_hat = OutputRS[out][i]
-
-                # CovMatrix with the surrogate error
-                # covMatrix = np.diag(stdOutputRS[out][i]**2)
-                covMatrix = np.diag((y_m-y_m_hat)**2)
-                covMatrix = np.diag(
-                    np.mean((model_outputs[out]-OutputRS[out]), axis=0)**2
-                    )
-
-                # Compute likelilhood output vs data
-                logLik_data[i] += self.__logpdf(
-                    y_m_hat, data, covMatrix_data
-                    )
-
-                # Compute likelilhood output vs surrogate
-                logLik_model[i] += self.__logpdf(y_m_hat, y_m, covMatrix)
-
-        # Weight
-        logLik_data -= logBME
-        weights = np.exp(logLik_model+logLik_data)
-
-        return np.log(np.mean(weights))
-
-    # -------------------------------------------------------------------------
-    def __logpdf(self, x, mean, cov):
-        """
-        computes the likelihood based on a multivariate normal distribution.
-
-        Parameters
-        ----------
-        x : TYPE
-            DESCRIPTION.
-        mean : array_like
-            Observation data.
-        cov : 2d array
-            Covariance matrix of the distribution.
-
-        Returns
-        -------
-        log_lik : float
-            Log likelihood.
-
-        """
-        n = len(mean)
-        L = linalg.cholesky(cov, lower=True)
-        beta = np.sum(np.log(np.diag(L)))
-        dev = x - mean
-        alpha = dev.dot(linalg.cho_solve((L, True), dev))
-        log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi)
-
-        return log_lik
-
-    # -------------------------------------------------------------------------
-    def __posteriorPlot(self, posterior, par_names, key):
-
-        # Initialization
-        newpath = (r'Outputs_SeqPosteriorComparison/posterior')
-        os.makedirs(newpath, exist_ok=True)
-
-        bound_tuples = self.MetaModel.bound_tuples
-        n_params = len(par_names)
-        font_size = 40
-        if n_params == 2:
-
-            figPosterior, ax = plt.subplots(figsize=(15, 15))
-
-            sns.kdeplot(x=posterior[:, 0], y=posterior[:, 1],
-                        fill=True, ax=ax, cmap=plt.cm.jet,
-                        clip=bound_tuples)
-            # Axis labels
-            plt.xlabel(par_names[0], fontsize=font_size)
-            plt.ylabel(par_names[1], fontsize=font_size)
-
-            # Set axis limit
-            plt.xlim(bound_tuples[0])
-            plt.ylim(bound_tuples[1])
-
-            # Increase font size
-            plt.xticks(fontsize=font_size)
-            plt.yticks(fontsize=font_size)
-
-            # Switch off the grids
-            plt.grid(False)
-
-        else:
-            import corner
-            figPosterior = corner.corner(posterior, labels=par_names,
-                                         title_fmt='.2e', show_titles=True,
-                                         title_kwargs={"fontsize": 12})
-
-        figPosterior.savefig(f'./{newpath}/{key}.pdf', bbox_inches='tight')
-        plt.close()
-
-        # Save the posterior as .npy
-        np.save(f'./{newpath}/{key}.npy', posterior)
-
-        return figPosterior
-
-    # -------------------------------------------------------------------------
-    def __hellinger_distance(self, P, Q):
-        """
-        Hellinger distance between two continuous distributions.
-
-        The maximum distance 1 is achieved when P assigns probability zero to
-        every set to which Q assigns a positive probability, and vice versa.
-        0 (identical) and 1 (maximally different)
-
-        Parameters
-        ----------
-        P : array
-            Reference likelihood.
-        Q : array
-            Estimated likelihood.
-
-        Returns
-        -------
-        float
-            Hellinger distance of two distributions.
-
-        """
-        mu1 = P.mean()
-        Sigma1 = np.std(P)
-
-        mu2 = Q.mean()
-        Sigma2 = np.std(Q)
-
-        term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2))
-
-        term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2))
-
-        H_squared = 1 - term1 * term2
-
-        return np.sqrt(H_squared)
-
-    # -------------------------------------------------------------------------
-    def __BME_Calculator(self, MetaModel, obs_data, sigma2Dict, rmse=None):
-        """
-        This function computes the Bayesian model evidence (BME) via Monte
-        Carlo integration.
-
-        """
-        # Initializations
-        valid_likelihoods = MetaModel.valid_likelihoods
-
-        post_snapshot = MetaModel.ExpDesign.post_snapshot
-        if post_snapshot or len(valid_likelihoods) != 0:
-            newpath = (r'Outputs_SeqPosteriorComparison/likelihood_vs_ref')
-            os.makedirs(newpath, exist_ok=True)
-
-        SamplingMethod = 'random'
-        MCsize = 10000
-        ESS = 0
-
-        # Estimation of the integral via Monte Varlo integration
-        while (ESS > MCsize) or (ESS < 1):
-
-            # Generate samples for Monte Carlo simulation
-            X_MC = MetaModel.ExpDesign.generate_samples(
-                MCsize, SamplingMethod
-                )
-
-            # Monte Carlo simulation for the candidate design
-            m_1 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-            Y_MC, std_MC = MetaModel.eval_metamodel(samples=X_MC)
-            m_2 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-            print(f"\nMemory eval_metamodel in BME: {m_2-m_1:.2f} MB")
-
-            # Likelihood computation (Comparison of data and
-            # simulation results via PCE with candidate design)
-            Likelihoods = self.__normpdf(
-                Y_MC, std_MC, obs_data, sigma2Dict, rmse
-                )
-
-            # Check the Effective Sample Size (1000<ESS<MCsize)
-            ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods)))
-
-            # Enlarge sample size if it doesn't fulfill the criteria
-            if (ESS > MCsize) or (ESS < 1):
-                print(f'ESS={ESS} MC size should be larger.')
-                MCsize *= 10
-                ESS = 0
-
-        # Rejection Step
-        # Random numbers between 0 and 1
-        unif = np.random.rand(1, MCsize)[0]
-
-        # Reject the poorly performed prior
-        accepted = (Likelihoods/np.max(Likelihoods)) >= unif
-        X_Posterior = X_MC[accepted]
-
-        # ------------------------------------------------------------
-        # --- Kullback-Leibler Divergence & Information Entropy ------
-        # ------------------------------------------------------------
-        # Prior-based estimation of BME
-        logBME = np.log(np.nanmean(Likelihoods))
-
-        # TODO: Correction factor
-        # log_weight = self.__corr_factor_BME(obs_data, sigma2Dict, logBME)
-
-        # Posterior-based expectation of likelihoods
-        postExpLikelihoods = np.mean(np.log(Likelihoods[accepted]))
-
-        # Posterior-based expectation of prior densities
-        postExpPrior = np.mean(
-            np.log(MetaModel.ExpDesign.JDist.pdf(X_Posterior.T))
-            )
-
-        # Calculate Kullback-Leibler Divergence
-        # KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME)
-        KLD = postExpLikelihoods - logBME
-
-        # Information Entropy based on Entropy paper Eq. 38
-        infEntropy = logBME - postExpPrior - postExpLikelihoods
-
-        # If post_snapshot is True, plot likelihood vs refrence
-        if post_snapshot or len(valid_likelihoods) != 0:
-            # Hellinger distance
-            ref_like = np.log(valid_likelihoods[valid_likelihoods > 0])
-            est_like = np.log(Likelihoods[Likelihoods > 0])
-            distHellinger = self.__hellinger_distance(ref_like, est_like)
-
-            idx = len([name for name in os.listdir(newpath) if 'Likelihoods_'
-                       in name and os.path.isfile(os.path.join(newpath, name))])
-            fig, ax = plt.subplots()
-            try:
-                sns.kdeplot(np.log(valid_likelihoods[valid_likelihoods > 0]),
-                            shade=True, color="g", label='Ref. Likelihood')
-                sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), shade=True,
-                            color="b", label='Likelihood with PCE')
-            except:
-                pass
-
-            text = f"Hellinger Dist.={distHellinger:.3f}\n logBME={logBME:.3f}"
-            "\n DKL={KLD:.3f}"
-
-            plt.text(0.05, 0.75, text, bbox=dict(facecolor='wheat',
-                                                 edgecolor='black',
-                                                 boxstyle='round,pad=1'),
-                     transform=ax.transAxes)
-
-            fig.savefig(f'./{newpath}/Likelihoods_{idx}.pdf',
-                        bbox_inches='tight')
-            plt.close()
-
-        else:
-            distHellinger = 0.0
-
-        # Bayesian inference with Emulator only for 2D problem
-        if post_snapshot and MetaModel.n_params == 2 and not idx % 5:
-            from bayes_inference.bayes_inference import BayesInference
-            from bayes_inference.discrepancy import Discrepancy
-            import pandas as pd
-            BayesOpts = BayesInference(MetaModel)
-            BayesOpts.emulator = True
-            BayesOpts.plot_post_pred = False
-
-            # Select the inference method
-            import emcee
-            BayesOpts.inference_method = "MCMC"
-            # Set the MCMC parameters passed to self.mcmc_params
-            BayesOpts.mcmc_params = {
-                'n_steps': 1e5,
-                'n_walkers': 30,
-                'moves': emcee.moves.KDEMove(),
-                'verbose': False
-                }
-
-            # ----- Define the discrepancy model -------
-            obs_data = pd.DataFrame(obs_data, columns=self.Model.Output.names)
-            BayesOpts.measurement_error = obs_data
-
-            # # -- (Option B) --
-            DiscrepancyOpts = Discrepancy('')
-            DiscrepancyOpts.type = 'Gaussian'
-            DiscrepancyOpts.parameters = obs_data**2
-            BayesOpts.Discrepancy = DiscrepancyOpts
-            # Start the calibration/inference
-            Bayes_PCE = BayesOpts.create_inference()
-            X_Posterior = Bayes_PCE.posterior_df.values
-
-        # Clean up
-        del Y_MC, std_MC
-        gc.collect()
-
-        return (logBME, KLD, X_Posterior, Likelihoods, distHellinger)
-
-    # -------------------------------------------------------------------------
-    def __validError(self, MetaModel):
-
-        # MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-        OutputName = Model.Output.names
-
-        # Extract the original model with the generated samples
-        valid_samples = MetaModel.valid_samples
-        valid_model_runs = MetaModel.valid_model_runs
-
-        # Run the PCE model with the generated samples
-        m_1 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-        valid_PCE_runs, valid_PCE_std = MetaModel.eval_metamodel(samples=valid_samples)
-        m_2 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024
-        print(f"\nMemory eval_metamodel: {m_2-m_1:.2f} MB")
-
-        rms_error = {}
-        valid_error = {}
-        # Loop over the keys and compute RMSE error.
-        for key in OutputName:
-            rms_error[key] = mean_squared_error(
-                valid_model_runs[key], valid_PCE_runs[key],
-                multioutput='raw_values',
-                sample_weight=None,
-                squared=False)
-
-            # Validation error
-            valid_error[key] = (rms_error[key]**2)
-            valid_error[key] /= np.var(valid_model_runs[key], ddof=1, axis=0)
-
-            # Print a report table
-            print("\n>>>>> Updated Errors of {} <<<<<".format(key))
-            print("\nIndex  |  RMSE   |  Validation Error")
-            print('-'*35)
-            print('\n'.join(f'{i+1}  |  {k:.3e}  |  {j:.3e}' for i, (k, j)
-                            in enumerate(zip(rms_error[key],
-                                             valid_error[key]))))
-
-        return rms_error, valid_error
-
-    # -------------------------------------------------------------------------
-    def __error_Mean_Std(self):
-
-        MetaModel = self.MetaModel
-        # Extract the mean and std provided by user
-        df_MCReference = MetaModel.ModelObj.mc_reference
-
-        # Compute the mean and std based on the MetaModel
-        pce_means, pce_stds = self._compute_pce_moments(MetaModel)
-
-        # Compute the root mean squared error
-        for output in MetaModel.ModelObj.Output.names:
-
-            # Compute the error between mean and std of MetaModel and OrigModel
-            RMSE_Mean = mean_squared_error(
-                df_MCReference['mean'], pce_means[output], squared=False
-                )
-            RMSE_std = mean_squared_error(
-                df_MCReference['std'], pce_means[output], squared=False
-                )
-
-        return RMSE_Mean, RMSE_std
-
-    # -------------------------------------------------------------------------
-    def _compute_pce_moments(self, MetaModel):
-        """
-        Computes the first two moments using the PCE-based meta-model.
-
-        Returns
-        -------
-        pce_means: dict
-            The first moment (mean) of the surrogate.
-        pce_stds: dict
-            The second moment (standard deviation) of the surrogate.
-
-        """
-        outputs = MetaModel.ModelObj.Output.names
-        pce_means_b = {}
-        pce_stds_b = {}
-
-        # Loop over bootstrap iterations
-        for b_i in range(MetaModel.n_bootstrap_itrs):
-            # Loop over the metamodels
-            coeffs_dicts = MetaModel.coeffs_dict[f'b_{b_i+1}'].items()
-            means = {}
-            stds = {}
-            for output, coef_dict in coeffs_dicts:
-
-                pce_mean = np.zeros((len(coef_dict)))
-                pce_var = np.zeros((len(coef_dict)))
-
-                for index, values in coef_dict.items():
-                    idx = int(index.split('_')[1]) - 1
-                    coeffs = MetaModel.coeffs_dict[f'b_{b_i+1}'][output][index]
-
-                    # Mean = c_0
-                    if coeffs[0] != 0:
-                        pce_mean[idx] = coeffs[0]
-                    else:
-                        clf_poly = MetaModel.clf_poly[f'b_{b_i+1}'][output]
-                        pce_mean[idx] = clf_poly[index].intercept_
-                    # Var = sum(coeffs[1:]**2)
-                    pce_var[idx] = np.sum(np.square(coeffs[1:]))
-
-                # Save predictions for each output
-                if MetaModel.dim_red_method.lower() == 'pca':
-                    PCA = MetaModel.pca[f'b_{b_i+1}'][output]
-                    means[output] = PCA.mean_ + np.dot(
-                        pce_mean, PCA.components_)
-                    stds[output] = np.sqrt(np.dot(pce_var,
-                                                  PCA.components_**2))
-                else:
-                    means[output] = pce_mean
-                    stds[output] = np.sqrt(pce_var)
-
-            # Save predictions for each bootstrap iteration
-            pce_means_b[b_i] = means
-            pce_stds_b[b_i] = stds
-
-        # Change the order of nesting
-        mean_all = {}
-        for i in sorted(pce_means_b):
-            for k, v in pce_means_b[i].items():
-                if k not in mean_all:
-                    mean_all[k] = [None] * len(pce_means_b)
-                mean_all[k][i] = v
-        std_all = {}
-        for i in sorted(pce_stds_b):
-            for k, v in pce_stds_b[i].items():
-                if k not in std_all:
-                    std_all[k] = [None] * len(pce_stds_b)
-                std_all[k][i] = v
-
-        # Back transformation if PCA is selected.
-        pce_means, pce_stds = {}, {}
-        for output in outputs:
-            pce_means[output] = np.mean(mean_all[output], axis=0)
-            pce_stds[output] = np.mean(std_all[output], axis=0)
-
-        return pce_means, pce_stds
diff --git a/examples/only-model/bayesvalidrox/surrogate_models/surrogate_models.py b/examples/only-model/bayesvalidrox/surrogate_models/surrogate_models.py
deleted file mode 100644
index fc6b83947f6b51cd1aee297fe07794a3a31332d6..0000000000000000000000000000000000000000
--- a/examples/only-model/bayesvalidrox/surrogate_models/surrogate_models.py
+++ /dev/null
@@ -1,1498 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-import warnings
-import numpy as np
-import math
-import h5py
-import matplotlib.pyplot as plt
-from sklearn.preprocessing import MinMaxScaler
-import scipy as sp
-from tqdm import tqdm
-from sklearn.decomposition import PCA as sklearnPCA
-import sklearn.linear_model as lm
-from sklearn.gaussian_process import GaussianProcessRegressor
-import sklearn.gaussian_process.kernels as kernels
-import os
-from joblib import Parallel, delayed
-import copy
-
-from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns
-from bayesvalidrox.surrogate_models.glexindex import glexindex
-from bayesvalidrox.surrogate_models.eval_rec_rule import eval_univ_basis
-from bayesvalidrox.surrogate_models.reg_fast_ard import RegressionFastARD
-from bayesvalidrox.surrogate_models.reg_fast_laplace import RegressionFastLaplace
-from bayesvalidrox.surrogate_models.orthogonal_matching_pursuit import OrthogonalMatchingPursuit
-from bayesvalidrox.surrogate_models.bayes_linear import VBLinearRegression, EBLinearRegression
-warnings.filterwarnings("ignore")
-# Load the mplstyle
-#plt.style.use(os.path.join(os.path.split(__file__)[0],
-#                           '../', 'bayesvalidrox.mplstyle'))
-
-
-class MetaModel():
-    """
-    Meta (surrogate) model
-
-    This class trains a surrogate model. It accepts an input object (input_obj)
-    containing the specification of the distributions for uncertain parameters
-    and a model object with instructions on how to run the computational model.
-
-    Attributes
-    ----------
-    input_obj : obj
-        Input object with the information on the model input parameters.
-    meta_model_type : str
-        Surrogate model types. Three surrogate model types are supported:
-        polynomial chaos expansion (`PCE`), arbitrary PCE (`aPCE`) and
-        Gaussian process regression (`GPE`). Default is PCE.
-    pce_reg_method : str
-        PCE regression method to compute the coefficients. The following
-        regression methods are available:
-
-        1. OLS: Ordinary Least Square method
-        2. BRR: Bayesian Ridge Regression
-        3. LARS: Least angle regression
-        4. ARD: Bayesian ARD Regression
-        5. FastARD: Fast Bayesian ARD Regression
-        6. VBL: Variational Bayesian Learning
-        7. EBL: Emperical Bayesian Learning
-        Default is `OLS`.
-    bootstrap_method : str
-        Bootstraping method. Options are `'normal'` and `'fast'`. The default
-        is `'fast'`. It means that in each iteration except the first one, only
-        the coefficent are recalculated with the ordinary least square method.
-    n_bootstrap_itrs : int
-        Number of iterations for the bootstrap sampling. The default is `1`.
-    pce_deg : int or list of int
-        Polynomial degree(s). If a list is given, an adaptive algorithm is used
-        to find the best degree with the lowest Leave-One-Out cross-validation
-        (LOO) error (or the highest score=1-LOO). Default is `1`.
-    pce_q_norm : float
-        Hyperbolic (or q-norm) truncation for multi-indices of multivariate
-        polynomials. Default is `1.0`.
-    dim_red_method : str
-        Dimensionality reduction method for the output space. The available
-        method is based on principal component analysis (PCA). The Default is
-        `'no'`. There are two ways to select number of components: use
-        percentage of the explainable variance threshold (between 0 and 100)
-        (Option A) or direct prescription of components' number (Option B):
-
-            >>> MetaModelOpts.dim_red_method = 'PCA'
-            >>> MetaModelOpts.var_pca_threshold = 99.999  # Option A
-            >>> MetaModelOpts.n_pca_components = 12 # Option B
-
-    verbose : bool
-        Prints summary of the regression results. Default is `False`.
-
-    Note
-    -------
-    To define the sampling methods and the training set, an experimental design
-    instance shall be defined. This can be done by:
-
-    >>> MetaModelOpts.add_ExpDesign()
-
-    Two experimental design schemes are supported: one-shot (`normal`) and
-    adaptive sequential (`sequential`) designs.
-    For experimental design refer to `ExpDesigns`.
-
-    """
-
-    def __init__(self, input_obj, model_obj = 'None', meta_model_type='PCE',
-                 pce_reg_method='OLS', bootstrap_method='fast',
-                 n_bootstrap_itrs=1, pce_deg=1, pce_q_norm=1.0,
-                 dim_red_method='no', verbose=False): # added the 'None' behind model_obj
-
-        self.input_obj = input_obj
-        self.ModelObj = model_obj
-        self.meta_model_type = meta_model_type
-        self.pce_reg_method = pce_reg_method
-        self.bootstrap_method = bootstrap_method
-        self.n_bootstrap_itrs = n_bootstrap_itrs
-        self.pce_deg = pce_deg
-        self.pce_q_norm = pce_q_norm
-        self.dim_red_method = dim_red_method
-        self.verbose = False
-
-    # -------------------------------------------------------------------------
-    def create_metamodel(self, ModelObj = None): # added ModelObj here
-        """
-        Starts the training of the meta-model for the model objects containg
-         the given computational model.
-
-        Returns
-        -------
-        metamodel : obj
-            The meta model object.
-
-        """
-        if ModelObj:
-            self.ModelObj = ModelObj
-        Model = self.ModelObj
-        self.n_params = len(self.input_obj.Marginals)
-        self.ExpDesignFlag = 'normal'
-        # --- Prepare pce degree ---
-        if self.meta_model_type.lower() == 'pce':
-            if type(self.pce_deg) is not np.ndarray:
-                self.pce_deg = np.array(self.pce_deg)
-
-        if self.ExpDesign.method == 'sequential':
-            raise Exception(
-                "Please use MetaModelEngine class for the sequential design!"
-                )
-
-        elif self.ExpDesign.method == 'normal':
-            self.train_norm_design(Model, verbose=True)
-
-        else:
-            raise Exception("The method for experimental design you requested"
-                            " has not been implemented yet.")
-
-        # Zip the model run directories
-        if self.ModelObj.link_type.lower() == 'pylink' and\
-           self.ExpDesign.sampling_method.lower() != 'user':
-            Model.zip_subdirs(Model.name, f'{Model.name}_')
-
-        return self
-
-    # -------------------------------------------------------------------------
-    def train_norm_design(self, parallel=False, verbose=False):
-        """
-        This function loops over the outputs and each time step/point and fits
-        the meta model.
-
-        Parameters
-        ----------
-        parallel : bool
-            The parallel computation of coefficents. The default is True.
-        verbose : bool, optional
-            Flag for a sequential design in silent mode. The default is False.
-
-        Returns
-        -------
-        self: obj
-            Meta-model object.
-
-        """
-        self.ExpDesignFlag = 'normal'
-        Model = self.ModelObj
-        # Get the collocation points to run the forward model
-        CollocationPoints, OutputDict = self.generate_ExpDesign(Model)
-
-        # Initialize the nested dictionaries
-        if self.meta_model_type.lower() == 'gpe':
-            self.gp_poly = self.auto_vivification()
-            self.x_scaler = self.auto_vivification()
-            self.LCerror = self.auto_vivification()
-        else:
-            self.deg_dict = self.auto_vivification()
-            self.q_norm_dict = self.auto_vivification()
-            self.coeffs_dict = self.auto_vivification()
-            self.basis_dict = self.auto_vivification()
-            self.score_dict = self.auto_vivification()
-            self.clf_poly = self.auto_vivification()
-            self.LCerror = self.auto_vivification()
-        if self.dim_red_method.lower() == 'pca':
-            self.pca = self.auto_vivification()
-
-        # Define an array containing the degrees
-        n_samples, ndim = CollocationPoints.shape
-        self.deg_array = self.__select_degree(ndim, n_samples)
-
-        # Generate all basis indices
-        self.allBasisIndices = self.auto_vivification()
-        for deg in self.deg_array:
-            keys = self.allBasisIndices.keys()
-            if deg not in np.fromiter(keys, dtype=float):
-                # Generate the polynomial basis indices
-                for qidx, q in enumerate(self.pce_q_norm):
-                    basis_indices = self.create_basis_indices(degree=deg,
-                                                              q_norm=q)
-                    self.allBasisIndices[str(deg)][str(q)] = basis_indices
-
-        # Evaluate the univariate polynomials on ExpDesign
-        if self.meta_model_type.lower() != 'gpe':
-            univ_p_val = self.univ_basis_vals(CollocationPoints)        # TODO: issue appears in here: 'ExpDesigns' object has no attribute 'polycoeffs'
-
-        if 'x_values' in OutputDict:
-            self.ExpDesign.x_values = OutputDict['x_values']
-            del OutputDict['x_values']
-
-        # --- Loop through data points and fit the surrogate ---
-        if verbose:
-            print(f"\n>>>> Training the {self.meta_model_type} metamodel "
-                  "started. <<<<<<\n")
-
-        # --- Bootstrap sampling ---
-        # Correct number of bootstrap if PCA transformation is required.
-        if self.dim_red_method.lower() == 'pca' and self.n_bootstrap_itrs == 1:
-            self.n_bootstrap_itrs = 100
-
-        # Check if fast version (update coeffs with OLS) is selected.
-        if self.bootstrap_method.lower() == 'fast':
-            fast_bootstrap = True
-            first_out = {}
-            n_comp_dict = {}
-        else:
-            fast_bootstrap = False
-
-        # Prepare tqdm iteration maessage
-        if verbose and self.n_bootstrap_itrs > 1:
-            enum_obj = tqdm(range(self.n_bootstrap_itrs),
-                            total=self.n_bootstrap_itrs,
-                            desc="Boostraping the metamodel",
-                            ascii=True)
-        else:
-            enum_obj = range(self.n_bootstrap_itrs)
-
-        # Loop over the bootstrap iterations
-        for b_i in enum_obj:
-            if b_i > 0:
-                b_indices = np.random.randint(n_samples, size=n_samples)
-            else:
-                b_indices = np.arange(len(CollocationPoints))
-
-            X_train_b = CollocationPoints[b_indices]
-
-            if verbose and self.n_bootstrap_itrs == 1:
-                items = tqdm(OutputDict.items(), desc="Fitting regression")
-            else:
-                items = OutputDict.items()
-
-            # For loop over the components/outputs
-            for key, Output in items:
-
-                # Dimensionality reduction with PCA, if specified
-                if self.dim_red_method.lower() == 'pca':
-
-                    # Use the stored n_comp for fast bootsrtrapping
-                    if fast_bootstrap and b_i > 0:
-                        self.n_pca_components = n_comp_dict[key]
-
-                    # Start transformation
-                    pca, target, n_comp = self.pca_transformation(
-                        Output[b_indices], verbose=False
-                        )
-                    self.pca[f'b_{b_i+1}'][key] = pca
-                    # Store the number of components for fast bootsrtrapping
-                    if fast_bootstrap and b_i == 0:
-                        n_comp_dict[key] = n_comp
-                else:
-                    target = Output[b_indices]
-
-                # Parallel fit regression
-                if self.meta_model_type.lower() == 'gpe':
-                    # Prepare the input matrix
-                    scaler = MinMaxScaler()
-                    X_S = scaler.fit_transform(X_train_b)
-
-                    self.x_scaler[f'b_{b_i+1}'][key] = scaler
-                    if parallel:
-                        out = Parallel(n_jobs=-1, backend='multiprocessing')(
-                            delayed(self.gaussian_process_emulator)(
-                                X_S, target[:, idx]) for idx in
-                            range(target.shape[1]))
-                    else:
-                        results = map(self.gaussian_process_emulator,
-                                      [X_train_b]*target.shape[1],
-                                      [target[:, idx] for idx in
-                                       range(target.shape[1])]
-                                      )
-                        out = list(results)
-
-                    for idx in range(target.shape[1]):
-                        self.gp_poly[f'b_{b_i+1}'][key][f"y_{idx+1}"] = out[idx]
-
-                else:
-                    self.univ_p_val = univ_p_val[b_indices]
-                    if parallel and (not fast_bootstrap or b_i == 0):
-                        out = Parallel(n_jobs=-1, backend='multiprocessing')(
-                            delayed(self.adaptive_regression)(X_train_b,
-                                                              target[:, idx],
-                                                              idx)
-                            for idx in range(target.shape[1]))
-                    elif not parallel and (not fast_bootstrap or b_i == 0):
-                        results = map(self.adaptive_regression,
-                                      [X_train_b]*target.shape[1],
-                                      [target[:, idx] for idx in
-                                       range(target.shape[1])],
-                                      range(target.shape[1]))
-                        out = list(results)
-
-                    # Store the first out dictionary
-                    if fast_bootstrap and b_i == 0:
-                        first_out[key] = copy.deepcopy(out)
-
-                    if b_i > 0 and fast_bootstrap:
-
-                        # fast bootstrap
-                        out = self.update_pce_coeffs(
-                            X_train_b, target, first_out[key])
-
-                    for i in range(target.shape[1]):
-                        # Create a dict to pass the variables
-                        self.deg_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['degree']
-                        self.q_norm_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['qnorm']
-                        self.coeffs_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['coeffs']
-                        self.basis_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['multi_indices']
-                        self.score_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['LOOCVScore']
-                        self.clf_poly[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['clf_poly']
-                        #self.LCerror[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['LCerror']
-
-        if verbose:
-            print(f"\n>>>> Training the {self.meta_model_type} metamodel"
-                  " sucessfully completed. <<<<<<\n")
-
-    # -------------------------------------------------------------------------
-    def update_pce_coeffs(self, X, y, out_dict):
-        """
-        Updates the PCE coefficents using only the ordinary least square method
-        for the fast version of the bootsrtrapping.
-
-        Parameters
-        ----------
-        X : array of shape (n_samples, n_params)
-            Training set.
-        y : array of shape (n_samples, n_outs)
-            The (transformed) model responses.
-        out_dict : dict
-            The training output dictionary of the first iteration, i.e.
-            the surrogate model for the original experimental design.
-
-        Returns
-        -------
-        final_out_dict : dict
-            The updated training output dictionary.
-
-        """
-        # Make a copy
-        final_out_dict = copy.deepcopy(out_dict)
-
-        # Loop over the points
-        for i in range(y.shape[1]):
-
-            # Extract nonzero basis indices
-            nnz_idx = np.nonzero(out_dict[i]['coeffs'])[0]
-            if len(nnz_idx) != 0:
-                basis_indices = out_dict[i]['multi_indices']
-
-                # Evaluate the multivariate polynomials on CollocationPoints
-                psi = self.create_psi(basis_indices, self.univ_p_val)
-
-                # Calulate the cofficients of surrogate model
-                updated_out = self.fit(
-                    psi, y[:, i], basis_indices, reg_method='OLS',
-                    sparsity=False
-                    )
-
-                # Update coeffs in out_dict
-                final_out_dict[i]['coeffs'][nnz_idx] = updated_out['coeffs']
-
-        return final_out_dict
-
-    # -------------------------------------------------------------------------
-    def create_basis_indices(self, degree, q_norm):
-        """
-        Creates set of selected multi-indices of multivariate polynomials for
-        certain parameter numbers, polynomial degree, hyperbolic (or q-norm)
-        truncation scheme.
-
-        Parameters
-        ----------
-        degree : int
-            Polynomial degree.
-        q_norm : float
-            hyperbolic (or q-norm) truncation.
-
-        Returns
-        -------
-        basis_indices : array of shape (n_terms, n_params)
-            Multi-indices of multivariate polynomials.
-
-        """
-        basis_indices = glexindex(start=0, stop=degree+1,
-                                  dimensions=self.n_params,
-                                  cross_truncation=q_norm,
-                                  reverse=False, graded=True)
-        return basis_indices
-
-    # -------------------------------------------------------------------------
-    def add_ExpDesign(self):
-        """
-        Instanciates experimental design object.
-
-        Returns
-        -------
-        None.
-
-        """
-        self.ExpDesign = ExpDesigns(self.input_obj,
-                                    meta_Model=self.meta_model_type)
-
-    # -------------------------------------------------------------------------
-    def generate_ExpDesign(self, Model):
-        """
-        Prepares the experimental design either by reading from the prescribed
-        data or running simulations.
-
-        Parameters
-        ----------
-        Model : obj
-            Model object.
-
-        Raises
-        ------
-        Exception
-            If model sumulations are not provided properly.
-
-        Returns
-        -------
-        ED_X_tr: array of shape (n_samples, n_params)
-            Training samples transformed by an isoprobabilistic transformation.
-        ED_Y: dict
-            Model simulations (target) for all outputs.
-        """
-        ExpDesign = self.ExpDesign
-        if self.ExpDesignFlag != 'sequential':
-            # Read ExpDesign (training and targets) from the provided hdf5
-            if ExpDesign.hdf5_file is not None:
-
-                # Read hdf5 file
-                f = h5py.File(ExpDesign.hdf5_file, 'r+')
-
-                # Read EDX and pass it to ExpDesign object
-                try:
-                    ExpDesign.X = np.array(f["EDX/New_init_"])
-                except KeyError:
-                    ExpDesign.X = np.array(f["EDX/init_"])
-
-                # Update number of initial samples
-                ExpDesign.n_init_samples = ExpDesign.X.shape[0]
-
-                # Read EDX and pass it to ExpDesign object
-                out_names = self.ModelObj.Output.names
-                ExpDesign.Y = {}
-
-                # Extract x values
-                try:
-                    ExpDesign.Y["x_values"] = dict()
-                    for varIdx, var in enumerate(out_names):
-                        x = np.array(f[f"x_values/{var}"])
-                        ExpDesign.Y["x_values"][var] = x
-                except KeyError:
-                    ExpDesign.Y["x_values"] = np.array(f["x_values"])
-
-                # Store the output
-                for varIdx, var in enumerate(out_names):
-                    try:
-                        y = np.array(f[f"EDY/{var}/New_init_"])
-                    except KeyError:
-                        y = np.array(f[f"EDY/{var}/init_"])
-                    ExpDesign.Y[var] = y
-                f.close()
-            else: # changed from else
-                # Check if an old hdf5 file exists: if yes, rename it
-                hdf5file = f'ExpDesign_{self.ModelObj.name}.hdf5'
-                if os.path.exists(hdf5file):
-                    os.rename(hdf5file, 'old_'+hdf5file)
-
-        # ---- Prepare X samples ----
-        ED_X, ED_X_tr = ExpDesign.generate_ED(ExpDesign.n_init_samples,
-                                              ExpDesign.sampling_method,
-                                              transform=True,
-                                              max_pce_deg=np.max(self.pce_deg))
-        ExpDesign.X = ED_X
-        ExpDesign.collocationPoints = ED_X_tr
-        self.bound_tuples = ExpDesign.bound_tuples
-
-        # ---- Run simulations at X ----
-        if not hasattr(ExpDesign, 'Y') or ExpDesign.Y is None:
-            print('\n Now the forward model needs to be run!\n')
-            ED_Y, up_ED_X = Model.run_model_parallel(ED_X)
-            ExpDesign.X = up_ED_X
-            self.ModelOutputDict = ED_Y
-            ExpDesign.Y = ED_Y
-        else:
-            # Check if a dict has been passed.
-            if type(ExpDesign.Y) is dict:
-                self.ModelOutputDict = ExpDesign.Y
-            else:
-                raise Exception('Please provide either a dictionary or a hdf5'
-                                'file to ExpDesign.hdf5_file argument.')
-
-        return ED_X_tr, self.ModelOutputDict
-
-    # -------------------------------------------------------------------------
-    def univ_basis_vals(self, samples, n_max=None):
-        """
-        Evaluates univariate regressors along input directions.
-
-        Parameters
-        ----------
-        samples : array of shape (n_samples, n_params)
-            Samples.
-        n_max : int, optional
-            Maximum polynomial degree. The default is `None`.
-
-        Returns
-        -------
-        univ_basis: array of shape (n_samples, n_params, n_max+1)
-            All univariate regressors up to n_max.
-        """
-        # Extract information
-        poly_types = self.ExpDesign.poly_types
-        if samples.ndim != 2:
-            samples = samples.reshape(1, len(samples))
-        n_max = np.max(self.pce_deg) if n_max is None else n_max
-
-        # Extract poly coeffs
-        if self.ExpDesign.input_data_given or self.ExpDesign.apce:
-            apolycoeffs = self.ExpDesign.polycoeffs
-        else:
-            apolycoeffs = None
-
-        # Evaluate univariate basis
-        univ_basis = eval_univ_basis(samples, n_max, poly_types, apolycoeffs)
-
-        return univ_basis
-
-    # -------------------------------------------------------------------------
-    def create_psi(self, basis_indices, univ_p_val):
-        """
-        This function assemble the design matrix Psi from the given basis index
-        set INDICES and the univariate polynomial evaluations univ_p_val.
-
-        Parameters
-        ----------
-        basis_indices : array of shape (n_terms, n_params)
-            Multi-indices of multivariate polynomials.
-        univ_p_val : array of (n_samples, n_params, n_max+1)
-            All univariate regressors up to `n_max`.
-
-        Raises
-        ------
-        ValueError
-            n_terms in arguments do not match.
-
-        Returns
-        -------
-        psi : array of shape (n_samples, n_terms)
-            Multivariate regressors.
-
-        """
-        # Check if BasisIndices is a sparse matrix
-        sparsity = sp.sparse.issparse(basis_indices)
-        if sparsity:
-            basis_indices = basis_indices.toarray()
-
-        # Initialization and consistency checks
-        # number of input variables
-        n_params = univ_p_val.shape[1]
-
-        # Size of the experimental design
-        n_samples = univ_p_val.shape[0]
-
-        # number of basis terms
-        n_terms = basis_indices.shape[0]
-
-        # check that the variables have consistent sizes
-        if n_params != basis_indices.shape[1]:
-            raise ValueError(
-                f"The shapes of basis_indices ({basis_indices.shape[1]}) and "
-                f"univ_p_val ({n_params}) don't match!!"
-                )
-
-        # Preallocate the Psi matrix for performance
-        psi = np.ones((n_samples, n_terms))
-        # Assemble the Psi matrix
-        for m in range(basis_indices.shape[1]):
-            aa = np.where(basis_indices[:, m] > 0)[0]
-            try:
-                basisIdx = basis_indices[aa, m]
-                bb = univ_p_val[:, m, basisIdx].reshape(psi[:, aa].shape)
-                psi[:, aa] = np.multiply(psi[:, aa], bb)
-            except ValueError as err:
-                raise err
-        return psi
-
-    # -------------------------------------------------------------------------
-    def fit(self, X, y, basis_indices, reg_method=None, sparsity=True):
-        """
-        Fit regression using the regression method provided.
-
-        Parameters
-        ----------
-        X : array of shape (n_samples, n_features)
-            Training vector, where n_samples is the number of samples and
-            n_features is the number of features.
-        y : array of shape (n_samples,)
-            Target values.
-        basis_indices : array of shape (n_terms, n_params)
-            Multi-indices of multivariate polynomials.
-        reg_method : str, optional
-            DESCRIPTION. The default is None.
-
-        Returns
-        -------
-        return_out_dict : Dict
-            Fitted estimator, spareMulti-Index, sparseX and coefficients.
-
-        """
-        if reg_method is None:
-            reg_method = self.pce_reg_method
-
-        bias_term = self.dim_red_method.lower() != 'pca'
-
-        compute_score = True if self.verbose else False
-
-        #  inverse of the observed variance of the data
-        if np.var(y) != 0:
-            Lambda = 1 / np.var(y)
-        else:
-            Lambda = 1e-6
-
-        # Bayes sparse adaptive aPCE
-        if reg_method.lower() == 'ols':
-            clf_poly = lm.LinearRegression(fit_intercept=False)
-        elif reg_method.lower() == 'brr':
-            clf_poly = lm.BayesianRidge(n_iter=1000, tol=1e-7,
-                                        fit_intercept=False,
-                                        normalize=True,
-                                        compute_score=compute_score,
-                                        alpha_1=1e-04, alpha_2=1e-04,
-                                        lambda_1=Lambda, lambda_2=Lambda)
-            clf_poly.converged = True
-
-        elif reg_method.lower() == 'ard':
-            clf_poly = lm.ARDRegression(fit_intercept=False,
-                                        normalize=True,
-                                        compute_score=compute_score,
-                                        n_iter=1000, tol=0.0001,
-                                        alpha_1=1e-3, alpha_2=1e-3,
-                                        lambda_1=Lambda, lambda_2=Lambda)
-
-        elif reg_method.lower() == 'fastard':
-            clf_poly = RegressionFastARD(fit_intercept=False,
-                                         normalize=True,
-                                         compute_score=compute_score,
-                                         n_iter=300, tol=1e-10)
-
-        elif reg_method.lower() == 'bcs':
-            clf_poly = RegressionFastLaplace(fit_intercept=False,
-                                             bias_term=bias_term,
-                                             n_iter=1000, tol=1e-7)
-
-        elif reg_method.lower() == 'lars':
-            clf_poly = lm.LassoLarsCV(fit_intercept=False)
-
-        elif reg_method.lower() == 'sgdr':
-            clf_poly = lm.SGDRegressor(fit_intercept=False,
-                                       max_iter=5000, tol=1e-7)
-
-        elif reg_method.lower() == 'omp':
-            clf_poly = OrthogonalMatchingPursuit(fit_intercept=False)
-
-        elif reg_method.lower() == 'vbl':
-            clf_poly = VBLinearRegression(fit_intercept=False)
-
-        elif reg_method.lower() == 'ebl':
-            clf_poly = EBLinearRegression(optimizer='em')
-
-        # Fit
-        clf_poly.fit(X, y)
-
-        # Select the nonzero entries of coefficients
-        if sparsity:
-            nnz_idx = np.nonzero(clf_poly.coef_)[0]
-        else:
-            nnz_idx = np.arange(clf_poly.coef_.shape[0])
-
-        # This is for the case where all outputs are zero, thereby
-        # all coefficients are zero
-        if (y == 0).all():
-            nnz_idx = np.insert(np.nonzero(clf_poly.coef_)[0], 0, 0)
-
-        sparse_basis_indices = basis_indices[nnz_idx]
-        sparse_X = X[:, nnz_idx]
-        coeffs = clf_poly.coef_[nnz_idx]
-        clf_poly.coef_ = coeffs
-
-        # Create a dict to pass the outputs
-        return_out_dict = dict()
-        return_out_dict['clf_poly'] = clf_poly
-        return_out_dict['spareMulti-Index'] = sparse_basis_indices
-        return_out_dict['sparePsi'] = sparse_X
-        return_out_dict['coeffs'] = coeffs
-        return return_out_dict
-
-    # --------------------------------------------------------------------------------------------------------
-    def adaptive_regression(self, ED_X, ED_Y, varIdx, verbose=False):
-        """
-        Adaptively fits the PCE model by comparing the scores of different
-        degrees and q-norm.
-
-        Parameters
-        ----------
-        ED_X : array of shape (n_samples, n_params)
-            Experimental design.
-        ED_Y : array of shape (n_samples,)
-            Target values, i.e. simulation results for the Experimental design.
-        varIdx : int
-            Index of the output.
-        verbose : bool, optional
-            Print out summary. The default is False.
-
-        Returns
-        -------
-        returnVars : Dict
-            Fitted estimator, best degree, best q-norm, LOOCVScore and
-            coefficients.
-
-        """
-
-        n_samples, n_params = ED_X.shape
-        # Initialization
-        qAllCoeffs, AllCoeffs = {}, {}
-        qAllIndices_Sparse, AllIndices_Sparse = {}, {}
-        qAllclf_poly, Allclf_poly = {}, {}
-        qAllnTerms, AllnTerms = {}, {}
-        qAllLCerror, AllLCerror = {}, {}
-
-        # Extract degree array and qnorm array
-        deg_array = np.array([*self.allBasisIndices], dtype=int)
-        qnorm = [*self.allBasisIndices[str(int(deg_array[0]))]]
-
-        # Some options for EarlyStop
-        errorIncreases = False
-        # Stop degree, if LOO error does not decrease n_checks_degree times
-        n_checks_degree = 3
-        # Stop qNorm, if criterion isn't fulfilled n_checks_qNorm times
-        n_checks_qNorm = 2
-        nqnorms = len(qnorm)
-        qNormEarlyStop = True
-        if nqnorms < n_checks_qNorm+1:
-            qNormEarlyStop = False
-
-        # =====================================================================
-        # basis adaptive polynomial chaos: repeat the calculation by increasing
-        # polynomial degree until the highest accuracy is reached
-        # =====================================================================
-        # For each degree check all q-norms and choose the best one
-        scores = -np.inf * np.ones(deg_array.shape[0])
-        qNormScores = -np.inf * np.ones(nqnorms)
-
-        for degIdx, deg in enumerate(deg_array):
-
-            for qidx, q in enumerate(qnorm):
-
-                # Extract the polynomial basis indices from the pool of
-                # allBasisIndices
-                BasisIndices = self.allBasisIndices[str(deg)][str(q)]
-
-                # Assemble the Psi matrix
-                Psi = self.create_psi(BasisIndices, self.univ_p_val)
-
-                # Calulate the cofficients of the meta model
-                outs = self.fit(Psi, ED_Y, BasisIndices)
-
-                # Calculate and save the score of LOOCV
-                score, LCerror = self.corr_loocv_error(outs['clf_poly'],
-                                                       outs['sparePsi'],
-                                                       outs['coeffs'],
-                                                       ED_Y)
-
-                # Check the convergence of noise for FastARD
-                if self.pce_reg_method == 'FastARD' and \
-                   outs['clf_poly'].alpha_ < np.finfo(np.float32).eps:
-                    score = -np.inf
-
-                qNormScores[qidx] = score
-                qAllCoeffs[str(qidx+1)] = outs['coeffs']
-                qAllIndices_Sparse[str(qidx+1)] = outs['spareMulti-Index']
-                qAllclf_poly[str(qidx+1)] = outs['clf_poly']
-                qAllnTerms[str(qidx+1)] = BasisIndices.shape[0]
-                qAllLCerror[str(qidx+1)] = LCerror
-
-                # EarlyStop check
-                # if there are at least n_checks_qNorm entries after the
-                # best one, we stop
-                if qNormEarlyStop and \
-                   sum(np.isfinite(qNormScores)) > n_checks_qNorm:
-                    # If the error has increased the last two iterations, stop!
-                    qNormScores_nonInf = qNormScores[np.isfinite(qNormScores)]
-                    deltas = np.sign(np.diff(qNormScores_nonInf))
-                    if sum(deltas[-n_checks_qNorm+1:]) == 2:
-                        # stop the q-norm loop here
-                        break
-                if np.var(ED_Y) == 0:
-                    break
-
-            # Store the score in the scores list
-            best_q = np.nanargmax(qNormScores)
-            scores[degIdx] = qNormScores[best_q]
-
-            AllCoeffs[str(degIdx+1)] = qAllCoeffs[str(best_q+1)]
-            AllIndices_Sparse[str(degIdx+1)] = qAllIndices_Sparse[str(best_q+1)]
-            Allclf_poly[str(degIdx+1)] = qAllclf_poly[str(best_q+1)]
-            AllnTerms[str(degIdx+1)] = qAllnTerms[str(best_q+1)]
-            AllLCerror[str(degIdx+1)] = qAllLCerror[str(best_q+1)]
-
-            # Check the direction of the error (on average):
-            # if it increases consistently stop the iterations
-            if len(scores[scores != -np.inf]) > n_checks_degree:
-                scores_nonInf = scores[scores != -np.inf]
-                ss = np.sign(scores_nonInf - np.max(scores_nonInf))
-                # ss<0 error decreasing
-                errorIncreases = np.sum(np.sum(ss[-2:])) <= -1*n_checks_degree
-
-            if errorIncreases:
-                break
-
-            # Check only one degree, if target matrix has zero variance
-            if np.var(ED_Y) == 0:
-                break
-
-        # ------------------ Summary of results ------------------
-        # Select the one with the best score and save the necessary outputs
-        best_deg = np.nanargmax(scores)+1
-        coeffs = AllCoeffs[str(best_deg)]
-        basis_indices = AllIndices_Sparse[str(best_deg)]
-        clf_poly = Allclf_poly[str(best_deg)]
-        LOOCVScore = np.nanmax(scores)
-        P = AllnTerms[str(best_deg)]
-        LCerror = AllLCerror[str(best_deg)]
-        degree = deg_array[np.nanargmax(scores)]
-        qnorm = float(qnorm[best_q])
-
-        # ------------------ Print out Summary of results ------------------
-        if self.verbose:
-            # Create PSI_Sparse by removing redundent terms
-            nnz_idx = np.nonzero(coeffs)[0]
-            BasisIndices_Sparse = basis_indices[nnz_idx]
-
-            print(f'Output variable {varIdx+1}:')
-            print('The estimation of PCE coefficients converged at polynomial '
-                  f'degree {deg_array[best_deg-1]} with '
-                  f'{len(BasisIndices_Sparse)} terms (Sparsity index = '
-                  f'{round(len(BasisIndices_Sparse)/P, 3)}).')
-
-            print(f'Final ModLOO error estimate: {1-max(scores):.3e}')
-            print('\n'+'-'*50)
-
-        if verbose:
-            print('='*50)
-            print(' '*10 + ' Summary of results ')
-            print('='*50)
-
-            print("scores:\n", scores)
-            print("Best score's degree:", self.deg_array[best_deg-1])
-            print("NO. of terms:", len(basis_indices))
-            print("Sparsity index:", round(len(basis_indices)/P, 3))
-            print("Best Indices:\n", basis_indices)
-
-            if self.pce_reg_method in ['BRR', 'ARD']:
-                fig, ax = plt.subplots(figsize=(12, 10))
-                plt.title("Marginal log-likelihood")
-                plt.plot(clf_poly.scores_, color='navy', linewidth=2)
-                plt.ylabel("Score")
-                plt.xlabel("Iterations")
-                if self.pce_reg_method.lower() == 'bbr':
-                    text = f"$\\alpha={clf_poly.alpha_:.1f}$\n"
-                    f"$\\lambda={clf_poly.lambda_:.3f}$\n"
-                    f"$L={clf_poly.scores_[-1]:.1f}$"
-                else:
-                    text = f"$\\alpha={clf_poly.alpha_:.1f}$\n$"
-                    f"\\L={clf_poly.scores_[-1]:.1f}$"
-
-                plt.text(0.75, 0.5, text, fontsize=18, transform=ax.transAxes)
-                plt.show()
-            print('='*80)
-
-        # Create a dict to pass the outputs
-        returnVars = dict()
-        returnVars['clf_poly'] = clf_poly
-        returnVars['degree'] = degree
-        returnVars['qnorm'] = qnorm
-        returnVars['coeffs'] = coeffs
-        returnVars['multi_indices'] = basis_indices
-        returnVars['LOOCVScore'] = LOOCVScore
-        returnVars['LCerror'] = LCerror
-
-        return returnVars
-
-    # -------------------------------------------------------------------------
-    def corr_loocv_error(self, clf, psi, coeffs, y):
-        """
-        Calculates the corrected LOO error for regression on regressor
-        matrix `psi` that generated the coefficients based on [1] and [2].
-
-        [1] Blatman, G., 2009. Adaptive sparse polynomial chaos expansions for
-            uncertainty propagation and sensitivity analysis (Doctoral
-            dissertation, Clermont-Ferrand 2).
-
-        [2] Blatman, G. and Sudret, B., 2011. Adaptive sparse polynomial chaos
-            expansion based on least angle regression. Journal of computational
-            Physics, 230(6), pp.2345-2367.
-
-        Parameters
-        ----------
-        clf : object
-            Fitted estimator.
-        psi : array of shape (n_samples, n_features)
-            The multivariate orthogonal polynomials (regressor).
-        coeffs : array-like of shape (n_features,)
-            Estimated cofficients.
-        y : array of shape (n_samples,)
-            Target values.
-
-        Returns
-        -------
-        R_2 : float
-            LOOCV Validation score (1-LOOCV erro).
-        residual : array of shape (n_samples,)
-            Residual values (y - predicted targets).
-
-        """
-        psi = np.array(psi, dtype=float)
-
-        # Create PSI_Sparse by removing redundent terms
-        nnz_idx = np.nonzero(coeffs)[0]
-        if len(nnz_idx) == 0:
-            nnz_idx = [0]
-        psi_sparse = psi[:, nnz_idx]
-
-        # NrCoeffs of aPCEs
-        P = len(nnz_idx)
-        # NrEvaluation (Size of experimental design)
-        N = psi.shape[0]
-
-        # Build the projection matrix
-        PsiTPsi = np.dot(psi_sparse.T, psi_sparse)
-
-        if np.linalg.cond(PsiTPsi) > 1e-12: #and \
-           # np.linalg.cond(PsiTPsi) < 1/sys.float_info.epsilon:
-            # faster
-            M = sp.linalg.solve(PsiTPsi,
-                                sp.sparse.eye(PsiTPsi.shape[0]).toarray())
-        else:
-            # stabler
-            M = np.linalg.pinv(PsiTPsi)
-
-        # h factor (the full matrix is not calculated explicitly,
-        # only the trace is, to save memory)
-        PsiM = np.dot(psi_sparse, M)
-
-        h = np.sum(np.multiply(PsiM, psi_sparse), axis=1, dtype=np.longdouble) # changed from np.float128
-
-        # ------ Calculate Error Loocv for each measurement point ----
-        # Residuals
-        try:
-            residual = clf.predict(psi) - y
-        except:
-            residual = np.dot(psi, coeffs) - y
-
-        # Variance
-        var_y = np.var(y)
-
-        if var_y == 0:
-            norm_emp_error = 0
-            loo_error = 0
-            LCerror = np.zeros((y.shape))
-            return 1-loo_error, LCerror
-        else:
-            norm_emp_error = np.mean(residual**2)/var_y
-
-            # LCerror = np.divide(residual, (1-h))
-            LCerror = residual / (1-h)
-            loo_error = np.mean(np.square(LCerror)) / var_y
-            # if there are NaNs, just return an infinite LOO error (this
-            # happens, e.g., when a strongly underdetermined problem is solved)
-            if np.isnan(loo_error):
-                loo_error = np.inf
-
-        # Corrected Error for over-determined system
-        tr_M = np.trace(M)
-        if tr_M < 0 or abs(tr_M) > 1e6:
-            tr_M = np.trace(np.linalg.pinv(np.dot(psi.T, psi)))
-
-        # Over-determined system of Equation
-        if N > P:
-            T_factor = N/(N-P) * (1 + tr_M)
-
-        # Under-determined system of Equation
-        else:
-            T_factor = np.inf
-
-        corrected_loo_error = loo_error * T_factor
-
-        R_2 = 1 - corrected_loo_error
-
-        return R_2, LCerror
-
-    # -------------------------------------------------------------------------
-    def pca_transformation(self, target, verbose=False):
-        """
-        Transforms the targets (outputs) via Principal Component Analysis
-
-        Parameters
-        ----------
-        target : array of shape (n_samples,)
-            Target values.
-
-        Returns
-        -------
-        pca : obj
-            Fitted sklearnPCA object.
-        OutputMatrix : array of shape (n_samples,)
-            Transformed target values.
-        n_pca_components : int
-            Number of selected principal components.
-
-        """
-        # Transform via Principal Component Analysis
-        if hasattr(self, 'var_pca_threshold'):
-            var_pca_threshold = self.var_pca_threshold
-        else:
-            var_pca_threshold = 100.0
-        n_samples, n_features = target.shape
-
-        if hasattr(self, 'n_pca_components'):
-            n_pca_components = self.n_pca_components
-        else:
-            # Instantiate and fit sklearnPCA object
-            covar_matrix = sklearnPCA(n_components=None)
-            covar_matrix.fit(target)
-            var = np.cumsum(np.round(covar_matrix.explained_variance_ratio_,
-                                     decimals=5)*100)
-            # Find the number of components to explain self.varPCAThreshold of
-            # variance
-            try:
-                n_components = np.where(var >= var_pca_threshold)[0][0] + 1
-            except IndexError:
-                n_components = min(n_samples, n_features)
-
-            n_pca_components = min(n_samples, n_features, n_components)
-
-        # Print out a report
-        if verbose:
-            print()
-            print('-' * 50)
-            print(f"PCA transformation is performed with {n_pca_components}"
-                  " components.")
-            print('-' * 50)
-            print()
-
-        # Fit and transform with the selected number of components
-        pca = sklearnPCA(n_components=n_pca_components, svd_solver='arpack')
-        scaled_target = pca.fit_transform(target)
-
-        return pca, scaled_target, n_pca_components
-
-    # -------------------------------------------------------------------------
-    def gaussian_process_emulator(self, X, y, nug_term=None, autoSelect=False,
-                                  varIdx=None):
-        """
-        Fits a Gaussian Process Emulator to the target given the training
-         points.
-
-        Parameters
-        ----------
-        X : array of shape (n_samples, n_params)
-            Training points.
-        y : array of shape (n_samples,)
-            Target values.
-        nug_term : float, optional
-            Nugget term. The default is None, i.e. variance of y.
-        autoSelect : bool, optional
-            Loop over some kernels and select the best. The default is False.
-        varIdx : int, optional
-            The index number. The default is None.
-
-        Returns
-        -------
-        gp : object
-            Fitted estimator.
-
-        """
-
-        nug_term = nug_term if nug_term else np.var(y)
-
-        Kernels = [nug_term * kernels.RBF(length_scale=1.0,
-                                          length_scale_bounds=(1e-25, 1e15)),
-                   nug_term * kernels.RationalQuadratic(length_scale=0.2,
-                                                        alpha=1.0),
-                   nug_term * kernels.Matern(length_scale=1.0,
-                                             length_scale_bounds=(1e-15, 1e5),
-                                             nu=1.5)]
-
-        # Automatic selection of the kernel
-        if autoSelect:
-            gp = {}
-            BME = []
-            for i, kernel in enumerate(Kernels):
-                gp[i] = GaussianProcessRegressor(kernel=kernel,
-                                                 n_restarts_optimizer=3,
-                                                 normalize_y=False)
-
-                # Fit to data using Maximum Likelihood Estimation
-                gp[i].fit(X, y)
-
-                # Store the MLE as BME score
-                BME.append(gp[i].log_marginal_likelihood())
-
-            gp = gp[np.argmax(BME)]
-
-        else:
-            gp = GaussianProcessRegressor(kernel=Kernels[0],
-                                          n_restarts_optimizer=3,
-                                          normalize_y=False)
-            gp.fit(X, y)
-
-        # Compute score
-        if varIdx is not None:
-            Score = gp.score(X, y)
-            print('-'*50)
-            print(f'Output variable {varIdx}:')
-            print('The estimation of GPE coefficients converged,')
-            print(f'with the R^2 score: {Score:.3f}')
-            print('-'*50)
-
-        return gp
-
-    # -------------------------------------------------------------------------
-    def eval_metamodel(self, samples=None, nsamples=None,
-                       sampling_method='random', return_samples=False):
-        """
-        Evaluates meta-model at the requested samples. One can also generate
-        nsamples.
-
-        Parameters
-        ----------
-        samples : array of shape (n_samples, n_params), optional
-            Samples to evaluate meta-model at. The default is None.
-        nsamples : int, optional
-            Number of samples to generate, if no `samples` is provided. The
-            default is None.
-        sampling_method : str, optional
-            Type of sampling, if no `samples` is provided. The default is
-            'random'.
-        return_samples : bool, optional
-            Retun samples, if no `samples` is provided. The default is False.
-
-        Returns
-        -------
-        mean_pred : dict
-            Mean of the predictions.
-        std_pred : dict
-            Standard deviatioon of the predictions.
-        """
-        outputs = self.ModelObj.Output.names
-
-        # Generate or transform (if need be) samples
-        if samples is None:
-            # Generate
-            samples = self.ExpDesign.generate_samples(
-                nsamples,
-                sampling_method
-                )
-
-        # Transform samples to the independent space
-        samples = self.ExpDesign.transform(
-            samples,
-            method='user'
-            )
-
-        # Compute univariate bases for the given samples
-        if self.meta_model_type.lower() != 'gpe':
-            univ_p_val = self.univ_basis_vals(
-                samples,
-                n_max=np.max(self.pce_deg)
-                )
-
-        mean_pred_b = {}
-        std_pred_b = {}
-        # Loop over bootstrap iterations
-        for b_i in range(self.n_bootstrap_itrs):
-
-            # Extract model dictionary
-            if self.meta_model_type.lower() == 'gpe':
-                model_dict = self.gp_poly[f'b_{b_i+1}']
-            else:
-                model_dict = self.coeffs_dict[f'b_{b_i+1}']
-
-            # Loop over outputs
-            mean_pred = {}
-            std_pred = {}
-            for output, values in model_dict.items():
-
-                mean = np.empty((len(samples), len(values)))
-                std = np.empty((len(samples), len(values)))
-                idx = 0
-                for in_key, InIdxValues in values.items():
-
-                    # Perdiction with GPE
-                    if self.meta_model_type.lower() == 'gpe':
-                        X_T = self.x_scaler[f'b_{b_i+1}'][output].transform(samples)
-                        gp = self.gp_poly[f'b_{b_i+1}'][output][in_key]
-                        y_mean, y_std = gp.predict(X_T, return_std=True)
-
-                    else:
-                        # Perdiction with PCE
-                        # Assemble Psi matrix
-                        basis = self.basis_dict[f'b_{b_i+1}'][output][in_key]
-                        psi = self.create_psi(basis, univ_p_val)
-
-                        # Perdiction
-                        if self.bootstrap_method != 'fast' or b_i == 0:
-                            # with error bar, i.e. use clf_poly
-                            clf_poly = self.clf_poly[f'b_{b_i+1}'][output][in_key]
-                            try:
-                                y_mean, y_std = clf_poly.predict(
-                                    psi, return_std=True
-                                    )
-                            except TypeError:
-                                y_mean = clf_poly.predict(psi)
-                                y_std = np.zeros_like(y_mean)
-                        else:
-                            # without error bar
-                            coeffs = self.coeffs_dict[f'b_{b_i+1}'][output][in_key]
-                            y_mean = np.dot(psi, coeffs)
-                            y_std = np.zeros_like(y_mean)
-
-                    mean[:, idx] = y_mean
-                    std[:, idx] = y_std
-                    idx += 1
-
-                # Save predictions for each output
-                if self.dim_red_method.lower() == 'pca':
-                    PCA = self.pca[f'b_{b_i+1}'][output]
-                    mean_pred[output] = PCA.inverse_transform(mean)
-                    std_pred[output] = np.zeros(mean.shape)
-                else:
-                    mean_pred[output] = mean
-                    std_pred[output] = std
-
-            # Save predictions for each bootstrap iteration
-            mean_pred_b[b_i] = mean_pred
-            std_pred_b[b_i] = std_pred
-
-        # Change the order of nesting
-        mean_pred_all = {}
-        for i in sorted(mean_pred_b):
-            for k, v in mean_pred_b[i].items():
-                if k not in mean_pred_all:
-                    mean_pred_all[k] = [None] * len(mean_pred_b)
-                mean_pred_all[k][i] = v
-
-        # Compute the moments of predictions over the predictions
-        for output in outputs:
-            # Only use bootstraps with finite values
-            finite_rows = np.isfinite(
-                mean_pred_all[output]).all(axis=2).all(axis=1)
-            outs = np.asarray(mean_pred_all[output])[finite_rows]
-            # Compute mean
-            mean_pred[output] = np.mean(outs, axis=0)
-            # Compute standard deviation
-            if self.n_bootstrap_itrs > 1:
-                std_pred[output] = np.std(outs, axis=0)
-            else:
-                std_pred[output] = std_pred_b[b_i][output]
-
-        if return_samples:
-            return mean_pred, std_pred, samples
-        else:
-            return mean_pred, std_pred
-
-    # -------------------------------------------------------------------------
-    def create_model_error(self, X, y, name='Calib'):
-        """
-        Fits a GPE-based model error.
-
-        Parameters
-        ----------
-        X : array of shape (n_outputs, n_inputs)
-            Input array. It can contain any forcing inputs or coordinates of
-             extracted data.
-        y : array of shape (n_outputs,)
-            The model response for the MAP parameter set.
-        name : str, optional
-            Calibration or validation. The default is `'Calib'`.
-
-        Returns
-        -------
-        self: object
-            Self object.
-
-        """
-        Model = self.ModelObj
-        outputNames = Model.Output.names
-        self.errorRegMethod = 'GPE'
-        self.errorclf_poly = self.auto_vivification()
-        self.errorScale = self.auto_vivification()
-
-        # Read data
-        MeasuredData = Model.read_observation(case=name)
-
-        # Fitting GPR based bias model
-        for out in outputNames:
-            nan_idx = ~np.isnan(MeasuredData[out])
-            # Select data
-            try:
-                data = MeasuredData[out].values[nan_idx]
-            except AttributeError:
-                data = MeasuredData[out][nan_idx]
-
-            # Prepare the input matrix
-            scaler = MinMaxScaler()
-            delta = data  # - y[out][0]
-            BiasInputs = np.hstack((X[out], y[out].reshape(-1, 1)))
-            X_S = scaler.fit_transform(BiasInputs)
-            gp = self.gaussian_process_emulator(X_S, delta)
-
-            self.errorScale[out]["y_1"] = scaler
-            self.errorclf_poly[out]["y_1"] = gp
-
-        return self
-
-    # -------------------------------------------------------------------------
-    def eval_model_error(self, X, y_pred):
-        """
-        Evaluates the error model.
-
-        Parameters
-        ----------
-        X : array
-            Inputs.
-        y_pred : dict
-            Predictions.
-
-        Returns
-        -------
-        mean_pred : dict
-            Mean predition of the GPE-based error model.
-        std_pred : dict
-            standard deviation of the GPE-based error model.
-
-        """
-        mean_pred = {}
-        std_pred = {}
-
-        for Outkey, ValuesDict in self.errorclf_poly.items():
-
-            pred_mean = np.zeros_like(y_pred[Outkey])
-            pred_std = np.zeros_like(y_pred[Outkey])
-
-            for Inkey, InIdxValues in ValuesDict.items():
-
-                gp = self.errorclf_poly[Outkey][Inkey]
-                scaler = self.errorScale[Outkey][Inkey]
-
-                # Transform Samples using scaler
-                for j, pred in enumerate(y_pred[Outkey]):
-                    BiasInputs = np.hstack((X[Outkey], pred.reshape(-1, 1)))
-                    Samples_S = scaler.transform(BiasInputs)
-                    y_hat, y_std = gp.predict(Samples_S, return_std=True)
-                    pred_mean[j] = y_hat
-                    pred_std[j] = y_std
-                    # pred_mean[j] += pred
-
-            mean_pred[Outkey] = pred_mean
-            std_pred[Outkey] = pred_std
-
-        return mean_pred, std_pred
-
-    # -------------------------------------------------------------------------
-    class auto_vivification(dict):
-        """
-        Implementation of perl's AutoVivification feature.
-
-        Source: https://stackoverflow.com/a/651879/18082457
-        """
-
-        def __getitem__(self, item):
-            try:
-                return dict.__getitem__(self, item)
-            except KeyError:
-                value = self[item] = type(self)()
-                return value
-
-    # -------------------------------------------------------------------------
-    def copy_meta_model_opts(self, InputObj, ModelObj = 'None'): # added the None here
-        """
-        This method is a convinient function to copy the metamodel options.
-
-        Parameters
-        ----------
-        InputObj : object
-            The input object.
-        ModelObj : object
-            The Model object.
-
-        Returns
-        -------
-        new_MetaModelOpts : object
-            The copied object.
-
-        """
-        new_MetaModelOpts = copy.deepcopy(self)
-        new_MetaModelOpts.ModelObj = ModelObj
-        new_MetaModelOpts.input_obj = InputObj
-        new_MetaModelOpts.ExpDesign.meta_Model = 'aPCE'
-        new_MetaModelOpts.ExpDesign.InputObj = InputObj
-        new_MetaModelOpts.ExpDesign.ndim = len(InputObj.Marginals)
-        new_MetaModelOpts.n_params = len(InputObj.Marginals)
-        new_MetaModelOpts.ExpDesign.hdf5_file = None
-
-        return new_MetaModelOpts
-
-    # -------------------------------------------------------------------------
-    def __select_degree(self, ndim, n_samples):
-        """
-        Selects degree based on the number of samples and parameters in the
-        sequential design.
-
-        Parameters
-        ----------
-        ndim : int
-            Dimension of the parameter space.
-        n_samples : int
-            Number of samples.
-
-        Returns
-        -------
-        deg_array: array
-            Array containing the arrays.
-
-        """
-        # Define the deg_array
-        max_deg = np.max(self.pce_deg)
-        min_Deg = np.min(self.pce_deg)
-        nitr = n_samples - self.ExpDesign.n_init_samples
-
-        # Check q-norm
-        if not np.isscalar(self.pce_q_norm):
-            self.pce_q_norm = np.array(self.pce_q_norm)
-        else:
-            self.pce_q_norm = np.array([self.pce_q_norm])
-
-        def M_uptoMax(maxDeg):
-            n_combo = np.zeros(maxDeg)
-            for i, d in enumerate(range(1, maxDeg+1)):
-                n_combo[i] = math.factorial(ndim+d)
-                n_combo[i] /= math.factorial(ndim) * math.factorial(d)
-            return n_combo
-
-        if self.ExpDesignFlag != 'sequential':
-            deg_new = max_deg
-        else:
-            d = nitr if nitr != 0 and self.n_params > 5 else 1
-            min_index = np.argmin(abs(M_uptoMax(max_deg)-ndim*n_samples*d))
-            deg_new = max_deg
-            # deg_new = range(1, max_deg+1)[min_index]
-
-        if deg_new > min_Deg and self.pce_reg_method.lower() != 'fastard':
-            deg_array = np.arange(min_Deg, deg_new+1)
-        else:
-            deg_array = np.array([deg_new])
-
-        return deg_array
diff --git a/examples/only-model/data/synth_data.mat b/examples/only-model/data/synth_data.mat
new file mode 100644
index 0000000000000000000000000000000000000000..352697fc3848c73bf8ae8819f065b873a62907f5
Binary files /dev/null and b/examples/only-model/data/synth_data.mat differ
diff --git a/examples/only-model/test_analytical_function_noMetaMod.py b/examples/only-model/test_analytical_function_noMetaMod.py
index 99842f80f22a126daeb602051f20ee14e1ffc280..1d5139b0d86f2c545b28a881b6fa0d9ad3a74a96 100644
--- a/examples/only-model/test_analytical_function_noMetaMod.py
+++ b/examples/only-model/test_analytical_function_noMetaMod.py
@@ -15,23 +15,22 @@ Pfaffenwaldring 61
 Created on Fri Aug 9 2019
 
 """
-
 import numpy as np
 import pandas as pd
+import scipy.io as io
 import sys
 import joblib
 # import bayesvalidrox
 # Add BayesValidRox path
-#sys.path.append("../../src/bayesvalidrox/")
+sys.path.append("../../src/")
 
-import bayesvalidrox as bv
 from bayesvalidrox.pylink.pylink import PyLinkForwardModel
 from bayesvalidrox.surrogate_models.inputs import Input
-from bayesvalidrox.surrogate_models.surrogate_models import MetaModel
-from bayesvalidrox.surrogate_models.meta_model_engine import MetaModelEngine
-from bayesvalidrox.post_processing.post_processing import PostProcessing
+from bayesvalidrox.surrogate_models.engine import Engine
+from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns
 from bayesvalidrox.bayes_inference.bayes_inference import BayesInference
 from bayesvalidrox.bayes_inference.discrepancy import Discrepancy
+from bayesvalidrox.bayes_inference.bayes_model_comparison import BayesModelComparison
 import matplotlib
 matplotlib.use('agg')
 
@@ -70,149 +69,50 @@ if __name__ == "__main__":
     # standard deviation
     Inputs = Input()
 
-    # Assuming dependent input variables
-    # Inputs.Rosenblatt = True
-
     for i in range(ndim):
         Inputs.add_marginals()
         Inputs.Marginals[i].name = "$\\theta_{"+str(i+1)+"}$"
         Inputs.Marginals[i].dist_type = 'uniform'
         Inputs.Marginals[i].parameters = [-5, 5]
 
-    # arbitrary polynomial chaos
-    # inputParams = np.load('data/InputParameters_{}.npy'.format(ndim))
-    # for i in range(ndim):
-    #     Inputs.add_marginals()
-    #     Inputs.Marginals[i].name = f'$X_{i+1}$'
-    #     Inputs.Marginals[i].input_data = inputParams[:, i]
-
-    # =====================================================
-    # ==========  DEFINITION OF THE METAMODEL  ============
-    # =====================================================
-    MetaModelOpts = MetaModel(Inputs, Model)
-
-    # Select if you want to preserve the spatial/temporal depencencies
-    # MetaModelOpts.dim_red_method = 'PCA'
-    # MetaModelOpts.var_pca_threshold = 99.999
-    # MetaModelOpts.n_pca_components = 10
-
-    # Select your metamodel method
-    # 1) PCE (Polynomial Chaos Expansion) 2) aPCE (arbitrary PCE)
-    # 3) GPE (Gaussian Process Emulator)
-    MetaModelOpts.meta_model_type = 'aPCE'
-
-    # ------------------------------------------------
-    # ------------- PCE Specification ----------------
-    # ------------------------------------------------
-    # Select the sparse least-square minimization method for
-    # the PCE coefficients calculation:
-    # 1)OLS: Ordinary Least Square  2)BRR: Bayesian Ridge Regression
-    # 3)LARS: Least angle regression  4)ARD: Bayesian ARD Regression
-    # 5)FastARD: Fast Bayesian ARD Regression
-    # 6)BCS: Bayesian Compressive Sensing
-    # 7)OMP: Orthogonal Matching Pursuit
-    # 8)VBL: Variational Bayesian Learning
-    # 9)EBL: Emperical Bayesian Learning
-    MetaModelOpts.pce_reg_method = 'FastARD'
-
-    # Bootstraping
-    # 1) normal 2) fast
-    MetaModelOpts.bootstrap_method = 'fast'
-    MetaModelOpts.n_bootstrap_itrs = 1
-
-    # Specify the max degree to be compared by the adaptive algorithm:
-    # The degree with the lowest Leave-One-Out cross-validation (LOO)
-    # error (or the highest score=1-LOO)estimator is chosen as the final
-    # metamodel. pce_deg accepts degree as a scalar or a range.
-    MetaModelOpts.pce_deg = 12
-
-    # q-quasi-norm 0<q<1 (default=1)
-    MetaModelOpts.pce_q_norm = 0.85 if ndim < 5 else 0.5
-
-    # Print summary of the regression results
-    # MetaModelOpts.verbose = True
-
     # ------------------------------------------------
     # ------ Experimental Design Configuration -------
     # ------------------------------------------------
-    MetaModelOpts.add_ExpDesign()
-
+    ExpDesign = ExpDesigns(Inputs)
+    
     # One-shot (normal) or Sequential Adaptive (sequential) Design
-    MetaModelOpts.ExpDesign.method = 'sequential'
-    MetaModelOpts.ExpDesign.n_init_samples = 3*ndim
+    ExpDesign.method = 'normal'
+    ExpDesign.n_init_samples = 3*ndim
 
     # Sampling methods
     # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley
     # 6) chebyshev(FT) 7) grid(FT) 8)user
-    MetaModelOpts.ExpDesign.sampling_method = 'latin_hypercube'
-
+    ExpDesign.sampling_method = 'latin_hypercube'
+    
     # Provide the experimental design object with a hdf5 file
-    # MetaModelOpts.ExpDesign.hdf5_file = 'ExpDesign_AnalyticFunc.hdf5'
-
-    # ------------------------------------------------
-    # ------- Sequential Design configuration --------
-    # ------------------------------------------------
-    # Set the sampling parameters
-    MetaModelOpts.ExpDesign.n_new_samples = 1
-    MetaModelOpts.ExpDesign.n_max_samples = 10#150
-    MetaModelOpts.ExpDesign.mod_LOO_threshold = 1e-16
-
-    # MetaModelOpts.adapt_verbose = True
-    # 1) None 2) 'equal' 3)'epsilon-decreasing' 4) 'adaptive'
-    MetaModelOpts.ExpDesign.tradeoff_scheme = None
-    # MetaModelOpts.ExpDesign.n_replication = 5
-    # -------- Exploration ------
-    # 1)'Voronoi' 2)'random' 3)'latin_hypercube' 4)'LOOCV' 5)'dual annealing'
-    MetaModelOpts.ExpDesign.explore_method = 'random'
-
-    # Use when 'dual annealing' chosen
-    MetaModelOpts.ExpDesign.max_func_itr = 1000
-
-    # Use when 'Voronoi' or 'random' or 'latin_hypercube' chosen
-    MetaModelOpts.ExpDesign.n_canddidate = 1000
-    MetaModelOpts.ExpDesign.n_cand_groups = 4
-
-    # -------- Exploitation ------
-    # 1)'BayesOptDesign' 2)'BayesActDesign' 3)'VarOptDesign' 4)'alphabetic'
-    # 5)'Space-filling'
-    MetaModelOpts.ExpDesign.exploit_method = 'BayesActDesign'
-
-    # BayesActDesign -> when data is available
-    # 1) BME (Bayesian model evidence) 2) infEntropy (Information entropy)
-    # 2)DKL (Kullback-Leibler Divergence)
-    MetaModelOpts.ExpDesign.util_func = 'DKL'
+    # ExpDesign.hdf5_file = 'ExpDesign_AnalyticFunc.hdf5'
 
     # Defining the measurement error, if it's known a priori
     obsData = pd.DataFrame(Model.observations, columns=Model.Output.names)
     DiscrepancyOpts = Discrepancy('')
     DiscrepancyOpts.type = 'Gaussian'
     DiscrepancyOpts.parameters = obsData**2
-    MetaModelOpts.Discrepancy = DiscrepancyOpts
-
-    # Plot the posterior snapshots for SeqDesign
-    MetaModelOpts.ExpDesign.post_snapshot = False
-    MetaModelOpts.ExpDesign.step_snapshot = 1
-    MetaModelOpts.ExpDesign.max_a_post = [0] * ndim
-
-    # For calculation of validation error for SeqDesign
-    prior = np.load(f"data/Prior_{ndim}.npy")
-    prior_outputs = np.load(f"data/origModelOutput_{ndim}.npy")
-    likelihood = np.load(f"data/validLikelihoods_{ndim}.npy")
-    MetaModelOpts.valid_samples = prior[:500]
-    MetaModelOpts.valid_model_runs = {'Z': prior_outputs[:500]}
-    # MetaModelOpts.valid_likelihoods = likelihood
-
-    # >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-    # Train the meta model
-    meta_model_engine = MetaModelEngine(MetaModelOpts)
-    #meta_model_engine.run()
-    PCEModel = meta_model_engine.MetaModel
-
 
+    # Create the engine
+    engine = Engine(None, Model, ExpDesign)
+    engine.train_normal()
+    
+    # =====================================================
+    # ========  PostProcessing on the Model only ==========
     # =====================================================
-    # ========  Bayesian inference with Emulator ==========
+    
+    # So far there is no postprocessing for the model without surrogates!
+    
+    
     # =====================================================
-    BayesOpts = BayesInference(PCEModel)
+    # ========  Bayesian inference without Emulator ==========
+    # =====================================================
+    BayesOpts = BayesInference(engine)
     BayesOpts.emulator = False
     BayesOpts.plot_post_pred = True
 
@@ -230,8 +130,6 @@ if __name__ == "__main__":
 
     # ----- Define the discrepancy model -------
     BayesOpts.measurement_error = obsData
-
-    # # -- (Option B) --
     DiscrepancyOpts = Discrepancy('')
     DiscrepancyOpts.type = 'Gaussian'
     DiscrepancyOpts.parameters = obsData**2
@@ -243,3 +141,177 @@ if __name__ == "__main__":
     # Save class objects
     with open(f'Bayes_{Model.name}.pkl', 'wb') as output:
         joblib.dump(Bayes_PCE, output, 2)
+
+    # =====================================================
+    # ========  Model Comparison without Emulator ==========
+    # =====================================================
+    sigma = 0.6
+    data = {
+        'x [m]': np.linspace(0.25, 4.75, 15),
+        'Z': io.loadmat('data/synth_data.mat')['d'].reshape(1, -1)[0]
+        }
+
+    # =====================================================
+    # ============   COMPUTATIONAL MODELS  ================
+    # =====================================================
+    # Define the models options
+    # ---------- Linear model  -------------
+    myL2Model = PyLinkForwardModel()
+
+    myL2Model.link_type = 'Function'
+    myL2Model.py_file = 'L2_model'
+    myL2Model.name = 'linear'
+    myL2Model.Output.names = ['Z']
+    myL2Model.observations = data
+    myL2Model.store = False
+
+    # -- Nonlinear exponential model -------
+    myNL2Model = PyLinkForwardModel()
+
+    myNL2Model.link_type = 'Function'
+    myNL2Model.py_file = 'NL2_model'
+    myNL2Model.name = 'exponential'
+    myNL2Model.Output.names = ['Z']
+    myNL2Model.observations = data
+    myNL2Model.store = False
+
+    # ------ Nonlinear cosine model ---------
+    # Data generating process
+    myNL4Model = PyLinkForwardModel()
+
+    myNL4Model.link_type = 'Function'
+    myNL4Model.py_file = 'NL4_model'
+    myNL4Model.name = 'cosine'
+    myNL4Model.Output.names = ['Z']
+    myNL4Model.observations = data
+    myNL4Model.store = False
+
+    # =====================================================
+    # =========   PROBABILISTIC INPUT MODEL  ==============
+    # =====================================================
+    # Define model inputs
+    n_sample = 10000
+    # ---------- Linear model  -------------
+    L2_Inputs = Input()
+    L2_prior_mean = np.array([1, 0])
+    L2_prior_cov = np.array(
+        [[0.04, -0.007],
+         [-0.007, 0.04]]
+        )
+    L2_input_params = np.random.multivariate_normal(
+        L2_prior_mean, L2_prior_cov, size=n_sample
+        )
+
+    for i in range(L2_input_params.shape[1]):
+        L2_Inputs.add_marginals()
+        L2_Inputs.Marginals[i].name = f'$X_{i+1}$'
+        L2_Inputs.Marginals[i].input_data = L2_input_params[:, i]
+
+    # ------ Nonlinear exponential model ---------
+    NL2_Inputs = Input()
+    NL2_prior_mean = np.array([0.4, -0.3])
+    NL2_prior_cov = np.array(
+        [[0.003, -0.0001],
+         [-0.0001, 0.03]]
+        )
+    NL2_input_params = np.random.multivariate_normal(
+        NL2_prior_mean, NL2_prior_cov, size=n_sample
+        )
+
+    for i in range(NL2_input_params.shape[1]):
+        NL2_Inputs.add_marginals()
+        NL2_Inputs.Marginals[i].name = f'$X_{i+1}$'
+        NL2_Inputs.Marginals[i].input_data = NL2_input_params[:, i]
+
+    # ------ Nonlinear cosine model ---------
+    NL4_Inputs = Input()
+    NL4_prior_mean = np.array([2.6, 0.5, -2.8, 2.3])
+    NL4_prior_cov = np.array(
+        [[0.46, -0.07, 0.24, -0.14],
+         [-0.07, 0.04, -0.05, 0.02],
+         [0.24, -0.05, 0.30, -0.16],
+         [-0.14, 0.02, -0.16, 0.30]]
+        )
+    NL4_input_params = np.random.multivariate_normal(
+        NL4_prior_mean, NL4_prior_cov, size=n_sample
+        )
+
+    for i in range(NL4_input_params.shape[1]):
+        NL4_Inputs.add_marginals()
+        NL4_Inputs.Marginals[i].name = f'$X_{i+1}$'
+        NL4_Inputs.Marginals[i].input_data = NL4_input_params[:, i]
+
+    # ------------------------------------------------
+    # ------ Experimental Design Configuration -------
+    # ------------------------------------------------
+    #L2_MetaModelOpts.add_ExpDesign()
+    L2_ExpDesign = ExpDesigns(L2_Inputs)
+
+    # One-shot (normal) or Sequential Adaptive (sequential) Design
+    L2_ExpDesign.n_init_samples = 100
+
+    # Sampling methods
+    # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley
+    # 6) chebyshev(FT) 7) grid(FT) 8)user
+    L2_ExpDesign.sampling_method = 'latin_hypercube'
+
+    # ------ Nonlinear cosine model ---------
+    NL2_ExpDesign = ExpDesigns(NL2_Inputs)
+    NL2_ExpDesign.method = 'normal'
+    NL2_ExpDesign.n_init_samples = 100
+    NL2_ExpDesign.sampling_method = 'latin_hypercube'
+
+    # ------ Nonlinear cosine model ---------
+    NL4_ExpDesign = ExpDesigns(NL4_Inputs)
+    NL4_ExpDesign.method = 'normal'
+    NL4_ExpDesign.n_init_samples = 100
+    NL4_ExpDesign.sampling_method = 'latin_hypercube'
+
+    # >>>>>> Train the Surrogates <<<<<<<<<<<
+    L2_engine = Engine(None, myL2Model, L2_ExpDesign)
+    L2_engine.train_normal()
+    NL2_engine = Engine(None, myNL2Model, NL2_ExpDesign)
+    NL2_engine.train_normal()
+    NL4_engine = Engine(None, myNL4Model, NL4_ExpDesign)
+    NL4_engine.train_normal()
+    
+    # =====================================================
+    # =========  BAYESIAN MULTIMODEL COMPARISON ===========
+    # =====================================================
+    # ----- Define the discrepancy model -------
+    sigma = np.ones(15) * np.array(sigma).flatten()
+    DiscrepancyOpts = Discrepancy('')
+    DiscrepancyOpts.type = 'Gaussian'
+    DiscrepancyOpts.parameters = pd.DataFrame(sigma**2, columns=['Z'])
+
+    # ----- Define the options model -------
+    meta_models = {
+        "linear": L2_engine,
+        "exponential": NL2_engine,
+        "cosine": NL4_engine
+        }
+
+    # BME Bootstrap options
+    opts_bootstrap = {
+        "bootstrap": True,
+        "n_samples": 100,#0,#0, # TODO: difference between this and the n_bootstrap set below?
+        "Discrepancy": DiscrepancyOpts,
+        "emulator": False,
+        "plot_post_pred": False
+        }
+
+    # Run model comparison
+    BayesOpts = BayesModelComparison(
+        justifiability=True,
+        n_bootstrap=100,#0,#00,
+        #just_n_meas=2
+        emulator = False
+        )
+    output_dict = BayesOpts.model_comparison_all(
+        meta_models,
+        opts_bootstrap
+        )
+
+    # Save the results
+    with open('model_comparison_output_dict.pkl', 'wb') as output:
+        joblib.dump(output_dict, output, 2)
diff --git a/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py b/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py
index fd01689d70e59031434cea0696e82079d03b83d2..1c0bf991722b86f24e3eaf20c9ce2e709d319453 100644
--- a/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py
+++ b/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py
@@ -248,8 +248,13 @@ class BayesModelComparison:
 
         # Evaluate metamodel
         runs = {}
+<<<<<<< HEAD
         for key, metaModel in model_dict.items():
             y_hat, _ = metaModel.eval_metamodel(nsamples=n_bootstarp)
+=======
+        for key, engine in model_dict.items(): # TODO: add check for emulator vs model
+            y_hat, _ = engine.eval_metamodel(nsamples=n_bootstrap)
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
             runs[key] = y_hat
 
         # Generate data
diff --git a/src/bayesvalidrox/bayes_inference/mcmc.py b/src/bayesvalidrox/bayes_inference/mcmc.py
index 56bcdea0344cbeca45ea638866d24a371772e11b..d1e751fe08d0523ddf0f9c6ab3a56ab832d6ba68 100755
--- a/src/bayesvalidrox/bayes_inference/mcmc.py
+++ b/src/bayesvalidrox/bayes_inference/mcmc.py
@@ -284,7 +284,7 @@ class MCMC:
         engine = self.engine
         Discrepancy = self.Discrepancy
         n_cpus = engine.Model.n_cpus
-        ndim = engine.MetaModel.n_params
+        ndim = engine.ExpDesign.ndim
         if not os.path.exists(self.out_dir):
             os.makedirs(self.out_dir)
 >>>>>>> 2306e76d (Decoupled MCMC from BayesInference and improved performance)
@@ -645,7 +645,6 @@ class MCMC:
         Discrepancy = self.BayesOpts.Discrepancy
 =======
         engine = self.engine
-        MetaModel = engine.MetaModel
         Discrepancy = self.Discrepancy
 >>>>>>> 2306e76d (Decoupled MCMC from BayesInference and improved performance)
 
@@ -667,8 +666,8 @@ class MCMC:
             # Check if the sample is within the parameters' range
             if self._check_ranges(theta[i], params_range):
                 # Check if all dists are uniform, if yes priors are equal.
-                if all(MetaModel.input_obj.Marginals[i].dist_type == 'uniform'
-                       for i in range(MetaModel.n_params)):
+                if all(engine.ExpDesign.InputObj.Marginals[i].dist_type == 'uniform'
+                       for i in range(engine.ExpDesign.ndim)):
                     logprior[i] = 0.0
                 else:
                     logprior[i] = np.log(
diff --git a/src/bayesvalidrox/pylink/pylink.py b/src/bayesvalidrox/pylink/pylink.py
index 227a51ab38cd834e7e85f6193d83563c7ed3437a..fdbb2411cfbce0f56733f2e7c8df5052d0feb004 100644
--- a/src/bayesvalidrox/pylink/pylink.py
+++ b/src/bayesvalidrox/pylink/pylink.py
@@ -159,7 +159,8 @@ class PyLinkForwardModel(object):
                  output_file_names=[], output_names=[], output_parser='',
                  multi_process=True, n_cpus=None, meas_file=None,
                  meas_file_valid=None, mc_ref_file=None, obs_dict={},
-                 obs_dict_valid={}, mc_ref_dict={}):
+                 obs_dict_valid={}, mc_ref_dict={}, store = True,
+                 out_dir = ''):
         self.link_type = link_type
         self.name = name
         self.shell_command = shell_command
@@ -183,6 +184,8 @@ class PyLinkForwardModel(object):
         self.observations = obs_dict
         self.observations_valid = obs_dict_valid
         self.mc_reference = mc_ref_dict
+        self.store = store
+        self.out_dir = out_dir
 
     # -------------------------------------------------------------------------
     def read_observation(self, case='calib'):
@@ -579,9 +582,10 @@ class PyLinkForwardModel(object):
             all_outputs["x_values"] = group_results[0]["x_values"]
 
         # Store simulations in a hdf5 file
-        self._store_simulations(
-            c_points, all_outputs, NaN_idx, key_str, prevRun_No
-            )
+        if self.store:
+            self._store_simulations(
+                c_points, all_outputs, NaN_idx, key_str, prevRun_No
+                )
 
         return all_outputs, new_c_points
     
diff --git a/src/bayesvalidrox/surrogate_models/engine.py b/src/bayesvalidrox/surrogate_models/engine.py
index e6048900ed28ead0f0fffe0d1a83fd9df05474a0..eed4db25a26c7ae654616134feee4c7e35034525 100644
--- a/src/bayesvalidrox/surrogate_models/engine.py
+++ b/src/bayesvalidrox/surrogate_models/engine.py
@@ -26,7 +26,11 @@ from joblib import Parallel, delayed
 from bayesvalidrox.bayes_inference.bayes_inference import BayesInference
 from bayesvalidrox.bayes_inference.discrepancy import Discrepancy
 from .exploration import Exploration
+<<<<<<< HEAD
 import pathlib
+=======
+from.surrogate_models import MetaModel as MM
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
 
 #from .inputs import Input
 #from .exp_designs import ExpDesigns
@@ -143,7 +147,30 @@ class Engine():
         self.Model = Model
         self.ExpDesign = ExpDes
         self.parallel = False
+<<<<<<< HEAD
         
+=======
+        self.trained = False
+
+        # Init other parameters
+        self.bound_tuples = None
+        self.errorModel = None
+        self.LCerror = None
+        self.n_obs = None
+        self.observations = None
+        self.out_names = None
+        self.seqMinDist = None
+        self.seqRMSEStd = None
+        self.SeqKLD = None
+        self.SeqDistHellinger = None
+        self.SeqBME = None
+        self.seqValidError = None
+        self.SeqModifiedLOO = None
+        self.valid_likelihoods = None
+        self._y_hat_prev = None
+        self.emulator = False
+
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
     def start_engine(self) -> None:
         """
         Do all the preparations that need to be run before the actual training
@@ -154,10 +181,21 @@ class Engine():
 
         """
         self.out_names = self.Model.Output.names
+<<<<<<< HEAD
         self.MetaModel.out_names = self.out_names
         
         
     def train_normal(self, parallel = False, verbose = False, save = False) -> None:
+=======
+        if isinstance(self.MetaModel, MM):
+            print('MetaModel has been given, `emulator` will be set to `True`')
+            self.emulator = True
+            self.MetaModel.out_names = self.out_names
+        else:
+            print('MetaModel has not been given, `emulator` will be set to `False`')
+
+    def train_normal(self, parallel=False, verbose=False, save=False) -> None:
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
         """
         Trains surrogate on static samples only.
         Samples are taken from the experimental design and the specified 
@@ -188,6 +226,10 @@ class Engine():
 
         # Prepare X samples 
         # For training the surrogate use ExpDesign.X_tr, ExpDesign.X is for the model to run on 
+        if self.emulator:
+            maxdeg = np.max(MetaModel.pce_deg)
+        else:
+            maxdeg = 1
         ExpDesign.generate_ED(ExpDesign.n_init_samples,
 <<<<<<< HEAD
 <<<<<<< HEAD
@@ -196,10 +238,14 @@ class Engine():
         
 =======
                               #transform=True,
+<<<<<<< HEAD
 =======
                               # transform=True,
 >>>>>>> f8175f33 (Bug fix: ExpDesign.generate_ED no longer needs 'transform')
                               max_pce_deg=np.max(MetaModel.pce_deg))
+=======
+                              max_pce_deg=maxdeg)
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
 
 >>>>>>> 2306e76d (Decoupled MCMC from BayesInference and improved performance)
         # Run simulations at X 
@@ -222,11 +268,19 @@ class Engine():
         
         
         # Fit the surrogate
+<<<<<<< HEAD
         MetaModel.fit(ExpDesign.X, ExpDesign.Y, parallel, verbose)
         
+=======
+        if self.emulator:
+            MetaModel.fit(ExpDesign.X, ExpDesign.Y, parallel, verbose)
+
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
         # Save what there is to save
         if save:
             # Save surrogate
+            if not os.path.exists('surrogates/'):
+                os.makedirs('surrogates/')
             with open(f'surrogates/surrogate_{self.Model.name}.pk1', 'wb') as output:
                 joblib.dump(MetaModel, output, 2)
                     
@@ -254,7 +308,8 @@ class Engine():
         
     # -------------------------------------------------------------------------
     def eval_metamodel(self, samples=None, nsamples=None,
-                       sampling_method='random', return_samples=False):
+                       sampling_method='random', return_samples=False,
+                       parallel = False):
         """
         Evaluates meta-model at the requested samples. One can also generate
         nsamples.
@@ -271,6 +326,9 @@ class Engine():
             'random'.
         return_samples : bool, optional
             Retun samples, if no `samples` is provided. The default is False.
+        parallel : bool, optional
+            Set to true if the evaluations should be done in parallel.
+            The default is False.
 
         Returns
         -------
@@ -289,14 +347,29 @@ class Engine():
 
         # Transformation to other space is to be done in the MetaModel
         # TODO: sort the transformations better
-        mean_pred, std_pred = self.MetaModel.eval_metamodel(samples)
+        if self.emulator:
+            mean_pred, std_pred = self.MetaModel.eval_metamodel(samples)
+        else:
+            mean_pred , X = self.Model.run_model_parallel(samples, mp=parallel)
 
         if return_samples:
-            return mean_pred, std_pred, samples
+            if self.emulator:
+                return mean_pred, std_pred, samples
+            else:
+                return mean_pred, samples
         else:
+<<<<<<< HEAD
             return mean_pred, std_pred
         
         
+=======
+            if self.emulator:
+                return mean_pred, std_pred
+            else:
+                return mean_pred
+                
+
+>>>>>>> 99013313 (Small fixes, start on ModelComp without MetaModel)
     # -------------------------------------------------------------------------
     def train_seq_design(self, parallel = False, verbose = False):
         """