diff --git a/examples/only-model/analytical_function.py b/examples/only-model/analytical_function.py new file mode 100644 index 0000000000000000000000000000000000000000..c7dfaca489abd3dcd2a147f3192c22af8be0c810 --- /dev/null +++ b/examples/only-model/analytical_function.py @@ -0,0 +1,135 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Nov 20 14:48:43 2019 + +@author: farid +""" +import numpy as np +import scipy.stats as stats +import scipy.stats as st +import seaborn as sns + + +def analytical_function(xx, t=None): + """ + Analytical Non-Gaussian Function + + Authors: Farid Mohammadi, University of Stuttgart + Sergey Oladyshkin, University of Stuttgart + Questions/Comments: Please email Farid Mohammadi at: + farid.mohammadi@iws.uni-stuttgart.de + + For function details and reference information, see: + https://doi.org/10.3390/e21111081 + + Parameters + ---------- + xx : array + [x1, x2, ..., xn] where xn ~ Uinform(-5, 5). + t : array, optional + vector of times. The default is None. ( k − 1 ) /9 and k = 1,..., 10 + + Returns + ------- + array + row vector of time vectors (s, t). + + """ + nParamSets, nParams = xx.shape + + if t is None: + t = np.arange(0, 10, 1.) / 9 + + term1 = (xx[:, 0]**2 + xx[:, 1] - 1)**2 + + term2 = xx[:, 0]**2 + + term3 = 0.1 * xx[:, 0] * np.exp(xx[:, 1]) + + term5 = 0 + if nParams > 2: + for i in range(2, nParams): + term5 = term5 + xx[:, i]**3/i + + const = term1 + term2 + term3 + 1 + term5 + + # Compute time dependent term + term4 = np.zeros((nParamSets, len(t))) + for idx in range(nParamSets): + term4[idx] = -2 * xx[idx, 0] * np.sqrt(0.5*t) + + Output = term4 + np.repeat(const[:, None], len(t), axis=1) + + return {'x_values': t, 'Z': Output[0]} + + +if __name__ == "__main__": + + MCSize = 10000 + ndim = 10 + sigma = 2 + + # ------------------------------------------------------------------------- + # ----------------------- Synthetic data generation ----------------------- + # ------------------------------------------------------------------------- + t = np.arange(0, 10, 1.) / 9 + + MAP = np.zeros((1, ndim)) + synthethicData = analytical_function(MAP, t=t) + + # ------------------------------------------------------------------------- + # ---------------------- Generate Prior distribution ---------------------- + # ------------------------------------------------------------------------- + + xx = np.zeros((MCSize, ndim)) + + params = (-5, 5) + + for idxDim in range(ndim): + lower, upper = params + xx[:, idxDim] = stats.uniform( + loc=lower, scale=upper-lower).rvs(size=MCSize) + + # ------------------------------------------------------------------------- + # ------------- BME and Kullback-Leibler Divergence ----------------------- + # ------------------------------------------------------------------------- + Outputs = analytical_function(xx, t=t) + + cov_matrix = np.diag(np.repeat(sigma**2, synthethicData.shape[1])) + + Likelihoods = st.multivariate_normal.pdf( + Outputs['Z'], mean=synthethicData[1], cov=cov_matrix) + + sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), + shade=True, color="g", label='Ref. Likelihood') + + normLikelihood = Likelihoods / np.nanmax(Likelihoods) + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCSize)[0] + + # Reject the poorly performed prior + accepted = normLikelihood >= unif + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(Likelihoods)) + print(f'\nThe Naive MC-Estimation of BME is {logBME:.5f}.') + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) + + # Calculate Kullback-Leibler Divergence + KLD = postExpLikelihoods - logBME + print("The Kullback-Leibler divergence estimation is {KLD:.5f}.") + + # ------------------------------------------------------------------------- + # ----------------- Save the arrays as .npy files ------------------------- + # ------------------------------------------------------------------------- + if MCSize > 500000: + np.save(f"data/refBME_KLD_{ndim}.npy", (logBME, KLD)) + np.save(f"data/mean_{ndim}.npy", np.mean(Outputs['Z'], axis=0)) + np.save(f"data/std_{ndim}.npy", np.std(Outputs['Z'], axis=0)) + else: + np.save(f"data/Prior_{ndim}.npy", xx) + np.save(f"data/origModelOutput_{ndim}.npy", Outputs[1:]) + np.save(f"data/validLikelihoods_{ndim}.npy", Likelihoods) diff --git a/examples/only-model/bayesvalidrox/__init__.py b/examples/only-model/bayesvalidrox/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..55c14687472fe6ff00a2438f31b9ba9ecd2992cd --- /dev/null +++ b/examples/only-model/bayesvalidrox/__init__.py @@ -0,0 +1,23 @@ +# -*- coding: utf-8 -*- +__version__ = "0.0.5" + +from .pylink.pylink import PyLinkForwardModel +from .surrogate_models.surrogate_models import MetaModel +from .surrogate_models.meta_model_engine import MetaModelEngine +from .surrogate_models.inputs import Input +from .post_processing.post_processing import PostProcessing +from .bayes_inference.bayes_inference import BayesInference +from .bayes_inference.bayes_model_comparison import BayesModelComparison +from .bayes_inference.discrepancy import Discrepancy + +__all__ = [ + "__version__", + "PyLinkForwardModel", + "Input", + "Discrepancy", + "MetaModel", + "MetaModelEngine", + "PostProcessing", + "BayesInference", + "BayesModelComparison" + ] diff --git a/examples/only-model/bayesvalidrox/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..278aab3ea132ca1f0dbb5897698da7ba6551a21c Binary files /dev/null and b/examples/only-model/bayesvalidrox/__pycache__/__init__.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__init__.py b/examples/only-model/bayesvalidrox/bayes_inference/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..df8d935680f96ab487cf087866e8bfd504762945 --- /dev/null +++ b/examples/only-model/bayesvalidrox/bayes_inference/__init__.py @@ -0,0 +1,9 @@ +# -*- coding: utf-8 -*- + +from .bayes_inference import BayesInference +from .mcmc import MCMC + +__all__ = [ + "BayesInference", + "MCMC" + ] diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb05638998140eeacbfda327b1cbbcff8e50b2e7 Binary files /dev/null and b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/__init__.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_inference.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_inference.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f5bbe1146a0ace3a1e790b0274a9167756c5c79 Binary files /dev/null and b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_inference.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_model_comparison.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_model_comparison.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..919edf1404e4ac63d005a49146a39ded9defe066 Binary files /dev/null and b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/bayes_model_comparison.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/discrepancy.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/discrepancy.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..277082acf177169ba1aeb1049190f4e2821cf92f Binary files /dev/null and b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/discrepancy.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/mcmc.cpython-311.pyc b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/mcmc.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28789e25211ee767120c61154597194c2f92b447 Binary files /dev/null and b/examples/only-model/bayesvalidrox/bayes_inference/__pycache__/mcmc.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/bayes_inference/bayes_inference.py b/examples/only-model/bayesvalidrox/bayes_inference/bayes_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..d566503a5718387be88925915229157bd8125a1a --- /dev/null +++ b/examples/only-model/bayesvalidrox/bayes_inference/bayes_inference.py @@ -0,0 +1,1537 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import numpy as np +import os +import copy +import pandas as pd +from tqdm import tqdm +from scipy import stats +import scipy.linalg as spla +import joblib +import seaborn as sns +import corner +import h5py +import multiprocessing +import gc +from sklearn.metrics import mean_squared_error, r2_score +from sklearn import preprocessing +from matplotlib.patches import Patch +import matplotlib.lines as mlines +from matplotlib.backends.backend_pdf import PdfPages +import matplotlib.pylab as plt + +from .mcmc import MCMC + +# Load the mplstyle +#plt.style.use(os.path.join(os.path.split(__file__)[0], +# '../', 'bayesvalidrox.mplstyle')) + + +class BayesInference: + """ + A class to perform Bayesian Analysis. + + + Attributes + ---------- + MetaModel : obj + Meta model object. + discrepancy : obj + The discrepancy object for the sigma2s, i.e. the diagonal entries + of the variance matrix for a multivariate normal likelihood. + name : str, optional + The type of analysis, either calibration (`Calib`) or validation + (`Valid`). The default is `'Calib'`. + emulator : bool, optional + Analysis with emulator (MetaModel). The default is `True`. + bootstrap : bool, optional + Bootstrap the analysis. The default is `False`. + req_outputs : list, optional + The list of requested output to be used for the analysis. + The default is `None`. If None, all the defined outputs for the model + object is used. + selected_indices : dict, optional + A dictionary with the selected indices of each model output. The + default is `None`. If `None`, all measurement points are used in the + analysis. + samples : array of shape (n_samples, n_params), optional + The samples to be used in the analysis. The default is `None`. If + None the samples are drawn from the probablistic input parameter + object of the MetaModel object. + n_samples : int, optional + Number of samples to be used in the analysis. The default is `500000`. + If samples is not `None`, this argument will be assigned based on the + number of samples given. + measured_data : dict, optional + A dictionary containing the observation data. The default is `None`. + if `None`, the observation defined in the Model object of the + MetaModel is used. + inference_method : str, optional + A method for approximating the posterior distribution in the Bayesian + inference step. The default is `'rejection'`, which stands for + rejection sampling. A Markov Chain Monte Carlo sampler can be simply + selected by passing `'MCMC'`. + mcmc_params : dict, optional + A dictionary with args required for the Bayesian inference with + `MCMC`. The default is `None`. + + Pass the mcmc_params like the following: + + >>> mcmc_params:{ + 'init_samples': None, # initial samples + 'n_walkers': 100, # number of walkers (chain) + 'n_steps': 100000, # number of maximum steps + 'n_burn': 200, # number of burn-in steps + 'moves': None, # Moves for the emcee sampler + 'multiprocessing': False, # multiprocessing + 'verbose': False # verbosity + } + The items shown above are the default values. If any parmeter is + not defined, the default value will be assigned to it. + bayes_loocv : bool, optional + Bayesian Leave-one-out Cross Validation. The default is `False`. If + `True`, the LOOCV procedure is used to estimate the bayesian Model + Evidence (BME). + n_bootstrap_itrs : int, optional + Number of bootstrap iteration. The default is `1`. If bayes_loocv is + `True`, this is qualt to the total length of the observation data + set. + perturbed_data : array of shape (n_bootstrap_itrs, n_obs), optional + User defined perturbed data. The default is `[]`. + bootstrap_noise : float, optional + A noise level to perturb the data set. The default is `0.05`. + just_analysis : bool, optional + Justifiability analysis. The default is False. + valid_metrics : list, optional + List of the validation metrics. The following metrics are supported: + + 1. log_BME : logarithm of the Bayesian model evidence + 2. KLD : Kullback-Leibler Divergence + 3. inf_entropy: Information entropy + The default is `['log_BME']`. + plot_post_pred : bool, optional + Plot posterior predictive plots. The default is `True`. + plot_map_pred : bool, optional + Plot the model outputs vs the metamodel predictions for the maximum + a posteriori (defined as `max_a_posteriori`) parameter set. The + default is `False`. + max_a_posteriori : str, optional + Maximum a posteriori. `'mean'` and `'mode'` are available. The default + is `'mean'`. + corner_title_fmt : str, optional + Title format for the posterior distribution plot with python + package `corner`. The default is `'.2e'`. + + """ + + def __init__(self, MetaModel, discrepancy=None, emulator=True, + name='Calib', bootstrap=False, req_outputs=None, + selected_indices=None, samples=None, n_samples=100000, + measured_data=None, inference_method='rejection', + mcmc_params=None, bayes_loocv=False, n_bootstrap_itrs=1, + perturbed_data=[], bootstrap_noise=0.05, just_analysis=False, + valid_metrics=['BME'], plot_post_pred=True, + plot_map_pred=False, max_a_posteriori='mean', + corner_title_fmt='.2e'): + + self.MetaModel = MetaModel + self.Discrepancy = discrepancy + self.emulator = emulator + self.name = name + self.bootstrap = bootstrap + self.req_outputs = req_outputs + self.selected_indices = selected_indices + self.samples = samples + self.n_samples = n_samples + self.measured_data = measured_data + self.inference_method = inference_method + self.mcmc_params = mcmc_params + self.perturbed_data = perturbed_data + self.bayes_loocv = bayes_loocv + self.n_bootstrap_itrs = n_bootstrap_itrs + self.bootstrap_noise = bootstrap_noise + self.just_analysis = just_analysis + self.valid_metrics = valid_metrics + self.plot_post_pred = plot_post_pred + self.plot_map_pred = plot_map_pred + self.max_a_posteriori = max_a_posteriori + self.corner_title_fmt = corner_title_fmt + + # ------------------------------------------------------------------------- + def create_inference(self): + """ + Starts the inference. + + Returns + ------- + BayesInference : obj + The Bayes inference object. + + """ + + # Set some variables + if self.MetaModel is not None: + MetaModel = self.MetaModel + Model = MetaModel.ModelObj + n_params = MetaModel.n_params + output_names = Model.Output.names + par_names = MetaModel.ExpDesign.par_names + else: + + + # If the prior is set by the user, take it. + if self.samples is None: + self.samples = MetaModel.ExpDesign.generate_samples( + self.n_samples, 'random') + else: + try: + samples = self.samples.values + except AttributeError: + samples = self.samples + + # Take care of an additional Sigma2s + self.samples = samples[:, :n_params] + + # Update number of samples + self.n_samples = self.samples.shape[0] + + # ---------- Preparation of observation data ---------- + # Read observation data and perturb it if requested. + if self.measured_data is None: + self.measured_data = Model.read_observation(case=self.name) + # Convert measured_data to a data frame + if not isinstance(self.measured_data, pd.DataFrame): + self.measured_data = pd.DataFrame(self.measured_data) + + # Extract the total number of measurement points + if self.name.lower() == 'calib': + self.n_tot_measurement = Model.n_obs + else: + self.n_tot_measurement = Model.n_obs_valid + + # Find measurement error (if not given) for post predictive plot + if not hasattr(self, 'measurement_error'): + if isinstance(self.Discrepancy, dict): + Disc = self.Discrepancy['known'] + else: + Disc = self.Discrepancy + if isinstance(Disc.parameters, dict): + self.measurement_error = {k: np.sqrt(Disc.parameters[k]) for k + in Disc.parameters.keys()} + else: + try: + self.measurement_error = np.sqrt(Disc.parameters) + except TypeError: + pass + + # ---------- Preparation of variance for covariance matrix ---------- + # Independent and identically distributed + total_sigma2 = dict() + opt_sigma_flag = isinstance(self.Discrepancy, dict) + opt_sigma = None + for key_idx, key in enumerate(output_names): + + # Find opt_sigma + if opt_sigma_flag and opt_sigma is None: + # Option A: known error with unknown bias term + opt_sigma = 'A' + known_discrepancy = self.Discrepancy['known'] + self.Discrepancy = self.Discrepancy['infer'] + sigma2 = np.array(known_discrepancy.parameters[key]) + + elif opt_sigma == 'A' or self.Discrepancy.parameters is not None: + # Option B: The sigma2 is known (no bias term) + if opt_sigma == 'A': + sigma2 = np.array(known_discrepancy.parameters[key]) + else: + opt_sigma = 'B' + sigma2 = np.array(self.Discrepancy.parameters[key]) + + elif not isinstance(self.Discrepancy.InputDisc, str): + # Option C: The sigma2 is unknown (bias term including error) + opt_sigma = 'C' + self.Discrepancy.opt_sigma = opt_sigma + n_measurement = self.measured_data[key].values.shape + sigma2 = np.zeros((n_measurement[0])) + + total_sigma2[key] = sigma2 + + self.Discrepancy.opt_sigma = opt_sigma + self.Discrepancy.total_sigma2 = total_sigma2 + + # If inferred sigma2s obtained from e.g. calibration are given + try: + self.sigma2s = self.Discrepancy.get_sample(self.n_samples) + except: + pass + + # ---------------- Bootstrap & TOM -------------------- + if self.bootstrap or self.bayes_loocv or self.just_analysis: + if len(self.perturbed_data) == 0: + # zero mean noise Adding some noise to the observation function + self.perturbed_data = self._perturb_data( + self.measured_data, output_names + ) + else: + self.n_bootstrap_itrs = len(self.perturbed_data) + + # -------- Model Discrepancy ----------- + if hasattr(self, 'error_model') and self.error_model \ + and self.name.lower() != 'calib': + # Select posterior mean as MAP + MAP_theta = self.samples.mean(axis=0).reshape((1, n_params)) + # MAP_theta = stats.mode(self.samples,axis=0)[0] + + # Evaluate the (meta-)model at the MAP + y_MAP, y_std_MAP = MetaModel.eval_metamodel(samples=MAP_theta) + + # Train a GPR meta-model using MAP + print('Create error meta model') + self.error_MetaModel = MetaModel.create_model_error( + self.bias_inputs, y_MAP, Name=self.name + ) + + # ----------------------------------------------------- + # ----- Loop over the perturbed observation data ------ + # ----------------------------------------------------- + # Initilize arrays + logLikelihoods = np.zeros((self.n_samples, self.n_bootstrap_itrs), + dtype=np.float16) + BME_Corr = np.zeros((self.n_bootstrap_itrs)) + log_BME = np.zeros((self.n_bootstrap_itrs)) + KLD = np.zeros((self.n_bootstrap_itrs)) + inf_entropy = np.zeros((self.n_bootstrap_itrs)) + + # Compute the prior predtions + # Evaluate the MetaModel + if self.emulator: + y_hat, y_std = MetaModel.eval_metamodel(samples=self.samples) + self.__mean_pce_prior_pred = y_hat + self._std_pce_prior_pred = y_std + + # Correct the predictions with Model discrepancy + if hasattr(self, 'error_model') and self.error_model: + y_hat_corr, y_std = self.error_MetaModel.eval_model_error( + self.bias_inputs, self.__mean_pce_prior_pred + ) + self.__mean_pce_prior_pred = y_hat_corr + self._std_pce_prior_pred = y_std + + # Surrogate model's error using RMSE of test data + if hasattr(MetaModel, 'rmse'): + surrError = MetaModel.rmse + else: + surrError = None + + else: + # Evaluate the original model + self.__model_prior_pred = self._eval_model( + samples=self.samples, key='PriorPred' + ) + surrError = None + + # Start the likelihood-BME computations for the perturbed data + for itr_idx, data in tqdm( + enumerate(self.perturbed_data), + total=self.n_bootstrap_itrs, + desc="Boostraping the BME calculations", ascii=True + ): + + # ---------------- Likelihood calculation ---------------- + if self.emulator: + model_evals = self.__mean_pce_prior_pred + else: + model_evals = self.__model_prior_pred + + # Leave one out + if self.bayes_loocv or self.just_analysis: + self.selected_indices = np.nonzero(data)[0] + + # Prepare data dataframe + nobs = list(self.measured_data.count().values[1:]) + numbers = list(np.cumsum(nobs)) + indices = list(zip([0] + numbers, numbers)) + data_dict = { + output_names[i]: data[j:k] for i, (j, k) in + enumerate(indices) + } + + # Unknown sigma2 + if opt_sigma == 'C' or hasattr(self, 'sigma2s'): + logLikelihoods[:, itr_idx] = self.normpdf( + model_evals, data_dict, total_sigma2, + sigma2=self.sigma2s, std=surrError + ) + else: + # known sigma2 + logLikelihoods[:, itr_idx] = self.normpdf( + model_evals, data_dict, total_sigma2, + std=surrError + ) + + # ---------------- BME Calculations ---------------- + # BME (log) + log_BME[itr_idx] = np.log( + np.nanmean(np.exp(logLikelihoods[:, itr_idx], + dtype=np.longdouble)) # changed for windows + ) + + # BME correction when using Emulator + if self.emulator: + BME_Corr[itr_idx] = self.__corr_factor_BME( + data_dict, total_sigma2, log_BME[itr_idx] + ) + + # Rejection Step + if 'kld' in list(map(str.lower, self.valid_metrics)) and\ + 'inf_entropy' in list(map(str.lower, self.valid_metrics)): + # Random numbers between 0 and 1 + unif = np.random.rand(1, self.n_samples)[0] + + # Reject the poorly performed prior + Likelihoods = np.exp(logLikelihoods[:, itr_idx], + dtype=np.float64) + accepted = (Likelihoods/np.max(Likelihoods)) >= unif + posterior = self.samples[accepted] + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean( + logLikelihoods[:, itr_idx][accepted] + ) + + # Calculate Kullback-Leibler Divergence + KLD[itr_idx] = postExpLikelihoods - log_BME[itr_idx] + + # Posterior-based expectation of prior densities + if 'inf_entropy' in list(map(str.lower, self.valid_metrics)): + n_thread = int(0.875 * multiprocessing.cpu_count()) + with multiprocessing.Pool(n_thread) as p: + postExpPrior = np.mean(np.concatenate( + p.map( + MetaModel.ExpDesign.JDist.pdf, + np.array_split(posterior.T, n_thread, axis=1)) + ) + ) + # Information Entropy based on Entropy paper Eq. 38 + inf_entropy[itr_idx] = log_BME[itr_idx] - postExpPrior - \ + postExpLikelihoods + + # Clear memory + gc.collect(generation=2) + + # ---------- Store metrics for perturbed data set ---------------- + # Likelihoods (Size: n_samples, n_bootstrap_itr) + self.log_likes = logLikelihoods + + # BME (log), KLD, infEntropy (Size: 1,n_bootstrap_itr) + self.log_BME = log_BME + + # BMECorrFactor (log) (Size: 1,n_bootstrap_itr) + if self.emulator: + self.log_BME_corr_factor = BME_Corr + + if 'kld' in list(map(str.lower, self.valid_metrics)): + self.KLD = KLD + if 'inf_entropy' in list(map(str.lower, self.valid_metrics)): + self.inf_entropy = inf_entropy + + # BME = BME + BMECorrFactor + if self.emulator: + self.log_BME += self.log_BME_corr_factor + + # ---------------- Parameter Bayesian inference ---------------- + if self.inference_method.lower() == 'mcmc': + # Instantiate the MCMC object + MCMC_Obj = MCMC(self) + self.MCMC_Obj = MCMC_Obj + self.posterior_df = MCMC_Obj.run_sampler( + self.measured_data, total_sigma2 + ) + + elif self.name.lower() == 'valid': + # Convert to a dataframe if samples are provided after calibration. + self.posterior_df = pd.DataFrame(self.samples, columns=par_names) + + else: + # Rejection sampling + self.posterior_df = self._rejection_sampling() + # Provide posterior's summary + print('\n') + print('-'*15 + 'Posterior summary' + '-'*15) + pd.options.display.max_columns = None + pd.options.display.max_rows = None + print(self.posterior_df.describe()) + print('-'*50) + + # -------- Model Discrepancy ----------- + if hasattr(self, 'error_model') and self.error_model \ + and self.name.lower() == 'calib': + if self.inference_method.lower() == 'mcmc': + self.error_MetaModel = MCMC_Obj.error_MetaModel + else: + # Select posterior mean as MAP + if opt_sigma == "B": + posterior_df = self.posterior_df.values + else: + posterior_df = self.posterior_df.values[:, :-Model.n_outputs] + + # Select posterior mean as Maximum a posteriori + map_theta = posterior_df.mean(axis=0).reshape((1, n_params)) + # map_theta = stats.mode(Posterior_df,axis=0)[0] + + # Evaluate the (meta-)model at the MAP + y_MAP, y_std_MAP = MetaModel.eval_metamodel(samples=map_theta) + + # Train a GPR meta-model using MAP + self.error_MetaModel = MetaModel.create_model_error( + self.bias_inputs, y_MAP, Name=self.name + ) + + # -------- Posterior perdictive ----------- + self._posterior_predictive() + + # ----------------------------------------------------- + # ------------------ Visualization -------------------- + # ----------------------------------------------------- + # Create Output directory, if it doesn't exist already. + out_dir = f'Outputs_Bayes_{Model.name}_{self.name}' + os.makedirs(out_dir, exist_ok=True) + + # -------- Posteior parameters -------- + if opt_sigma != "B": + par_names.extend( + [self.Discrepancy.InputDisc.Marginals[i].name for i + in range(len(self.Discrepancy.InputDisc.Marginals))] + ) + # Pot with corner + figPosterior = corner.corner(self.posterior_df.to_numpy(), + labels=par_names, + quantiles=[0.15, 0.5, 0.85], + show_titles=True, + title_fmt=self.corner_title_fmt, + labelpad=0.2, + use_math_text=True, + title_kwargs={"fontsize": 28}, + plot_datapoints=False, + plot_density=False, + fill_contours=True, + smooth=0.5, + smooth1d=0.5) + + # Loop over axes and set x limits + if opt_sigma == "B": + axes = np.array(figPosterior.axes).reshape( + (len(par_names), len(par_names)) + ) + for yi in range(len(par_names)): + ax = axes[yi, yi] + ax.set_xlim(MetaModel.bound_tuples[yi]) + for xi in range(yi): + ax = axes[yi, xi] + ax.set_xlim(MetaModel.bound_tuples[xi]) + plt.close() + + # Turn off gridlines + for ax in figPosterior.axes: + ax.grid(False) + + if self.emulator: + plotname = f'/Posterior_Dist_{Model.name}_emulator' + else: + plotname = f'/Posterior_Dist_{Model.name}' + + figPosterior.set_size_inches((24, 16)) + figPosterior.savefig(f'./{out_dir}{plotname}.pdf', + bbox_inches='tight') + + # -------- Plot MAP -------- + if self.plot_map_pred: + self._plot_max_a_posteriori() + + # -------- Plot log_BME dist -------- + if self.bootstrap: + + # Computing the TOM performance + self.log_BME_tom = stats.chi2.rvs( + self.n_tot_measurement, size=self.log_BME.shape[0] + ) + + fig, ax = plt.subplots() + sns.kdeplot(self.log_BME_tom, ax=ax, color="green", shade=True) + sns.kdeplot( + self.log_BME, ax=ax, color="blue", shade=True, + label='Model BME') + + ax.set_xlabel('log$_{10}$(BME)') + ax.set_ylabel('Probability density') + + legend_elements = [ + Patch(facecolor='green', edgecolor='green', label='TOM BME'), + Patch(facecolor='blue', edgecolor='blue', label='Model BME') + ] + ax.legend(handles=legend_elements) + + if self.emulator: + plotname = f'/BME_hist_{Model.name}_emulator' + else: + plotname = f'/BME_hist_{Model.name}' + + plt.savefig(f'./{out_dir}{plotname}.pdf', bbox_inches='tight') + plt.show() + plt.close() + + # -------- Posteior perdictives -------- + if self.plot_post_pred: + # Plot the posterior predictive + self._plot_post_predictive() + + return self + + # ------------------------------------------------------------------------- + def _perturb_data(self, data, output_names): + """ + Returns an array with n_bootstrap_itrs rowsof perturbed data. + The first row includes the original observation data. + If `self.bayes_loocv` is True, a 2d-array will be returned with + repeated rows and zero diagonal entries. + + Parameters + ---------- + data : pandas DataFrame + Observation data. + output_names : list + List of the output names. + + Returns + ------- + final_data : array + Perturbed data set. + + """ + noise_level = self.bootstrap_noise + obs_data = data[output_names].values + n_measurement, n_outs = obs_data.shape + self.n_tot_measurement = obs_data[~np.isnan(obs_data)].shape[0] + # Number of bootstrap iterations + if self.bayes_loocv: + self.n_bootstrap_itrs = self.n_tot_measurement + + # Pass loocv dataset + if self.bayes_loocv: + obs = obs_data.T[~np.isnan(obs_data.T)] + final_data = np.repeat(np.atleast_2d(obs), self.n_bootstrap_itrs, + axis=0) + np.fill_diagonal(final_data, 0) + return final_data + + else: + final_data = np.zeros( + (self.n_bootstrap_itrs, self.n_tot_measurement) + ) + final_data[0] = obs_data.T[~np.isnan(obs_data.T)] + for itrIdx in range(1, self.n_bootstrap_itrs): + data = np.zeros((n_measurement, n_outs)) + for idx in range(len(output_names)): + std = np.nanstd(obs_data[:, idx]) + if std == 0: + std = 0.001 + noise = std * noise_level + data[:, idx] = np.add( + obs_data[:, idx], + np.random.normal(0, 1, obs_data.shape[0]) * noise, + ) + + final_data[itrIdx] = data.T[~np.isnan(data.T)] + + return final_data + + # ------------------------------------------------------------------------- + def _logpdf(self, x, mean, cov): + """ + computes the likelihood based on a multivariate normal distribution. + + Parameters + ---------- + x : TYPE + DESCRIPTION. + mean : array_like + Observation data. + cov : 2d array + Covariance matrix of the distribution. + + Returns + ------- + log_lik : float + Log likelihood. + + """ + n = len(mean) + L = spla.cholesky(cov, lower=True) + beta = np.sum(np.log(np.diag(L))) + dev = x - mean + alpha = dev.dot(spla.cho_solve((L, True), dev)) + log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi) + return log_lik + + # ------------------------------------------------------------------------- + def _eval_model(self, samples=None, key='MAP'): + """ + Evaluates Forward Model. + + Parameters + ---------- + samples : array of shape (n_samples, n_params), optional + Parameter sets. The default is None. + key : str, optional + Key string to be passed to the run_model_parallel method. + The default is 'MAP'. + + Returns + ------- + model_outputs : dict + Model outputs. + + """ + MetaModel = self.MetaModel + Model = MetaModel.ModelObj + + if samples is None: + self.samples = MetaModel.ExpDesign.generate_samples( + self.n_samples, 'random') + else: + self.samples = samples + self.n_samples = len(samples) + + model_outputs, _ = Model.run_model_parallel( + self.samples, key_str=key+self.name) + + # Clean up + # Zip the subdirectories + try: + dir_name = f'{Model.name}MAP{self.name}' + key = dir_name + '_' + Model.zip_subdirs(dir_name, key) + except: + pass + + return model_outputs + + # ------------------------------------------------------------------------- + def _kernel_rbf(self, X, hyperparameters): + """ + Isotropic squared exponential kernel. + + Higher l values lead to smoother functions and therefore to coarser + approximations of the training data. Lower l values make functions + more wiggly with wide uncertainty regions between training data points. + + sigma_f controls the marginal variance of b(x) + + Parameters + ---------- + X : ndarray of shape (n_samples_X, n_features) + + hyperparameters : Dict + Lambda characteristic length + sigma_f controls the marginal variance of b(x) + sigma_0 unresolvable error nugget term, interpreted as random + error that cannot be attributed to measurement error. + Returns + ------- + var_cov_matrix : ndarray of shape (n_samples_X,n_samples_X) + Kernel k(X, X). + + """ + from sklearn.gaussian_process.kernels import RBF + min_max_scaler = preprocessing.MinMaxScaler() + X_minmax = min_max_scaler.fit_transform(X) + + nparams = len(hyperparameters) + # characteristic length (0,1] + Lambda = hyperparameters[0] + # sigma_f controls the marginal variance of b(x) + sigma2_f = hyperparameters[1] + + # cov_matrix = sigma2_f*rbf_kernel(X_minmax, gamma = 1/Lambda**2) + + rbf = RBF(length_scale=Lambda) + cov_matrix = sigma2_f * rbf(X_minmax) + if nparams > 2: + # (unresolvable error) nugget term that is interpreted as random + # error that cannot be attributed to measurement error. + sigma2_0 = hyperparameters[2:] + for i, j in np.ndindex(cov_matrix.shape): + cov_matrix[i, j] += np.sum(sigma2_0) if i == j else 0 + + return cov_matrix + + # ------------------------------------------------------------------------- + def normpdf(self, outputs, obs_data, total_sigma2s, sigma2=None, std=None): + """ + Calculates the likelihood of simulation outputs compared with + observation data. + + Parameters + ---------- + outputs : dict + A dictionary containing the simulation outputs as array of shape + (n_samples, n_measurement) for each model output. + obs_data : dict + A dictionary/dataframe containing the observation data. + total_sigma2s : dict + A dictionary with known values of the covariance diagonal entries, + a.k.a sigma^2. + sigma2 : array, optional + An array of the sigma^2 samples, when the covariance diagonal + entries are unknown and are being jointly inferred. The default is + None. + std : dict, optional + A dictionary containing the root mean squared error as array of + shape (n_samples, n_measurement) for each model output. The default + is None. + + Returns + ------- + logLik : array of shape (n_samples) + Likelihoods. + + """ + Model = self.MetaModel.ModelObj + logLik = 0.0 + + # Extract the requested model outputs for likelihood calulation + if self.req_outputs is None: + req_outputs = Model.Output.names + else: + req_outputs = list(self.req_outputs) + + # Loop over the outputs + for idx, out in enumerate(req_outputs): + + # (Meta)Model Output + nsamples, nout = outputs[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout] + + # Add the std of the PCE is chosen as emulator. + if self.emulator: + if std is not None: + tot_sigma2s += std[out]**2 + + # Covariance Matrix + covMatrix = np.diag(tot_sigma2s) + + # Select the data points to compare + try: + indices = self.selected_indices[out] + except: + indices = list(range(nout)) + covMatrix = np.diag(covMatrix[indices, indices]) + + # If sigma2 is not given, use given total_sigma2s + if sigma2 is None: + logLik += stats.multivariate_normal.logpdf( + outputs[out][:, indices], data[indices], covMatrix) + continue + + # Loop over each run/sample and calculate logLikelihood + logliks = np.zeros(nsamples) + for s_idx in range(nsamples): + + # Simulation run + tot_outputs = outputs[out] + + # Covariance Matrix + covMatrix = np.diag(tot_sigma2s) + + if sigma2 is not None: + # Check the type error term + if hasattr(self, 'bias_inputs') and \ + not hasattr(self, 'error_model'): + # Infer a Bias model usig Gaussian Process Regression + bias_inputs = np.hstack( + (self.bias_inputs[out], + tot_outputs[s_idx].reshape(-1, 1))) + + params = sigma2[s_idx, idx*3:(idx+1)*3] + covMatrix = self._kernel_rbf(bias_inputs, params) + else: + # Infer equal sigma2s + try: + sigma_2 = sigma2[s_idx, idx] + except TypeError: + sigma_2 = 0.0 + + covMatrix += sigma_2 * np.eye(nout) + # covMatrix = np.diag(sigma2 * total_sigma2s) + + # Select the data points to compare + try: + indices = self.selected_indices[out] + except: + indices = list(range(nout)) + covMatrix = np.diag(covMatrix[indices, indices]) + + # Compute loglikelihood + logliks[s_idx] = self._logpdf( + tot_outputs[s_idx, indices], data[indices], covMatrix + ) + + logLik += logliks + return logLik + + # ------------------------------------------------------------------------- + def _corr_factor_BME_old(self, Data, total_sigma2s, posterior): + """ + Calculates the correction factor for BMEs. + """ + MetaModel = self.MetaModel + OrigModelOutput = MetaModel.ExpDesign.Y + Model = MetaModel.ModelObj + + # Posterior with guassian-likelihood + postDist = stats.gaussian_kde(posterior.T) + + # Remove NaN + Data = Data[~np.isnan(Data)] + total_sigma2s = total_sigma2s[~np.isnan(total_sigma2s)] + + # Covariance Matrix + covMatrix = np.diag(total_sigma2s[:self.n_tot_measurement]) + + # Extract the requested model outputs for likelihood calulation + if self.req_outputs is None: + OutputType = Model.Output.names + else: + OutputType = list(self.req_outputs) + + # SampleSize = OrigModelOutput[OutputType[0]].shape[0] + + + # Flatten the OutputType for OrigModel + TotalOutputs = np.concatenate([OrigModelOutput[x] for x in OutputType], 1) + + NrofBayesSamples = self.n_samples + # Evaluate MetaModel on the experimental design + Samples = MetaModel.ExpDesign.X + OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=Samples) + + # Reset the NrofSamples to NrofBayesSamples + self.n_samples = NrofBayesSamples + + # Flatten the OutputType for MetaModel + TotalPCEOutputs = np.concatenate([OutputRS[x] for x in OutputRS], 1) + TotalPCEstdOutputRS= np.concatenate([stdOutputRS[x] for x in stdOutputRS], 1) + + logweight = 0 + for i, sample in enumerate(Samples): + # Compute likelilhood output vs RS + covMatrix = np.diag(TotalPCEstdOutputRS[i]**2) + logLik = self._logpdf(TotalOutputs[i], TotalPCEOutputs[i], covMatrix) + # Compute posterior likelihood of the collocation points + logpostLik = np.log(postDist.pdf(sample[:, None]))[0] + if logpostLik != -np.inf: + logweight += logLik + logpostLik + return logweight + + # ------------------------------------------------------------------------- + def __corr_factor_BME(self, obs_data, total_sigma2s, logBME): + """ + Calculates the correction factor for BMEs. + """ + MetaModel = self.MetaModel + samples = MetaModel.ExpDesign.X + model_outputs = MetaModel.ExpDesign.Y + Model = MetaModel.ModelObj + n_samples = samples.shape[0] + + # Extract the requested model outputs for likelihood calulation + output_names = Model.Output.names + + # Evaluate MetaModel on the experimental design and ValidSet + OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples) + + logLik_data = np.zeros((n_samples)) + logLik_model = np.zeros((n_samples)) + # Loop over the outputs + for idx, out in enumerate(output_names): + + # (Meta)Model Output + nsamples, nout = model_outputs[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout] + + # Covariance Matrix + covMatrix_data = np.diag(tot_sigma2s) + + for i, sample in enumerate(samples): + + # Simulation run + y_m = model_outputs[out][i] + + # Surrogate prediction + y_m_hat = OutputRS[out][i] + + # CovMatrix with the surrogate error + covMatrix = np.eye(len(y_m)) * 1/(2*np.pi) + + # Select the data points to compare + try: + indices = self.selected_indices[out] + except: + indices = list(range(nout)) + covMatrix = np.diag(covMatrix[indices, indices]) + covMatrix_data = np.diag(covMatrix_data[indices, indices]) + + # Compute likelilhood output vs data + logLik_data[i] += self._logpdf( + y_m_hat[indices], data[indices], + covMatrix_data + ) + + # Compute likelilhood output vs surrogate + logLik_model[i] += self._logpdf( + y_m_hat[indices], y_m[indices], + covMatrix + ) + + # Weight + logLik_data -= logBME + weights = np.mean(np.exp(logLik_model+logLik_data)) + + return np.log(weights) + + # ------------------------------------------------------------------------- + def _rejection_sampling(self): + """ + Performs rejection sampling to update the prior distribution on the + input parameters. + + Returns + ------- + posterior : pandas.dataframe + Posterior samples of the input parameters. + + """ + + MetaModel = self.MetaModel + try: + sigma2_prior = self.Discrepancy.sigma2_prior + except: + sigma2_prior = None + + # Check if the discrepancy is defined as a distribution: + samples = self.samples + + if sigma2_prior is not None: + samples = np.hstack((samples, sigma2_prior)) + + # Take the first column of Likelihoods (Observation data without noise) + if self.just_analysis or self.bayes_loocv: + index = self.n_tot_measurement-1 + # account for numerical overflow, especially for windows + scale = 0 + if np.max(self.log_likes[:, index])>709: + scale = np.max(self.log_likes[:, index])-709 + + self.log_likes[:, 0]-=scale + likelihoods = np.exp(self.log_likes[:, index], dtype=np.longdouble) + else: + # account for numerical overflow, especially for windows + scale = 0 + if np.max(self.log_likes[:, 0])>709: + scale = np.max(self.log_likes[:, 0])-709 + + self.log_likes[:, 0]-=scale + likelihoods = np.exp(self.log_likes[:, 0], dtype=np.longdouble) + + n_samples = len(likelihoods) + norm_ikelihoods = likelihoods / np.max(likelihoods) + + # Normalize based on min if all Likelihoods are zero + if all(likelihoods == 0.0): + likelihoods = self.log_likes[:, 0] + norm_ikelihoods = likelihoods / np.min(likelihoods) + + # Random numbers between 0 and 1 + unif = np.random.rand(1, n_samples)[0] + + # Reject the poorly performed prior + accepted_samples = samples[norm_ikelihoods >= unif] + + # Output the Posterior + par_names = MetaModel.ExpDesign.par_names + if sigma2_prior is not None: + for name in self.Discrepancy.name: + par_names.append(name) + + return pd.DataFrame(accepted_samples, columns=sigma2_prior) + + # ------------------------------------------------------------------------- + def _posterior_predictive(self): + """ + Stores the prior- and posterior predictive samples, i.e. model + evaluations using the samples, into hdf5 files. + + priorPredictive.hdf5 : Prior predictive samples. + postPredictive_wo_noise.hdf5 : Posterior predictive samples without + the additive noise. + postPredictive.hdf5 : Posterior predictive samples with the additive + noise. + + Returns + ------- + None. + + """ + + MetaModel = self.MetaModel + Model = MetaModel.ModelObj + + # Make a directory to save the prior/posterior predictive + out_dir = f'Outputs_Bayes_{Model.name}_{self.name}' + os.makedirs(out_dir, exist_ok=True) + + # Read observation data and perturb it if requested + if self.measured_data is None: + self.measured_data = Model.read_observation(case=self.name) + + if not isinstance(self.measured_data, pd.DataFrame): + self.measured_data = pd.DataFrame(self.measured_data) + + # X_values + x_values = MetaModel.ExpDesign.x_values + + try: + sigma2_prior = self.Discrepancy.sigma2_prior + except: + sigma2_prior = None + + # Extract posterior samples + posterior_df = self.posterior_df + + # Take care of the sigma2 + if sigma2_prior is not None: + try: + sigma2s = posterior_df[self.Discrepancy.name].values + posterior_df = posterior_df.drop( + labels=self.Discrepancy.name, axis=1 + ) + except: + sigma2s = self.sigma2s + + # Posterior predictive + if self.emulator: + if self.inference_method == 'rejection': + prior_pred = self.__mean_pce_prior_pred + if self.name.lower() != 'calib': + post_pred = self.__mean_pce_prior_pred + post_pred_std = self._std_pce_prior_pred + else: + post_pred, post_pred_std = MetaModel.eval_metamodel( + samples=posterior_df.values + ) + + else: + if self.inference_method == 'rejection': + prior_pred = self.__model_prior_pred + if self.name.lower() != 'calib': + post_pred = self.__mean_pce_prior_pred, + post_pred_std = self._std_pce_prior_pred + else: + post_pred = self._eval_model( + samples=posterior_df.values, key='PostPred' + ) + # Correct the predictions with Model discrepancy + if hasattr(self, 'error_model') and self.error_model: + y_hat, y_std = self.error_MetaModel.eval_model_error( + self.bias_inputs, post_pred + ) + post_pred, post_pred_std = y_hat, y_std + + # Add discrepancy from likelihood Sample to the current posterior runs + total_sigma2 = self.Discrepancy.total_sigma2 + post_pred_withnoise = copy.deepcopy(post_pred) + for varIdx, var in enumerate(Model.Output.names): + for i in range(len(post_pred[var])): + pred = post_pred[var][i] + + # Known sigma2s + clean_sigma2 = total_sigma2[var][~np.isnan(total_sigma2[var])] + tot_sigma2 = clean_sigma2[:len(pred)] + cov = np.diag(tot_sigma2) + + # Check the type error term + if sigma2_prior is not None: + # Inferred sigma2s + if hasattr(self, 'bias_inputs') and \ + not hasattr(self, 'error_model'): + # TODO: Infer a Bias model usig GPR + bias_inputs = np.hstack(( + self.bias_inputs[var], pred.reshape(-1, 1))) + params = sigma2s[i, varIdx*3:(varIdx+1)*3] + cov = self._kernel_rbf(bias_inputs, params) + else: + # Infer equal sigma2s + try: + sigma2 = sigma2s[i, varIdx] + except TypeError: + sigma2 = 0.0 + + # Convert biasSigma2s to a covMatrix + cov += sigma2 * np.eye(len(pred)) + + if self.emulator: + if hasattr(MetaModel, 'rmse') and \ + MetaModel.rmse is not None: + stdPCE = MetaModel.rmse[var] + else: + stdPCE = post_pred_std[var][i] + # Expected value of variance (Assump: i.i.d stds) + cov += np.diag(stdPCE**2) + + # Sample a multivariate normal distribution with mean of + # prediction and variance of cov + post_pred_withnoise[var][i] = np.random.multivariate_normal( + pred, cov, 1 + ) + + # ----- Prior Predictive ----- + if self.inference_method.lower() == 'rejection': + # Create hdf5 metadata + hdf5file = f'{out_dir}/priorPredictive.hdf5' + hdf5_exist = os.path.exists(hdf5file) + if hdf5_exist: + os.remove(hdf5file) + file = h5py.File(hdf5file, 'a') + + # Store x_values + if type(x_values) is dict: + grp_x_values = file.create_group("x_values/") + for varIdx, var in enumerate(Model.Output.names): + grp_x_values.create_dataset(var, data=x_values[var]) + else: + file.create_dataset("x_values", data=x_values) + + # Store posterior predictive + grpY = file.create_group("EDY/") + for varIdx, var in enumerate(Model.Output.names): + grpY.create_dataset(var, data=prior_pred[var]) + + # ----- Posterior Predictive only model evaluations ----- + # Create hdf5 metadata + hdf5file = out_dir+'/postPredictive_wo_noise.hdf5' + hdf5_exist = os.path.exists(hdf5file) + if hdf5_exist: + os.remove(hdf5file) + file = h5py.File(hdf5file, 'a') + + # Store x_values + if type(x_values) is dict: + grp_x_values = file.create_group("x_values/") + for varIdx, var in enumerate(Model.Output.names): + grp_x_values.create_dataset(var, data=x_values[var]) + else: + file.create_dataset("x_values", data=x_values) + + # Store posterior predictive + grpY = file.create_group("EDY/") + for varIdx, var in enumerate(Model.Output.names): + grpY.create_dataset(var, data=post_pred[var]) + + # ----- Posterior Predictive with noise ----- + # Create hdf5 metadata + hdf5file = out_dir+'/postPredictive.hdf5' + hdf5_exist = os.path.exists(hdf5file) + if hdf5_exist: + os.remove(hdf5file) + file = h5py.File(hdf5file, 'a') + + # Store x_values + if type(x_values) is dict: + grp_x_values = file.create_group("x_values/") + for varIdx, var in enumerate(Model.Output.names): + grp_x_values.create_dataset(var, data=x_values[var]) + else: + file.create_dataset("x_values", data=x_values) + + # Store posterior predictive + grpY = file.create_group("EDY/") + for varIdx, var in enumerate(Model.Output.names): + grpY.create_dataset(var, data=post_pred_withnoise[var]) + + return + + # ------------------------------------------------------------------------- + def _plot_max_a_posteriori(self): + """ + Plots the response of the model output against that of the metamodel at + the maximum a posteriori sample (mean or mode of posterior.) + + Returns + ------- + None. + + """ + + MetaModel = self.MetaModel + Model = MetaModel.ModelObj + out_dir = f'Outputs_Bayes_{Model.name}_{self.name}' + opt_sigma = self.Discrepancy.opt_sigma + + # -------- Find MAP and run MetaModel and origModel -------- + # Compute the MAP + if self.max_a_posteriori.lower() == 'mean': + if opt_sigma == "B": + Posterior_df = self.posterior_df.values + else: + Posterior_df = self.posterior_df.values[:, :-Model.n_outputs] + map_theta = Posterior_df.mean(axis=0).reshape( + (1, MetaModel.n_params)) + else: + map_theta = stats.mode(Posterior_df.values, axis=0)[0] + # Prin report + print("\nPoint estimator:\n", map_theta[0]) + + # Run the models for MAP + # MetaModel + map_metamodel_mean, map_metamodel_std = MetaModel.eval_metamodel( + samples=map_theta) + self.map_metamodel_mean = map_metamodel_mean + self.map_metamodel_std = map_metamodel_std + + # origModel + map_orig_model = self._eval_model(samples=map_theta) + self.map_orig_model = map_orig_model + + # Extract slicing index + x_values = map_orig_model['x_values'] + + # List of markers and colors + Color = ['k', 'b', 'g', 'r'] + Marker = 'x' + + # Create a PdfPages object + pdf = PdfPages(f'./{out_dir}MAP_PCE_vs_Model_{self.name}.pdf') + fig = plt.figure() + for i, key in enumerate(Model.Output.names): + + y_val = map_orig_model[key] + y_pce_val = map_metamodel_mean[key] + y_pce_val_std = map_metamodel_std[key] + + plt.plot(x_values, y_val, color=Color[i], marker=Marker, + lw=2.0, label='$Y_{MAP}^{M}$') + + plt.plot( + x_values, y_pce_val[i], color=Color[i], lw=2.0, + marker=Marker, linestyle='--', label='$Y_{MAP}^{PCE}$' + ) + # plot the confidence interval + plt.fill_between( + x_values, y_pce_val[i] - 1.96*y_pce_val_std[i], + y_pce_val[i] + 1.96*y_pce_val_std[i], + color=Color[i], alpha=0.15 + ) + + # Calculate the adjusted R_squared and RMSE + R2 = r2_score(y_pce_val.reshape(-1, 1), y_val.reshape(-1, 1)) + rmse = np.sqrt(mean_squared_error(y_pce_val, y_val)) + + plt.ylabel(key) + plt.xlabel("Time [s]") + plt.title(f'Model vs MetaModel {key}') + + ax = fig.axes[0] + leg = ax.legend(loc='best', frameon=True) + fig.canvas.draw() + p = leg.get_window_extent().inverse_transformed(ax.transAxes) + ax.text( + p.p0[1]-0.05, p.p1[1]-0.25, + f'RMSE = {rmse:.3f}\n$R^2$ = {R2:.3f}', + transform=ax.transAxes, color='black', + bbox=dict(facecolor='none', edgecolor='black', + boxstyle='round,pad=1')) + + plt.show() + + # save the current figure + pdf.savefig(fig, bbox_inches='tight') + + # Destroy the current plot + plt.clf() + + pdf.close() + + # ------------------------------------------------------------------------- + def _plot_post_predictive(self): + """ + Plots the posterior predictives against the observation data. + + Returns + ------- + None. + + """ + + Model = self.MetaModel.ModelObj + out_dir = f'Outputs_Bayes_{Model.name}_{self.name}' + # Plot the posterior predictive + for out_idx, out_name in enumerate(Model.Output.names): + fig, ax = plt.subplots() + with sns.axes_style("ticks"): + x_key = list(self.measured_data)[0] + + # --- Read prior and posterior predictive --- + if self.inference_method == 'rejection' and \ + self.name.lower() != 'valid': + # --- Prior --- + # Load posterior predictive + f = h5py.File( + f'{out_dir}/priorPredictive.hdf5', 'r+') + + try: + x_coords = np.array(f[f"x_values/{out_name}"]) + except: + x_coords = np.array(f["x_values"]) + + X_values = np.repeat(x_coords, 10000) + + prior_pred_df = {} + prior_pred_df[x_key] = X_values + prior_pred_df[out_name] = np.array( + f[f"EDY/{out_name}"])[:10000].flatten('F') + prior_pred_df = pd.DataFrame(prior_pred_df) + + tags_post = ['prior'] * len(prior_pred_df) + prior_pred_df.insert( + len(prior_pred_df.columns), "Tags", tags_post, + True) + f.close() + + # --- Posterior --- + f = h5py.File(f"{out_dir}/postPredictive.hdf5", 'r+') + + X_values = np.repeat( + x_coords, np.array(f[f"EDY/{out_name}"]).shape[0]) + + post_pred_df = {} + post_pred_df[x_key] = X_values + post_pred_df[out_name] = np.array( + f[f"EDY/{out_name}"]).flatten('F') + + post_pred_df = pd.DataFrame(post_pred_df) + + tags_post = ['posterior'] * len(post_pred_df) + post_pred_df.insert( + len(post_pred_df.columns), "Tags", tags_post, True) + f.close() + # Concatenate two dataframes based on x_values + frames = [prior_pred_df, post_pred_df] + all_pred_df = pd.concat(frames) + + # --- Plot posterior predictive --- + sns.violinplot( + x_key, y=out_name, data=all_pred_df, hue="Tags", + legend=False, ax=ax, split=True, inner=None, + color=".8") + + # --- Plot Data --- + # Find the x,y coordinates for each point + x_coords = np.arange(x_coords.shape[0]) + first_header = list(self.measured_data)[0] + obs_data = self.measured_data.round({first_header: 6}) + sns.pointplot( + x=first_header, y=out_name, color='g', markers='x', + linestyles='', capsize=16, data=obs_data, ax=ax) + + ax.errorbar( + x_coords, obs_data[out_name].values, + yerr=1.96*self.measurement_error[out_name], + ecolor='g', fmt=' ', zorder=-1) + + # Add labels to the legend + handles, labels = ax.get_legend_handles_labels() + labels.append('Data') + + data_marker = mlines.Line2D( + [], [], color='lime', marker='+', linestyle='None', + markersize=10) + handles.append(data_marker) + + # Add legend + ax.legend(handles=handles, labels=labels, loc='best', + fontsize='large', frameon=True) + + else: + # Load posterior predictive + f = h5py.File(f"{out_dir}/postPredictive.hdf5", 'r+') + + try: + x_coords = np.array(f[f"x_values/{out_name}"]) + except: + x_coords = np.array(f["x_values"]) + + mu = np.mean(np.array(f[f"EDY/{out_name}"]), axis=0) + std = np.std(np.array(f[f"EDY/{out_name}"]), axis=0) + + # --- Plot posterior predictive --- + plt.plot( + x_coords, mu, marker='o', color='b', + label='Mean Post. Predictive') + plt.fill_between( + x_coords, mu-1.96*std, mu+1.96*std, color='b', + alpha=0.15) + + # --- Plot Data --- + ax.plot( + x_coords, self.measured_data[out_name].values, + 'ko', label='data', markeredgecolor='w') + + # --- Plot ExpDesign --- + orig_ED_Y = self.MetaModel.ExpDesign.Y[out_name] + for output in orig_ED_Y: + plt.plot( + x_coords, output, color='grey', alpha=0.15 + ) + + # Add labels for axes + plt.xlabel('Time [s]') + plt.ylabel(out_name) + + # Add labels to the legend + handles, labels = ax.get_legend_handles_labels() + + patch = Patch(color='b', alpha=0.15) + handles.insert(1, patch) + labels.insert(1, '95 $\\%$ CI') + + # Add legend + ax.legend(handles=handles, labels=labels, loc='best', + frameon=True) + + # Save figure in pdf format + if self.emulator: + plotname = f'/Post_Prior_Perd_{Model.name}_emulator' + else: + plotname = f'/Post_Prior_Perd_{Model.name}' + + fig.savefig(f'./{out_dir}{plotname}_{out_name}.pdf', + bbox_inches='tight') diff --git a/examples/only-model/bayesvalidrox/bayes_inference/bayes_model_comparison.py b/examples/only-model/bayesvalidrox/bayes_inference/bayes_model_comparison.py new file mode 100644 index 0000000000000000000000000000000000000000..718abb8bdac3fd653bb3751a31cc0667c5032e95 --- /dev/null +++ b/examples/only-model/bayesvalidrox/bayes_inference/bayes_model_comparison.py @@ -0,0 +1,714 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Sat Aug 24 16:04:06 2019 + +@author: farid +""" +import numpy as np +import os +from scipy import stats +import seaborn as sns +import matplotlib.patches as patches +import matplotlib.colors as mcolors +import matplotlib.pylab as plt +from .bayes_inference import BayesInference + +# Load the mplstyle +plt.style.use(os.path.join(os.path.split(__file__)[0], + '../', 'bayesvalidrox.mplstyle')) + + +class BayesModelComparison: + """ + A class to perform Bayesian Analysis. + + + Attributes + ---------- + justifiability : bool, optional + Whether to perform the justifiability analysis. The default is + `True`. + perturbed_data : array of shape (n_bootstrap_itrs, n_obs), optional + User defined perturbed data. The default is `None`. + n_bootstarp : int + Number of bootstrap iteration. The default is `1000`. + data_noise_level : float + A noise level to perturb the data set. The default is `0.01`. + just_n_meas : int + Number of measurements considered for visualization of the + justifiability results. + + """ + + def __init__(self, justifiability=True, perturbed_data=None, + n_bootstarp=1000, data_noise_level=0.01, just_n_meas=2, + emulator=True): + + self.justifiability = justifiability + self.perturbed_data = perturbed_data + self.n_bootstarp = n_bootstarp + self.data_noise_level = data_noise_level + self.just_n_meas = just_n_meas + self.emulator = emulator + + # -------------------------------------------------------------------------- + def create_model_comparison(self, model_dict, opts_dict): + """ + Starts the two-stage model comparison. + Stage I: Compare models using Bayes factors. + Stage II: Compare models via justifiability analysis. + + Parameters + ---------- + model_dict : dict + A dictionary including the metamodels. + opts_dict : dict + A dictionary given the `BayesInference` options. + + Example: + + >>> opts_bootstrap = { + "bootstrap": True, + "n_samples": 10000, + "Discrepancy": DiscrepancyOpts, + "emulator": True, + "plot_post_pred": True + } + + Returns + ------- + output : dict + A dictionary containing the objects and the model weights for the + comparison using Bayes factors and justifiability analysis. + + """ + + # Bayes factor + bayes_dict_bf, model_weights_dict_bf = self.compare_models( + model_dict, opts_dict + ) + + output = { + 'Bayes objects BF': bayes_dict_bf, + 'Model weights BF': model_weights_dict_bf + } + + # Justifiability analysis + if self.justifiability: + bayes_dict_ja, model_weights_dict_ja = self.compare_models( + model_dict, opts_dict, justifiability=True + ) + + output['Bayes objects JA'] = bayes_dict_ja + output['Model weights JA'] = model_weights_dict_ja + + return output + + # -------------------------------------------------------------------------- + def compare_models(self, model_dict, opts_dict, justifiability=False): + """ + Passes the options to instantiates the BayesInference class for each + model and passes the options from `opts_dict`. Then, it starts the + computations. + It also creates a folder and saves the diagrams, e.g., Bayes factor + plot, confusion matrix, etc. + + Parameters + ---------- + model_dict : dict + A dictionary including the metamodels. + opts_dict : dict + A dictionary given the `BayesInference` options. + justifiability : bool, optional + Whether to perform the justifiability analysis. The default is + `False`. + + Returns + ------- + bayes_dict : dict + A dictionary with `BayesInference` objects. + model_weights_dict : dict + A dictionary containing the model weights. + + """ + + if not isinstance(model_dict, dict): + raise Exception("To run model comparsion, you need to pass a " + "dictionary of models.") + + # Extract model names + self.model_names = [*model_dict] + + # Compute total number of the measurement points + MetaModel = list(model_dict.items())[0][1] + MetaModel.ModelObj.read_observation() + self.n_meas = MetaModel.ModelObj.n_obs + + # ----- Generate data ----- + # Find n_bootstrap + if self.perturbed_data is None: + n_bootstarp = self.n_bootstarp + else: + n_bootstarp = self.perturbed_data.shape[0] + + # Create dataset + justData = self.generate_dataset( + model_dict, justifiability, n_bootstarp=n_bootstarp) + + # Run create Interface for each model + bayes_dict = {} + for model in model_dict.keys(): + print("-"*20) + print("Bayesian inference of {}.\n".format(model)) + + BayesOpts = BayesInference(model_dict[model]) + + # Set BayesInference options + for key, value in opts_dict.items(): + if key in BayesOpts.__dict__.keys(): + if key == "Discrepancy" and isinstance(value, dict): + setattr(BayesOpts, key, value[model]) + else: + setattr(BayesOpts, key, value) + + # Pass justifiability data as perturbed data + BayesOpts.perturbed_data = justData + BayesOpts.just_analysis = justifiability + + bayes_dict[model] = BayesOpts.create_inference() + print("-"*20) + + # Compute model weights + BME_Dict = dict() + for modelName, bayesObj in bayes_dict.items(): + BME_Dict[modelName] = np.exp(bayesObj.log_BME, dtype=np.longdouble) + + # BME correction in BayesInference class + model_weights = self.cal_model_weight( + BME_Dict, justifiability, n_bootstarp=n_bootstarp) + + # Plot model weights + if justifiability: + model_names = self.model_names + model_names.insert(0, 'Observation') + + # Split the model weights and save in a dict + list_ModelWeights = np.split( + model_weights, model_weights.shape[1]/self.n_meas, axis=1) + model_weights_dict = {key: weights for key, weights in + zip(model_names, list_ModelWeights)} + + self.plot_just_analysis(model_weights_dict) + else: + # Create box plot for model weights + self.plot_model_weights(model_weights, 'model_weights') + + # Create kde plot for bayes factors + self.plot_bayes_factor(BME_Dict, 'kde_plot') + + # Store model weights in a dict + model_weights_dict = {key: weights for key, weights in + zip(self.model_names, model_weights)} + + return bayes_dict, model_weights_dict + + # ------------------------------------------------------------------------- + def generate_dataset(self, model_dict, justifiability=False, + n_bootstarp=1): + """ + Generates the perturbed data set for the Bayes factor calculations and + the data set for the justifiability analysis. + + Parameters + ---------- + model_dict : dict + A dictionary including the metamodels. + bool, optional + Whether to perform the justifiability analysis. The default is + `False`. + n_bootstarp : int, optional + Number of bootstrap iterations. The default is `1`. + + Returns + ------- + all_just_data: array + Created data set. + + """ + # Compute some variables + all_just_data = [] + metaModel = list(model_dict.items())[0][1] + out_names = metaModel.ModelObj.Output.names + + # Perturb observations for Bayes Factor + if self.perturbed_data is None: + self.perturbed_data = self.__perturb_data( + metaModel.ModelObj.observations, out_names, n_bootstarp, + noise_level=self.data_noise_level) + + # Only for Bayes Factor + if not justifiability: + return self.perturbed_data + + # Evaluate metamodel + runs = {} + for key, metaModel in model_dict.items(): + if self.emulator: + y_hat, _ = metaModel.eval_metamodel(nsamples=n_bootstarp) + runs[key] = y_hat + if not self.emulator: + # y_hat_ = metaModel.model. # TODO: run the model instead of the surrogate + samples = metaModel.ExpDesign.generate_samples( + n_bootstarp, + sampling_method = 'random' + ) + y_hat = self._eval_model(metaModel, + samples=samples, key='PriorPred' + ) + #print(y_hat) + runs[key] = y_hat + # Generate data + for i in range(n_bootstarp): + y_data = self.perturbed_data[i].reshape(1, -1) + justData = np.tril(np.repeat(y_data, y_data.shape[1], axis=0)) + # Use surrogate runs for data-generating process + for key, metaModel in model_dict.items(): + model_data = np.array( + [runs[key][out][i] for out in out_names]).reshape(y_data.shape) + justData = np.vstack(( + justData, + np.tril(np.repeat(model_data, model_data.shape[1], axis=0)) + )) + # Save in a list + all_just_data.append(justData) + + # Squeeze the array + all_just_data = np.array(all_just_data).transpose(1, 0, 2).reshape( + -1, np.array(all_just_data).shape[2] + ) + + return all_just_data + + # ------------------------------------------------------------------------- + def __perturb_data(self, data, output_names, n_bootstrap, noise_level): + """ + Returns an array with n_bootstrap_itrs rowsof perturbed data. + The first row includes the original observation data. + If `self.bayes_loocv` is True, a 2d-array will be returned with + repeated rows and zero diagonal entries. + + Parameters + ---------- + data : pandas DataFrame + Observation data. + output_names : list + List of the output names. + + Returns + ------- + final_data : array + Perturbed data set. + + """ + obs_data = data[output_names].values + n_measurement, n_outs = obs_data.shape + n_tot_measurement = obs_data[~np.isnan(obs_data)].shape[0] + final_data = np.zeros( + (n_bootstrap, n_tot_measurement) + ) + final_data[0] = obs_data.T[~np.isnan(obs_data.T)] + for itrIdx in range(1, n_bootstrap): + data = np.zeros((n_measurement, n_outs)) + for idx in range(len(output_names)): + std = np.nanstd(obs_data[:, idx]) + if std == 0: + std = 0.001 + noise = std * noise_level + data[:, idx] = np.add( + obs_data[:, idx], + np.random.normal(0, 1, obs_data.shape[0]) * noise, + ) + + final_data[itrIdx] = data.T[~np.isnan(data.T)] + + return final_data + + # ------------------------------------------------------------------------- + def cal_model_weight(self, BME_Dict, justifiability=False, n_bootstarp=1): + """ + Normalize the BME (Asumption: Model Prior weights are equal for models) + + Parameters + ---------- + BME_Dict : dict + A dictionary containing the BME values. + + Returns + ------- + model_weights : array + Model weights. + + """ + # Stack the BME values for all models + all_BME = np.vstack(list(BME_Dict.values())) + + if justifiability: + # Compute expected log_BME for justifiabiliy analysis + all_BME = all_BME.reshape( + all_BME.shape[0], -1, n_bootstarp).mean(axis=2) + + # Model weights + model_weights = np.divide(all_BME, np.nansum(all_BME, axis=0)) + + return model_weights + + # ------------------------------------------------------------------------- + def plot_just_analysis(self, model_weights_dict): + """ + Visualizes the confusion matrix and the model wights for the + justifiability analysis. + + Parameters + ---------- + model_weights_dict : dict + Model weights. + + Returns + ------- + None. + + """ + + directory = 'Outputs_Comparison/' + os.makedirs(directory, exist_ok=True) + Color = [*mcolors.TABLEAU_COLORS] + names = [*model_weights_dict] + + model_names = [model.replace('_', '$-$') for model in self.model_names] + for name in names: + fig, ax = plt.subplots() + for i, model in enumerate(model_names[1:]): + plt.plot(list(range(1, self.n_meas+1)), + model_weights_dict[name][i], + color=Color[i], marker='o', + ms=10, linewidth=2, label=model + ) + + plt.title(f"Data generated by: {name.replace('_', '$-$')}") + plt.ylabel("Weights") + plt.xlabel("No. of measurement points") + ax.set_xticks(list(range(1, self.n_meas+1))) + plt.legend(loc="best") + fig.savefig( + f'{directory}modelWeights_{name}.svg', bbox_inches='tight' + ) + plt.close() + + # Confusion matrix for some measurement points + epsilon = 1 if self.just_n_meas != 1 else 0 + for index in range(0, self.n_meas+epsilon, self.just_n_meas): + weights = np.array( + [model_weights_dict[key][:, index] for key in model_weights_dict] + ) + g = sns.heatmap( + weights.T, annot=True, cmap='Blues', xticklabels=model_names, + yticklabels=model_names[1:], annot_kws={"size": 24} + ) + + # x axis on top + g.xaxis.tick_top() + g.xaxis.set_label_position('top') + g.set_xlabel(r"\textbf{Data generated by:}", labelpad=15) + g.set_ylabel(r"\textbf{Model weight for:}", labelpad=15) + g.figure.savefig( + f"{directory}confusionMatrix_ND_{index+1}.pdf", + bbox_inches='tight' + ) + plt.close() + + # ------------------------------------------------------------------------- + def plot_model_weights(self, model_weights, plot_name): + """ + Visualizes the model weights resulting from BMS via the observation + data. + + Parameters + ---------- + model_weights : array + Model weights. + plot_name : str + Plot name. + + Returns + ------- + None. + + """ + font_size = 40 + # mkdir for plots + directory = 'Outputs_Comparison/' + os.makedirs(directory, exist_ok=True) + + # Create figure + fig, ax = plt.subplots() + + # Filter data using np.isnan + mask = ~np.isnan(model_weights.T) + filtered_data = [d[m] for d, m in zip(model_weights, mask.T)] + + # Create the boxplot + bp = ax.boxplot(filtered_data, patch_artist=True, showfliers=False) + + # change outline color, fill color and linewidth of the boxes + for box in bp['boxes']: + # change outline color + box.set(color='#7570b3', linewidth=4) + # change fill color + box.set(facecolor='#1b9e77') + + # change color and linewidth of the whiskers + for whisker in bp['whiskers']: + whisker.set(color='#7570b3', linewidth=2) + + # change color and linewidth of the caps + for cap in bp['caps']: + cap.set(color='#7570b3', linewidth=2) + + # change color and linewidth of the medians + for median in bp['medians']: + median.set(color='#b2df8a', linewidth=2) + + # change the style of fliers and their fill + # for flier in bp['fliers']: + # flier.set(marker='o', color='#e7298a', alpha=0.75) + + # Custom x-axis labels + model_names = [model.replace('_', '$-$') for model in self.model_names] + ax.set_xticklabels(model_names) + + ax.set_ylabel('Weight', fontsize=font_size) + + # Title + plt.title('Posterior Model Weights') + + # Set y lim + ax.set_ylim((-0.05, 1.05)) + + # Set size of the ticks + for t in ax.get_xticklabels(): + t.set_fontsize(font_size) + for t in ax.get_yticklabels(): + t.set_fontsize(font_size) + + # Save the figure + fig.savefig( + f'./{directory}{plot_name}.pdf', bbox_inches='tight' + ) + + plt.close() + + # ------------------------------------------------------------------------- + def plot_bayes_factor(self, BME_Dict, plot_name=''): + """ + Plots the Bayes factor distibutions in a :math:`N_m \\times N_m` + matrix, where :math:`N_m` is the number of the models. + + Parameters + ---------- + BME_Dict : dict + A dictionary containing the BME values of the models. + plot_name : str, optional + Plot name. The default is ''. + + Returns + ------- + None. + + """ + + font_size = 40 + + # mkdir for plots + directory = 'Outputs_Comparison/' + os.makedirs(directory, exist_ok=True) + + Colors = ["blue", "green", "gray", "brown"] + + model_names = list(BME_Dict.keys()) + nModels = len(model_names) + + # Plots + fig, axes = plt.subplots( + nrows=nModels, ncols=nModels, sharex=True, sharey=True + ) + + for i, key_i in enumerate(model_names): + + for j, key_j in enumerate(model_names): + ax = axes[i, j] + # Set size of the ticks + for t in ax.get_xticklabels(): + t.set_fontsize(font_size) + for t in ax.get_yticklabels(): + t.set_fontsize(font_size) + + if j != i: + + # Null hypothesis: key_j is the better model + BayesFactor = np.log10( + np.divide(BME_Dict[key_i], BME_Dict[key_j]) + ) + + # sns.kdeplot(BayesFactor, ax=ax, color=Colors[i], shade=True) + # sns.histplot(BayesFactor, ax=ax, stat="probability", + # kde=True, element='step', + # color=Colors[j]) + + # taken from seaborn's source code (utils.py and + # distributions.py) + def seaborn_kde_support(data, bw, gridsize, cut, clip): + if clip is None: + clip = (-np.inf, np.inf) + support_min = max(data.min() - bw * cut, clip[0]) + support_max = min(data.max() + bw * cut, clip[1]) + return np.linspace(support_min, support_max, gridsize) + + kde_estim = stats.gaussian_kde( + BayesFactor, bw_method='scott' + ) + + # manual linearization of data + # linearized = np.linspace( + # quotient.min(), quotient.max(), num=500) + + # or better: mimic seaborn's internal stuff + bw = kde_estim.scotts_factor() * np.std(BayesFactor) + linearized = seaborn_kde_support( + BayesFactor, bw, 100, 3, None) + + # computes values of the estimated function on the + # estimated linearized inputs + Z = kde_estim.evaluate(linearized) + + # https://stackoverflow.com/questions/29661574/normalize- + # numpy-array-columns-in-python + def normalize(x): + return (x - x.min(0)) / x.ptp(0) + + # normalize so it is between 0;1 + Z2 = normalize(Z) + ax.plot(linearized, Z2, "-", color=Colors[i], linewidth=4) + ax.fill_between( + linearized, 0, Z2, color=Colors[i], alpha=0.25 + ) + + # Draw BF significant levels according to Jeffreys 1961 + # Strong evidence for both models + ax.axvline( + x=np.log10(3), ymin=0, linewidth=4, color='dimgrey' + ) + # Strong evidence for one model + ax.axvline( + x=np.log10(10), ymin=0, linewidth=4, color='orange' + ) + # Decisive evidence for one model + ax.axvline( + x=np.log10(100), ymin=0, linewidth=4, color='r' + ) + + # legend + BF_label = key_i.replace('_', '$-$') + \ + '/' + key_j.replace('_', '$-$') + legend_elements = [ + patches.Patch(facecolor=Colors[i], edgecolor=Colors[i], + label=f'BF({BF_label})') + ] + ax.legend( + loc='upper left', handles=legend_elements, + fontsize=font_size-(nModels+1)*5 + ) + + elif j == i: + # build a rectangle in axes coords + left, width = 0, 1 + bottom, height = 0, 1 + + # axes coordinates are 0,0 is bottom left and 1,1 is upper + # right + p = patches.Rectangle( + (left, bottom), width, height, color='white', + fill=True, transform=ax.transAxes, clip_on=False + ) + ax.grid(False) + ax.add_patch(p) + # ax.text(0.5*(left+right), 0.5*(bottom+top), key_i, + fsize = font_size+20 if nModels < 4 else font_size + ax.text(0.5, 0.5, key_i.replace('_', '$-$'), + horizontalalignment='center', + verticalalignment='center', + fontsize=fsize, color=Colors[i], + transform=ax.transAxes) + + # Defining custom 'ylim' values. + custom_ylim = (0, 1.05) + + # Setting the values for all axes. + plt.setp(axes, ylim=custom_ylim) + + # set labels + for i in range(nModels): + axes[-1, i].set_xlabel('log$_{10}$(BF)', fontsize=font_size) + axes[i, 0].set_ylabel('Probability', fontsize=font_size) + + # Adjust subplots + plt.subplots_adjust(wspace=0.2, hspace=0.1) + + plt.savefig( + f'./{directory}Bayes_Factor{plot_name}.pdf', bbox_inches='tight' + ) + + plt.close() + + def _eval_model(self, MetaModel, samples=None, key='MAP'): + """ + Evaluates Forward Model. - mostly copy paste from BayesInference + + Parameters + ---------- + samples : array of shape (n_samples, n_params), optional + Parameter sets. The default is None. + key : str, optional + Key string to be passed to the run_model_parallel method. + The default is 'MAP'. + + Returns + ------- + model_outputs : dict + Model outputs. + + """ + #MetaModel = self.MetaModel + Model = MetaModel.ModelObj + + if samples is None: + self.samples = MetaModel.ExpDesign.generate_samples( + self.n_samples, 'random') + else: + self.samples = samples + self.n_samples = len(samples) + + self.name = 'ModelComp' + model_outputs, _ = Model.run_model_parallel( + self.samples, key_str=key+self.name) + + # Clean up + # Zip the subdirectories + try: + dir_name = f'{Model.name}MAP{self.name}' + key = dir_name + '_' + Model.zip_subdirs(dir_name, key) + except: + pass + + return model_outputs \ No newline at end of file diff --git a/examples/only-model/bayesvalidrox/bayes_inference/discrepancy.py b/examples/only-model/bayesvalidrox/bayes_inference/discrepancy.py new file mode 100644 index 0000000000000000000000000000000000000000..0f52c4f0d0afe314fdc73c388f6da5a8aa93ca06 --- /dev/null +++ b/examples/only-model/bayesvalidrox/bayes_inference/discrepancy.py @@ -0,0 +1,99 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import scipy.stats as stats +from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns + + +class Discrepancy: + """ + Discrepancy class for Bayesian inference method. + We define the reference or reality to be equal to what we can model and a + descripancy term \\( \\epsilon \\). We consider the followin format: + + $$\\textbf{y}_{\\text{reality}} = \\mathcal{M}(\\theta) + \\epsilon,$$ + + where \\( \\epsilon \\in R^{N_{out}} \\) represents the the effects of + measurement error and model inaccuracy. For simplicity, it can be defined + as an additive Gaussian disrepancy with zeromean and given covariance + matrix \\( \\Sigma \\): + + $$\\epsilon \\sim \\mathcal{N}(\\epsilon|0, \\Sigma). $$ + + In the context of model inversion or calibration, an observation point + \\( \\textbf{y}_i \\in \\mathcal{y} \\) is a realization of a Gaussian + distribution with mean value of \\(\\mathcal{M}(\\theta) \\) and covariance + matrix of \\( \\Sigma \\). + + $$ p(\\textbf{y}|\\theta) = \\mathcal{N}(\\textbf{y}|\\mathcal{M} + (\\theta))$$ + + The following options are available: + + * Option A: With known redidual covariance matrix \\(\\Sigma\\) for + independent measurements. + + * Option B: With unknown redidual covariance matrix \\(\\Sigma\\), + paramethrized as \\(\\Sigma(\\theta_{\\epsilon})=\\sigma^2 \\textbf{I}_ + {N_{out}}\\) with unknown residual variances \\(\\sigma^2\\). + This term will be jointly infer with the uncertain input parameters. For + the inversion, you need to define a prior marginal via `Input` class. Note + that \\(\\sigma^2\\) is only a single scalar multiplier for the diagonal + entries of the covariance matrix \\(\\Sigma\\). + + Attributes + ---------- + InputDisc : obj + Input object. When the \\(\\sigma^2\\) is expected to be inferred + jointly with the parameters (`Option B`).If multiple output groups are + defined by `Model.Output.names`, each model output needs to have. + a prior marginal using the `Input` class. The default is `''`. + disc_type : str + Type of the noise definition. `'Gaussian'` is only supported so far. + parameters : dict or pandas.DataFrame + Known residual variance \\(\\sigma^2\\), i.e. diagonal entry of the + covariance matrix of the multivariate normal likelihood in case of + `Option A`. + + """ + + def __init__(self, InputDisc='', disc_type='Gaussian', parameters=None): + self.InputDisc = InputDisc + self.disc_type = disc_type + self.parameters = parameters + + # ------------------------------------------------------------------------- + def get_sample(self, n_samples): + """ + Generate samples for the \\(\\sigma^2\\), i.e. the diagonal entries of + the variance-covariance matrix in the multivariate normal distribution. + + Parameters + ---------- + n_samples : int + Number of samples (parameter sets). + + Returns + ------- + sigma2_prior: array of shape (n_samples, n_params) + \\(\\sigma^2\\) samples. + + """ + self.n_samples = n_samples + ExpDesign = ExpDesigns(self.InputDisc) + self.sigma2_prior = ExpDesign.generate_ED( + n_samples, sampling_method='random', max_pce_deg=1 + ) + # Store BoundTuples + self.ExpDesign = ExpDesign + + # Naive approach: Fit a gaussian kernel to the provided data + self.ExpDesign.JDist = stats.gaussian_kde(ExpDesign.raw_data) + + # Save the names of sigmas + if len(self.InputDisc.Marginals) != 0: + self.name = [] + for Marginalidx in range(len(self.InputDisc.Marginals)): + self.name.append(self.InputDisc.Marginals[Marginalidx].name) + + return self.sigma2_prior diff --git a/examples/only-model/bayesvalidrox/bayes_inference/mcmc.py b/examples/only-model/bayesvalidrox/bayes_inference/mcmc.py new file mode 100644 index 0000000000000000000000000000000000000000..6b9ca94823fb7064baa2f0588d0f97fb4c9d1d44 --- /dev/null +++ b/examples/only-model/bayesvalidrox/bayes_inference/mcmc.py @@ -0,0 +1,909 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import os +import numpy as np +import emcee +import pandas as pd +import matplotlib.pyplot as plt +from matplotlib.backends.backend_pdf import PdfPages +import multiprocessing +import scipy.stats as st +from scipy.linalg import cholesky as chol +import warnings +import shutil +os.environ["OMP_NUM_THREADS"] = "1" + + +class MCMC: + """ + A class for bayesian inference via a Markov-Chain Monte-Carlo (MCMC) + Sampler to approximate the posterior distribution of the Bayes theorem: + $$p(\\theta|\\mathcal{y}) = \\frac{p(\\mathcal{y}|\\theta) p(\\theta)} + {p(\\mathcal{y})}.$$ + + This class make inference with emcee package [1] using an Affine Invariant + Ensemble sampler (AIES) [2]. + + [1] Foreman-Mackey, D., Hogg, D.W., Lang, D. and Goodman, J., 2013.emcee: + the MCMC hammer. Publications of the Astronomical Society of the + Pacific, 125(925), p.306. https://emcee.readthedocs.io/en/stable/ + + [2] Goodman, J. and Weare, J., 2010. Ensemble samplers with affine + invariance. Communications in applied mathematics and computational + science, 5(1), pp.65-80. + + + Attributes + ---------- + BayesOpts : obj + Bayes object. + """ + + def __init__(self, BayesOpts): + + self.BayesOpts = BayesOpts + + def run_sampler(self, observation, total_sigma2): + + BayesObj = self.BayesOpts + MetaModel = BayesObj.MetaModel + Model = MetaModel.ModelObj + Discrepancy = self.BayesOpts.Discrepancy + n_cpus = Model.n_cpus + priorDist = MetaModel.ExpDesign.JDist + ndim = MetaModel.n_params + self.counter = 0 + output_dir = f'Outputs_Bayes_{Model.name}_{self.BayesOpts.name}' + if not os.path.exists(output_dir): + os.makedirs(output_dir) + + self.observation = observation + self.total_sigma2 = total_sigma2 + + # Unpack mcmc parameters given to BayesObj.mcmc_params + self.initsamples = None + self.nwalkers = 100 + self.nburn = 200 + self.nsteps = 100000 + self.moves = None + self.mp = False + self.verbose = False + + # Extract initial samples + if 'init_samples' in BayesObj.mcmc_params: + self.initsamples = BayesObj.mcmc_params['init_samples'] + if isinstance(self.initsamples, pd.DataFrame): + self.initsamples = self.initsamples.values + + # Extract number of steps per walker + if 'n_steps' in BayesObj.mcmc_params: + self.nsteps = int(BayesObj.mcmc_params['n_steps']) + # Extract number of walkers (chains) + if 'n_walkers' in BayesObj.mcmc_params: + self.nwalkers = int(BayesObj.mcmc_params['n_walkers']) + # Extract moves + if 'moves' in BayesObj.mcmc_params: + self.moves = BayesObj.mcmc_params['moves'] + # Extract multiprocessing + if 'multiprocessing' in BayesObj.mcmc_params: + self.mp = BayesObj.mcmc_params['multiprocessing'] + # Extract verbose + if 'verbose' in BayesObj.mcmc_params: + self.verbose = BayesObj.mcmc_params['verbose'] + + # Set initial samples + np.random.seed(0) + if self.initsamples is None: + try: + initsamples = priorDist.sample(self.nwalkers).T + except: + # when aPCE selected - gaussian kernel distribution + inputSamples = MetaModel.ExpDesign.raw_data.T + random_indices = np.random.choice( + len(inputSamples), size=self.nwalkers, replace=False + ) + initsamples = inputSamples[random_indices] + + else: + if self.initsamples.ndim == 1: + # When MAL is given. + theta = self.initsamples + initsamples = [theta + 1e-1*np.multiply( + np.random.randn(ndim), theta) for i in + range(self.nwalkers)] + else: + # Pick samples based on a uniform dist between min and max of + # each dim + initsamples = np.zeros((self.nwalkers, ndim)) + bound_tuples = [] + for idx_dim in range(ndim): + lower = np.min(self.initsamples[:, idx_dim]) + upper = np.max(self.initsamples[:, idx_dim]) + bound_tuples.append((lower, upper)) + dist = st.uniform(loc=lower, scale=upper-lower) + initsamples[:, idx_dim] = dist.rvs(size=self.nwalkers) + + # Update lower and upper + MetaModel.ExpDesign.bound_tuples = bound_tuples + + # Check if sigma^2 needs to be inferred + if Discrepancy.opt_sigma != 'B': + sigma2_samples = Discrepancy.get_sample(self.nwalkers) + + # Update initsamples + initsamples = np.hstack((initsamples, sigma2_samples)) + + # Update ndim + ndim = initsamples.shape[1] + + # Discrepancy bound + disc_bound_tuple = Discrepancy.ExpDesign.bound_tuples + + # Update bound_tuples + MetaModel.ExpDesign.bound_tuples += disc_bound_tuple + + print("\n>>>> Bayesian inference with MCMC for " + f"{self.BayesOpts.name} started. <<<<<<") + + # Set up the backend + filename = f"{output_dir}/emcee_sampler.h5" + backend = emcee.backends.HDFBackend(filename) + # Clear the backend in case the file already exists + backend.reset(self.nwalkers, ndim) + + # Define emcee sampler + # Here we'll set up the computation. emcee combines multiple "walkers", + # each of which is its own MCMC chain. The number of trace results will + # be nwalkers * nsteps. + if self.mp: + # Run in parallel + if n_cpus is None: + n_cpus = multiprocessing.cpu_count() + + with multiprocessing.Pool(n_cpus) as pool: + sampler = emcee.EnsembleSampler( + self.nwalkers, ndim, self.log_posterior, moves=self.moves, + pool=pool, backend=backend + ) + + # Check if a burn-in phase is needed! + if self.initsamples is None: + # Burn-in + print("\n Burn-in period is starting:") + pos = sampler.run_mcmc( + initsamples, self.nburn, progress=True + ) + + # Reset sampler + sampler.reset() + pos = pos.coords + else: + pos = initsamples + + # Production run + print("\n Production run is starting:") + pos, prob, state = sampler.run_mcmc( + pos, self.nsteps, progress=True + ) + + else: + # Run in series and monitor the convergence + sampler = emcee.EnsembleSampler( + self.nwalkers, ndim, self.log_posterior, moves=self.moves, + backend=backend, vectorize=True + ) + + # Check if a burn-in phase is needed! + if self.initsamples is None: + # Burn-in + print("\n Burn-in period is starting:") + pos = sampler.run_mcmc( + initsamples, self.nburn, progress=True + ) + + # Reset sampler + sampler.reset() + pos = pos.coords + else: + pos = initsamples + + # Production run + print("\n Production run is starting:") + + # Track how the average autocorrelation time estimate changes + autocorrIdx = 0 + autocorr = np.empty(self.nsteps) + tauold = np.inf + autocorreverynsteps = 50 + + # sample step by step using the generator sampler.sample + for sample in sampler.sample(pos, + iterations=self.nsteps, + tune=True, + progress=True): + + # only check convergence every autocorreverynsteps steps + if sampler.iteration % autocorreverynsteps: + continue + + # Train model discrepancy/error + if hasattr(BayesObj, 'errorModel') and BayesObj.errorModel \ + and not sampler.iteration % 3 * autocorreverynsteps: + try: + self.error_MetaModel = self.train_error_model(sampler) + except: + pass + + # Print the current mean acceptance fraction + if self.verbose: + print("\nStep: {}".format(sampler.iteration)) + acc_fr = np.mean(sampler.acceptance_fraction) + print(f"Mean acceptance fraction: {acc_fr:.3f}") + + # compute the autocorrelation time so far + # using tol=0 means that we'll always get an estimate even if + # it isn't trustworthy + tau = sampler.get_autocorr_time(tol=0) + # average over walkers + autocorr[autocorrIdx] = np.nanmean(tau) + autocorrIdx += 1 + + # output current autocorrelation estimate + if self.verbose: + print(f"Mean autocorr time estimate: {np.nanmean(tau):.3f}") + list_gr = np.round(self.gelman_rubin(sampler.chain), 3) + print("Gelman-Rubin Test*: ", list_gr) + + # check convergence + converged = np.all(tau*autocorreverynsteps < sampler.iteration) + converged &= np.all(np.abs(tauold - tau) / tau < 0.01) + converged &= np.all(self.gelman_rubin(sampler.chain) < 1.1) + + if converged: + break + tauold = tau + + # Posterior diagnostics + try: + tau = sampler.get_autocorr_time(tol=0) + except emcee.autocorr.AutocorrError: + tau = 5 + + if all(np.isnan(tau)): + tau = 5 + + burnin = int(2*np.nanmax(tau)) + thin = int(0.5*np.nanmin(tau)) if int(0.5*np.nanmin(tau)) != 0 else 1 + finalsamples = sampler.get_chain(discard=burnin, flat=True, thin=thin) + acc_fr = np.nanmean(sampler.acceptance_fraction) + list_gr = np.round(self.gelman_rubin(sampler.chain[:, burnin:]), 3) + + # Print summary + print('\n') + print('-'*15 + 'Posterior diagnostics' + '-'*15) + print(f"mean auto-correlation time: {np.nanmean(tau):.3f}") + print(f"thin: {thin}") + print(f"burn-in: {burnin}") + print(f"flat chain shape: {finalsamples.shape}") + print(f"Mean acceptance fraction: {acc_fr:.3f}") + print("Gelman-Rubin Test*: ", list_gr) + + print("\n* This value must lay between 0.234 and 0.5.") + print("* These values must be smaller than 1.1.") + print('-'*50) + + print(f"\n>>>> Bayesian inference with MCMC for {self.BayesOpts.name} " + "successfully completed. <<<<<<\n") + + # Extract parameter names and their prior ranges + par_names = MetaModel.ExpDesign.par_names + + if Discrepancy.opt_sigma != 'B': + for i in range(len(Discrepancy.InputDisc.Marginals)): + par_names.append(Discrepancy.InputDisc.Marginals[i].name) + + params_range = MetaModel.ExpDesign.bound_tuples + + # Plot traces + if self.verbose and self.nsteps < 10000: + pdf = PdfPages(output_dir+'/traceplots.pdf') + fig = plt.figure() + for parIdx in range(ndim): + # Set up the axes with gridspec + fig = plt.figure() + grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2) + main_ax = fig.add_subplot(grid[:-1, :3]) + y_hist = fig.add_subplot(grid[:-1, -1], xticklabels=[], + sharey=main_ax) + + for i in range(self.nwalkers): + samples = sampler.chain[i, :, parIdx] + main_ax.plot(samples, '-') + + # histogram on the attached axes + y_hist.hist(samples[burnin:], 40, histtype='stepfilled', + orientation='horizontal', color='gray') + + main_ax.set_ylim(params_range[parIdx]) + main_ax.set_title('traceplot for ' + par_names[parIdx]) + main_ax.set_xlabel('step number') + + # save the current figure + pdf.savefig(fig, bbox_inches='tight') + + # Destroy the current plot + plt.clf() + + pdf.close() + + # plot development of autocorrelation estimate + if not self.mp: + fig1 = plt.figure() + steps = autocorreverynsteps*np.arange(1, autocorrIdx+1) + taus = autocorr[:autocorrIdx] + plt.plot(steps, steps / autocorreverynsteps, "--k") + plt.plot(steps, taus) + plt.xlim(0, steps.max()) + plt.ylim(0, np.nanmax(taus)+0.1*(np.nanmax(taus)-np.nanmin(taus))) + plt.xlabel("number of steps") + plt.ylabel(r"mean $\hat{\tau}$") + fig1.savefig(f"{output_dir}/autocorrelation_time.pdf", + bbox_inches='tight') + + # logml_dict = self.marginal_llk_emcee(sampler, self.nburn, logp=None, + # maxiter=5000) + # print('\nThe Bridge Sampling Estimation is " + # f"{logml_dict['logml']:.5f}.') + + # # Posterior-based expectation of posterior probablity + # postExpPostLikelihoods = np.mean(sampler.get_log_prob(flat=True) + # [self.nburn*self.nwalkers:]) + + # # Posterior-based expectation of prior densities + # postExpPrior = np.mean(self.log_prior(emcee_trace.T)) + + # # Posterior-based expectation of likelihoods + # postExpLikelihoods_emcee = postExpPostLikelihoods - postExpPrior + + # # Calculate Kullback-Leibler Divergence + # KLD_emcee = postExpLikelihoods_emcee - logml_dict['logml'] + # print("Kullback-Leibler divergence: %.5f"%KLD_emcee) + + # # Information Entropy based on Entropy paper Eq. 38 + # infEntropy_emcee = logml_dict['logml'] - postExpPrior - + # postExpLikelihoods_emcee + # print("Information Entropy: %.5f" %infEntropy_emcee) + + Posterior_df = pd.DataFrame(finalsamples, columns=par_names) + + return Posterior_df + + # ------------------------------------------------------------------------- + def log_prior(self, theta): + """ + Calculates the log prior likelihood \\( p(\\theta)\\) for the given + parameter set(s) \\( \\theta \\). + + Parameters + ---------- + theta : array of shape (n_samples, n_params) + Parameter sets, i.e. proposals of MCMC chains. + + Returns + ------- + logprior: float or array of shape n_samples + Log prior likelihood. If theta has only one row, a single value is + returned otherwise an array. + + """ + + MetaModel = self.BayesOpts.MetaModel + Discrepancy = self.BayesOpts.Discrepancy + + # Find the number of sigma2 parameters + if Discrepancy.opt_sigma != 'B': + disc_bound_tuples = Discrepancy.ExpDesign.bound_tuples + disc_marginals = Discrepancy.ExpDesign.InputObj.Marginals + disc_prior_space = Discrepancy.ExpDesign.prior_space + n_sigma2 = len(disc_bound_tuples) + else: + n_sigma2 = -len(theta) + prior_dist = MetaModel.ExpDesign.prior_space + params_range = MetaModel.ExpDesign.bound_tuples + theta = theta if theta.ndim != 1 else theta.reshape((1, -1)) + nsamples = theta.shape[0] + logprior = -np.inf*np.ones(nsamples) + + for i in range(nsamples): + # Check if the sample is within the parameters' range + if self._check_ranges(theta[i], params_range): + # Check if all dists are uniform, if yes priors are equal. + if all(MetaModel.input_obj.Marginals[i].dist_type == 'uniform' + for i in range(MetaModel.n_params)): + logprior[i] = 0.0 + else: + logprior[i] = np.log( + prior_dist.pdf(theta[i, :-n_sigma2].T) + ) + + # Check if bias term needs to be inferred + if Discrepancy.opt_sigma != 'B': + if self._check_ranges(theta[i, -n_sigma2:], + disc_bound_tuples): + if all('unif' in disc_marginals[i].dist_type for i in + range(Discrepancy.ExpDesign.ndim)): + logprior[i] = 0.0 + else: + logprior[i] += np.log( + disc_prior_space.pdf(theta[i, -n_sigma2:]) + ) + + if nsamples == 1: + return logprior[0] + else: + return logprior + + # ------------------------------------------------------------------------- + def log_likelihood(self, theta): + """ + Computes likelihood \\( p(\\mathcal{Y}|\\theta)\\) of the performance + of the (meta-)model in reproducing the observation data. + + Parameters + ---------- + theta : array of shape (n_samples, n_params) + Parameter set, i.e. proposals of the MCMC chains. + + Returns + ------- + log_like : array of shape (n_samples) + Log likelihood. + + """ + + BayesOpts = self.BayesOpts + MetaModel = BayesOpts.MetaModel + Discrepancy = self.BayesOpts.Discrepancy + + # Find the number of sigma2 parameters + if Discrepancy.opt_sigma != 'B': + disc_bound_tuples = Discrepancy.ExpDesign.bound_tuples + n_sigma2 = len(disc_bound_tuples) + else: + n_sigma2 = -len(theta) + # Check if bias term needs to be inferred + if Discrepancy.opt_sigma != 'B': + sigma2 = theta[:, -n_sigma2:] + theta = theta[:, :-n_sigma2] + else: + sigma2 = None + theta = theta if theta.ndim != 1 else theta.reshape((1, -1)) + + # Evaluate Model/MetaModel at theta + mean_pred, BayesOpts._std_pce_prior_pred = self.eval_model(theta) + + # Surrogate model's error using RMSE of test data + surrError = MetaModel.rmse if hasattr(MetaModel, 'rmse') else None + + # Likelihood + log_like = BayesOpts.normpdf( + mean_pred, self.observation, self.total_sigma2, sigma2, + std=surrError + ) + return log_like + + # ------------------------------------------------------------------------- + def log_posterior(self, theta): + """ + Computes the posterior likelihood \\(p(\\theta| \\mathcal{Y})\\) for + the given parameterset. + + Parameters + ---------- + theta : array of shape (n_samples, n_params) + Parameter set, i.e. proposals of the MCMC chains. + + Returns + ------- + log_like : array of shape (n_samples) + Log posterior likelihood. + + """ + + nsamples = 1 if theta.ndim == 1 else theta.shape[0] + + if nsamples == 1: + if self.log_prior(theta) == -np.inf: + return -np.inf + else: + # Compute log prior + log_prior = self.log_prior(theta) + # Compute log Likelihood + log_likelihood = self.log_likelihood(theta) + + return log_prior + log_likelihood + else: + # Compute log prior + log_prior = self.log_prior(theta) + + # Initialize log_likelihood + log_likelihood = -np.inf*np.ones(nsamples) + + # find the indices for -inf sets + non_inf_idx = np.where(log_prior != -np.inf)[0] + + # Compute loLikelihoods + if non_inf_idx.size != 0: + log_likelihood[non_inf_idx] = self.log_likelihood( + theta[non_inf_idx] + ) + + return log_prior + log_likelihood + + # ------------------------------------------------------------------------- + def eval_model(self, theta): + """ + Evaluates the (meta-) model at the given theta. + + Parameters + ---------- + theta : array of shape (n_samples, n_params) + Parameter set, i.e. proposals of the MCMC chains. + + Returns + ------- + mean_pred : dict + Mean model prediction. + std_pred : dict + Std of model prediction. + + """ + + BayesObj = self.BayesOpts + MetaModel = BayesObj.MetaModel + Model = MetaModel.ModelObj + + if BayesObj.emulator: + # Evaluate the MetaModel + mean_pred, std_pred = MetaModel.eval_metamodel(samples=theta) + else: + # Evaluate the origModel + mean_pred, std_pred = dict(), dict() + + model_outs, _ = Model.run_model_parallel( + theta, prevRun_No=self.counter, + key_str='_MCMC', mp=False, verbose=False) + + # Save outputs in respective dicts + for varIdx, var in enumerate(Model.Output.names): + mean_pred[var] = model_outs[var] + std_pred[var] = np.zeros((mean_pred[var].shape)) + + # Remove the folder + if Model.link_type.lower() != 'function': + shutil.rmtree(f"{Model.name}_MCMC_{self.counter+1}") + + # Add one to the counter + self.counter += 1 + + if hasattr(self, 'error_MetaModel') and BayesObj.error_model: + meanPred, stdPred = self.error_MetaModel.eval_model_error( + BayesObj.BiasInputs, mean_pred + ) + + return mean_pred, std_pred + + # ------------------------------------------------------------------------- + def train_error_model(self, sampler): + """ + Trains an error model using a Gaussian Process Regression. + + Parameters + ---------- + sampler : obj + emcee sampler. + + Returns + ------- + error_MetaModel : obj + A error model. + + """ + BayesObj = self.BayesOpts + MetaModel = BayesObj.MetaModel + + # Prepare the poster samples + try: + tau = sampler.get_autocorr_time(tol=0) + except emcee.autocorr.AutocorrError: + tau = 5 + + if all(np.isnan(tau)): + tau = 5 + + burnin = int(2*np.nanmax(tau)) + thin = int(0.5*np.nanmin(tau)) if int(0.5*np.nanmin(tau)) != 0 else 1 + finalsamples = sampler.get_chain(discard=burnin, flat=True, thin=thin) + posterior = finalsamples[:, :MetaModel.n_params] + + # Select posterior mean as MAP + map_theta = posterior.mean(axis=0).reshape((1, MetaModel.n_params)) + # MAP_theta = st.mode(Posterior_df,axis=0)[0] + + # Evaluate the (meta-)model at the MAP + y_map, y_std_map = MetaModel.eval_metamodel(samples=map_theta) + + # Train a GPR meta-model using MAP + error_MetaModel = MetaModel.create_model_error( + BayesObj.BiasInputs, y_map, name='Calib') + + return error_MetaModel + + # ------------------------------------------------------------------------- + def gelman_rubin(self, chain, return_var=False): + """ + The potential scale reduction factor (PSRF) defined by the variance + within one chain, W, with the variance between chains B. + Both variances are combined in a weighted sum to obtain an estimate of + the variance of a parameter \\( \\theta \\).The square root of the + ratio of this estimates variance to the within chain variance is called + the potential scale reduction. + For a well converged chain it should approach 1. Values greater than + 1.1 typically indicate that the chains have not yet fully converged. + + Source: http://joergdietrich.github.io/emcee-convergence.html + + https://github.com/jwalton3141/jwalton3141.github.io/blob/master/assets/posts/ESS/rwmh.py + + Parameters + ---------- + chain : array (n_walkers, n_steps, n_params) + The emcee ensamples. + + Returns + ------- + R_hat : float + The Gelman-Robin values. + + """ + m_chains, n_iters = chain.shape[:2] + + # Calculate between-chain variance + θb = np.mean(chain, axis=1) + θbb = np.mean(θb, axis=0) + B_over_n = ((θbb - θb)**2).sum(axis=0) + B_over_n /= (m_chains - 1) + + # Calculate within-chain variances + ssq = np.var(chain, axis=1, ddof=1) + W = np.mean(ssq, axis=0) + + # (over) estimate of variance + var_θ = W * (n_iters - 1) / n_iters + B_over_n + + if return_var: + return var_θ + else: + # The square root of the ratio of this estimates variance to the + # within chain variance + R_hat = np.sqrt(var_θ / W) + return R_hat + + # ------------------------------------------------------------------------- + def marginal_llk_emcee(self, sampler, nburn=None, logp=None, maxiter=1000): + """ + The Bridge Sampling Estimator of the Marginal Likelihood based on + https://gist.github.com/junpenglao/4d2669d69ddfe1d788318264cdcf0583 + + Parameters + ---------- + sampler : TYPE + MultiTrace, result of MCMC run. + nburn : int, optional + Number of burn-in step. The default is None. + logp : TYPE, optional + Model Log-probability function. The default is None. + maxiter : int, optional + Maximum number of iterations. The default is 1000. + + Returns + ------- + marg_llk : dict + Estimated Marginal log-Likelihood. + + """ + r0, tol1, tol2 = 0.5, 1e-10, 1e-4 + + if logp is None: + logp = sampler.log_prob_fn + + # Split the samples into two parts + # Use the first 50% for fiting the proposal distribution + # and the second 50% in the iterative scheme. + if nburn is None: + mtrace = sampler.chain + else: + mtrace = sampler.chain[:, nburn:, :] + + nchain, len_trace, nrofVars = mtrace.shape + + N1_ = len_trace // 2 + N1 = N1_*nchain + N2 = len_trace*nchain - N1 + + samples_4_fit = np.zeros((nrofVars, N1)) + samples_4_iter = np.zeros((nrofVars, N2)) + effective_n = np.zeros((nrofVars)) + + # matrix with already transformed samples + for var in range(nrofVars): + + # for fitting the proposal + x = mtrace[:, :N1_, var] + + samples_4_fit[var, :] = x.flatten() + # for the iterative scheme + x2 = mtrace[:, N1_:, var] + samples_4_iter[var, :] = x2.flatten() + + # effective sample size of samples_4_iter, scalar + effective_n[var] = self._my_ESS(x2) + + # median effective sample size (scalar) + neff = np.median(effective_n) + + # get mean & covariance matrix and generate samples from proposal + m = np.mean(samples_4_fit, axis=1) + V = np.cov(samples_4_fit) + L = chol(V, lower=True) + + # Draw N2 samples from the proposal distribution + gen_samples = m[:, None] + np.dot( + L, st.norm.rvs(0, 1, size=samples_4_iter.shape) + ) + + # Evaluate proposal distribution for posterior & generated samples + q12 = st.multivariate_normal.logpdf(samples_4_iter.T, m, V) + q22 = st.multivariate_normal.logpdf(gen_samples.T, m, V) + + # Evaluate unnormalized posterior for posterior & generated samples + q11 = logp(samples_4_iter.T) + q21 = logp(gen_samples.T) + + # Run iterative scheme: + tmp = self._iterative_scheme( + N1, N2, q11, q12, q21, q22, r0, neff, tol1, maxiter, 'r' + ) + if ~np.isfinite(tmp['logml']): + warnings.warn( + "logml could not be estimated within maxiter, rerunning with " + "adjusted starting value. Estimate might be more variable than" + " usual.") + # use geometric mean as starting value + r0_2 = np.sqrt(tmp['r_vals'][-2]*tmp['r_vals'][-1]) + tmp = self._iterative_scheme( + q11, q12, q21, q22, r0_2, neff, tol2, maxiter, 'logml' + ) + + marg_llk = dict( + logml=tmp['logml'], niter=tmp['niter'], method="normal", + q11=q11, q12=q12, q21=q21, q22=q22 + ) + return marg_llk + + # ------------------------------------------------------------------------- + def _iterative_scheme(self, N1, N2, q11, q12, q21, q22, r0, neff, tol, + maxiter, criterion): + """ + Iterative scheme as proposed in Meng and Wong (1996) to estimate the + marginal likelihood + + """ + l1 = q11 - q12 + l2 = q21 - q22 + # To increase numerical stability, + # subtracting the median of l1 from l1 & l2 later + lstar = np.median(l1) + s1 = neff/(neff + N2) + s2 = N2/(neff + N2) + r = r0 + r_vals = [r] + logml = np.log(r) + lstar + criterion_val = 1 + tol + + i = 0 + while (i <= maxiter) & (criterion_val > tol): + rold = r + logmlold = logml + numi = np.exp(l2 - lstar)/(s1 * np.exp(l2 - lstar) + s2 * r) + deni = 1/(s1 * np.exp(l1 - lstar) + s2 * r) + if np.sum(~np.isfinite(numi))+np.sum(~np.isfinite(deni)) > 0: + warnings.warn( + """Infinite value in iterative scheme, returning NaN. + Try rerunning with more samples.""") + r = (N1/N2) * np.sum(numi)/np.sum(deni) + r_vals.append(r) + logml = np.log(r) + lstar + i += 1 + if criterion == 'r': + criterion_val = np.abs((r - rold)/r) + elif criterion == 'logml': + criterion_val = np.abs((logml - logmlold)/logml) + + if i >= maxiter: + return dict(logml=np.NaN, niter=i, r_vals=np.asarray(r_vals)) + else: + return dict(logml=logml, niter=i) + + # ------------------------------------------------------------------------- + def _my_ESS(self, x): + """ + Compute the effective sample size of estimand of interest. + Vectorised implementation. + https://github.com/jwalton3141/jwalton3141.github.io/blob/master/assets/posts/ESS/rwmh.py + + + Parameters + ---------- + x : array of shape (n_walkers, n_steps) + MCMC Samples. + + Returns + ------- + int + Effective sample size. + + """ + m_chains, n_iters = x.shape + + def variogram(t): + variogram = ((x[:, t:] - x[:, :(n_iters - t)])**2).sum() + variogram /= (m_chains * (n_iters - t)) + return variogram + + post_var = self.gelman_rubin(x, return_var=True) + + t = 1 + rho = np.ones(n_iters) + negative_autocorr = False + + # Iterate until the sum of consecutive estimates of autocorrelation is + # negative + while not negative_autocorr and (t < n_iters): + rho[t] = 1 - variogram(t) / (2 * post_var) + + if not t % 2: + negative_autocorr = sum(rho[t-1:t+1]) < 0 + + t += 1 + + return int(m_chains*n_iters / (1 + 2*rho[1:t].sum())) + + # ------------------------------------------------------------------------- + def _check_ranges(self, theta, ranges): + """ + This function checks if theta lies in the given ranges. + + Parameters + ---------- + theta : array + Proposed parameter set. + ranges : nested list + List of the praremeter ranges. + + Returns + ------- + c : bool + If it lies in the given range, it return True else False. + + """ + c = True + # traverse in the list1 + for i, bounds in enumerate(ranges): + x = theta[i] + # condition check + if x < bounds[0] or x > bounds[1]: + c = False + return c + return c diff --git a/examples/only-model/bayesvalidrox/bayesvalidrox.mplstyle b/examples/only-model/bayesvalidrox/bayesvalidrox.mplstyle new file mode 100644 index 0000000000000000000000000000000000000000..1f31c01f24597de0e0be741be4d3a706c4213a6c --- /dev/null +++ b/examples/only-model/bayesvalidrox/bayesvalidrox.mplstyle @@ -0,0 +1,16 @@ +figure.titlesize : 30 +axes.titlesize : 30 +axes.labelsize : 30 +axes.linewidth : 3 +axes.grid : True +lines.linewidth : 3 +lines.markersize : 10 +xtick.labelsize : 30 +ytick.labelsize : 30 +legend.fontsize : 30 +font.family : serif +font.serif : Arial +font.size : 30 +text.usetex : True +grid.linestyle : - +figure.figsize : 24, 16 diff --git a/examples/only-model/bayesvalidrox/desktop.ini b/examples/only-model/bayesvalidrox/desktop.ini new file mode 100644 index 0000000000000000000000000000000000000000..632de13ae6b61cecf0d9fdbf9c97cfb16bfb51a4 --- /dev/null +++ b/examples/only-model/bayesvalidrox/desktop.ini @@ -0,0 +1,2 @@ +[LocalizedFileNames] +exploration.py=@exploration.py,0 diff --git a/examples/only-model/bayesvalidrox/post_processing/__init__.py b/examples/only-model/bayesvalidrox/post_processing/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..81c9825420b6ed3f027fb3c141be8af05a89f695 --- /dev/null +++ b/examples/only-model/bayesvalidrox/post_processing/__init__.py @@ -0,0 +1,7 @@ +# -*- coding: utf-8 -*- + +from .post_processing import PostProcessing + +__all__ = [ + "PostProcessing" + ] diff --git a/examples/only-model/bayesvalidrox/post_processing/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/post_processing/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9108fe43d767221eb456e5fec28ee23ba4afbe5 Binary files /dev/null and b/examples/only-model/bayesvalidrox/post_processing/__pycache__/__init__.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/post_processing/__pycache__/post_processing.cpython-311.pyc b/examples/only-model/bayesvalidrox/post_processing/__pycache__/post_processing.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e253baea5f0711c774d08f539558c911df465f70 Binary files /dev/null and b/examples/only-model/bayesvalidrox/post_processing/__pycache__/post_processing.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/post_processing/post_processing.py b/examples/only-model/bayesvalidrox/post_processing/post_processing.py new file mode 100644 index 0000000000000000000000000000000000000000..3a89cf739e9b2a221ec1c078947d3624c747af96 --- /dev/null +++ b/examples/only-model/bayesvalidrox/post_processing/post_processing.py @@ -0,0 +1,1352 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import numpy as np +import math +import os +from itertools import combinations, cycle +import pandas as pd +import scipy.stats as stats +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error, r2_score +import matplotlib.pyplot as plt +import matplotlib.ticker as ticker +from matplotlib.offsetbox import AnchoredText +from matplotlib.patches import Patch +# Load the mplstyle +#plt.style.use(os.path.join(os.path.split(__file__)[0], +# '../', 'bayesvalidrox.mplstyle')) + + +class PostProcessing: + """ + This class provides many helper functions to post-process the trained + meta-model. + + Attributes + ---------- + MetaModel : obj + MetaModel object to do postprocessing on. + name : str + Type of the anaylsis. The default is `'calib'`. If a validation is + expected to be performed change this to `'valid'`. + """ + + def __init__(self, MetaModel, name='calib'): + self.MetaModel = MetaModel + self.name = name + + # ------------------------------------------------------------------------- + def plot_moments(self, xlabel='Time [s]', plot_type=None): + """ + Plots the moments in a pdf format in the directory + `Outputs_PostProcessing`. + + Parameters + ---------- + xlabel : str, optional + String to be displayed as x-label. The default is `'Time [s]'`. + plot_type : str, optional + Options: bar or line. The default is `None`. + + Returns + ------- + pce_means: dict + Mean of the model outputs. + pce_means: dict + Standard deviation of the model outputs. + + """ + + bar_plot = True if plot_type == 'bar' else False + meta_model_type = self.MetaModel.meta_model_type + Model = self.MetaModel.ModelObj + + # Read Monte-Carlo reference + self.mc_reference = Model.read_mc_reference() + + # Set the x values + x_values_orig = self.MetaModel.ExpDesign.x_values + + # Compute the moments with the PCEModel object + self.pce_means, self.pce_stds = self.compute_pce_moments() + + # Get the variables + out_names = Model.Output.names + + # Open a pdf for the plots + newpath = (f'Outputs_PostProcessing_{self.name}/') + if not os.path.exists(newpath): + os.makedirs(newpath) + + # Plot the best fit line, set the linewidth (lw), color and + # transparency (alpha) of the line + for key in out_names: + fig, ax = plt.subplots(nrows=1, ncols=2) + + # Extract mean and std + mean_data = self.pce_means[key] + std_data = self.pce_stds[key] + + # Extract a list of x values + if type(x_values_orig) is dict: + x = x_values_orig[key] + else: + x = x_values_orig + + # Plot: bar plot or line plot + if bar_plot: + ax[0].bar(list(map(str, x)), mean_data, color='b', + width=0.25) + ax[1].bar(list(map(str, x)), std_data, color='b', + width=0.25) + ax[0].legend(labels=[meta_model_type]) + ax[1].legend(labels=[meta_model_type]) + else: + #print(x) + #print(mean_data) + ax[0].plot(x, mean_data, lw=3, color='k', marker='x', + label=meta_model_type) + ax[1].plot(x, std_data, lw=3, color='k', marker='x', + label=meta_model_type) + + if self.mc_reference is not None: + if bar_plot: + ax[0].bar(list(map(str, x)), self.mc_reference['mean'], + color='r', width=0.25) + ax[1].bar(list(map(str, x)), self.mc_reference['std'], + color='r', width=0.25) + ax[0].legend(labels=[meta_model_type]) + ax[1].legend(labels=[meta_model_type]) + else: + ax[0].plot(x, self.mc_reference['mean'], lw=3, marker='x', + color='r', label='Ref.') + ax[1].plot(x, self.mc_reference['std'], lw=3, marker='x', + color='r', label='Ref.') + + # Label the axes and provide a title + ax[0].set_xlabel(xlabel) + ax[1].set_xlabel(xlabel) + ax[0].set_ylabel(key) + ax[1].set_ylabel(key) + + # Provide a title + ax[0].set_title('Mean of ' + key) + ax[1].set_title('Std of ' + key) + + if not bar_plot: + ax[0].legend(loc='best') + ax[1].legend(loc='best') + + plt.tight_layout() + + # save the current figure + fig.savefig( + f'./{newpath}Mean_Std_PCE_{key}.pdf', + bbox_inches='tight' + ) + + return self.pce_means, self.pce_stds + + # ------------------------------------------------------------------------- + def valid_metamodel(self, n_samples=1, samples=None, model_out_dict=None, + x_axis='Time [s]'): + """ + Evaluates and plots the meta model and the PCEModel outputs for the + given number of samples or the given samples. + + Parameters + ---------- + n_samples : int, optional + Number of samples to be evaluated. The default is 1. + samples : array of shape (n_samples, n_params), optional + Samples to be evaluated. The default is None. + model_out_dict: dict + The model runs using the samples provided. + x_axis : str, optional + Label of x axis. The default is `'Time [s]'`. + + Returns + ------- + None. + + """ + MetaModel = self.MetaModel + Model = MetaModel.ModelObj + + if samples is None: + self.n_samples = n_samples + samples = self._get_sample() + else: + self.n_samples = samples.shape[0] + + # Extract x_values + x_values = MetaModel.ExpDesign.x_values + + if model_out_dict is not None: + self.model_out_dict = model_out_dict + else: + self.model_out_dict = self._eval_model(samples, key_str='valid') + self.pce_out_mean, self.pce_out_std = MetaModel.eval_metamodel(samples) + + try: + key = Model.Output.names[1] + except IndexError: + key = Model.Output.names[0] + + n_obs = self.model_out_dict[key].shape[1] + + if n_obs == 1: + self._plot_validation() + else: + print(x_values) + self._plot_validation_multi(x_values=x_values, x_axis=x_axis) + + # ------------------------------------------------------------------------- + def check_accuracy(self, n_samples=None, samples=None, outputs=None): + """ + Checks accuracy of the metamodel by computing the root mean square + error and validation error for all outputs. + + Parameters + ---------- + n_samples : int, optional + Number of samples. The default is None. + samples : array of shape (n_samples, n_params), optional + Parameter sets to be checked. The default is None. + outputs : dict, optional + Output dictionary with model outputs for all given output types in + `Model.Output.names`. The default is None. + + Raises + ------ + Exception + When neither n_samples nor samples are provided. + + Returns + ------- + rmse: dict + Root mean squared error for each output. + valid_error : dict + Validation error for each output. + + """ + MetaModel = self.MetaModel + Model = MetaModel.ModelObj + + # Set the number of samples + if n_samples: + self.n_samples = n_samples + elif samples is not None: + self.n_samples = samples.shape[0] + else: + raise Exception("Please provide either samples or pass number of " + "samples!") + + # Generate random samples if necessary + Samples = self._get_sample() if samples is None else samples + + # Run the original model with the generated samples + if outputs is None: + outputs = self._eval_model(Samples, key_str='validSet') + + # Run the PCE model with the generated samples + pce_outputs, _ = MetaModel.eval_metamodel(samples=Samples) + + self.rmse = {} + self.valid_error = {} + # Loop over the keys and compute RMSE error. + for key in Model.Output.names: + # Root mena square + self.rmse[key] = mean_squared_error(outputs[key], pce_outputs[key], + squared=False, + multioutput='raw_values') + # Validation error + self.valid_error[key] = (self.rmse[key]**2) / \ + np.var(outputs[key], ddof=1, axis=0) + + # Print a report table + print("\n>>>>> Errors of {} <<<<<".format(key)) + print("\nIndex | RMSE | Validation Error") + print('-'*35) + print('\n'.join(f'{i+1} | {k:.3e} | {j:.3e}' for i, (k, j) + in enumerate(zip(self.rmse[key], + self.valid_error[key])))) + # Save error dicts in PCEModel object + self.MetaModel.rmse = self.rmse + self.MetaModel.valid_error = self.valid_error + + return + + # ------------------------------------------------------------------------- + def plot_seq_design_diagnostics(self, ref_BME_KLD=None): + """ + Plots the Bayesian Model Evidence (BME) and Kullback-Leibler divergence + (KLD) for the sequential design. + + Parameters + ---------- + ref_BME_KLD : array, optional + Reference BME and KLD . The default is `None`. + + Returns + ------- + None. + + """ + PCEModel = self.MetaModel + n_init_samples = PCEModel.ExpDesign.n_init_samples + n_total_samples = PCEModel.ExpDesign.X.shape[0] + + newpath = f'Outputs_PostProcessing_{self.name}/seq_design_diagnostics/' + if not os.path.exists(newpath): + os.makedirs(newpath) + + plotList = ['Modified LOO error', 'Validation error', 'KLD', 'BME', + 'RMSEMean', 'RMSEStd', 'Hellinger distance'] + seqList = [PCEModel.SeqModifiedLOO, PCEModel.seqValidError, + PCEModel.SeqKLD, PCEModel.SeqBME, PCEModel.seqRMSEMean, + PCEModel.seqRMSEStd, PCEModel.SeqDistHellinger] + + markers = ('x', 'o', 'd', '*', '+') + colors = ('k', 'darkgreen', 'b', 'navy', 'darkred') + + # Plot the evolution of the diagnostic criteria of the + # Sequential Experimental Design. + for plotidx, plot in enumerate(plotList): + fig, ax = plt.subplots() + seq_dict = seqList[plotidx] + name_util = list(seq_dict.keys()) + + if len(name_util) == 0: + continue + + # Box plot when Replications have been detected. + if any(int(name.split("rep_", 1)[1]) > 1 for name in name_util): + # Extract the values from dict + sorted_seq_opt = {} + # Number of replications + n_reps = PCEModel.ExpDesign.n_replication + + # Get the list of utility function names + # Handle if only one UtilityFunction is provided + if not isinstance(PCEModel.ExpDesign.util_func, list): + util_funcs = [PCEModel.ExpDesign.util_func] + else: + util_funcs = PCEModel.ExpDesign.util_func + + for util in util_funcs: + sortedSeq = {} + # min number of runs available from reps + n_runs = min([seq_dict[f'{util}_rep_{i+1}'].shape[0] + for i in range(n_reps)]) + + for runIdx in range(n_runs): + values = [] + for key in seq_dict.keys(): + if util in key: + values.append(seq_dict[key][runIdx].mean()) + sortedSeq['SeqItr_'+str(runIdx)] = np.array(values) + sorted_seq_opt[util] = sortedSeq + + # BoxPlot + def draw_plot(data, labels, edge_color, fill_color, idx): + pos = labels - (idx-1) + bp = plt.boxplot(data, positions=pos, labels=labels, + patch_artist=True, sym='', widths=0.75) + elements = ['boxes', 'whiskers', 'fliers', 'means', + 'medians', 'caps'] + for element in elements: + plt.setp(bp[element], color=edge_color[idx]) + + for patch in bp['boxes']: + patch.set(facecolor=fill_color[idx]) + + if PCEModel.ExpDesign.n_new_samples != 1: + step1 = PCEModel.ExpDesign.n_new_samples + step2 = 1 + else: + step1 = 5 + step2 = 5 + edge_color = ['red', 'blue', 'green'] + fill_color = ['tan', 'cyan', 'lightgreen'] + plot_label = plot + # Plot for different Utility Functions + for idx, util in enumerate(util_funcs): + all_errors = np.empty((n_reps, 0)) + + for key in list(sorted_seq_opt[util].keys()): + errors = sorted_seq_opt.get(util, {}).get(key)[:, None] + all_errors = np.hstack((all_errors, errors)) + + # Special cases for BME and KLD + if plot == 'KLD' or plot == 'BME': + # BME convergence if refBME is provided + if ref_BME_KLD is not None: + if plot == 'BME': + refValue = ref_BME_KLD[0] + plot_label = r'BME/BME$^{Ref.}$' + if plot == 'KLD': + refValue = ref_BME_KLD[1] + plot_label = '$D_{KL}[p(\\theta|y_*),p(\\theta)]'\ + ' / D_{KL}^{Ref.}[p(\\theta|y_*), '\ + 'p(\\theta)]$' + + # Difference between BME/KLD and the ref. values + all_errors = np.divide(all_errors, + np.full((all_errors.shape), + refValue)) + + # Plot baseline for zero, i.e. no difference + plt.axhline(y=1.0, xmin=0, xmax=1, c='green', + ls='--', lw=2) + + # Plot each UtilFuncs + labels = np.arange(n_init_samples, n_total_samples+1, step1) + draw_plot(all_errors[:, ::step2], labels, edge_color, + fill_color, idx) + + plt.xticks(labels, labels) + # Set the major and minor locators + ax.xaxis.set_major_locator(ticker.AutoLocator()) + ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) + ax.xaxis.grid(True, which='major', linestyle='-') + ax.xaxis.grid(True, which='minor', linestyle='--') + + # Legend + legend_elements = [] + for idx, util in enumerate(util_funcs): + legend_elements.append(Patch(facecolor=fill_color[idx], + edgecolor=edge_color[idx], + label=util)) + plt.legend(handles=legend_elements[::-1], loc='best') + + if plot != 'BME' and plot != 'KLD': + plt.yscale('log') + plt.autoscale(True) + plt.xlabel('\\# of training samples') + plt.ylabel(plot_label) + plt.title(plot) + + # save the current figure + plot_name = plot.replace(' ', '_') + fig.savefig( + f'./{newpath}/seq_{plot_name}.pdf', + bbox_inches='tight' + ) + # Destroy the current plot + plt.clf() + # Save arrays into files + f = open(f'./{newpath}/seq_{plot_name}.txt', 'w') + f.write(str(sorted_seq_opt)) + f.close() + else: + for idx, name in enumerate(name_util): + seq_values = seq_dict[name] + if PCEModel.ExpDesign.n_new_samples != 1: + step = PCEModel.ExpDesign.n_new_samples + else: + step = 1 + x_idx = np.arange(n_init_samples, n_total_samples+1, step) + if n_total_samples not in x_idx: + x_idx = np.hstack((x_idx, n_total_samples)) + + if plot == 'KLD' or plot == 'BME': + # BME convergence if refBME is provided + if ref_BME_KLD is not None: + if plot == 'BME': + refValue = ref_BME_KLD[0] + plot_label = r'BME/BME$^{Ref.}$' + if plot == 'KLD': + refValue = ref_BME_KLD[1] + plot_label = '$D_{KL}[p(\\theta|y_*),p(\\theta)]'\ + ' / D_{KL}^{Ref.}[p(\\theta|y_*), '\ + 'p(\\theta)]$' + + # Difference between BME/KLD and the ref. values + values = np.divide(seq_values, + np.full((seq_values.shape), + refValue)) + + # Plot baseline for zero, i.e. no difference + plt.axhline(y=1.0, xmin=0, xmax=1, c='green', + ls='--', lw=2) + + # Set the limits + plt.ylim([1e-1, 1e1]) + + # Create the plots + plt.semilogy(x_idx, values, marker=markers[idx], + color=colors[idx], ls='--', lw=2, + label=name.split("_rep", 1)[0]) + else: + plot_label = plot + + # Create the plots + plt.plot(x_idx, seq_values, marker=markers[idx], + color=colors[idx], ls='--', lw=2, + label=name.split("_rep", 1)[0]) + + else: + plot_label = plot + seq_values = np.nan_to_num(seq_values) + + # Plot the error evolution for each output + plt.semilogy(x_idx, seq_values.mean(axis=1), + marker=markers[idx], ls='--', lw=2, + color=colors[idx], + label=name.split("_rep", 1)[0]) + + # Set the major and minor locators + ax.xaxis.set_major_locator(ticker.AutoLocator()) + ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) + ax.xaxis.grid(True, which='major', linestyle='-') + ax.xaxis.grid(True, which='minor', linestyle='--') + + ax.tick_params(axis='both', which='major', direction='in', + width=3, length=10) + ax.tick_params(axis='both', which='minor', direction='in', + width=2, length=8) + plt.xlabel('Number of runs') + plt.ylabel(plot_label) + plt.title(plot) + plt.legend(frameon=True) + + # save the current figure + plot_name = plot.replace(' ', '_') + fig.savefig( + f'./{newpath}/seq_{plot_name}.pdf', + bbox_inches='tight' + ) + # Destroy the current plot + plt.clf() + + # ---------------- Saving arrays into files --------------- + np.save(f'./{newpath}/seq_{plot_name}.npy', seq_values) + + return + + # ------------------------------------------------------------------------- + def sobol_indices(self, xlabel=None, plot_type=None): + """ + Provides Sobol indices as a sensitivity measure to infer the importance + of the input parameters. See Eq. 27 in [1] for more details. For the + case with Principal component analysis refer to [2]. + + [1] Global sensitivity analysis: A flexible and efficient framework + with an example from stochastic hydrogeology S. Oladyshkin, F.P. + de Barros, W. Nowak https://doi.org/10.1016/j.advwatres.2011.11.001 + + [2] Nagel, J.B., Rieckermann, J. and Sudret, B., 2020. Principal + component analysis and sparse polynomial chaos expansions for global + sensitivity analysis and model calibration: Application to urban + drainage simulation. Reliability Engineering & System Safety, 195, + p.106737. + + Parameters + ---------- + xlabel : str, optional + Label of the x-axis. The default is `'Time [s]'`. + plot_type : str, optional + Plot type. The default is `None`. This corresponds to line plot. + Bar chart can be selected by `bar`. + + Returns + ------- + sobol_cell: dict + Sobol indices. + total_sobol: dict + Total Sobol indices. + + """ + #print('arrived') + if not xlabel: + xlabel = 'Time [s]' # test workaround + + # Extract the necessary variables + PCEModel = self.MetaModel + basis_dict = PCEModel.basis_dict + coeffs_dict = PCEModel.coeffs_dict + n_params = PCEModel.n_params + max_order = np.max(PCEModel.pce_deg) + sobol_cell_b = {} + total_sobol_b = {} + cov_Z_p_q = np.zeros((n_params)) + #print('init done') + for b_i in range(PCEModel.n_bootstrap_itrs): + + sobol_cell_, total_sobol_ = {}, {} + + for output in PCEModel.ModelObj.Output.names: + #print(coeffs_dict[f'b_{b_i+1}'][output]) + n_meas_points = len(coeffs_dict[f'b_{b_i+1}'][output]) + #print(n_meas_points) + # Initialize the (cell) array containing the (total) Sobol indices. + sobol_array = dict.fromkeys(range(1, max_order+1), []) + sobol_cell_array = dict.fromkeys(range(1, max_order+1), []) + + for i_order in range(1, max_order+1): + n_comb = math.comb(n_params, i_order) + + sobol_cell_array[i_order] = np.zeros((n_comb, n_meas_points)) + + total_sobol_array = np.zeros((n_params, n_meas_points)) + + # Initialize the cell to store the names of the variables + TotalVariance = np.zeros((n_meas_points)) + #print('stop1') + # Loop over all measurement points and calculate sobol indices + for pIdx in range(n_meas_points): + + # Extract the basis indices (alpha) and coefficients + Basis = basis_dict[f'b_{b_i+1}'][output][f'y_{pIdx+1}'] + + try: + clf_poly = PCEModel.clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+1}'] + PCECoeffs = clf_poly.coef_ + except: + PCECoeffs = coeffs_dict[f'b_{b_i+1}'][output][f'y_{pIdx+1}'] + + # Compute total variance + TotalVariance[pIdx] = np.sum(np.square(PCECoeffs[1:])) + + nzidx = np.where(PCECoeffs != 0)[0] + # Set all the Sobol indices equal to zero in the presence of a + # null output. + if len(nzidx) == 0: + # This is buggy. + for i_order in range(1, max_order+1): + sobol_cell_array[i_order][:, pIdx] = 0 + + # Otherwise compute them by summing well-chosen coefficients + else: + nz_basis = Basis[nzidx] + for i_order in range(1, max_order+1): + idx = np.where(np.sum(nz_basis > 0, axis=1) == i_order) + subbasis = nz_basis[idx] + Z = np.array(list(combinations(range(n_params), i_order))) + + for q in range(Z.shape[0]): + Zq = Z[q] + subsubbasis = subbasis[:, Zq] + subidx = np.prod(subsubbasis, axis=1) > 0 + sum_ind = nzidx[idx[0][subidx]] + if TotalVariance[pIdx] == 0.0: + sobol_cell_array[i_order][q, pIdx] = 0.0 + else: + sobol = np.sum(np.square(PCECoeffs[sum_ind])) + sobol /= TotalVariance[pIdx] + sobol_cell_array[i_order][q, pIdx] = sobol + + # Compute the TOTAL Sobol indices. + for ParIdx in range(n_params): + idx = nz_basis[:, ParIdx] > 0 + sum_ind = nzidx[idx] + + if TotalVariance[pIdx] == 0.0: + total_sobol_array[ParIdx, pIdx] = 0.0 + else: + sobol = np.sum(np.square(PCECoeffs[sum_ind])) + sobol /= TotalVariance[pIdx] + total_sobol_array[ParIdx, pIdx] = sobol + + # ----- if PCA selected: Compute covariance ----- + if PCEModel.dim_red_method.lower() == 'pca': + # Extract the basis indices (alpha) and coefficients for + # next component + if pIdx < n_meas_points-1: + nextBasis = basis_dict[f'b_{b_i+1}'][output][f'y_{pIdx+2}'] + if PCEModel.bootstrap_method != 'fast' or b_i == 0: + clf_poly = PCEModel.clf_poly[f'b_{b_i+1}'][output][f'y_{pIdx+2}'] + nextPCECoeffs = clf_poly.coef_ + else: + nextPCECoeffs = coeffs_dict[f'b_{b_i+1}'][output][f'y_{pIdx+2}'] + + # Choose the common non-zero basis + mask = (Basis[:, None] == nextBasis).all(-1).any(-1) + n_mask = (nextBasis[:, None] == Basis).all(-1).any(-1) + + # Compute the covariance in Eq 17. + for ParIdx in range(n_params): + idx = (mask) & (Basis[:, ParIdx] > 0) + n_idx = (n_mask) & (nextBasis[:, ParIdx] > 0) + try: + cov_Z_p_q[ParIdx] += np.sum(np.dot( + PCECoeffs[idx], nextPCECoeffs[n_idx]) + ) + except: + pass + + # Compute the sobol indices according to Ref. 2 + if PCEModel.dim_red_method.lower() == 'pca': + n_c_points = PCEModel.ExpDesign.Y[output].shape[1] + PCA = PCEModel.pca[f'b_{b_i+1}'][output] + compPCA = PCA.components_ + nComp = compPCA.shape[0] + var_Z_p = PCA.explained_variance_ + + # Extract the sobol index of the components + for i_order in range(1, max_order+1): + n_comb = math.comb(n_params, i_order) + sobol_array[i_order] = np.zeros((n_comb, n_c_points)) + Z = np.array(list(combinations(range(n_params), i_order))) + + # Loop over parameters + for q in range(Z.shape[0]): + S_Z_i = sobol_cell_array[i_order][q] + + for tIdx in range(n_c_points): + var_Y_t = np.var( + PCEModel.ExpDesign.Y[output][:, tIdx]) + if var_Y_t == 0.0: + term1, term2 = 0.0, 0.0 + else: + # Eq. 17 + term1 = 0.0 + for i in range(nComp): + a = S_Z_i[i] * var_Z_p[i] + a *= compPCA[i, tIdx]**2 + term1 += a + + # TODO: Term 2 + # term2 = 0.0 + # for i in range(nComp-1): + # term2 += cov_Z_p_q[q] * compPCA[i, tIdx] + # term2 *= compPCA[i+1, tIdx] + # term2 *= 2 + + sobol_array[i_order][q, tIdx] = term1 #+ term2 + + # Devide over total output variance Eq. 18 + sobol_array[i_order][q, tIdx] /= var_Y_t + + # Compute the TOTAL Sobol indices. + total_sobol = np.zeros((n_params, n_c_points)) + for ParIdx in range(n_params): + S_Z_i = total_sobol_array[ParIdx] + + for tIdx in range(n_c_points): + var_Y_t = np.var(PCEModel.ExpDesign.Y[output][:, tIdx]) + if var_Y_t == 0.0: + term1, term2 = 0.0, 0.0 + else: + term1 = 0 + for i in range(nComp): + term1 += S_Z_i[i] * var_Z_p[i] * \ + (compPCA[i, tIdx]**2) + + # Term 2 + term2 = 0 + for i in range(nComp-1): + term2 += cov_Z_p_q[ParIdx] * compPCA[i, tIdx] \ + * compPCA[i+1, tIdx] + term2 *= 2 + + total_sobol[ParIdx, tIdx] = term1 #+ term2 + + # Devide over total output variance Eq. 18 + total_sobol[ParIdx, tIdx] /= var_Y_t + + sobol_cell_[output] = sobol_array + total_sobol_[output] = total_sobol + else: + sobol_cell_[output] = sobol_cell_array + total_sobol_[output] = total_sobol_array + + # Save for each bootsrtap iteration + sobol_cell_b[b_i] = sobol_cell_ + total_sobol_b[b_i] = total_sobol_ + + # Average total sobol indices + total_sobol_all = {} + for i in sorted(total_sobol_b): + for k, v in total_sobol_b[i].items(): + if k not in total_sobol_all: + total_sobol_all[k] = [None] * len(total_sobol_b) + total_sobol_all[k][i] = v + + self.total_sobol = {} + for output in PCEModel.ModelObj.Output.names: + self.total_sobol[output] = np.mean(total_sobol_all[output], axis=0) + + # ---------------- Plot ----------------------- + par_names = PCEModel.ExpDesign.par_names + x_values_orig = PCEModel.ExpDesign.x_values + + newpath = (f'Outputs_PostProcessing_{self.name}/') + if not os.path.exists(newpath): + os.makedirs(newpath) + + fig = plt.figure() + + # Do the plots and save sobol results - uses self.total_sobol + for outIdx, output in enumerate(PCEModel.ModelObj.Output.names): + + # Extract total Sobol indices + total_sobol = self.total_sobol[output] + + # Compute quantiles + q_5 = np.quantile(total_sobol_all[output], q=0.05, axis=0) + q_97_5 = np.quantile(total_sobol_all[output], q=0.975, axis=0) + + # Extract a list of x values + if type(x_values_orig) is dict: + x = x_values_orig[output] + else: + x = x_values_orig + + if plot_type == 'bar': + ax = fig.add_axes([0, 0, 1, 1]) + dict1 = {xlabel: x} + dict2 = {param: sobolIndices for param, sobolIndices + in zip(par_names, total_sobol)} + + df = pd.DataFrame({**dict1, **dict2}) + df.plot(x=xlabel, y=par_names, kind="bar", ax=ax, rot=0, + colormap='Dark2', yerr=q_97_5-q_5) + ax.set_ylabel('Total Sobol indices, $S^T$') + + else: + for i, sobolIndices in enumerate(total_sobol): + plt.plot(x, sobolIndices, label=par_names[i], + marker='x', lw=2.5) + plt.fill_between(x, q_5[i], q_97_5[i], alpha=0.15) + + plt.ylabel('Total Sobol indices, $S^T$') + plt.xlabel(xlabel) + + plt.title(f'Sensitivity analysis of {output}') + if plot_type != 'bar': + plt.legend(loc='best', frameon=True) + + # Save indices + np.savetxt(f'./{newpath}totalsobol_' + + output.replace('/', '_') + '.csv', + total_sobol.T, delimiter=',', + header=','.join(par_names), comments='') + + # save the current figure + fig.savefig( + f'./{newpath}Sobol_indices_{output}.pdf', + bbox_inches='tight' + ) + + # Destroy the current plot + plt.clf() + + return self.total_sobol + + # ------------------------------------------------------------------------- + def check_reg_quality(self, n_samples=1000, samples=None): + """ + Checks the quality of the metamodel for single output models based on: + https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685 + + + Parameters + ---------- + n_samples : int, optional + Number of parameter sets to use for the check. The default is 1000. + samples : array of shape (n_samples, n_params), optional + Parameter sets to use for the check. The default is None. + + Returns + ------- + None. + + """ + MetaModel = self.MetaModel + + if samples is None: + self.n_samples = n_samples + samples = self._get_sample() + else: + self.n_samples = samples.shape[0] + + # Evaluate the original and the surrogate model + y_val = self._eval_model(samples, key_str='valid') + y_pce_val, _ = MetaModel.eval_metamodel(samples=samples) + + # Open a pdf for the plots + newpath = f'Outputs_PostProcessing_{self.name}/' + if not os.path.exists(newpath): + os.makedirs(newpath) + + # Fit the data(train the model) + for key in y_pce_val.keys(): + print(key) + y_pce_val_ = y_pce_val[key] + y_val_ = y_val[key] + residuals = y_val_ - y_pce_val_ + if residuals.shape[1] != 0: + sum_residuals = np.mean(residuals, axis = 1) # TODO: mean here? or sum? + + # ------ Residuals vs. predicting variables ------ + # Check the assumptions of linearity and independence + fig1 = plt.figure() + for i, par in enumerate(MetaModel.ExpDesign.par_names): + plt.title(f"{key}: Residuals vs. {par}") + #print(samples[:, i].shape) + #print(residuals.shape) + #print(MetaModel.ExpDesign.par_names) + plt.scatter( + x=samples[:, i], y=sum_residuals, color='blue', edgecolor='k') # TODO: issues here with sizes for different times + plt.grid(True) + xmin, xmax = min(samples[:, i]), max(samples[:, i]) + plt.hlines(y=0, xmin=xmin*0.9, xmax=xmax*1.1, color='red', + lw=3, linestyle='--') + plt.xlabel(par) + plt.ylabel('Residuals') + plt.show() + + # save the current figure + fig1.savefig(f'./{newpath}/Residuals_vs_Par_{i+1}.pdf', + bbox_inches='tight') + # Destroy the current plot + plt.clf() + + # ------ Fitted vs. residuals ------ + # Check the assumptions of linearity and independence + fig2 = plt.figure() + plt.title(f"{key}: Residuals vs. fitted values") + plt.scatter(x=y_pce_val_, y=residuals, color='blue', edgecolor='k') + plt.grid(True) + xmin, xmax = np.min(y_val_), np.max(y_val_) # TODO: changed this here to np + plt.hlines(y=0, xmin=xmin*0.9, xmax=xmax*1.1, color='red', lw=3, + linestyle='--') + plt.xlabel(key) + plt.ylabel('Residuals') + plt.show() + + # save the current figure + fig2.savefig(f'./{newpath}/Fitted_vs_Residuals.pdf', + bbox_inches='tight') + # Destroy the current plot + plt.clf() + + # ------ Histogram of normalized residuals ------ + fig3 = plt.figure() + resid_pearson = residuals / (np.max(residuals)-np.min(residuals)) # TODO: changed this here to np + plt.hist(resid_pearson, bins=20, edgecolor='k') + plt.ylabel('Count') + plt.xlabel('Normalized residuals') + plt.title(f"{key}: Histogram of normalized residuals") + + # Normality (Shapiro-Wilk) test of the residuals + ax = plt.gca() + _, p = stats.shapiro(residuals) + if p < 0.01: + annText = "The residuals seem to come from Gaussian process." + else: + annText = "The normality assumption may not hold." + at = AnchoredText(annText, prop=dict(size=30), frameon=True, + loc='upper left') + at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") + ax.add_artist(at) + + plt.show() + + # save the current figure + fig3.savefig(f'./{newpath}/Hist_NormResiduals.pdf', + bbox_inches='tight') + # Destroy the current plot + plt.clf() + + # ------ Q-Q plot of the normalized residuals ------ + plt.figure() + stats.probplot(residuals[:, 0], plot=plt) + plt.xticks() + plt.yticks() + plt.xlabel("Theoretical quantiles") + plt.ylabel("Sample quantiles") + plt.title(f"{key}: Q-Q plot of normalized residuals") + plt.grid(True) + plt.show() + + # save the current figure + plt.savefig(f'./{newpath}/QQPlot_NormResiduals.pdf', + bbox_inches='tight') + # Destroy the current plot + plt.clf() + + # ------------------------------------------------------------------------- + def eval_pce_model_3d(self): + + self.n_samples = 1000 + + PCEModel = self.MetaModel + Model = self.MetaModel.ModelObj + n_samples = self.n_samples + + # Create 3D-Grid + # TODO: Make it general + x = np.linspace(-5, 10, n_samples) + y = np.linspace(0, 15, n_samples) + + X, Y = np.meshgrid(x, y) + PCE_Z = np.zeros((self.n_samples, self.n_samples)) + Model_Z = np.zeros((self.n_samples, self.n_samples)) + + for idxMesh in range(self.n_samples): + sample_mesh = np.vstack((X[:, idxMesh], Y[:, idxMesh])).T + + univ_p_val = PCEModel.univ_basis_vals(sample_mesh) + + for Outkey, ValuesDict in PCEModel.coeffs_dict.items(): + + pce_out_mean = np.zeros((len(sample_mesh), len(ValuesDict))) + pce_out_std = np.zeros((len(sample_mesh), len(ValuesDict))) + model_outs = np.zeros((len(sample_mesh), len(ValuesDict))) + + for Inkey, InIdxValues in ValuesDict.items(): + print(Inkey.split('_')) + idx = int(Inkey.split('_')[1]) - 1 + basis_deg_ind = PCEModel.basis_dict[Outkey][Inkey] + clf_poly = PCEModel.clf_poly[Outkey][Inkey] + + PSI_Val = PCEModel.create_psi(basis_deg_ind, univ_p_val) + + # Perdiction with error bar + y_mean, y_std = clf_poly.predict(PSI_Val, return_std=True) + + pce_out_mean[:, idx] = y_mean + pce_out_std[:, idx] = y_std + + # Model evaluation + model_out_dict, _ = Model.run_model_parallel(sample_mesh, + key_str='Valid3D') + model_outs[:, idx] = model_out_dict[Outkey].T + + PCE_Z[:, idxMesh] = y_mean + Model_Z[:, idxMesh] = model_outs[:, 0] + + # ---------------- 3D plot for PCEModel ----------------------- + fig_PCE = plt.figure() + ax = plt.axes(projection='3d') + ax.plot_surface(X, Y, PCE_Z, rstride=1, cstride=1, + cmap='viridis', edgecolor='none') + ax.set_title('PCEModel') + ax.set_xlabel('$x_1$') + ax.set_ylabel('$x_2$') + ax.set_zlabel('$f(x_1,x_2)$') + + plt.grid() + plt.show() + + # Saving the figure + newpath = f'Outputs_PostProcessing_{self.name}/' + if not os.path.exists(newpath): + os.makedirs(newpath) + + # save the figure to file + fig_PCE.savefig(f'./{newpath}/3DPlot_PCEModel.pdf', + bbox_inches='tight') + plt.close(fig_PCE) + + # ---------------- 3D plot for Model ----------------------- + fig_Model = plt.figure() + ax = plt.axes(projection='3d') + ax.plot_surface(X, Y, PCE_Z, rstride=1, cstride=1, + cmap='viridis', edgecolor='none') + ax.set_title('Model') + ax.set_xlabel('$x_1$') + ax.set_ylabel('$x_2$') + ax.set_zlabel('$f(x_1,x_2)$') + + plt.grid() + plt.show() + + # Save the figure + fig_Model.savefig(f'./{newpath}/3DPlot_Model.pdf', + bbox_inches='tight') + plt.close(fig_Model) + + return + + # ------------------------------------------------------------------------- + def compute_pce_moments(self): + """ + Computes the first two moments using the PCE-based meta-model. + + Returns + ------- + pce_means: dict + The first moments (mean) of outpust. + pce_means: dict + The first moments (mean) of outpust. + + """ + + MetaModel = self.MetaModel + outputs = MetaModel.ModelObj.Output.names + pce_means_b = {} + pce_stds_b = {} + + # Loop over bootstrap iterations + for b_i in range(MetaModel.n_bootstrap_itrs): + # Loop over the metamodels + coeffs_dicts = MetaModel.coeffs_dict[f'b_{b_i+1}'].items() + means = {} + stds = {} + for output, coef_dict in coeffs_dicts: + + pce_mean = np.zeros((len(coef_dict))) + pce_var = np.zeros((len(coef_dict))) + + for index, values in coef_dict.items(): + idx = int(index.split('_')[1]) - 1 + coeffs = MetaModel.coeffs_dict[f'b_{b_i+1}'][output][index] + + # Mean = c_0 + if coeffs[0] != 0: + pce_mean[idx] = coeffs[0] + else: + clf_poly = MetaModel.clf_poly[f'b_{b_i+1}'][output] + pce_mean[idx] = clf_poly[index].intercept_ + # Var = sum(coeffs[1:]**2) + pce_var[idx] = np.sum(np.square(coeffs[1:])) + + # Save predictions for each output + if MetaModel.dim_red_method.lower() == 'pca': + PCA = MetaModel.pca[f'b_{b_i+1}'][output] + means[output] = PCA.inverse_transform(pce_mean) + stds[output] = np.sqrt(np.dot(pce_var, + PCA.components_**2)) + else: + means[output] = pce_mean + stds[output] = np.sqrt(pce_var) + + # Save predictions for each bootstrap iteration + pce_means_b[b_i] = means + pce_stds_b[b_i] = stds + + # Change the order of nesting + mean_all = {} + for i in sorted(pce_means_b): + for k, v in pce_means_b[i].items(): + if k not in mean_all: + mean_all[k] = [None] * len(pce_means_b) + mean_all[k][i] = v + std_all = {} + for i in sorted(pce_stds_b): + for k, v in pce_stds_b[i].items(): + if k not in std_all: + std_all[k] = [None] * len(pce_stds_b) + std_all[k][i] = v + + # Back transformation if PCA is selected. + pce_means, pce_stds = {}, {} + for output in outputs: + pce_means[output] = np.mean(mean_all[output], axis=0) + pce_stds[output] = np.mean(std_all[output], axis=0) + + # Print a report table + print("\n>>>>> Moments of {} <<<<<".format(output)) + print("\nIndex | Mean | Std. deviation") + print('-'*35) + print('\n'.join(f'{i+1} | {k:.3e} | {j:.3e}' for i, (k, j) + in enumerate(zip(pce_means[output], + pce_stds[output])))) + print('-'*40) + + return pce_means, pce_stds + + # ------------------------------------------------------------------------- + def _get_sample(self, n_samples=None): + """ + Generates random samples taken from the input parameter space. + + Returns + ------- + samples : array of shape (n_samples, n_params) + Generated samples. + + """ + if n_samples is None: + n_samples = self.n_samples + MetaModel = self.MetaModel + self.samples = MetaModel.ExpDesign.generate_samples( + n_samples, + sampling_method='random') + return self.samples + + # ------------------------------------------------------------------------- + def _eval_model(self, samples=None, key_str='Valid'): + """ + Evaluates Forward Model for the given number of self.samples or given + samples. + + Parameters + ---------- + samples : array of shape (n_samples, n_params), optional + Samples to evaluate the model at. The default is None. + key_str : str, optional + Key string pass to the model. The default is 'Valid'. + + Returns + ------- + model_outs : dict + Dictionary of results. + + """ + Model = self.MetaModel.ModelObj + + if samples is None: + samples = self._get_sample() + self.samples = samples + else: + self.n_samples = len(samples) + + model_outs, _ = Model.run_model_parallel(samples, key_str=key_str) + + return model_outs + + # ------------------------------------------------------------------------- + def _plot_validation(self): + """ + Plots outputs for visual comparison of metamodel outputs with that of + the (full) original model. + + Returns + ------- + None. + + """ + PCEModel = self.MetaModel + + # get the samples + x_val = self.samples + y_pce_val = self.pce_out_mean + y_val = self.model_out_dict + + # Open a pdf for the plots + newpath = f'Outputs_PostProcessing_{self.name}/' + if not os.path.exists(newpath): + os.makedirs(newpath) + + fig = plt.figure() + # Fit the data(train the model) + for key in y_pce_val.keys(): + + y_pce_val_ = y_pce_val[key] + y_val_ = y_val[key] + + regression_model = LinearRegression() + regression_model.fit(y_pce_val_, y_val_) + + # Predict + x_new = np.linspace(np.min(y_pce_val_), np.max(y_val_), 100) + y_predicted = regression_model.predict(x_new[:, np.newaxis]) + + plt.scatter(y_pce_val_, y_val_, color='gold', linewidth=2) + plt.plot(x_new, y_predicted, color='k') + + # Calculate the adjusted R_squared and RMSE + # the total number of explanatory variables in the model + # (not including the constant term) + length_list = [] + for key, value in PCEModel.coeffs_dict['b_1'][key].items(): + length_list.append(len(value)) + n_predictors = min(length_list) + n_samples = x_val.shape[0] + + R2 = r2_score(y_pce_val_, y_val_) + AdjR2 = 1 - (1 - R2) * (n_samples - 1) / \ + (n_samples - n_predictors - 1) + rmse = mean_squared_error(y_pce_val_, y_val_, squared=False) + + plt.annotate(f'RMSE = {rmse:.3f}\n Adjusted $R^2$ = {AdjR2:.3f}', + xy=(0.05, 0.85), xycoords='axes fraction') + + plt.ylabel("Original Model") + plt.xlabel("PCE Model") + plt.grid() + plt.show() + + # save the current figure + plot_name = key.replace(' ', '_') + fig.savefig(f'./{newpath}/Model_vs_PCEModel_{plot_name}.pdf', + bbox_inches='tight') + + # Destroy the current plot + plt.clf() + + # ------------------------------------------------------------------------- + def _plot_validation_multi(self, x_values=[], x_axis="x [m]"): + """ + Plots outputs for visual comparison of metamodel outputs with that of + the (full) multioutput original model + + Parameters + ---------- + x_values : list or array, optional + List of x values. The default is []. + x_axis : str, optional + Label of the x axis. The default is "x [m]". + + Returns + ------- + None. + + """ + Model = self.MetaModel.ModelObj + + newpath = f'Outputs_PostProcessing_{self.name}/' + if not os.path.exists(newpath): + os.makedirs(newpath) + + # List of markers and colors + color = cycle((['b', 'g', 'r', 'y', 'k'])) + marker = cycle(('x', 'd', '+', 'o', '*')) + + fig = plt.figure() + # Plot the model vs PCE model + for keyIdx, key in enumerate(Model.Output.names): + + y_pce_val = self.pce_out_mean[key] + y_pce_val_std = self.pce_out_std[key] + y_val = self.model_out_dict[key] + try: + x = self.model_out_dict['x_values'][key] + except (TypeError, IndexError): + x = x_values + + for idx in range(y_val.shape[0]): + Color = next(color) + Marker = next(marker) + + plt.plot(x, y_val[idx], color=Color, marker=Marker, + label='$Y_{%s}^M$'%(idx+1)) + + plt.plot(x, y_pce_val[idx], color=Color, marker=Marker, + linestyle='--', + label='$Y_{%s}^{PCE}$'%(idx+1)) + plt.fill_between(x, y_pce_val[idx]-1.96*y_pce_val_std[idx], + y_pce_val[idx]+1.96*y_pce_val_std[idx], + color=Color, alpha=0.15) + + # Calculate the RMSE + print(y_pce_val.shape) + print(y_val.shape) + rmse = mean_squared_error(y_pce_val, y_val, squared=False) + R2 = r2_score(y_pce_val[idx].reshape(-1, 1), + y_val[idx].reshape(-1, 1)) + + plt.annotate(f'RMSE = {rmse:.3f}\n $R^2$ = {R2:.3f}', + xy=(0.85, 0.1), xycoords='axes fraction') + + plt.ylabel(key) + plt.xlabel(x_axis) + plt.legend(loc='best') + plt.grid() + + # save the current figure + plot_name = key.replace(' ', '_') + fig.savefig(f'./{newpath}/Model_vs_PCEModel_{plot_name}.pdf', + bbox_inches='tight') + + # Destroy the current plot + plt.clf() + + # Zip the subdirectories + Model.zip_subdirs(f'{Model.name}valid', f'{Model.name}valid_') diff --git a/examples/only-model/bayesvalidrox/pylink/__init__.py b/examples/only-model/bayesvalidrox/pylink/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4bd81739faf43956324b30f6d8e5365b29d55677 --- /dev/null +++ b/examples/only-model/bayesvalidrox/pylink/__init__.py @@ -0,0 +1,7 @@ +# -*- coding: utf-8 -*- + +from .pylink import PyLinkForwardModel + +__all__ = [ + "PyLinkForwardModel" + ] diff --git a/examples/only-model/bayesvalidrox/pylink/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/pylink/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e142124f5bff161ebaf8f9c632cd82465101bbd Binary files /dev/null and b/examples/only-model/bayesvalidrox/pylink/__pycache__/__init__.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/pylink/__pycache__/pylink.cpython-311.pyc b/examples/only-model/bayesvalidrox/pylink/__pycache__/pylink.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..006f78d91ff411531d6e30040c2f8ef05bf10ab2 Binary files /dev/null and b/examples/only-model/bayesvalidrox/pylink/__pycache__/pylink.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/pylink/pylink.py b/examples/only-model/bayesvalidrox/pylink/pylink.py new file mode 100644 index 0000000000000000000000000000000000000000..2decb7da4b33565b0d1e4739f0351db66d0c55d6 --- /dev/null +++ b/examples/only-model/bayesvalidrox/pylink/pylink.py @@ -0,0 +1,664 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +from dataclasses import dataclass + +import os +import shutil +import h5py +import numpy as np +import time +import zipfile +import pandas as pd +import multiprocessing +from functools import partial +import tqdm + + +class PyLinkForwardModel(object): + """ + A forward model binder + + This calss serves as a code wrapper. This wrapper allows the execution of + a third-party software/solver within the scope of BayesValidRox. + + Attributes + ---------- + link_type : str + The type of the wrapper. The default is `'pylink'`. This runs the + third-party software or an executable using a sell command with given + input files. + Second option is `'function'` which assumed that model can be run using + a function written separately in a Python script. + name : str + Name of the model. + py_file : str + Python file name without `.py` extension to be run for the `'function'` + wrapper. Note that the name of the python file and that of the function + must be simillar. This function must recieve the parameters in an array + of shape `(n_samples, n_params)` and returns a dictionary with the + x_values and output arrays for given output names. + func_args : dict + Additional arguments for the python file. The default is `{}`. + shell_command : str + Shell command to be executed for the `'pylink'` wrapper. + input_file : str or list + The input file to be passed to the `'pylink'` wrapper. + input_template : str or list + A template input file to be passed to the `'pylink'` wrapper. This file + must be a copy of `input_file` with `<Xi>` place holder for the input + parameters defined using `inputs` class, with i being the number of + parameter. The file name ending should include `.tpl` before the actual + extension of the input file, for example, `params.tpl.input`. + aux_file : str or list + The list of auxiliary files needed for the `'pylink'` wrapper. + exe_path : str + Execution path if you wish to run the model for the `'pylink'` wrapper + in another directory. The default is `None`, which corresponds to the + currecnt working directory. + output_file_names : list of str + List of the name of the model output text files for the `'pylink'` + wrapper. + output_names : list of str + List of the model outputs to be used for the analysis. + output_parser : str + Name of the model parser file (without `.py` extension) that recieves + the `output_file_names` and returns a 2d-array with the first row being + the x_values, e.g. x coordinates or time and the rest of raws pass the + simulation output for each model output defined in `output_names`. Note + that again here the name of the file and that of the function must be + the same. + multi_process: bool + Whether the model runs to be executed in parallel for the `'pylink'` + wrapper. The default is `True`. + n_cpus: int + The number of cpus to be used for the parallel model execution for the + `'pylink'` wrapper. The default is `None`, which corresponds to all + available cpus. + meas_file : str + The name of the measurement text-based file. This file must contain + x_values as the first column and one column for each model output. The + default is `None`. Only needed for the Bayesian Inference. + meas_file_valid : str + The name of the measurement text-based file for the validation. The + default is `None`. Only needed for the validation with Bayesian + Inference. + mc_ref_file : str + The name of the text file for the Monte-Carlo reference (mean and + standard deviation) values. It must contain `x_values` as the first + column, `mean` as the second column and `std` as the third. It can be + used to compare the estimated moments using meta-model in the post- + processing step. This is only available for one output. + obs_dict : dict + A dictionary containing the measurement text-based file. It must + contain `x_values` as the first item and one item for each model output + . The default is `{}`. Only needed for the Bayesian Inference. + obs_dict_valid : dict + A dictionary containing the validation measurement text-based file. It + must contain `x_values` as the first item and one item for each model + output. The default is `{}`. + mc_ref_dict : dict + A dictionary containing the Monte-Carlo reference (mean and standard + deviation) values. It must contain `x_values` as the first item and + `mean` as the second item and `std` as the third. The default is `{}`. + This is only available for one output. + """ + + # Nested class + @dataclass + class OutputData(object): + parser: str = "" + names: list = None + file_names: list = None + + def __init__(self, link_type='pylink', name=None, py_file=None, + func_args={}, shell_command='', input_file=None, + input_template=None, aux_file=None, exe_path='', + output_file_names=[], output_names=[], output_parser='', + multi_process=True, n_cpus=None, meas_file=None, + meas_file_valid=None, mc_ref_file=None, obs_dict={}, + obs_dict_valid={}, mc_ref_dict={}): + self.link_type = link_type + self.name = name + self.shell_command = shell_command + self.py_file = py_file + self.func_args = func_args + self.input_file = input_file + self.input_template = input_template + self.aux_file = aux_file + self.exe_path = exe_path + self.multi_process = multi_process + self.n_cpus = n_cpus + self.Output = self.OutputData( + parser=output_parser, + names=output_names, + file_names=output_file_names, + ) + self.n_outputs = len(self.Output.names) + self.meas_file = meas_file + self.meas_file_valid = meas_file_valid + self.mc_ref_file = mc_ref_file + self.observations = obs_dict + self.observations_valid = obs_dict_valid + self.mc_reference = mc_ref_dict + + # added by Rebecca Kohlhaas + self.cellID = None + + # ------------------------------------------------------------------------- + def within_range(self, out, minout, maxout): + inside = False + if (out > minout).all() and (out < maxout).all(): + inside = True + return inside + + # ------------------------------------------------------------------------- + def read_observation(self, case='calib'): + """ + Reads/prepare the observation/measurement data for + calibration. + + Returns + ------- + DataFrame + A dataframe with the calibration data. + + """ + if case.lower() == 'calib': + if isinstance(self.observations, dict) and bool(self.observations): + obs = pd.DataFrame.from_dict(self.observations) + elif self.meas_file is not None: + file_path = os.path.join(os.getcwd(), self.meas_file) + obs = pd.read_csv(file_path, delimiter=',') + elif isinstance(self.observations, pd.DataFrame): + obs = self.observations + else: + raise Exception("Please provide the observation data as a " + "dictionary via observations attribute or pass" + " the csv-file path to MeasurementFile " + "attribute") + elif case.lower() == 'valid': + if isinstance(self.observations_valid, dict) and \ + bool(self.observations_valid): + obs = pd.DataFrame.from_dict(self.observations_valid) + elif self.meas_file_valid is not None: + file_path = os.path.join(os.getcwd(), self.meas_file_valid) + obs = pd.read_csv(file_path, delimiter=',') + elif isinstance(self.observations_valid, pd.DataFrame): + obs = self.observations_valid + else: + raise Exception("Please provide the observation data as a " + "dictionary via Observations attribute or pass" + " the csv-file path to MeasurementFile " + "attribute") + + # Compute the number of observation + n_obs = obs[self.Output.names].notnull().sum().values.sum() + + if case.lower() == 'calib': + self.observations = obs + self.n_obs = n_obs + return self.observations + elif case.lower() == 'valid': + self.observations_valid = obs + self.n_obs_valid = n_obs + return self.observations_valid + + # ------------------------------------------------------------------------- + def read_mc_reference(self): + """ + Is used, if a Monte-Carlo reference is available for + further in-depth post-processing after meta-model training. + + Returns + ------- + None + + """ + if self.mc_ref_file is None and \ + isinstance(self.mc_reference, pd.DataFrame): + return self.mc_reference + elif isinstance(self.mc_reference, dict) and bool(self.mc_reference): + self.mc_reference = pd.DataFrame.from_dict(self.mc_reference) + elif self.mc_ref_file is not None: + file_path = os.path.join(os.getcwd(), self.mc_ref_file) + self.mc_reference = pd.read_csv(file_path, delimiter=',') + else: + self.mc_reference = None + return self.mc_reference + + # ------------------------------------------------------------------------- + def read_output(self): + """ + Reads the the parser output file and returns it as an + executable function. It is required when the models returns the + simulation outputs in csv files. + + Returns + ------- + Output : func + Output parser function. + + """ + output_func_name = self.Output.parser + + output_func = getattr(__import__(output_func_name), output_func_name) + + file_names = [] + for File in self.Output.file_names: + file_names.append(os.path.join(self.exe_path, File)) + try: + output = output_func(self.name, file_names) + except TypeError: + output = output_func(file_names) + return output + + # ------------------------------------------------------------------------- + def update_input_params(self, new_input_file, param_set): + """ + Finds this pattern with <X1> in the new_input_file and replace it with + the new value from the array param_sets. + + Parameters + ---------- + new_input_file : list + List of the input files with the adapted names. + param_set : array of shape (n_params) + Parameter set. + + Returns + ------- + None. + + """ + NofPa = param_set.shape[0] + text_to_search_list = [f'<X{i+1}>' for i in range(NofPa)] + + for filename in new_input_file: + # Read in the file + with open(filename, 'r') as file: + filedata = file.read() + + # Replace the target string + for text_to_search, params in zip(text_to_search_list, param_set): + filedata = filedata.replace(text_to_search, f'{params:0.4e}') + + # Write the file out again + with open(filename, 'w') as file: + file.write(filedata) + + # ------------------------------------------------------------------------- + def run_command(self, command, output_file_names): + """ + Runs the execution command given by the user to run the given model. + It checks if the output files have been generated. If yes, the jobe is + done and it extracts and returns the requested output(s). Otherwise, + it executes the command again. + + Parameters + ---------- + command : str + The shell command to be executed. + output_file_names : list + Name of the output file names. + + Returns + ------- + simulation_outputs : array of shape (n_obs, n_outputs) + Simulation outputs. + + """ + + # Check if simulation is finished + while True: + time.sleep(3) + files = os.listdir(".") + if all(elem in files for elem in output_file_names): + break + else: + # Run command + Process = os.system(f'./../{command}') + if Process != 0: + print('\nMessage 1:') + print(f'\tIf value of \'{Process}\' is a non-zero value, ' + 'then compilation problems \n' % Process) + + os.chdir("..") + + # Read the output + simulation_outputs = self.read_output() + + return simulation_outputs + + # ------------------------------------------------------------------------- + def run_forwardmodel(self, xx): + """ + This function creates subdirectory for the current run and copies the + necessary files to this directory and renames them. Next, it executes + the given command. + + Parameters + ---------- + xx : tuple + A tuple including parameter set, simulation number and key string. + + Returns + ------- + output : array of shape (n_outputs+1, n_obs) + An array passed by the output paraser containing the x_values as + the first row and the simulations results stored in the the rest of + the array. + + """ + c_points, run_no, key_str = xx + + # Handle if only one imput file is provided + if not isinstance(self.input_template, list): + self.input_template = [self.input_template] + if not isinstance(self.input_file, list): + self.input_file = [self.input_file] + + new_input_file = [] + # Loop over the InputTemplates: + for in_temp in self.input_template: + if '/' in in_temp: + in_temp = in_temp.split('/')[-1] + new_input_file.append(in_temp.split('.tpl')[0] + key_str + + f"_{run_no+1}" + in_temp.split('.tpl')[1]) + + # Create directories + newpath = self.name + key_str + f'_{run_no+1}' + if not os.path.exists(newpath): + os.makedirs(newpath) + + # Copy the necessary files to the directories + for in_temp in self.input_template: + # Input file(s) of the model + shutil.copy2(in_temp, newpath) + # Auxiliary file + if self.aux_file is not None: + shutil.copy2(self.aux_file, newpath) # Auxiliary file + + # Rename the Inputfile and/or auxiliary file + os.chdir(newpath) + for input_tem, input_file in zip(self.input_template, new_input_file): + if '/' in input_tem: + input_tem = input_tem.split('/')[-1] + os.rename(input_tem, input_file) + + # Update the parametrs in Input file + self.update_input_params(new_input_file, c_points) + + # Update the user defined command and the execution path + try: + new_command = self.shell_command.replace(self.input_file[0], + new_input_file[0]) + new_command = new_command.replace(self.input_file[1], + new_input_file[1]) + except: + new_command = self.shell_command.replace(self.input_file[0], + new_input_file[0]) + # Set the exe path if not provided + if not bool(self.exe_path): + self.exe_path = os.getcwd() + + # Run the model + output = self.run_command(new_command, self.Output.file_names) + + return output + + # ------------------------------------------------------------------------- + def run_model_parallel(self, c_points, prevRun_No=0, key_str='', + mp=True, verbose=True): + """ + Runs model simulations. If mp is true (default), then the simulations + are started in parallel. + + Parameters + ---------- + c_points : array of shape (n_samples, n_params) + Collocation points (training set). + prevRun_No : int, optional + Previous run number, in case the sequential design is selected. + The default is `0`. + key_str : str, optional + A descriptive string for validation runs. The default is `''`. + mp : bool, optional + Multiprocessing. The default is `True`. + verbose: bool, optional + Verbosity. The default is `True`. + + Returns + ------- + all_outputs : dict + A dictionary with x values (time step or point id) and all outputs. + Each key contains an array of the shape `(n_samples, n_obs)`. + new_c_points : array + Updated collocation points (training set). If a simulation does not + executed successfully, the parameter set is removed. + + """ + + # Initilization + n_c_points = len(c_points) + all_outputs = {} + + # Extract the function + if self.link_type.lower() == 'function': + # Prepare the function + Function = getattr(__import__(self.py_file), self.py_file) + # --------------------------------------------------------------- + # -------------- Multiprocessing with Pool Class ---------------- + # --------------------------------------------------------------- + # Start a pool with the number of CPUs + if self.n_cpus is None: + n_cpus = multiprocessing.cpu_count() + else: + n_cpus = self.n_cpus + + # Run forward model + if n_c_points == 1 or not mp: + if self.link_type.lower() == 'function': + group_results = Function(c_points, **self.func_args) + else: + group_results = self.run_forwardmodel( + (c_points[0], prevRun_No, key_str) + ) + + elif self.multi_process or mp: + with multiprocessing.Pool(n_cpus) as p: + + if self.link_type.lower() == 'function': + imap_var = p.imap(partial(Function, **self.func_args), + c_points[:, np.newaxis]) + else: + args = zip(c_points, + [prevRun_No+i for i in range(n_c_points)], + [key_str]*n_c_points) + imap_var = p.imap(self.run_forwardmodel, args) + + if verbose: + desc = f'Running forward model {key_str}' + group_results = list(tqdm.tqdm(imap_var, total=n_c_points, + desc=desc)) + else: + group_results = list(imap_var) + + # Check for NaN + for var_i, var in enumerate(self.Output.names): + # If results are given as one dictionary + if isinstance(group_results, dict): + Outputs = np.asarray(group_results[var]) + # If results are given as list of dictionaries + elif isinstance(group_results, list): + Outputs = np.asarray([item[var] for item in group_results], + dtype=np.float64) + NaN_idx = np.unique(np.argwhere(np.isnan(Outputs))[:, 0]) + new_c_points = np.delete(c_points, NaN_idx, axis=0) + all_outputs[var] = np.atleast_2d( + np.delete(Outputs, NaN_idx, axis=0) + ) + + # Print the collocation points whose simulations crashed + if len(NaN_idx) != 0: + print('\n') + print('*'*20) + print("\nThe following parametersets have been removed:\n", + c_points[NaN_idx]) + print("\n") + print('*'*20) + + # Save time steps or x-values + if isinstance(group_results, dict): + all_outputs["x_values"] = group_results["x_values"] + elif any(isinstance(i, dict) for i in group_results): + all_outputs["x_values"] = group_results[0]["x_values"] + + # Store simulations in a hdf5 file + self._store_simulations( + c_points, all_outputs, NaN_idx, key_str, prevRun_No + ) + + return all_outputs, new_c_points + + # ------------------------------------------------------------------------- + def _store_simulations(self, c_points, all_outputs, NaN_idx, key_str, + prevRun_No): + + # Create hdf5 metadata + if key_str == '': + hdf5file = f'ExpDesign_{self.name}.hdf5' # added _{self.ModelObj.func_args} + else: + hdf5file = f'ValidSet_{self.name}.hdf5' + hdf5_exist = os.path.exists(hdf5file) + file = h5py.File(hdf5file, 'a') + + # ---------- Save time steps or x-values ---------- + if not hdf5_exist: + if type(all_outputs["x_values"]) is dict: + grp_x_values = file.create_group("x_values/") + for varIdx, var in enumerate(self.Output.names): + grp_x_values.create_dataset( + var, data=all_outputs["x_values"][var] + ) + else: + file.create_dataset("x_values", data=all_outputs["x_values"]) + + # ---------- Save outputs ---------- + for varIdx, var in enumerate(self.Output.names): + + if not hdf5_exist: + grpY = file.create_group("EDY/"+var) + else: + grpY = file.get("EDY/"+var) + + if prevRun_No == 0 and key_str == '': + grpY.create_dataset(f'init_{key_str}', data=all_outputs[var]) + else: + try: + oldEDY = np.array(file[f'EDY/{var}/adaptive_{key_str}']) + del file[f'EDY/{var}/adaptive_{key_str}'] + data = np.vstack((oldEDY, all_outputs[var])) + except KeyError: + data = all_outputs[var] + grpY.create_dataset('adaptive_'+key_str, data=data) + + if prevRun_No == 0 and key_str == '': + grpY.create_dataset(f"New_init_{key_str}", + data=all_outputs[var]) + else: + try: + name = f'EDY/{var}/New_adaptive_{key_str}' + oldEDY = np.array(file[name]) + del file[f'EDY/{var}/New_adaptive_{key_str}'] + data = np.vstack((oldEDY, all_outputs[var])) + except KeyError: + data = all_outputs[var] + grpY.create_dataset(f'New_adaptive_{key_str}', data=data) + + # ---------- Save CollocationPoints ---------- + new_c_points = np.delete(c_points, NaN_idx, axis=0) + grpX = file.create_group("EDX") if not hdf5_exist else file.get("EDX") + if prevRun_No == 0 and key_str == '': + grpX.create_dataset("init_"+key_str, data=c_points) + if len(NaN_idx) != 0: + grpX.create_dataset("New_init_"+key_str, data=new_c_points) + + else: + try: + name = f'EDX/adaptive_{key_str}' + oldCollocationPoints = np.array(file[name]) + del file[f'EDX/adaptive_{key_str}'] + data = np.vstack((oldCollocationPoints, new_c_points)) + except KeyError: + data = new_c_points + grpX.create_dataset('adaptive_'+key_str, data=data) + + if len(NaN_idx) != 0: + try: + name = f'EDX/New_adaptive_{key_str}' + oldCollocationPoints = np.array(file[name]) + del file[f'EDX/New_adaptive_{key_str}'] + data = np.vstack((oldCollocationPoints, new_c_points)) + except KeyError: + data = new_c_points + grpX.create_dataset('New_adaptive_'+key_str, data=data) + + # Close h5py file + file.close() + + # ------------------------------------------------------------------------- + def zip_subdirs(self, dir_name, key): + """ + Zips all the files containing the key(word). + + Parameters + ---------- + dir_name : str + Directory name. + key : str + Keyword to search for. + + Returns + ------- + None. + + """ + # setup file paths variable + dir_list = [] + file_paths = [] + + # Read all directory, subdirectories and file lists + dir_path = os.getcwd() + + for root, directories, files in os.walk(dir_path): + for directory in directories: + # Create the full filepath by using os module. + if key in directory: + folderPath = os.path.join(dir_path, directory) + dir_list.append(folderPath) + + # Loop over the identified directories to store the file paths + for direct_name in dir_list: + for root, directories, files in os.walk(direct_name): + for filename in files: + # Create the full filepath by using os module. + filePath = os.path.join(root, filename) + file_paths.append('.'+filePath.split(dir_path)[1]) + + # writing files to a zipfile + if len(file_paths) != 0: + zip_file = zipfile.ZipFile(dir_name+'.zip', 'w') + with zip_file: + # writing each file one by one + for file in file_paths: + zip_file.write(file) + + file_paths = [path for path in os.listdir('.') if key in path] + + for path in file_paths: + shutil.rmtree(path) + + print("\n") + print(f'{dir_name}.zip file has been created successfully!\n') + + return diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__init__.py b/examples/only-model/bayesvalidrox/surrogate_models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..70bfb20f570464c2907a0a4128f4ed99b6c13736 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/__init__.py @@ -0,0 +1,7 @@ +# -*- coding: utf-8 -*- + +from .surrogate_models import MetaModel + +__all__ = [ + "MetaModel" + ] diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/__init__.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..61571bd1e2bf0c8b5ec4faf4c27e71b0526bc80a Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/__init__.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/apoly_construction.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/apoly_construction.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3820b6ebf286b68cd5bedabe083f98a933a04823 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/apoly_construction.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/bayes_linear.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/bayes_linear.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2111e7b45606ee6d23ec37bdc6af982cf6812b80 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/bayes_linear.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/eval_rec_rule.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/eval_rec_rule.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa3d7416568a694823e30bb7eaea6b06ebab9d3d Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/eval_rec_rule.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exp_designs.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exp_designs.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af55ca5d94d223a3244bc9ce745720acc2da05dd Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exp_designs.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exploration.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exploration.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..092cdd70d05ca0bbad7579aae82369478a7b8ae1 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/exploration.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/glexindex.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/glexindex.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8a22b9f5698e86415d782ab9609abda6c9b4508 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/glexindex.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/inputs.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/inputs.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f8c85996a9c8d48326d736211a004c9f09844fd Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/inputs.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/meta_model_engine.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/meta_model_engine.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad054a2ed1f2ab163a883333d0bcc716526bc051 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/meta_model_engine.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/orthogonal_matching_pursuit.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/orthogonal_matching_pursuit.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..def10cfc2a4359d25ec4f385e263aff0d27884ed Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/orthogonal_matching_pursuit.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_ard.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_ard.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..87e325f39519c87f046e35417898743d42e70b28 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_ard.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_laplace.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_laplace.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ea9fec9d079257a40ae2d8117854c9516d47a2c Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/reg_fast_laplace.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/surrogate_models.cpython-311.pyc b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/surrogate_models.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..62a8185dbf2cc3a241d95a03e74c778ad96ec8c5 Binary files /dev/null and b/examples/only-model/bayesvalidrox/surrogate_models/__pycache__/surrogate_models.cpython-311.pyc differ diff --git a/examples/only-model/bayesvalidrox/surrogate_models/adaptPlot.py b/examples/only-model/bayesvalidrox/surrogate_models/adaptPlot.py new file mode 100644 index 0000000000000000000000000000000000000000..102f0373c1086ba4420ada2fb2fc723b78bbd53f --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/adaptPlot.py @@ -0,0 +1,109 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Aug 13 13:46:24 2020 + +@author: farid +""" +import os +from sklearn.metrics import mean_squared_error, r2_score +from itertools import cycle +from matplotlib.backends.backend_pdf import PdfPages +import matplotlib.pyplot as plt + + +def adaptPlot(PCEModel, Y_Val, Y_PC_Val, Y_PC_Val_std, x_values=[], + plotED=False, SaveFig=True): + + NrofSamples = PCEModel.ExpDesign.n_new_samples + initNSamples = PCEModel.ExpDesign.n_init_samples + itrNr = 1 + (PCEModel.ExpDesign.X.shape[0] - initNSamples)//NrofSamples + + oldEDY = PCEModel.ExpDesign.Y + + if SaveFig: + newpath = 'adaptivePlots' + os.makedirs(newpath, exist_ok=True) + + # create a PdfPages object + pdf = PdfPages(f'./{newpath}/Model_vs_PCEModel_itr_{itrNr}.pdf') + + # List of markers and colors + color = cycle((['b', 'g', 'r', 'y', 'k'])) + marker = cycle(('x', 'd', '+', 'o', '*')) + + OutNames = list(Y_Val.keys()) + x_axis = 'Time [s]' + + if len(OutNames) == 1: + OutNames.insert(0, x_axis) + try: + x_values = Y_Val['x_values'] + except KeyError: + x_values = x_values + + fig = plt.figure(figsize=(24, 16)) + + # Plot the model vs PCE model + for keyIdx, key in enumerate(PCEModel.ModelObj.Output.names): + Y_PC_Val_ = Y_PC_Val[key] + Y_PC_Val_std_ = Y_PC_Val_std[key] + Y_Val_ = Y_Val[key] + if Y_Val_.ndim == 1: + Y_Val_ = Y_Val_.reshape(1, -1) + old_EDY = oldEDY[key] + if isinstance(x_values, dict): + x = x_values[key] + else: + x = x_values + + for idx, y in enumerate(Y_Val_): + Color = next(color) + Marker = next(marker) + + plt.plot( + x, y, color=Color, marker=Marker, + lw=2.0, label='$Y_{%s}^{M}$'%(idx+itrNr) + ) + + plt.plot( + x, Y_PC_Val_[idx], color=Color, marker=Marker, + lw=2.0, linestyle='--', label='$Y_{%s}^{PCE}$'%(idx+itrNr) + ) + plt.fill_between( + x, Y_PC_Val_[idx]-1.96*Y_PC_Val_std_[idx], + Y_PC_Val_[idx]+1.96*Y_PC_Val_std_[idx], color=Color, + alpha=0.15 + ) + + if plotED: + for output in old_EDY: + plt.plot(x, output, color='grey', alpha=0.1) + + # Calculate the RMSE + RMSE = mean_squared_error(Y_PC_Val_, Y_Val_, squared=False) + R2 = r2_score(Y_PC_Val_.reshape(-1, 1), Y_Val_.reshape(-1, 1)) + + plt.ylabel(key) + plt.xlabel(x_axis) + plt.title(key) + + ax = fig.axes[0] + ax.legend(loc='best', frameon=True) + fig.canvas.draw() + ax.text(0.65, 0.85, + f'RMSE = {round(RMSE, 3)}\n$R^2$ = {round(R2, 3)}', + transform=ax.transAxes, color='black', + bbox=dict(facecolor='none', + edgecolor='black', + boxstyle='round,pad=1') + ) + plt.grid() + + if SaveFig: + # save the current figure + pdf.savefig(fig, bbox_inches='tight') + + # Destroy the current plot + plt.clf() + pdf.close() diff --git a/examples/only-model/bayesvalidrox/surrogate_models/apoly_construction.py b/examples/only-model/bayesvalidrox/surrogate_models/apoly_construction.py new file mode 100644 index 0000000000000000000000000000000000000000..a7914c7deac51c2180aa6858207ccf0bac5c1f02 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/apoly_construction.py @@ -0,0 +1,122 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +import numpy as np + + +def apoly_construction(Data, degree): + """ + Construction of Data-driven Orthonormal Polynomial Basis + Author: Dr.-Ing. habil. Sergey Oladyshkin + Department of Stochastic Simulation and Safety Research for Hydrosystems + Institute for Modelling Hydraulic and Environmental Systems + Universitaet Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart + E-mail: Sergey.Oladyshkin@iws.uni-stuttgart.de + http://www.iws-ls3.uni-stuttgart.de + The current script is based on definition of arbitrary polynomial chaos + expansion (aPC), which is presented in the following manuscript: + Oladyshkin, S. and W. Nowak. Data-driven uncertainty quantification using + the arbitrary polynomial chaos expansion. Reliability Engineering & System + Safety, Elsevier, V. 106, P. 179-190, 2012. + DOI: 10.1016/j.ress.2012.05.002. + + Parameters + ---------- + Data : array + Raw data. + degree : int + Maximum polynomial degree. + + Returns + ------- + Polynomial : array + The coefficients of the univariate orthonormal polynomials. + + """ + + # Initialization + dd = degree + 1 + nsamples = len(Data) + + # Forward linear transformation (Avoiding numerical issues) + MeanOfData = np.mean(Data) + Data = Data/MeanOfData + + # Compute raw moments of input data + raw_moments = [np.sum(np.power(Data, p))/nsamples for p in range(2*dd+2)] + + # Main Loop for Polynomial with degree up to dd + PolyCoeff_NonNorm = np.empty((0, 1)) + Polynomial = np.zeros((dd+1, dd+1)) + + for degree in range(dd+1): + Mm = np.zeros((degree+1, degree+1)) + Vc = np.zeros((degree+1)) + + # Define Moments Matrix Mm + for i in range(degree+1): + for j in range(degree+1): + if (i < degree): + Mm[i, j] = raw_moments[i+j] + + elif (i == degree) and (j == degree): + Mm[i, j] = 1 + + # Numerical Optimization for Matrix Solver + Mm[i] = Mm[i] / max(abs(Mm[i])) + + # Defenition of Right Hand side ortogonality conditions: Vc + for i in range(degree+1): + Vc[i] = 1 if i == degree else 0 + + # Solution: Coefficients of Non-Normal Orthogonal Polynomial: Vp Eq.(4) + try: + Vp = np.linalg.solve(Mm, Vc) + except: + inv_Mm = np.linalg.pinv(Mm) + Vp = np.dot(inv_Mm, Vc.T) + + if degree == 0: + PolyCoeff_NonNorm = np.append(PolyCoeff_NonNorm, Vp) + + if degree != 0: + if degree == 1: + zero = [0] + else: + zero = np.zeros((degree, 1)) + PolyCoeff_NonNorm = np.hstack((PolyCoeff_NonNorm, zero)) + + PolyCoeff_NonNorm = np.vstack((PolyCoeff_NonNorm, Vp)) + + if 100*abs(sum(abs(np.dot(Mm, Vp)) - abs(Vc))) > 0.5: + print('\n---> Attention: Computational Error too high !') + print('\n---> Problem: Convergence of Linear Solver') + + # Original Numerical Normalization of Coefficients with Norm and + # orthonormal Basis computation Matrix Storrage + # Note: Polynomial(i,j) correspont to coefficient number "j-1" + # of polynomial degree "i-1" + P_norm = 0 + for i in range(nsamples): + Poly = 0 + for k in range(degree+1): + if degree == 0: + Poly += PolyCoeff_NonNorm[k] * (Data[i]**k) + else: + Poly += PolyCoeff_NonNorm[degree, k] * (Data[i]**k) + + P_norm += Poly**2 / nsamples + + P_norm = np.sqrt(P_norm) + + for k in range(degree+1): + if degree == 0: + Polynomial[degree, k] = PolyCoeff_NonNorm[k]/P_norm + else: + Polynomial[degree, k] = PolyCoeff_NonNorm[degree, k]/P_norm + + # Backward linear transformation to the real data space + Data *= MeanOfData + for k in range(len(Polynomial)): + Polynomial[:, k] = Polynomial[:, k] / (MeanOfData**(k)) + + return Polynomial diff --git a/examples/only-model/bayesvalidrox/surrogate_models/bayes_linear.py b/examples/only-model/bayesvalidrox/surrogate_models/bayes_linear.py new file mode 100644 index 0000000000000000000000000000000000000000..a7d6b5929a83fc89d15d7ab8f369187d0542923c --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/bayes_linear.py @@ -0,0 +1,523 @@ +import numpy as np +from sklearn.base import RegressorMixin +from sklearn.linear_model._base import LinearModel +from sklearn.utils import check_X_y, check_array, as_float_array +from sklearn.utils.validation import check_is_fitted +from scipy.linalg import svd +import warnings +from sklearn.preprocessing import normalize as f_normalize + + + +class BayesianLinearRegression(RegressorMixin,LinearModel): + ''' + Superclass for Empirical Bayes and Variational Bayes implementations of + Bayesian Linear Regression Model + ''' + def __init__(self, n_iter, tol, fit_intercept,copy_X, verbose): + self.n_iter = n_iter + self.fit_intercept = fit_intercept + self.copy_X = copy_X + self.verbose = verbose + self.tol = tol + + + def _check_convergence(self, mu, mu_old): + ''' + Checks convergence of algorithm using changes in mean of posterior + distribution of weights + ''' + return np.sum(abs(mu-mu_old)>self.tol) == 0 + + + def _center_data(self,X,y): + ''' Centers data''' + X = as_float_array(X,self.copy_X) + # normalisation should be done in preprocessing! + X_std = np.ones(X.shape[1], dtype = X.dtype) + if self.fit_intercept: + X_mean = np.average(X,axis = 0) + y_mean = np.average(y,axis = 0) + X -= X_mean + y = y - y_mean + else: + X_mean = np.zeros(X.shape[1],dtype = X.dtype) + y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype) + return X,y, X_mean, y_mean, X_std + + + def predict_dist(self,X): + ''' + Calculates mean and variance of predictive distribution for each data + point of test set.(Note predictive distribution for each data point is + Gaussian, therefore it is uniquely determined by mean and variance) + + Parameters + ---------- + x: array-like of size (n_test_samples, n_features) + Set of features for which corresponding responses should be predicted + + Returns + ------- + :list of two numpy arrays [mu_pred, var_pred] + + mu_pred : numpy array of size (n_test_samples,) + Mean of predictive distribution + + var_pred: numpy array of size (n_test_samples,) + Variance of predictive distribution + ''' + # Note check_array and check_is_fitted are done within self._decision_function(X) + mu_pred = self._decision_function(X) + data_noise = 1./self.beta_ + model_noise = np.sum(np.dot(X,self.eigvecs_)**2 * self.eigvals_,1) + var_pred = data_noise + model_noise + return [mu_pred,var_pred] + + + + +class EBLinearRegression(BayesianLinearRegression): + ''' + Bayesian Regression with type II maximum likelihood (Empirical Bayes) + + Parameters: + ----------- + n_iter: int, optional (DEFAULT = 300) + Maximum number of iterations + + tol: float, optional (DEFAULT = 1e-3) + Threshold for convergence + + optimizer: str, optional (DEFAULT = 'fp') + Method for optimization , either Expectation Maximization or + Fixed Point Gull-MacKay {'em','fp'}. Fixed point iterations are + faster, but can be numerically unstable (especially in case of near perfect fit). + + fit_intercept: bool, optional (DEFAULT = True) + If True includes bias term in model + + perfect_fit_tol: float (DEAFAULT = 1e-5) + Prevents overflow of precision parameters (this is smallest value RSS can have). + ( !!! Note if using EM instead of fixed-point, try smaller values + of perfect_fit_tol, for better estimates of variance of predictive distribution ) + + alpha: float (DEFAULT = 1) + Initial value of precision paramter for coefficients ( by default we define + very broad distribution ) + + copy_X : boolean, optional (DEFAULT = True) + If True, X will be copied, otherwise will be + + verbose: bool, optional (Default = False) + If True at each iteration progress report is printed out + + Attributes + ---------- + coef_ : array, shape = (n_features) + Coefficients of the regression model (mean of posterior distribution) + + intercept_: float + Value of bias term (if fit_intercept is False, then intercept_ = 0) + + alpha_ : float + Estimated precision of coefficients + + beta_ : float + Estimated precision of noise + + eigvals_ : array, shape = (n_features, ) + Eigenvalues of covariance matrix (from posterior distribution of weights) + + eigvecs_ : array, shape = (n_features, n_featues) + Eigenvectors of covariance matrix (from posterior distribution of weights) + + ''' + + def __init__(self,n_iter = 300, tol = 1e-3, optimizer = 'fp', fit_intercept = True, + normalize=True, perfect_fit_tol = 1e-6, alpha = 1, copy_X = True, verbose = False): + super(EBLinearRegression,self).__init__(n_iter, tol, fit_intercept, copy_X, verbose) + if optimizer not in ['em','fp']: + raise ValueError('Optimizer can be either "em" of "fp" ') + self.optimizer = optimizer + self.alpha = alpha + self.perfect_fit = False + self.normalize = True + self.scores_ = [np.NINF] + self.perfect_fit_tol = perfect_fit_tol + + def _check_convergence(self, mu, mu_old): + ''' + Checks convergence of algorithm using changes in mean of posterior + distribution of weights + ''' + return np.sum(abs(mu-mu_old)>self.tol) == 0 + + + def _center_data(self,X,y): + ''' Centers data''' + X = as_float_array(X,self.copy_X) + # normalisation should be done in preprocessing! + X_std = np.ones(X.shape[1], dtype = X.dtype) + if self.fit_intercept: + X_mean = np.average(X, axis=0) + X -= X_mean + if self.normalize: + X, X_std = f_normalize(X, axis=0, copy=False, + return_norm=True) + else: + X_std = np.ones(X.shape[1], dtype=X.dtype) + y_mean = np.average(y, axis=0) + y = y - y_mean + else: + X_mean = np.zeros(X.shape[1],dtype = X.dtype) + y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype) + return X,y, X_mean, y_mean, X_std + + def fit(self, X, y): + ''' + Fits Bayesian Linear Regression using Empirical Bayes + + Parameters + ---------- + X: array-like of size [n_samples,n_features] + Matrix of explanatory variables (should not include bias term) + + y: array-like of size [n_features] + Vector of dependent variables. + + Returns + ------- + object: self + self + + ''' + # preprocess data + X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) + n_samples, n_features = X.shape + X, y, X_mean, y_mean, X_std = self._center_data(X, y) + self._x_mean_ = X_mean + self._y_mean = y_mean + self._x_std = X_std + + # precision of noise & and coefficients + alpha = self.alpha + var_y = np.var(y) + # check that variance is non zero !!! + if var_y == 0 : + beta = 1e-2 + else: + beta = 1. / np.var(y) + + # to speed all further computations save svd decomposition and reuse it later + u,d,vt = svd(X, full_matrices = False) + Uy = np.dot(u.T,y) + dsq = d**2 + mu = 0 + + for i in range(self.n_iter): + + # find mean for posterior of w ( for EM this is E-step) + mu_old = mu + if n_samples > n_features: + mu = vt.T * d/(dsq+alpha/beta) + else: + # clever use of SVD here , faster for large n_features + mu = u * 1./(dsq + alpha/beta) + mu = np.dot(X.T,mu) + mu = np.dot(mu,Uy) + + # precompute errors, since both methods use it in estimation + error = y - np.dot(X,mu) + sqdErr = np.sum(error**2) + + if sqdErr / n_samples < self.perfect_fit_tol: + self.perfect_fit = True + warnings.warn( ('Almost perfect fit!!! Estimated values of variance ' + 'for predictive distribution are computed using only RSS')) + break + + if self.optimizer == "fp": + gamma = np.sum(beta*dsq/(beta*dsq + alpha)) + # use updated mu and gamma parameters to update alpha and beta + # !!! made computation numerically stable for perfect fit case + alpha = gamma / (np.sum(mu**2) + np.finfo(np.float32).eps ) + beta = ( n_samples - gamma ) / (sqdErr + np.finfo(np.float32).eps ) + else: + # M-step, update parameters alpha and beta to maximize ML TYPE II + eigvals = 1. / (beta * dsq + alpha) + alpha = n_features / ( np.sum(mu**2) + np.sum(1/eigvals) ) + beta = n_samples / ( sqdErr + np.sum(dsq/eigvals) ) + + # if converged or exceeded maximum number of iterations => terminate + converged = self._check_convergence(mu_old,mu) + if self.verbose: + print( "Iteration {0} completed".format(i) ) + if converged is True: + print("Algorithm converged after {0} iterations".format(i)) + if converged or i==self.n_iter -1: + break + eigvals = 1./(beta * dsq + alpha) + self.coef_ = beta*np.dot(vt.T*d*eigvals ,Uy) + self._set_intercept(X_mean,y_mean,X_std) + self.beta_ = beta + self.alpha_ = alpha + self.eigvals_ = eigvals + self.eigvecs_ = vt.T + + # set intercept_ + if self.fit_intercept: + self.coef_ = self.coef_ / X_std + self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T) + else: + self.intercept_ = 0. + + return self + + def predict(self,X, return_std=False): + ''' + Computes predictive distribution for test set. + Predictive distribution for each data point is one dimensional + Gaussian and therefore is characterised by mean and variance. + + Parameters + ----------- + X: {array-like, sparse} (n_samples_test, n_features) + Test data, matrix of explanatory variables + + Returns + ------- + : list of length two [y_hat, var_hat] + + y_hat: numpy array of size (n_samples_test,) + Estimated values of targets on test set (i.e. mean of predictive + distribution) + + var_hat: numpy array of size (n_samples_test,) + Variance of predictive distribution + ''' + y_hat = np.dot(X,self.coef_) + self.intercept_ + + if return_std: + if self.normalize: + X = (X - self._x_mean_) / self._x_std + data_noise = 1./self.beta_ + model_noise = np.sum(np.dot(X,self.eigvecs_)**2 * self.eigvals_,1) + var_pred = data_noise + model_noise + std_hat = np.sqrt(var_pred) + return y_hat, std_hat + else: + return y_hat + + +# ============================== VBLR ========================================= + +def gamma_mean(a,b): + ''' + Computes mean of gamma distribution + + Parameters + ---------- + a: float + Shape parameter of Gamma distribution + + b: float + Rate parameter of Gamma distribution + + Returns + ------- + : float + Mean of Gamma distribution + ''' + return float(a) / b + + + +class VBLinearRegression(BayesianLinearRegression): + ''' + Implements Bayesian Linear Regression using mean-field approximation. + Assumes gamma prior on precision parameters of coefficients and noise. + + Parameters: + ----------- + n_iter: int, optional (DEFAULT = 100) + Maximum number of iterations for KL minimization + + tol: float, optional (DEFAULT = 1e-3) + Convergence threshold + + fit_intercept: bool, optional (DEFAULT = True) + If True will use bias term in model fitting + + a: float, optional (Default = 1e-4) + Shape parameter of Gamma prior for precision of coefficients + + b: float, optional (Default = 1e-4) + Rate parameter of Gamma prior for precision coefficients + + c: float, optional (Default = 1e-4) + Shape parameter of Gamma prior for precision of noise + + d: float, optional (Default = 1e-4) + Rate parameter of Gamma prior for precision of noise + + verbose: bool, optional (Default = False) + If True at each iteration progress report is printed out + + Attributes + ---------- + coef_ : array, shape = (n_features) + Coefficients of the regression model (mean of posterior distribution) + + intercept_: float + Value of bias term (if fit_intercept is False, then intercept_ = 0) + + alpha_ : float + Mean of precision of coefficients + + beta_ : float + Mean of precision of noise + + eigvals_ : array, shape = (n_features, ) + Eigenvalues of covariance matrix (from posterior distribution of weights) + + eigvecs_ : array, shape = (n_features, n_featues) + Eigenvectors of covariance matrix (from posterior distribution of weights) + + ''' + + def __init__(self, n_iter = 100, tol =1e-4, fit_intercept = True, + a = 1e-4, b = 1e-4, c = 1e-4, d = 1e-4, copy_X = True, + verbose = False): + super(VBLinearRegression,self).__init__(n_iter, tol, fit_intercept, copy_X, + verbose) + self.a,self.b = a, b + self.c,self.d = c, d + + + def fit(self,X,y): + ''' + Fits Variational Bayesian Linear Regression Model + + Parameters + ---------- + X: array-like of size [n_samples,n_features] + Matrix of explanatory variables (should not include bias term) + + Y: array-like of size [n_features] + Vector of dependent variables. + + Returns + ------- + object: self + self + ''' + # preprocess data + X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) + n_samples, n_features = X.shape + X, y, X_mean, y_mean, X_std = self._center_data(X, y) + self._x_mean_ = X_mean + self._y_mean = y_mean + self._x_std = X_std + + # SVD decomposition, done once , reused at each iteration + u,D,vt = svd(X, full_matrices = False) + dsq = D**2 + UY = np.dot(u.T,y) + + # some parameters of Gamma distribution have closed form solution + a = self.a + 0.5 * n_features + c = self.c + 0.5 * n_samples + b,d = self.b, self.d + + # initial mean of posterior for coefficients + mu = 0 + + for i in range(self.n_iter): + + # update parameters of distribution Q(weights) + e_beta = gamma_mean(c,d) + e_alpha = gamma_mean(a,b) + mu_old = np.copy(mu) + mu,eigvals = self._posterior_weights(e_beta,e_alpha,UY,dsq,u,vt,D,X) + + # update parameters of distribution Q(precision of weights) + b = self.b + 0.5*( np.sum(mu**2) + np.sum(eigvals)) + + # update parameters of distribution Q(precision of likelihood) + sqderr = np.sum((y - np.dot(X,mu))**2) + xsx = np.sum(dsq*eigvals) + d = self.d + 0.5*(sqderr + xsx) + + # check convergence + converged = self._check_convergence(mu,mu_old) + if self.verbose is True: + print("Iteration {0} is completed".format(i)) + if converged is True: + print("Algorithm converged after {0} iterations".format(i)) + + # terminate if convergence or maximum number of iterations are achieved + if converged or i==(self.n_iter-1): + break + + # save necessary parameters + self.beta_ = gamma_mean(c,d) + self.alpha_ = gamma_mean(a,b) + self.coef_, self.eigvals_ = self._posterior_weights(self.beta_, self.alpha_, UY, + dsq, u, vt, D, X) + self._set_intercept(X_mean,y_mean,X_std) + self.eigvecs_ = vt.T + return self + + + def _posterior_weights(self, e_beta, e_alpha, UY, dsq, u, vt, d, X): + ''' + Calculates parameters of approximate posterior distribution + of weights + ''' + # eigenvalues of covariance matrix + sigma = 1./ (e_beta*dsq + e_alpha) + + # mean of approximate posterior distribution + n_samples, n_features = X.shape + if n_samples > n_features: + mu = vt.T * d/(dsq + e_alpha/e_beta)# + np.finfo(np.float64).eps) + else: + mu = u * 1./(dsq + e_alpha/e_beta)# + np.finfo(np.float64).eps) + mu = np.dot(X.T,mu) + mu = np.dot(mu,UY) + return mu,sigma + + def predict(self,X, return_std=False): + ''' + Computes predictive distribution for test set. + Predictive distribution for each data point is one dimensional + Gaussian and therefore is characterised by mean and variance. + + Parameters + ----------- + X: {array-like, sparse} (n_samples_test, n_features) + Test data, matrix of explanatory variables + + Returns + ------- + : list of length two [y_hat, var_hat] + + y_hat: numpy array of size (n_samples_test,) + Estimated values of targets on test set (i.e. mean of predictive + distribution) + + var_hat: numpy array of size (n_samples_test,) + Variance of predictive distribution + ''' + x = (X - self._x_mean_) / self._x_std + y_hat = np.dot(x,self.coef_) + self._y_mean + + if return_std: + data_noise = 1./self.beta_ + model_noise = np.sum(np.dot(X,self.eigvecs_)**2 * self.eigvals_,1) + var_pred = data_noise + model_noise + std_hat = np.sqrt(var_pred) + return y_hat, std_hat + else: + return y_hat \ No newline at end of file diff --git a/examples/only-model/bayesvalidrox/surrogate_models/desktop.ini b/examples/only-model/bayesvalidrox/surrogate_models/desktop.ini new file mode 100644 index 0000000000000000000000000000000000000000..632de13ae6b61cecf0d9fdbf9c97cfb16bfb51a4 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/desktop.ini @@ -0,0 +1,2 @@ +[LocalizedFileNames] +exploration.py=@exploration.py,0 diff --git a/examples/only-model/bayesvalidrox/surrogate_models/eval_rec_rule.py b/examples/only-model/bayesvalidrox/surrogate_models/eval_rec_rule.py new file mode 100644 index 0000000000000000000000000000000000000000..b583c7eb2ec58d55d19b34130812730d21a12368 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/eval_rec_rule.py @@ -0,0 +1,197 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" + + +Based on the implementation in UQLab [1]. + +References: +1. S. Marelli, and B. Sudret, UQLab: A framework for uncertainty quantification +in Matlab, Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and Management +(ICVRAM2014), Liverpool, United Kingdom, 2014, 2554-2563. + +2. S. Marelli, N. Lüthen, B. Sudret, UQLab user manual – Polynomial chaos +expansions, Report # UQLab-V1.4-104, Chair of Risk, Safety and Uncertainty +Quantification, ETH Zurich, Switzerland, 2021. + +Author: Farid Mohammadi, M.Sc. +E-Mail: farid.mohammadi@iws.uni-stuttgart.de +Department of Hydromechanics and Modelling of Hydrosystems (LH2) +Institute for Modelling Hydraulic and Environmental Systems (IWS), University +of Stuttgart, www.iws.uni-stuttgart.de/lh2/ +Pfaffenwaldring 61 +70569 Stuttgart + +Created on Fri Jan 14 2022 +""" +import numpy as np +from numpy.polynomial.polynomial import polyval + + +def poly_rec_coeffs(n_max, poly_type, params=None): + """ + Computes the recurrence coefficients for classical Wiener-Askey orthogonal + polynomials. + + Parameters + ---------- + n_max : int + Maximum polynomial degree. + poly_type : string + Polynomial type. + params : list, optional + Parameters required for `laguerre` poly type. The default is None. + + Returns + ------- + AB : dict + The 3 term recursive coefficients and the applicable ranges. + + """ + + if poly_type == 'legendre': + + def an(n): + return np.zeros((n+1, 1)) + + def sqrt_bn(n): + sq_bn = np.zeros((n+1, 1)) + sq_bn[0, 0] = 1 + for i in range(1, n+1): + sq_bn[i, 0] = np.sqrt(1./(4-i**-2)) + return sq_bn + + bounds = [-1, 1] + + elif poly_type == 'hermite': + + def an(n): + return np.zeros((n+1, 1)) + + def sqrt_bn(n): + sq_bn = np.zeros((n+1, 1)) + sq_bn[0, 0] = 1 + for i in range(1, n+1): + sq_bn[i, 0] = np.sqrt(i) + return sq_bn + + bounds = [-np.inf, np.inf] + + elif poly_type == 'laguerre': + + def an(n): + a = np.zeros((n+1, 1)) + for i in range(1, n+1): + a[i] = 2*n + params[1] + return a + + def sqrt_bn(n): + sq_bn = np.zeros((n+1, 1)) + sq_bn[0, 0] = 1 + for i in range(1, n+1): + sq_bn[i, 0] = -np.sqrt(i * (i+params[1]-1)) + return sq_bn + + bounds = [0, np.inf] + + AB = {'alpha_beta': np.concatenate((an(n_max), sqrt_bn(n_max)), axis=1), + 'bounds': bounds} + + return AB + + +def eval_rec_rule(x, max_deg, poly_type): + """ + Evaluates the polynomial that corresponds to the Jacobi matrix defined + from the AB. + + Parameters + ---------- + x : array (n_samples) + Points where the polynomials are evaluated. + max_deg : int + Maximum degree. + poly_type : string + Polynomial type. + + Returns + ------- + values : array of shape (n_samples, max_deg+1) + Polynomials corresponding to the Jacobi matrix. + + """ + AB = poly_rec_coeffs(max_deg, poly_type) + AB = AB['alpha_beta'] + + values = np.zeros((len(x), AB.shape[0]+1)) + values[:, 1] = 1 / AB[0, 1] + + for k in range(AB.shape[0]-1): + values[:, k+2] = np.multiply((x - AB[k, 0]), values[:, k+1]) - \ + np.multiply(values[:, k], AB[k, 1]) + values[:, k+2] = np.divide(values[:, k+2], AB[k+1, 1]) + return values[:, 1:] + + +def eval_rec_rule_arbitrary(x, max_deg, poly_coeffs): + """ + Evaluates the polynomial at sample array x. + + Parameters + ---------- + x : array (n_samples) + Points where the polynomials are evaluated. + max_deg : int + Maximum degree. + poly_coeffs : dict + Polynomial coefficients computed based on moments. + + Returns + ------- + values : array of shape (n_samples, max_deg+1) + Univariate Polynomials evaluated at samples. + + """ + values = np.zeros((len(x), max_deg+1)) + + for deg in range(max_deg+1): + values[:, deg] = polyval(x, poly_coeffs[deg]).T + + return values + + +def eval_univ_basis(x, max_deg, poly_types, apoly_coeffs=None): + """ + Evaluates univariate regressors along input directions. + + Parameters + ---------- + x : array of shape (n_samples, n_params) + Training samples. + max_deg : int + Maximum polynomial degree. + poly_types : list of strings + List of polynomial types for all parameters. + apoly_coeffs : dict , optional + Polynomial coefficients computed based on moments. The default is None. + + Returns + ------- + univ_vals : array of shape (n_samples, n_params, max_deg+1) + Univariate polynomials for all degrees and parameters evaluated at x. + + """ + # Initilize the output array + n_samples, n_params = x.shape + univ_vals = np.zeros((n_samples, n_params, max_deg+1)) + + for i in range(n_params): + + if poly_types[i] == 'arbitrary': + polycoeffs = apoly_coeffs[f'p_{i+1}'] + univ_vals[:, i] = eval_rec_rule_arbitrary(x[:, i], max_deg, + polycoeffs) + else: + univ_vals[:, i] = eval_rec_rule(x[:, i], max_deg, poly_types[i]) + + return univ_vals diff --git a/examples/only-model/bayesvalidrox/surrogate_models/exp_designs.py b/examples/only-model/bayesvalidrox/surrogate_models/exp_designs.py new file mode 100644 index 0000000000000000000000000000000000000000..a078aec9c19c5a85a637ba50d02c48459ceea6d3 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/exp_designs.py @@ -0,0 +1,737 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import numpy as np +import math +import itertools +import chaospy +import scipy.stats as st +from tqdm import tqdm + +from .apoly_construction import apoly_construction + + +class ExpDesigns: + """ + This class generates samples from the prescribed marginals for the model + parameters using the `Input` object. + + Attributes + ---------- + Input : obj + Input object containing the parameter marginals, i.e. name, + distribution type and distribution parameters or available raw data. + method : str + Type of the experimental design. The default is `'normal'`. Other + option is `'sequential'`. + meta_Model : str + Type of the meta_model. + sampling_method : str + Name of the sampling method for the experimental design. The following + sampling method are supported: + + * random + * latin_hypercube + * sobol + * halton + * hammersley + * chebyshev(FT) + * grid(FT) + * user + hdf5_file : str + Name of the hdf5 file that contains the experimental design. + n_new_samples : int + Number of (initial) training points. + n_max_samples : int + Number of maximum training points. + mod_LOO_threshold : float + The modified leave-one-out cross validation threshold where the + sequential design stops. + tradeoff_scheme : str + Trade-off scheme to assign weights to the exploration and exploitation + scores in the sequential design. + n_canddidate : int + Number of candidate training sets to calculate the scores for. + explore_method : str + Type of the exploration method for the sequential design. The following + methods are supported: + + * Voronoi + * random + * latin_hypercube + * LOOCV + * dual annealing + exploit_method : str + Type of the exploitation method for the sequential design. The + following methods are supported: + + * BayesOptDesign + * BayesActDesign + * VarOptDesign + * alphabetic + * Space-filling + util_func : str or list + The utility function to be specified for the `exploit_method`. For the + available utility functions see Note section. + n_cand_groups : int + Number of candidate groups. Each group of candidate training sets will + be evaulated separately in parallel. + n_replication : int + Number of replications. Only for comparison. The default is 1. + post_snapshot : int + Whether to plot the posterior in the sequential design. The default is + `True`. + step_snapshot : int + The number of steps to plot the posterior in the sequential design. The + default is 1. + max_a_post : list or array + Maximum a posteriori of the posterior distribution, if known. The + default is `[]`. + adapt_verbose : bool + Whether to plot the model response vs that of metamodel for the new + trining point in the sequential design. + + Note + ---------- + The following utiliy functions for the **exploitation** methods are + supported: + + #### BayesOptDesign (when data is available) + - DKL (Kullback-Leibler Divergence) + - DPP (D-Posterior-percision) + - APP (A-Posterior-percision) + + #### VarBasedOptDesign -> when data is not available + - Entropy (Entropy/MMSE/active learning) + - EIGF (Expected Improvement for Global fit) + - LOOCV (Leave-one-out Cross Validation) + + #### alphabetic + - D-Opt (D-Optimality) + - A-Opt (A-Optimality) + - K-Opt (K-Optimality) + """ + + def __init__(self, Input, method='normal', meta_Model='pce', + sampling_method='random', hdf5_file=None, + n_new_samples=1, n_max_samples=None, mod_LOO_threshold=1e-16, + tradeoff_scheme=None, n_canddidate=1, explore_method='random', + exploit_method='Space-filling', util_func='Space-filling', + n_cand_groups=4, n_replication=1, post_snapshot=False, + step_snapshot=1, max_a_post=[], adapt_verbose=False): + + self.InputObj = Input + self.method = method + self.meta_Model = meta_Model + self.sampling_method = sampling_method + self.hdf5_file = hdf5_file + self.n_new_samples = n_new_samples + self.n_max_samples = n_max_samples + self.mod_LOO_threshold = mod_LOO_threshold + self.explore_method = explore_method + self.exploit_method = exploit_method + self.util_func = util_func + self.tradeoff_scheme = tradeoff_scheme + self.n_canddidate = n_canddidate + self.n_cand_groups = n_cand_groups + self.n_replication = n_replication + self.post_snapshot = post_snapshot + self.step_snapshot = step_snapshot + self.max_a_post = max_a_post + self.adapt_verbose = adapt_verbose + + # ------------------------------------------------------------------------- + def generate_samples(self, n_samples, sampling_method='random', + transform=False): + """ + Generates samples with given sampling method + + Parameters + ---------- + n_samples : int + Number of requested samples. + sampling_method : str, optional + Sampling method. The default is `'random'`. + transform : bool, optional + Transformation via an isoprobabilistic transformation method. The + default is `False`. + + Returns + ------- + samples: array of shape (n_samples, n_params) + Generated samples from defined model input object. + + """ + try: + samples = chaospy.generate_samples( + int(n_samples), domain=self.origJDist, rule=sampling_method + ) + except: + samples = self.random_sampler(int(n_samples)).T + + return samples.T + + # ------------------------------------------------------------------------- + def generate_ED(self, n_samples, sampling_method='random', transform=False, + max_pce_deg=None): + """ + Generates experimental designs (training set) with the given method. + + Parameters + ---------- + n_samples : int + Number of requested training points. + sampling_method : str, optional + Sampling method. The default is `'random'`. + transform : bool, optional + Isoprobabilistic transformation. The default is `False`. + max_pce_deg : int, optional + Maximum PCE polynomial degree. The default is `None`. + + Returns + ------- + samples : array of shape (n_samples, n_params) + Selected training samples. + + """ + Inputs = self.InputObj + self.ndim = len(Inputs.Marginals) + if not hasattr(self, 'n_init_samples'): + self.n_init_samples = self.ndim + 1 + n_samples = int(n_samples) + + # Check if PCE or aPCE metamodel is selected. + if self.meta_Model.lower() == 'apce': + self.apce = True + else: + self.apce = False + + # Check if input is given as dist or input_data. + if len(Inputs.Marginals[0].input_data): + self.input_data_given = True + else: + self.input_data_given = False + + # Get the bounds if input_data are directly defined by user: + if self.input_data_given: + for i in range(self.ndim): + low_bound = np.min(Inputs.Marginals[i].input_data) + up_bound = np.max(Inputs.Marginals[i].input_data) + Inputs.Marginals[i].parameters = [low_bound, up_bound] + + # Generate the samples based on requested method + self.raw_data, self.bound_tuples = self.init_param_space(max_pce_deg) + + # Pass user-defined samples as ED + if sampling_method == 'user': + samples = self.X + self.n_samples = len(samples) + + # Sample the distribution of parameters + elif self.input_data_given: + # Case II: Input values are directly given by the user. + + if sampling_method == 'random': + samples = self.random_sampler(n_samples) + + elif sampling_method == 'PCM' or \ + sampling_method == 'LSCM': + samples = self.pcm_sampler(max_pce_deg) + + else: + # Create ExpDesign in the actual space using chaospy + try: + samples = chaospy.generate_samples(n_samples, + domain=self.JDist, + rule=sampling_method).T + except: + samples = self.JDist.resample(n_samples).T + + elif not self.input_data_given: + # Case I = User passed known distributions + samples = chaospy.generate_samples(n_samples, domain=self.JDist, + rule=sampling_method).T + + # Transform samples to the original space + if transform: + tr_samples = self.transform( + samples, + method=sampling_method + ) + if sampling_method == 'user' or not self.apce: + return samples, tr_samples + else: + return tr_samples, samples + else: + return samples + + # ------------------------------------------------------------------------- + def init_param_space(self, max_deg=None): + """ + Initializes parameter space. + + Parameters + ---------- + max_deg : int, optional + Maximum degree. The default is `None`. + + Returns + ------- + raw_data : array of shape (n_params, n_samples) + Raw data. + bound_tuples : list of tuples + A list containing lower and upper bounds of parameters. + + """ + Inputs = self.InputObj + ndim = self.ndim + rosenblatt_flag = Inputs.Rosenblatt + mc_size = 50000 + + # Save parameter names + self.par_names = [] + for parIdx in range(ndim): + self.par_names.append(Inputs.Marginals[parIdx].name) + + # Create a multivariate probability distribution + if max_deg is not None: + JDist, poly_types = self.build_dist(rosenblatt=rosenblatt_flag) + self.JDist, self.poly_types = JDist, poly_types + + if self.input_data_given: + + self.MCSize = len(Inputs.Marginals[0].input_data) + self.raw_data = np.zeros((ndim, self.MCSize)) + + for parIdx in range(ndim): + # Save parameter names + try: + self.raw_data[parIdx] = np.array( + Inputs.Marginals[parIdx].input_data) + except: + self.raw_data[parIdx] = self.JDist[parIdx].sample(mc_size) + + else: + # Generate random samples based on parameter distributions + self.raw_data = chaospy.generate_samples(mc_size, + domain=self.JDist) + + # Create orthogonal polynomial coefficients if necessary + if self.apce and max_deg is not None and Inputs.poly_coeffs_flag: + self.polycoeffs = {} + for parIdx in tqdm(range(ndim), ascii=True, + desc="Computing orth. polynomial coeffs"): + poly_coeffs = apoly_construction( + self.raw_data[parIdx], + max_deg + ) + self.polycoeffs[f'p_{parIdx+1}'] = poly_coeffs + + # Extract moments + for parIdx in range(ndim): + mu = np.mean(self.raw_data[parIdx]) + std = np.std(self.raw_data[parIdx]) + self.InputObj.Marginals[parIdx].moments = [mu, std] + + # Generate the bounds based on given inputs for marginals + bound_tuples = [] + for i in range(ndim): + if Inputs.Marginals[i].dist_type == 'unif': + low_bound, up_bound = Inputs.Marginals[i].parameters + else: + low_bound = np.min(self.raw_data[i]) + up_bound = np.max(self.raw_data[i]) + + bound_tuples.append((low_bound, up_bound)) + + self.bound_tuples = tuple(bound_tuples) + + return self.raw_data, self.bound_tuples + + # ------------------------------------------------------------------------- + def build_dist(self, rosenblatt): + """ + Creates the polynomial types to be passed to univ_basis_vals method of + the MetaModel object. + + Parameters + ---------- + rosenblatt : bool + Rosenblatt transformation flag. + + Returns + ------- + orig_space_dist : object + A chaospy JDist object or a gaussian_kde object. + poly_types : list + List of polynomial types for the parameters. + + """ + Inputs = self.InputObj + all_data = [] + all_dist_types = [] + orig_joints = [] + poly_types = [] + + for parIdx in range(self.ndim): + + if Inputs.Marginals[parIdx].dist_type is None: + data = Inputs.Marginals[parIdx].input_data + all_data.append(data) + dist_type = None + else: + dist_type = Inputs.Marginals[parIdx].dist_type + params = Inputs.Marginals[parIdx].parameters + + if rosenblatt: + polytype = 'hermite' + dist = chaospy.Normal() + + elif dist_type is None: + polytype = 'arbitrary' + dist = None + + elif 'unif' in dist_type.lower(): + polytype = 'legendre' + dist = chaospy.Uniform(lower=params[0], upper=params[1]) + + elif 'norm' in dist_type.lower() and \ + 'log' not in dist_type.lower(): + polytype = 'hermite' + dist = chaospy.Normal(mu=params[0], sigma=params[1]) + + elif 'gamma' in dist_type.lower(): + polytype = 'laguerre' + dist = chaospy.Gamma(shape=params[0], + scale=params[1], + shift=params[2]) + + elif 'beta' in dist_type.lower(): + polytype = 'jacobi' + dist = chaospy.Beta(alpha=params[0], beta=params[1], + lower=params[2], upper=params[3]) + + elif 'lognorm' in dist_type.lower(): + polytype = 'hermite' + mu = np.log(params[0]**2/np.sqrt(params[0]**2 + params[1]**2)) + sigma = np.sqrt(np.log(1 + params[1]**2 / params[0]**2)) + dist = chaospy.LogNormal(mu, sigma) + # dist = chaospy.LogNormal(mu=params[0], sigma=params[1]) + + elif 'expon' in dist_type.lower(): + polytype = 'arbitrary' + dist = chaospy.Exponential(scale=params[0], shift=params[1]) + + elif 'weibull' in dist_type.lower(): + polytype = 'arbitrary' + dist = chaospy.Weibull(shape=params[0], scale=params[1], + shift=params[2]) + + else: + message = (f"DistType {dist_type} for parameter" + f"{parIdx+1} is not available.") + raise ValueError(message) + + if self.input_data_given or self.apce: + polytype = 'arbitrary' + + # Store dists and poly_types + orig_joints.append(dist) + poly_types.append(polytype) + all_dist_types.append(dist_type) + + # Prepare final output to return + if None in all_dist_types: + # Naive approach: Fit a gaussian kernel to the provided data + Data = np.asarray(all_data) + orig_space_dist = st.gaussian_kde(Data) + self.prior_space = orig_space_dist + else: + orig_space_dist = chaospy.J(*orig_joints) + self.prior_space = st.gaussian_kde(orig_space_dist.sample(10000)) + + return orig_space_dist, poly_types + + # ------------------------------------------------------------------------- + def random_sampler(self, n_samples): + """ + Samples the given raw data randomly. + + Parameters + ---------- + n_samples : int + Number of requested samples. + + Returns + ------- + samples: array of shape (n_samples, n_params) + The sampling locations in the input space. + + """ + samples = np.zeros((n_samples, self.ndim)) + sample_size = self.raw_data.shape[1] + + # Use a combination of raw data + if n_samples < sample_size: + for pa_idx in range(self.ndim): + # draw random indices + rand_idx = np.random.randint(0, sample_size, n_samples) + # store the raw data with given random indices + samples[:, pa_idx] = self.raw_data[pa_idx, rand_idx] + else: + try: + samples = self.JDist.resample(int(n_samples)).T + except AttributeError: + samples = self.JDist.sample(int(n_samples)).T + # Check if all samples are in the bound_tuples + for idx, param_set in enumerate(samples): + if not self._check_ranges(param_set, self.bound_tuples): + try: + proposed_sample = chaospy.generate_samples( + 1, domain=self.JDist, rule='random').T[0] + except: + proposed_sample = self.JDist.resample(1).T[0] + while not self._check_ranges(proposed_sample, + self.bound_tuples): + try: + proposed_sample = chaospy.generate_samples( + 1, domain=self.JDist, rule='random').T[0] + except: + proposed_sample = self.JDist.resample(1).T[0] + samples[idx] = proposed_sample + + return samples + + # ------------------------------------------------------------------------- + def pcm_sampler(self, max_deg): + """ + Generates collocation points based on the root of the polynomial + degrees. + + Parameters + ---------- + max_deg : int + Maximum degree defined by user. + + Returns + ------- + opt_col_points: array of shape (n_samples, n_params) + Collocation points. + + """ + + raw_data = self.raw_data + + # Guess the closest degree to self.n_samples + def M_uptoMax(deg): + result = [] + for d in range(1, deg+1): + result.append(math.factorial(self.ndim+d) // + (math.factorial(self.ndim) * math.factorial(d))) + return np.array(result) + + guess_Deg = np.where(M_uptoMax(max_deg) > self.n_samples)[0][0] + + c_points = np.zeros((guess_Deg+1, self.ndim)) + + def PolynomialPa(parIdx): + return apoly_construction(self.raw_data[parIdx], max_deg) + + for i in range(self.ndim): + poly_coeffs = PolynomialPa(i)[guess_Deg+1][::-1] + c_points[:, i] = np.trim_zeros(np.roots(poly_coeffs)) + + # Construction of optimal integration points + Prod = itertools.product(np.arange(1, guess_Deg+2), repeat=self.ndim) + sort_dig_unique_combos = np.array(list(filter(lambda x: x, Prod))) + + # Ranking relatively mean + Temp = np.empty(shape=[0, guess_Deg+1]) + for j in range(self.ndim): + s = abs(c_points[:, j]-np.mean(raw_data[j])) + Temp = np.append(Temp, [s], axis=0) + temp = Temp.T + + index_CP = np.sort(temp, axis=0) + sort_cpoints = np.empty((0, guess_Deg+1)) + + for j in range(self.ndim): + sort_cp = c_points[index_CP[:, j], j] + sort_cpoints = np.vstack((sort_cpoints, sort_cp)) + + # Mapping of Combination to Cpoint Combination + sort_unique_combos = np.empty(shape=[0, self.ndim]) + for i in range(len(sort_dig_unique_combos)): + sort_un_comb = [] + for j in range(self.ndim): + SortUC = sort_cpoints[j, sort_dig_unique_combos[i, j]-1] + sort_un_comb.append(SortUC) + sort_uni_comb = np.asarray(sort_un_comb) + sort_unique_combos = np.vstack((sort_unique_combos, sort_uni_comb)) + + # Output the collocation points + if self.sampling_method.lower() == 'lscm': + opt_col_points = sort_unique_combos + else: + opt_col_points = sort_unique_combos[0:self.n_samples] + + return opt_col_points + + # ------------------------------------------------------------------------- + def transform(self, X, params=None, method=None): + """ + Transform the samples via either a Rosenblatt or an isoprobabilistic + transformation. + + Parameters + ---------- + X : array of shape (n_samples,n_params) + Samples to be transformed. + method : string + If transformation method is 'user' transform X, else just pass X. + + Returns + ------- + tr_X: array of shape (n_samples,n_params) + Transformed samples. + + """ + if self.InputObj.Rosenblatt: + self.origJDist, _ = self.build_dist(False) + if method == 'user': + tr_X = self.JDist.inv(self.origJDist.fwd(X.T)).T + else: + # Inverse to original spcace -- generate sample ED + tr_X = self.origJDist.inv(self.JDist.fwd(X.T)).T + else: + # Transform samples via an isoprobabilistic transformation + n_samples, n_params = X.shape + Inputs = self.InputObj + origJDist = self.JDist + poly_types = self.poly_types + + disttypes = [] + for par_i in range(n_params): + disttypes.append(Inputs.Marginals[par_i].dist_type) + + # Pass non-transformed X, if arbitrary PCE is selected. + if None in disttypes or self.input_data_given or self.apce: + return X + + cdfx = np.zeros((X.shape)) + tr_X = np.zeros((X.shape)) + + for par_i in range(n_params): + + # Extract the parameters of the original space + disttype = disttypes[par_i] + if disttype is not None: + dist = origJDist[par_i] + else: + dist = None + polytype = poly_types[par_i] + cdf = np.vectorize(lambda x: dist.cdf(x)) + + # Extract the parameters of the transformation space based on + # polyType + if polytype == 'legendre' or disttype == 'uniform': + # Generate Y_Dists based + params_Y = [-1, 1] + dist_Y = st.uniform(loc=params_Y[0], + scale=params_Y[1]-params_Y[0]) + inv_cdf = np.vectorize(lambda x: dist_Y.ppf(x)) + + elif polytype == 'hermite' or disttype == 'norm': + params_Y = [0, 1] + dist_Y = st.norm(loc=params_Y[0], scale=params_Y[1]) + inv_cdf = np.vectorize(lambda x: dist_Y.ppf(x)) + + elif polytype == 'laguerre' or disttype == 'gamma': + params_Y = [1, params[1]] + dist_Y = st.gamma(loc=params_Y[0], scale=params_Y[1]) + inv_cdf = np.vectorize(lambda x: dist_Y.ppf(x)) + + # Compute CDF_x(X) + cdfx[:, par_i] = cdf(X[:, par_i]) + + # Compute invCDF_y(cdfx) + tr_X[:, par_i] = inv_cdf(cdfx[:, par_i]) + + return tr_X + + # ------------------------------------------------------------------------- + def fit_dist(self, y): + """ + Fits the known distributions to the data. + + Parameters + ---------- + y : array of shape (n_samples) + Data to be fitted. + + Returns + ------- + sel_dist: string + Selected distribution type from `lognorm`, `norm`, `uniform` or + `expon`. + params : list + Parameters corresponding to the selected distibution type. + + """ + dist_results = [] + params = {} + dist_names = ['lognorm', 'norm', 'uniform', 'expon'] + for dist_name in dist_names: + dist = getattr(st, dist_name) + + try: + if dist_name != 'lognorm': + param = dist.fit(y) + else: + param = dist.fit(np.exp(y), floc=0) + except: + param = dist.fit(y) + + params[dist_name] = param + # Applying the Kolmogorov-Smirnov test + D, p = st.kstest(y, dist_name, args=param) + dist_results.append((dist_name, D)) + + # select the best fitted distribution + sel_dist, D = (min(dist_results, key=lambda item: item[1])) + + if sel_dist == 'uniform': + params[sel_dist] = [params[sel_dist][0], params[sel_dist][0] + + params[sel_dist][1]] + if D < 0.05: + return sel_dist, params[sel_dist] + else: + return None, None + + # ------------------------------------------------------------------------- + def _check_ranges(self, theta, ranges): + """ + This function checks if theta lies in the given ranges. + + Parameters + ---------- + theta : array + Proposed parameter set. + ranges : nested list + List of the praremeter ranges. + + Returns + ------- + c : bool + If it lies in the given range, it return True else False. + + """ + c = True + # traverse in the list1 + for i, bounds in enumerate(ranges): + x = theta[i] + # condition check + if x < bounds[0] or x > bounds[1]: + c = False + return c + return c diff --git a/examples/only-model/bayesvalidrox/surrogate_models/exploration.py b/examples/only-model/bayesvalidrox/surrogate_models/exploration.py new file mode 100644 index 0000000000000000000000000000000000000000..cb3ccfcd4a15e26b2292973167d01efedd5a9a62 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/exploration.py @@ -0,0 +1,468 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import numpy as np +from scipy.spatial import distance + + +class Exploration: + """ + Created based on the Surrogate Modeling Toolbox (SUMO) [1]. + + [1] Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T. and Crombecq, K., + 2010. A surrogate modeling and adaptive sampling toolbox for computer + based design. Journal of machine learning research.-Cambridge, Mass., + 11, pp.2051-2055. sumo@sumo.intec.ugent.be - http://sumo.intec.ugent.be + + Attributes + ---------- + MetaModel : obj + MetaModel object. + n_candidate : int + Number of candidate samples. + mc_criterion : str + Selection crieterion. The default is `'mc-intersite-proj-th'`. Another + option is `'mc-intersite-proj'`. + w : int + Number of random points in the domain for each sample of the + training set. + """ + + def __init__(self, MetaModel, n_candidate, + mc_criterion='mc-intersite-proj-th'): + self.MetaModel = MetaModel + self.Marginals = [] + self.n_candidate = n_candidate + self.mc_criterion = mc_criterion + self.w = 100 + + def get_exploration_samples(self): + """ + This function generates candidates to be selected as new design and + their associated exploration scores. + + Returns + ------- + all_candidates : array of shape (n_candidate, n_params) + A list of samples. + exploration_scores: arrays of shape (n_candidate) + Exploration scores. + """ + MetaModel = self.MetaModel + explore_method = MetaModel.ExpDesign.explore_method + + print("\n") + print(f' The {explore_method}-Method is selected as the exploration ' + 'method.') + print("\n") + + if explore_method == 'Voronoi': + # Generate samples using the Voronoi method + all_candidates, exploration_scores = self.get_vornoi_samples() + else: + # Generate samples using the MC method + all_candidates, exploration_scores = self.get_mc_samples() + + return all_candidates, exploration_scores + + # ------------------------------------------------------------------------- + def get_vornoi_samples(self): + """ + This function generates samples based on voronoi cells and their + corresponding scores + + Returns + ------- + new_samples : array of shape (n_candidate, n_params) + A list of samples. + exploration_scores: arrays of shape (n_candidate) + Exploration scores. + """ + + mc_criterion = self.mc_criterion + n_candidate = self.n_candidate + # Get the Old ExpDesign #samples + old_ED_X = self.MetaModel.ExpDesign.X + ndim = old_ED_X.shape[1] + + # calculate error #averageErrors + error_voronoi, all_candidates = self.approximate_voronoi( + self.w, old_ED_X + ) + + # Pick the best candidate point in the voronoi cell + # for each best sample + selected_samples = np.empty((0, ndim)) + bad_samples = [] + + for index in range(len(error_voronoi)): + + # get candidate new samples from voronoi tesselation + candidates = self.closest_points[index] + + # get total number of candidates + n_new_samples = candidates.shape[0] + + # still no candidate samples around this one, skip it! + if n_new_samples == 0: + print('The following sample has been skipped because there ' + 'were no candidate samples around it...') + print(old_ED_X[index]) + bad_samples.append(index) + continue + + # find candidate that is farthest away from any existing sample + max_min_distance = 0 + best_candidate = 0 + min_intersite_dist = np.zeros((n_new_samples)) + min_projected_dist = np.zeros((n_new_samples)) + + for j in range(n_new_samples): + + new_samples = np.vstack((old_ED_X, selected_samples)) + + # find min distorted distance from all other samples + euclidean_dist = self._build_dist_matrix_point( + new_samples, candidates[j], do_sqrt=True) + min_euclidean_dist = np.min(euclidean_dist) + min_intersite_dist[j] = min_euclidean_dist + + # Check if this is the maximum minimum distance from all other + # samples + if min_euclidean_dist >= max_min_distance: + max_min_distance = min_euclidean_dist + best_candidate = j + + # Projected distance + projected_dist = distance.cdist( + new_samples, [candidates[j]], 'chebyshev') + min_projected_dist[j] = np.min(projected_dist) + + if mc_criterion == 'mc-intersite-proj': + weight_euclidean_dist = 0.5 * ((n_new_samples+1)**(1/ndim) - 1) + weight_projected_dist = 0.5 * (n_new_samples+1) + total_dist_scores = weight_euclidean_dist * min_intersite_dist + total_dist_scores += weight_projected_dist * min_projected_dist + + elif mc_criterion == 'mc-intersite-proj-th': + alpha = 0.5 # chosen (tradeoff) + d_min = 2 * alpha / n_new_samples + if any(min_projected_dist < d_min): + candidates = np.delete( + candidates, [min_projected_dist < d_min], axis=0 + ) + total_dist_scores = np.delete( + min_intersite_dist, [min_projected_dist < d_min], + axis=0 + ) + else: + total_dist_scores = min_intersite_dist + else: + raise NameError( + 'The MC-Criterion you requested is not available.' + ) + + # Add the best candidate to the list of new samples + best_candidate = np.argsort(total_dist_scores)[::-1][:n_candidate] + selected_samples = np.vstack( + (selected_samples, candidates[best_candidate]) + ) + + self.new_samples = selected_samples + self.exploration_scores = np.delete(error_voronoi, bad_samples, axis=0) + + return self.new_samples, self.exploration_scores + + # ------------------------------------------------------------------------- + def get_mc_samples(self, all_candidates=None): + """ + This function generates random samples based on Global Monte Carlo + methods and their corresponding scores, based on [1]. + + [1] Crombecq, K., Laermans, E. and Dhaene, T., 2011. Efficient + space-filling and non-collapsing sequential design strategies for + simulation-based modeling. European Journal of Operational Research + , 214(3), pp.683-696. + DOI: https://doi.org/10.1016/j.ejor.2011.05.032 + + Implemented methods to compute scores: + 1) mc-intersite-proj + 2) mc-intersite-proj-th + + Arguments + --------- + all_candidates : array, optional + Samples to compute the scores for. The default is `None`. In this + case, samples will be generated by defined model input marginals. + + Returns + ------- + new_samples : array of shape (n_candidate, n_params) + A list of samples. + exploration_scores: arrays of shape (n_candidate) + Exploration scores. + """ + MetaModel = self.MetaModel + explore_method = MetaModel.ExpDesign.explore_method + mc_criterion = self.mc_criterion + if all_candidates is None: + n_candidate = self.n_candidate + else: + n_candidate = all_candidates.shape[0] + + # Get the Old ExpDesign #samples + old_ED_X = MetaModel.ExpDesign.X + ndim = old_ED_X.shape[1] + + # ----- Compute the number of random points ----- + if all_candidates is None: + # Generate MC Samples + all_candidates = MetaModel.ExpDesign.generate_samples( + self.n_candidate, explore_method + ) + self.all_candidates = all_candidates + + # initialization + min_intersite_dist = np.zeros((n_candidate)) + min_projected_dist = np.zeros((n_candidate)) + + for i, candidate in enumerate(all_candidates): + + # find candidate that is farthest away from any existing sample + maxMinDistance = 0 + + # find min distorted distance from all other samples + euclidean_dist = self._build_dist_matrix_point( + old_ED_X, candidate, do_sqrt=True + ) + min_euclidean_dist = np.min(euclidean_dist) + min_intersite_dist[i] = min_euclidean_dist + + # Check if this is the maximum minimum distance from all other + # samples + if min_euclidean_dist >= maxMinDistance: + maxMinDistance = min_euclidean_dist + + # Projected distance + projected_dist = self._build_dist_matrix_point( + old_ED_X, candidate, 'chebyshev' + ) + min_projected_dist[i] = np.min(projected_dist) + + if mc_criterion == 'mc-intersite-proj': + weight_euclidean_dist = ((n_candidate+1)**(1/ndim) - 1) * 0.5 + weight_projected_dist = (n_candidate+1) * 0.5 + total_dist_scores = weight_euclidean_dist * min_intersite_dist + total_dist_scores += weight_projected_dist * min_projected_dist + + elif mc_criterion == 'mc-intersite-proj-th': + alpha = 0.5 # chosen (tradeoff) + d_min = 2 * alpha / n_candidate + if any(min_projected_dist < d_min): + all_candidates = np.delete( + all_candidates, [min_projected_dist < d_min], axis=0 + ) + total_dist_scores = np.delete( + min_intersite_dist, [min_projected_dist < d_min], axis=0 + ) + else: + total_dist_scores = min_intersite_dist + else: + raise NameError('The MC-Criterion you requested is not available.') + + self.new_samples = all_candidates + self.exploration_scores = total_dist_scores + self.exploration_scores /= np.nansum(total_dist_scores) + + return self.new_samples, self.exploration_scores + + # ------------------------------------------------------------------------- + def approximate_voronoi(self, w, samples): + """ + An approximate (monte carlo) version of Matlab's voronoi command. + + Arguments + --------- + samples : array + Old experimental design to be used as center points for voronoi + cells. + + Returns + ------- + areas : array + An approximation of the voronoi cells' areas. + all_candidates: list of arrays + A list of samples in each voronoi cell. + """ + MetaModel = self.MetaModel + + n_samples = samples.shape[0] + ndim = samples.shape[1] + + # Compute the number of random points + n_points = w * samples.shape[0] + # Generate w random points in the domain for each sample + points = MetaModel.ExpDesign.generate_samples(n_points, 'random') + self.all_candidates = points + + # Calculate the nearest sample to each point + self.areas = np.zeros((n_samples)) + self.closest_points = [np.empty((0, ndim)) for i in range(n_samples)] + + # Compute the minimum distance from all the samples of old_ED_X for + # each test point + for idx in range(n_points): + # calculate the minimum distance + distances = self._build_dist_matrix_point( + samples, points[idx], do_sqrt=True + ) + closest_sample = np.argmin(distances) + + # Add to the voronoi list of the closest sample + self.areas[closest_sample] = self.areas[closest_sample] + 1 + prev_closest_points = self.closest_points[closest_sample] + self.closest_points[closest_sample] = np.vstack( + (prev_closest_points, points[idx]) + ) + + # Divide by the amount of points to get the estimated volume of each + # voronoi cell + self.areas /= n_points + + self.perc = np.max(self.areas * 100) + + self.errors = self.areas + + return self.areas, self.all_candidates + + # ------------------------------------------------------------------------- + def _build_dist_matrix_point(self, samples, point, method='euclidean', + do_sqrt=False): + """ + Calculates the intersite distance of all points in samples from point. + + Parameters + ---------- + samples : array of shape (n_samples, n_params) + The old experimental design. + point : array + A candidate point. + method : str + Distance method. + do_sqrt : bool, optional + Whether to return distances or squared distances. The default is + `False`. + + Returns + ------- + distances : array + Distances. + + """ + distances = distance.cdist(samples, np.array([point]), method) + + # do square root? + if do_sqrt: + return distances + else: + return distances**2 + +#if __name__ == "__main__": +# import scipy.stats as stats +# import matplotlib.pyplot as plt +# import matplotlib as mpl +# import matplotlib.cm as cm +# plt.rc('font', family='sans-serif', serif='Arial') +# plt.rc('figure', figsize = (12, 8)) +# +# def plotter(old_ED_X, all_candidates, exploration_scores): +# global Bounds +# +# from scipy.spatial import Voronoi, voronoi_plot_2d +# vor = Voronoi(old_ED_X) +# +# fig = voronoi_plot_2d(vor) +# +# # find min/max values for normalization +## minima = min(exploration_scores) +## maxima = max(exploration_scores) +## +## # normalize chosen colormap +## norm = mpl.colors.Normalize(vmin=minima, vmax=maxima, clip=True) +## mapper = cm.ScalarMappable(norm=norm, cmap=cm.Blues_r) +## +## for r in range(len(vor.point_region)): +## region = vor.regions[vor.point_region[r]] +## if not -1 in region: +## polygon = [vor.vertices[i] for i in region] +## plt.fill(*zip(*polygon), color=mapper.to_rgba(exploration_scores[r])) +# +# +# ax1 = fig.add_subplot(111) +# +# ax1.scatter(old_ED_X[:,0], old_ED_X[:,1], s=10, c='r', marker="s", label='Old Design Points') +# for i in range(old_ED_X.shape[0]): +# txt = 'p'+str(i+1) +# ax1.annotate(txt, (old_ED_X[i,0],old_ED_X[i,1])) +# +## for i in range(NrofCandGroups): +## Candidates = all_candidates['group_'+str(i+1)] +## ax1.scatter(Candidates[:,0],Candidates[:,1], s=10, c='b', marker="o", label='Design candidates') +# ax1.scatter(all_candidates[:,0],all_candidates[:,1], s=10, c='b', marker="o", label='Design candidates') +# +# ax1.set_xlim(Bounds[0][0], Bounds[0][1]) +# ax1.set_ylim(Bounds[1][0], Bounds[1][1]) +# +# plt.legend(loc='best'); +# plt.show() +# +# def voronoi_volumes(points): +# from scipy.spatial import Voronoi, ConvexHull +# v = Voronoi(points) +# vol = np.zeros(v.npoints) +# +# for i, reg_num in enumerate(v.point_region): +# indices = v.regions[reg_num] +# if -1 in indices: # some regions can be opened +# vol[i] = np.inf +# else: +# +# #print("reg_num={0: 3.3f} X1={1: 3.3f} X2={2: 3.3f}".format(reg_num, v.points[reg_num-1, 0], v.points[reg_num-1, 1])) +# vol[i] = ConvexHull(v.vertices[indices]).volume +# +# print('-'*40) +# for i in range(nrofSamples): +# print("idx={0:d} X1={1: 3.3f} X2={2: 3.3f} Volume={3: 3.3f}".format(i+1, v.points[i, 0], v.points[i, 1], vol[i])) +# +# return vol +# +# NofPa = 2 +# +# Bounds = ((-5,10), (0,15)) +# +# nrofSamples = 10 +# old_ED_X = np.zeros((nrofSamples, NofPa)) +# for idx in range(NofPa): +# Loc = Bounds[idx][0] +# Scale = Bounds[idx][1] - Bounds[idx][0] +# old_ED_X[:,idx] = stats.uniform(loc=Loc, scale=Scale).rvs(size=nrofSamples) +# +# +# nNewCandidate = 40 +# +# # New Function +# volumes = voronoi_volumes(old_ED_X) +# +# +# # SUMO +# Exploration = Exploration(Bounds, old_ED_X, nNewCandidate) +# +# #all_candidates, Score = Exploration.get_vornoi_samples() +# all_candidates, Score = Exploration.get_mc_samples() +# +# print('-'*40) +## for i in range(nrofSamples): +## print("idx={0:d} X1={1: 3.3f} X2={2: 3.3f} Volume={3: 3.3f}".format(i+1, old_ED_X[i,0], old_ED_X[i,1], vornoi.areas[i])) +# +# plotter(old_ED_X, all_candidates, volumes) + diff --git a/examples/only-model/bayesvalidrox/surrogate_models/glexindex.py b/examples/only-model/bayesvalidrox/surrogate_models/glexindex.py new file mode 100644 index 0000000000000000000000000000000000000000..6d9ba3c2f3c02be8e2ca04be6f95779ed0825ad8 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/glexindex.py @@ -0,0 +1,210 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Multi indices for monomial exponents. +Credit: Jonathan Feinberg +https://github.com/jonathf/numpoly/blob/master/numpoly/utils/glexindex.py +""" + +import numpy +import numpy.typing + + +def glexindex(start, stop=None, dimensions=1, cross_truncation=1., + graded=False, reverse=False): + """ + Generate graded lexicographical multi-indices for the monomial exponents. + Args: + start (Union[int, numpy.ndarray]): + The lower order of the indices. If array of int, counts as lower + bound for each axis. + stop (Union[int, numpy.ndarray, None]): + The maximum shape included. If omitted: stop <- start; start <- 0 + If int is provided, set as largest total order. If array of int, + set as upper bound for each axis. + dimensions (int): + The number of dimensions in the expansion. + cross_truncation (float, Tuple[float, float]): + Use hyperbolic cross truncation scheme to reduce the number of + terms in expansion. If two values are provided, first is low bound + truncation, while the latter upper bound. If only one value, upper + bound is assumed. + graded (bool): + Graded sorting, meaning the indices are always sorted by the index + sum. E.g. ``(2, 2, 2)`` has a sum of 6, and will therefore be + consider larger than both ``(3, 1, 1)`` and ``(1, 1, 3)``. + reverse (bool): + Reversed lexicographical sorting meaning that ``(1, 3)`` is + considered smaller than ``(3, 1)``, instead of the opposite. + Returns: + list: + Order list of indices. + Examples: + >>> numpoly.glexindex(4).tolist() + [[0], [1], [2], [3]] + >>> numpoly.glexindex(2, dimensions=2).tolist() + [[0, 0], [1, 0], [0, 1]] + >>> numpoly.glexindex(start=2, stop=3, dimensions=2).tolist() + [[2, 0], [1, 1], [0, 2]] + >>> numpoly.glexindex([1, 2, 3]).tolist() + [[0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 2]] + >>> numpoly.glexindex([1, 2, 3], cross_truncation=numpy.inf).tolist() + [[0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [0, 0, 2], [0, 1, 2]] + """ + if stop is None: + start, stop = 0, start + start = numpy.array(start, dtype=int).flatten() + stop = numpy.array(stop, dtype=int).flatten() + start, stop, _ = numpy.broadcast_arrays(start, stop, numpy.empty(dimensions)) + + cross_truncation = cross_truncation*numpy.ones(2) + indices = _glexindex(start, stop, cross_truncation) + if indices.size: + indices = indices[glexsort(indices.T, graded=graded, reverse=reverse)] + return indices + + +def _glexindex(start, stop, cross_truncation=1.): + """Backend for the glexindex function.""" + # At the beginning the current list of indices just ranges over the + # last dimension. + bound = stop.max() + dimensions = len(start) + start = numpy.clip(start, a_min=0, a_max=None) + dtype = numpy.uint8 if bound < 256 else numpy.uint16 + range_ = numpy.arange(bound, dtype=dtype) + indices = range_[:, numpy.newaxis] + + for idx in range(dimensions-1): + + # Truncate at each step to keep memory usage low + if idx: + indices = indices[cross_truncate(indices, bound-1, cross_truncation[1])] + + # Repeats the current set of indices. + # e.g. [0,1,2] -> [0,1,2,0,1,2,...,0,1,2] + indices = numpy.tile(indices, (bound, 1)) + + # Stretches ranges over the new dimension. + # e.g. [0,1,2] -> [0,0,...,0,1,1,...,1,2,2,...,2] + front = range_.repeat(len(indices)//bound)[:, numpy.newaxis] + + # Puts them two together. + indices = numpy.column_stack((front, indices)) + + # Complete the truncation scheme + if dimensions == 1: + indices = indices[(indices >= start) & (indices < bound)] + else: + lower = cross_truncate(indices, start-1, cross_truncation[0]) + upper = cross_truncate(indices, stop-1, cross_truncation[1]) + indices = indices[lower ^ upper] + + return numpy.array(indices, dtype=int).reshape(-1, dimensions) + + +def cross_truncate(indices, bound, norm): + r""" + Truncate of indices using L_p norm. + .. math: + L_p(x) = \sum_i |x_i/b_i|^p ^{1/p} \leq 1 + where :math:`b_i` are bounds that each :math:`x_i` should follow. + Args: + indices (Sequence[int]): + Indices to be truncated. + bound (int, Sequence[int]): + The bound function for witch the indices can not be larger than. + norm (float, Sequence[float]): + The `p` in the `L_p`-norm. Support includes both `L_0` and `L_inf`. + Returns: + Boolean indices to ``indices`` with True for each index where the + truncation criteria holds. + Examples: + >>> indices = numpy.array(numpy.mgrid[:10, :10]).reshape(2, -1).T + >>> indices[cross_truncate(indices, 2, norm=0)].T + array([[0, 0, 0, 1, 2], + [0, 1, 2, 0, 0]]) + >>> indices[cross_truncate(indices, 2, norm=1)].T + array([[0, 0, 0, 1, 1, 2], + [0, 1, 2, 0, 1, 0]]) + >>> indices[cross_truncate(indices, [0, 1], norm=1)].T + array([[0, 0], + [0, 1]]) + """ + assert norm >= 0, "negative L_p norm not allowed" + bound = numpy.asfarray(bound).flatten()*numpy.ones(indices.shape[1]) + + if numpy.any(bound < 0): + return numpy.zeros((len(indices),), dtype=bool) + + if numpy.any(bound == 0): + out = numpy.all(indices[:, bound == 0] == 0, axis=-1) + if numpy.any(bound): + out &= cross_truncate(indices[:, bound != 0], bound[bound != 0], norm=norm) + return out + + if norm == 0: + out = numpy.sum(indices > 0, axis=-1) <= 1 + out[numpy.any(indices > bound, axis=-1)] = False + elif norm == numpy.inf: + out = numpy.max(indices/bound, axis=-1) <= 1 + else: + out = numpy.sum((indices/bound)**norm, axis=-1)**(1./norm) <= 1 + + assert numpy.all(out[numpy.all(indices == 0, axis=-1)]) + + return out + + +def glexsort( + keys: numpy.typing.ArrayLike, + graded: bool = False, + reverse: bool = False, +) -> numpy.ndarray: + """ + Sort keys using graded lexicographical ordering. + Same as ``numpy.lexsort``, but also support graded and reverse + lexicographical ordering. + Args: + keys: + Values to sort. + graded: + Graded sorting, meaning the indices are always sorted by the index + sum. E.g. ``(2, 2, 2)`` has a sum of 6, and will therefore be + consider larger than both ``(3, 1, 1)`` and ``(1, 1, 3)``. + reverse: + Reverse lexicographical sorting meaning that ``(1, 3)`` is + considered smaller than ``(3, 1)``, instead of the opposite. + Returns: + Array of indices that sort the keys along the specified axis. + Examples: + >>> indices = numpy.array([[0, 0, 0, 1, 2, 1], + ... [1, 2, 0, 0, 0, 1]]) + >>> indices[:, numpy.lexsort(indices)] + array([[0, 1, 2, 0, 1, 0], + [0, 0, 0, 1, 1, 2]]) + >>> indices[:, numpoly.glexsort(indices)] + array([[0, 1, 2, 0, 1, 0], + [0, 0, 0, 1, 1, 2]]) + >>> indices[:, numpoly.glexsort(indices, reverse=True)] + array([[0, 0, 0, 1, 1, 2], + [0, 1, 2, 0, 1, 0]]) + >>> indices[:, numpoly.glexsort(indices, graded=True)] + array([[0, 1, 0, 2, 1, 0], + [0, 0, 1, 0, 1, 2]]) + >>> indices[:, numpoly.glexsort(indices, graded=True, reverse=True)] + array([[0, 0, 1, 0, 1, 2], + [0, 1, 0, 2, 1, 0]]) + >>> indices = numpy.array([4, 5, 6, 3, 2, 1]) + >>> indices[numpoly.glexsort(indices)] + array([1, 2, 3, 4, 5, 6]) + """ + keys_ = numpy.atleast_2d(keys) + if reverse: + keys_ = keys_[::-1] + + indices = numpy.array(numpy.lexsort(keys_)) + if graded: + indices = indices[numpy.argsort( + numpy.sum(keys_[:, indices], axis=0))].T + return indices diff --git a/examples/only-model/bayesvalidrox/surrogate_models/inputs.py b/examples/only-model/bayesvalidrox/surrogate_models/inputs.py new file mode 100644 index 0000000000000000000000000000000000000000..783e82b053cc458be712b588b7fde3a0f3c8decb --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/inputs.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +class Input: + """ + A class to define the uncertain input parameters. + + Attributes + ---------- + Marginals : obj + Marginal objects. See `inputs.Marginal`. + Rosenblatt : bool + If Rossenblatt transformation is required for the dependent input + parameters. + + Examples + ------- + Marginals can be defined as following: + + >>> Inputs.add_marginals() + >>> Inputs.Marginals[0].name = 'X_1' + >>> Inputs.Marginals[0].dist_type = 'uniform' + >>> Inputs.Marginals[0].parameters = [-5, 5] + + If there is no common data is avaliable, the input data can be given + as following: + + >>> Inputs.add_marginals() + >>> Inputs.Marginals[0].name = 'X_1' + >>> Inputs.Marginals[0].input_data = input_data + """ + poly_coeffs_flag = True + + def __init__(self): + self.Marginals = [] + self.Rosenblatt = False + + def add_marginals(self): + """ + Adds a new Marginal object to the input object. + + Returns + ------- + None. + + """ + self.Marginals.append(Marginal()) + + +# Nested class +class Marginal: + """ + An object containing the specifications of the marginals for each uncertain + parameter. + + Attributes + ---------- + name : string + Name of the parameter. The default is `'$x_1$'`. + dist_type : string + Name of the distribution. The default is `None`. + parameters : list + List of the parameters corresponding to the distribution type. The + default is `None`. + input_data : array + Available input data. The default is `[]`. + moments : list + List of the moments. + """ + + def __init__(self): + self.name = '$x_1$' + self.dist_type = None + self.parameters = None + self.input_data = [] + self.moments = None diff --git a/examples/only-model/bayesvalidrox/surrogate_models/meta_model_engine.py b/examples/only-model/bayesvalidrox/surrogate_models/meta_model_engine.py new file mode 100644 index 0000000000000000000000000000000000000000..7ca9e9cca220f2efa4c964a067a8f839cd188e1a --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/meta_model_engine.py @@ -0,0 +1,2175 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Jan 28 09:21:18 2022 + +@author: farid +""" +import numpy as np +from scipy import stats, signal, linalg, sparse +from scipy.spatial import distance +from copy import deepcopy, copy +from tqdm import tqdm +import scipy.optimize as opt +from sklearn.metrics import mean_squared_error +import multiprocessing +import matplotlib.pyplot as plt +import sys +import os +import gc +import seaborn as sns +from joblib import Parallel, delayed + +import bayesvalidrox +from .exploration import Exploration +from bayesvalidrox.bayes_inference.bayes_inference import BayesInference +from bayesvalidrox.bayes_inference.discrepancy import Discrepancy +import pandas as pd + + +class MetaModelEngine(): + """ Sequential experimental design + This class provieds method for trainig the meta-model in an iterative + manners. + The main method to execute the task is `train_seq_design`, which + recieves a model object and returns the trained metamodel. + """ + + def __init__(self, meta_model_opts): + self.MetaModel = meta_model_opts + + # ------------------------------------------------------------------------- + def run(self): + + Model = self.MetaModel.ModelObj + self.MetaModel.n_params = len(self.MetaModel.input_obj.Marginals) + self.MetaModel.ExpDesignFlag = 'normal' + # --- Prepare pce degree --- + if self.MetaModel.meta_model_type.lower() == 'pce': + if type(self.MetaModel.pce_deg) is not np.ndarray: + self.MetaModel.pce_deg = np.array(self.MetaModel.pce_deg) + + if self.MetaModel.ExpDesign.method == 'normal': + self.MetaModel.ExpDesignFlag = 'normal' + self.MetaModel.train_norm_design(parallel = False) + + elif self.MetaModel.ExpDesign.method == 'sequential': + self.train_seq_design() + else: + raise Exception("The method for experimental design you requested" + " has not been implemented yet.") + + # Zip the model run directories + if self.MetaModel.ModelObj.link_type.lower() == 'pylink' and\ + self.MetaModel.ExpDesign.sampling_method.lower() != 'user': + Model.zip_subdirs(Model.name, f'{Model.name}_') + + # ------------------------------------------------------------------------- + def train_seq_design(self): + """ + Starts the adaptive sequential design for refining the surrogate model + by selecting training points in a sequential manner. + + Returns + ------- + MetaModel : object + Meta model object. + + """ + # Set model to have shorter call + Model = self.MetaModel.ModelObj + # MetaModel = self.MetaModel + self.Model = Model + + # Initialization + self.MetaModel.SeqModifiedLOO = {} + self.MetaModel.seqValidError = {} + self.MetaModel.SeqBME = {} + self.MetaModel.SeqKLD = {} + self.MetaModel.SeqDistHellinger = {} + self.MetaModel.seqRMSEMean = {} + self.MetaModel.seqRMSEStd = {} + self.MetaModel.seqMinDist = [] + + # Determine the metamodel type + if self.MetaModel.meta_model_type.lower() != 'gpe': + pce = True + else: + pce = False + # If given, use mc reference data + mc_ref = True if bool(Model.mc_reference) else False + if mc_ref: + Model.read_mc_reference() + + # if valid_samples not defined, do so now + if not hasattr(self.MetaModel, 'valid_samples'): + self.MetaModel.valid_samples = [] + self.MetaModel.valid_model_runs = [] + self.MetaModel.valid_likelihoods = [] + + # Get the parameters + max_n_samples = self.MetaModel.ExpDesign.n_max_samples + mod_LOO_threshold = self.MetaModel.ExpDesign.mod_LOO_threshold + n_canddidate = self.MetaModel.ExpDesign.n_canddidate + post_snapshot = self.MetaModel.ExpDesign.post_snapshot + n_replication = self.MetaModel.ExpDesign.n_replication + util_func = self.MetaModel.ExpDesign.util_func + output_name = Model.Output.names + validError = None + # Handle if only one UtilityFunctions is provided + if not isinstance(util_func, list): + util_func = [self.MetaModel.ExpDesign.util_func] + + # Read observations or MCReference + if len(Model.observations) != 0 or Model.meas_file is not None: + self.observations = Model.read_observation() + obs_data = self.observations + else: + obs_data = [] + TotalSigma2 = {} + + # TODO: ---------- Initial self.MetaModel ---------- + # First run MetaModel on non-sequential design + self.MetaModel.train_norm_design(parallel = False) + initMetaModel = deepcopy(self.MetaModel) + + # Validation error if validation set is provided. - use as initial errors + if self.MetaModel.valid_model_runs: + init_rmse, init_valid_error = self.__validError(initMetaModel) + init_valid_error = list(init_valid_error.values()) + else: + init_rmse = None + + # Check if discrepancy is provided + if len(obs_data) != 0 and hasattr(self.MetaModel, 'Discrepancy'): + TotalSigma2 = self.MetaModel.Discrepancy.parameters + + # Calculate the initial BME + out = self.__BME_Calculator( + initMetaModel, obs_data, TotalSigma2, init_rmse) + init_BME, init_KLD, init_post, init_likes, init_dist_hellinger = out + print(f"\nInitial BME: {init_BME:.2f}") + print(f"Initial KLD: {init_KLD:.2f}") + + # Posterior snapshot (initial) + if post_snapshot: + parNames = self.MetaModel.ExpDesign.par_names + print('Posterior snapshot (initial) is being plotted...') + self.__posteriorPlot(init_post, parNames, 'SeqPosterior_init') + + # Check the convergence of the Mean & Std + if mc_ref and pce: + init_rmse_mean, init_rmse_std = self.__error_Mean_Std() + print(f"Initial Mean and Std error: {init_rmse_mean:.2f}," + f" {init_rmse_std:.2f}") + + # Read the initial experimental design + # TODO: this sequential, or the non-sequential samples?? + Xinit = initMetaModel.ExpDesign.X + init_n_samples = len(initMetaModel.ExpDesign.X) + initYprev = initMetaModel.ModelOutputDict + initLCerror = initMetaModel.LCerror + n_itrs = max_n_samples - init_n_samples + + # Read the initial ModifiedLOO + if pce: + Scores_all, varExpDesignY = [], [] + for out_name in output_name: + y = self.MetaModel.ExpDesign.Y[out_name] + Scores_all.append(list( + self.MetaModel.score_dict['b_1'][out_name].values())) + if self.MetaModel.dim_red_method.lower() == 'pca': + pca = self.MetaModel.pca['b_1'][out_name] + components = pca.transform(y) + varExpDesignY.append(np.var(components, axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + + Scores = [item for sublist in Scores_all for item in sublist] + weights = [item for sublist in varExpDesignY for item in sublist] + init_mod_LOO = [np.average([1-score for score in Scores], + weights=weights)] + + prevMetaModel_dict = {} + # Replicate the sequential design + for repIdx in range(n_replication): # TODO: what does this do? + print(f'\n>>>> Replication: {repIdx+1}<<<<') + + # To avoid changes ub original aPCE object + self.MetaModel.ExpDesign.X = Xinit + self.MetaModel.ExpDesign.Y = initYprev + self.MetaModel.LCerror = initLCerror + + for util_f in util_func: # TODO: recheck choices for this + print(f'\n>>>> Utility Function: {util_f} <<<<') + # To avoid changes ub original aPCE object + self.MetaModel.ExpDesign.X = Xinit + self.MetaModel.ExpDesign.Y = initYprev + self.MetaModel.LCerror = initLCerror + + # Set the experimental design + Xprev = Xinit + total_n_samples = init_n_samples + Yprev = initYprev + + Xfull = [] + Yfull = [] + + # Store the initial ModifiedLOO + if pce: + print("\nInitial ModifiedLOO:", init_mod_LOO) + SeqModifiedLOO = np.array(init_mod_LOO) + + if len(self.MetaModel.valid_model_runs) != 0: + SeqValidError = np.array(init_valid_error) + + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.array([init_BME]) + SeqKLD = np.array([init_KLD]) + SeqDistHellinger = np.array([init_dist_hellinger]) + + if mc_ref and pce: + seqRMSEMean = np.array([init_rmse_mean]) + seqRMSEStd = np.array([init_rmse_std]) + + # ------- Start Sequential Experimental Design ------- + postcnt = 1 + for itr_no in range(1, n_itrs+1): + print(f'\n>>>> Iteration number {itr_no} <<<<') + + # Save the metamodel prediction before updating + prevMetaModel_dict[itr_no] = deepcopy(self.MetaModel) # Write last MetaModel here + if itr_no > 1: + pc_model = prevMetaModel_dict[itr_no-1] + self._y_hat_prev, _ = pc_model.eval_metamodel( # What's the use of this here?? + samples=Xfull[-1].reshape(1, -1)) + del prevMetaModel_dict[itr_no-1] # Delete second to last metamodel here? + + # Optimal Bayesian Design + self.MetaModel.ExpDesignFlag = 'sequential' + Xnew, updatedPrior = self.opt_SeqDesign(TotalSigma2, # TODO: check in this!! + n_canddidate, + util_f) + S = np.min(distance.cdist(Xinit, Xnew, 'euclidean')) + self.MetaModel.seqMinDist.append(S) + print(f"\nmin Dist from OldExpDesign: {S:2f}") + print("\n") + + # Evaluate the full model response at the new sample + Ynew, _ = Model.run_model_parallel( + Xnew, prevRun_No=total_n_samples + ) + total_n_samples += Xnew.shape[0] + + # ------ Plot the surrogate model vs Origninal Model ------ + if hasattr(self.MetaModel, 'adapt_verbose') and \ + self.MetaModel.adapt_verbose: + from .adaptPlot import adaptPlot + y_hat, std_hat = self.MetaModel.eval_metamodel( + samples=Xnew + ) + adaptPlot( + self.MetaModel, Ynew, y_hat, std_hat, + plotED=False + ) + + # -------- Retrain the surrogate model ------- + # Extend new experimental design + Xfull = np.vstack((Xprev, Xnew)) + + # Updating experimental design Y + for out_name in output_name: + Yfull = np.vstack((Yprev[out_name], Ynew[out_name])) + self.MetaModel.ModelOutputDict[out_name] = Yfull + + # Pass new design to the metamodel object + self.MetaModel.ExpDesign.sampling_method = 'user' + self.MetaModel.ExpDesign.X = Xfull + self.MetaModel.ExpDesign.Y = self.MetaModel.ModelOutputDict + + # Save the Experimental Design for next iteration + Xprev = Xfull + Yprev = self.MetaModel.ModelOutputDict + + # Pass the new prior as the input + self.MetaModel.input_obj.poly_coeffs_flag = False + if updatedPrior is not None: + self.MetaModel.input_obj.poly_coeffs_flag = True + print("updatedPrior:", updatedPrior.shape) + # Arbitrary polynomial chaos + for i in range(updatedPrior.shape[1]): + self.MetaModel.input_obj.Marginals[i].dist_type = None + x = updatedPrior[:, i] + self.MetaModel.input_obj.Marginals[i].raw_data = x + + # Train the surrogate model for new ExpDesign + self.MetaModel.train_norm_design(parallel=False) + + # -------- Evaluate the retrained surrogate model ------- + # Extract Modified LOO from Output + if pce: + Scores_all, varExpDesignY = [], [] + for out_name in output_name: + y = self.MetaModel.ExpDesign.Y[out_name] + Scores_all.append(list( + self.MetaModel.score_dict['b_1'][out_name].values())) + if self.MetaModel.dim_red_method.lower() == 'pca': + pca = self.MetaModel.pca['b_1'][out_name] + components = pca.transform(y) + varExpDesignY.append(np.var(components, + axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + Scores = [item for sublist in Scores_all for item + in sublist] + weights = [item for sublist in varExpDesignY for item + in sublist] + ModifiedLOO = [np.average( + [1-score for score in Scores], weights=weights)] + + print('\n') + print(f"Updated ModifiedLOO {util_f}:\n", ModifiedLOO) + print('\n') + + # Compute the validation error + if self.MetaModel.valid_model_runs: + rmse, validError = self.__validError(self.MetaModel) + ValidError = list(validError.values()) + else: + rmse = None + + # Store updated ModifiedLOO + if pce: + SeqModifiedLOO = np.vstack( + (SeqModifiedLOO, ModifiedLOO)) + if len(self.MetaModel.valid_model_runs) != 0: + SeqValidError = np.vstack( + (SeqValidError, ValidError)) + # -------- Caclulation of BME as accuracy metric ------- + # Check if data is provided + if len(obs_data) != 0: + # Calculate the initial BME + out = self.__BME_Calculator(self.MetaModel, obs_data, + TotalSigma2, rmse) + BME, KLD, Posterior, likes, DistHellinger = out + print('\n') + print(f"Updated BME: {BME:.2f}") + print(f"Updated KLD: {KLD:.2f}") + print('\n') + + # Plot some snapshots of the posterior + step_snapshot = self.MetaModel.ExpDesign.step_snapshot + if post_snapshot and postcnt % step_snapshot == 0: + parNames = self.MetaModel.ExpDesign.par_names + print('Posterior snapshot is being plotted...') + self.__posteriorPlot(Posterior, parNames, + f'SeqPosterior_{postcnt}') + postcnt += 1 + + # Check the convergence of the Mean&Std + if mc_ref and pce: + print('\n') + RMSE_Mean, RMSE_std = self.__error_Mean_Std() + print(f"Updated Mean and Std error: {RMSE_Mean:.2f}, " + f"{RMSE_std:.2f}") + print('\n') + + # Store the updated BME & KLD + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.vstack((SeqBME, BME)) + SeqKLD = np.vstack((SeqKLD, KLD)) + SeqDistHellinger = np.vstack((SeqDistHellinger, + DistHellinger)) + if mc_ref and pce: + seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean)) + seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std)) + + if pce and any(LOO < mod_LOO_threshold + for LOO in ModifiedLOO): + break + + # Clean up + if len(obs_data) != 0: + del out + print() + print('-'*50) + print() + + # Store updated ModifiedLOO and BME in dictonary + strKey = f'{util_f}_rep_{repIdx+1}' + if pce: + self.MetaModel.SeqModifiedLOO[strKey] = SeqModifiedLOO + if len(self.MetaModel.valid_model_runs) != 0: + self.MetaModel.seqValidError[strKey] = SeqValidError + + # Check if data is provided + if len(obs_data) != 0: + self.MetaModel.SeqBME[strKey] = SeqBME + self.MetaModel.SeqKLD[strKey] = SeqKLD + if hasattr(self.MetaModel, 'valid_likelihoods') and \ + self.MetaModel.valid_likelihoods: + self.MetaModel.SeqDistHellinger[strKey] = SeqDistHellinger + if mc_ref and pce: + self.MetaModel.seqRMSEMean[strKey] = seqRMSEMean + self.MetaModel.seqRMSEStd[strKey] = seqRMSEStd + + # return self.MetaModel + + # ------------------------------------------------------------------------- + def util_VarBasedDesign(self, X_can, index, util_func='Entropy'): + """ + Computes the exploitation scores based on: + active learning MacKay(ALM) and active learning Cohn (ALC) + Paper: Sequential Design with Mutual Information for Computer + Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas + (2016) + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + index : int + Model output index. + UtilMethod : string, optional + Exploitation utility function. The default is 'Entropy'. + + Returns + ------- + float + Score. + + """ + MetaModel = self.MetaModel + ED_X = MetaModel.ExpDesign.X + out_dict_y = MetaModel.ExpDesign.Y + out_names = MetaModel.ModelObj.Output.names + + # Run the Metamodel for the candidate + X_can = X_can.reshape(1, -1) + Y_PC_can, std_PC_can = MetaModel.eval_metamodel(samples=X_can) + + if util_func.lower() == 'alm': + # ----- Entropy/MMSE/active learning MacKay(ALM) ----- + # Compute perdiction variance of the old model + canPredVar = {key: std_PC_can[key]**2 for key in out_names} + + varPCE = np.zeros((len(out_names), X_can.shape[0])) + for KeyIdx, key in enumerate(out_names): + varPCE[KeyIdx] = np.max(canPredVar[key], axis=1) + score = np.max(varPCE, axis=0) + + elif util_func.lower() == 'eigf': + # ----- Expected Improvement for Global fit ----- + # Find closest EDX to the candidate + distances = distance.cdist(ED_X, X_can, 'euclidean') + index = np.argmin(distances) + + # Compute perdiction error and variance of the old model + predError = {key: Y_PC_can[key] for key in out_names} + canPredVar = {key: std_PC_can[key]**2 for key in out_names} + + # Compute perdiction error and variance of the old model + # Eq (5) from Liu et al.(2018) + EIGF_PCE = np.zeros((len(out_names), X_can.shape[0])) + for KeyIdx, key in enumerate(out_names): + residual = predError[key] - out_dict_y[key][int(index)] + var = canPredVar[key] + EIGF_PCE[KeyIdx] = np.max(residual**2 + var, axis=1) + score = np.max(EIGF_PCE, axis=0) + + return -1 * score # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def util_BayesianActiveDesign(self, y_hat, std, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian active design criterion (var). + + It is based on the following paper: + Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak. + "Bayesian3 active learning for the gaussian process emulator using + information theory." Entropy 22, no. 8 (2020): 890. + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + BAL design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # Get the data + obs_data = self.observations + n_obs = self.Model.n_obs + mc_size = 10000 + + # Sample a distribution for a normal dist + # with Y_mean_can as the mean and Y_std_can as std. + Y_MC, std_MC = {}, {} + logPriorLikelihoods = np.zeros((mc_size)) + for key in list(y_hat): + cov = np.diag(std[key]**2) + rv = stats.multivariate_normal(mean=y_hat[key], cov=cov) + Y_MC[key] = rv.rvs(size=mc_size) + logPriorLikelihoods += rv.logpdf(Y_MC[key]) + std_MC[key] = np.zeros((mc_size, y_hat[key].shape[0])) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self.__normpdf(Y_MC, std_MC, obs_data, sigma2Dict) + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, mc_size)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods), dtype=np.longdouble) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + # Utility function Eq.2 in Ref. (2) + # Posterior covariance matrix after observing data y + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # TODO: Calculate the correction factor for BME + # BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can, + # ObservationData, sigma2Dict) + # BME += BMECorrFactor + # Haun et al implementation + # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + U_J_d = postExpLikelihoods - logBME + + # Marginal log likelihood + elif var == 'BME': + U_J_d = np.nanmean(likelihoods) + + # Entropy-based information gain + elif var == 'infEntropy': + logBME = np.log(np.nanmean(likelihoods)) + infEntropy = logBME - postExpPrior - postExpLikelihoods + U_J_d = infEntropy * -1 # -1 for minimization + + # Bayesian information criterion + elif var == 'BIC': + coeffs = self.MetaModel.coeffs_dict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxL = np.nanmax(likelihoods) + U_J_d = -2 * np.log(maxL) + np.log(n_obs) * nModelParams + + # Akaike information criterion + elif var == 'AIC': + coeffs = self.MetaModel.coeffs_dict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxlogL = np.log(np.nanmax(likelihoods)) + AIC = -2 * maxlogL + 2 * nModelParams + # 2 * nModelParams * (nModelParams+1) / (n_obs-nModelParams-1) + penTerm = 0 + U_J_d = 1*(AIC + penTerm) + + # Deviance information criterion + elif var == 'DIC': + # D_theta_bar = np.mean(-2 * Likelihoods) + N_star_p = 0.5 * np.var(np.log(likelihoods[likelihoods != 0])) + Likelihoods_theta_mean = self.__normpdf( + y_hat, std, obs_data, sigma2Dict + ) + DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p + + U_J_d = DIC + + else: + print('The algorithm you requested has not been implemented yet!') + + # Handle inf and NaN (replace by zero) + if np.isnan(U_J_d) or U_J_d == -np.inf or U_J_d == np.inf: + U_J_d = 0.0 + + # Clear memory + del likelihoods + del Y_MC + del std_MC + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def update_metamodel(self, MetaModel, output, y_hat_can, univ_p_val, index, + new_pca=False): + BasisIndices = MetaModel.basis_dict[output]["y_"+str(index+1)] + clf_poly = MetaModel.clf_poly[output]["y_"+str(index+1)] + Mn = clf_poly.coef_ + Sn = clf_poly.sigma_ + beta = clf_poly.alpha_ + active = clf_poly.active_ + Psi = self.MetaModel.create_psi(BasisIndices, univ_p_val) + + Sn_new_inv = np.linalg.inv(Sn) + Sn_new_inv += beta * np.dot(Psi[:, active].T, Psi[:, active]) + Sn_new = np.linalg.inv(Sn_new_inv) + + Mn_new = np.dot(Sn_new_inv, Mn[active]).reshape(-1, 1) + Mn_new += beta * np.dot(Psi[:, active].T, y_hat_can) + Mn_new = np.dot(Sn_new, Mn_new).flatten() + + # Compute the old and new moments of PCEs + mean_old = Mn[0] + mean_new = Mn_new[0] + std_old = np.sqrt(np.sum(np.square(Mn[1:]))) + std_new = np.sqrt(np.sum(np.square(Mn_new[1:]))) + + # Back transformation if PCA is selected. + if MetaModel.dim_red_method.lower() == 'pca': + old_pca = MetaModel.pca[output] + mean_old = old_pca.mean_[index] + mean_old += np.sum(mean_old * old_pca.components_[:, index]) + std_old = np.sqrt(np.sum(std_old**2 * + old_pca.components_[:, index]**2)) + mean_new = new_pca.mean_[index] + mean_new += np.sum(mean_new * new_pca.components_[:, index]) + std_new = np.sqrt(np.sum(std_new**2 * + new_pca.components_[:, index]**2)) + # print(f"mean_old: {mean_old:.2f} mean_new: {mean_new:.2f}") + # print(f"std_old: {std_old:.2f} std_new: {std_new:.2f}") + # Store the old and new moments of PCEs + results = { + 'mean_old': mean_old, + 'mean_new': mean_new, + 'std_old': std_old, + 'std_new': std_new + } + return results + + # ------------------------------------------------------------------------- + def util_BayesianDesign_old(self, X_can, X_MC, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian sequential design criterion (var). + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + Bayesian design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # To avoid changes ub original aPCE object + Model = self.Model + MetaModel = deepcopy(self.MetaModel) + old_EDY = MetaModel.ExpDesign.Y + + # Evaluate the PCE metamodels using the candidate design + Y_PC_can, Y_std_can = self.MetaModel.eval_metamodel( + samples=np.array([X_can]) + ) + + # Generate y from posterior predictive + m_size = 100 + y_hat_samples = {} + for idx, key in enumerate(Model.Output.names): + means, stds = Y_PC_can[key][0], Y_std_can[key][0] + y_hat_samples[key] = np.random.multivariate_normal( + means, np.diag(stds), m_size) + + # Create the SparseBayes-based PCE metamodel: + MetaModel.input_obj.poly_coeffs_flag = False + univ_p_val = self.MetaModel.univ_basis_vals(X_can) + G_n_m_all = np.zeros((m_size, len(Model.Output.names), Model.n_obs)) + + for i in range(m_size): + for idx, key in enumerate(Model.Output.names): + if MetaModel.dim_red_method.lower() == 'pca': + # Equal number of components + new_outputs = np.vstack( + (old_EDY[key], y_hat_samples[key][i]) + ) + new_pca, _ = MetaModel.pca_transformation(new_outputs) + target = new_pca.transform( + y_hat_samples[key][i].reshape(1, -1) + )[0] + else: + new_pca, target = False, y_hat_samples[key][i] + + for j in range(len(target)): + + # Update surrogate + result = self.update_metamodel( + MetaModel, key, target[j], univ_p_val, j, new_pca) + + # Compute Expected Information Gain (Eq. 39) + G_n_m = np.log(result['std_old']/result['std_new']) - 1./2 + G_n_m += result['std_new']**2 / (2*result['std_old']**2) + G_n_m += (result['mean_new'] - result['mean_old'])**2 /\ + (2*result['std_old']**2) + + G_n_m_all[i, idx, j] = G_n_m + + U_J_d = G_n_m_all.mean(axis=(1, 2)).mean() + return -1 * U_J_d + + # ------------------------------------------------------------------------- + def util_BayesianDesign(self, X_can, X_MC, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian sequential design criterion (var). + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + Bayesian design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # To avoid changes ub original aPCE object + MetaModel = self.MetaModel + out_names = MetaModel.ModelObj.Output.names + if X_can.ndim == 1: + X_can = X_can.reshape(1, -1) + + # Compute the mean and std based on the MetaModel + # pce_means, pce_stds = self._compute_pce_moments(MetaModel) + if var == 'ALC': + Y_MC, Y_MC_std = MetaModel.eval_metamodel(samples=X_MC) + + # Old Experimental design + oldExpDesignX = MetaModel.ExpDesign.X + oldExpDesignY = MetaModel.ExpDesign.Y + + # Evaluate the PCE metamodels at that location ??? + Y_PC_can, Y_std_can = MetaModel.eval_metamodel(samples=X_can) + PCE_Model_can = deepcopy(MetaModel) + # Add the candidate to the ExpDesign + NewExpDesignX = np.vstack((oldExpDesignX, X_can)) + + NewExpDesignY = {} + for key in oldExpDesignY.keys(): + NewExpDesignY[key] = np.vstack( + (oldExpDesignY[key], Y_PC_can[key]) + ) + + PCE_Model_can.ExpDesign.sampling_method = 'user' + PCE_Model_can.ExpDesign.X = NewExpDesignX + PCE_Model_can.ModelOutputDict = NewExpDesignY + PCE_Model_can.ExpDesign.Y = NewExpDesignY + + # Train the model for the observed data using x_can + PCE_Model_can.input_obj.poly_coeffs_flag = False + PCE_Model_can.train_norm_design(parallel=False) + + # Set the ExpDesign to its original values + PCE_Model_can.ExpDesign.X = oldExpDesignX + PCE_Model_can.ModelOutputDict = oldExpDesignY + PCE_Model_can.ExpDesign.Y = oldExpDesignY + + if var.lower() == 'mi': + # Mutual information based on Krause et al + # Adapted from Beck & Guillas (MICE) paper + _, std_PC_can = PCE_Model_can.eval_metamodel(samples=X_can) + std_can = {key: std_PC_can[key] for key in out_names} + + std_old = {key: Y_std_can[key] for key in out_names} + + varPCE = np.zeros((len(out_names))) + for i, key in enumerate(out_names): + varPCE[i] = np.mean(std_old[key]**2/std_can[key]**2) + score = np.mean(varPCE) + + return -1 * score + + elif var.lower() == 'alc': + # Active learning based on Gramyc and Lee + # Adaptive design and analysis of supercomputer experiments Techno- + # metrics, 51 (2009), pp. 130–145. + + # Evaluate the MetaModel at the given samples + Y_MC_can, Y_MC_std_can = PCE_Model_can.eval_metamodel(samples=X_MC) + + # Compute the score + score = [] + for i, key in enumerate(out_names): + pce_var = Y_MC_std_can[key]**2 + pce_var_can = Y_MC_std[key]**2 + score.append(np.mean(pce_var-pce_var_can, axis=0)) + score = np.mean(score) + + return -1 * score + + # ---------- Inner MC simulation for computing Utility Value ---------- + # Estimation of the integral via Monte Varlo integration + MCsize = X_MC.shape[0] + ESS = 0 + + while ((ESS > MCsize) or (ESS < 1)): + + # Enriching Monte Carlo samples if need be + if ESS != 0: + X_MC = self.MetaModel.ExpDesign.generate_samples( + MCsize, 'random' + ) + + # Evaluate the MetaModel at the given samples + Y_MC, std_MC = PCE_Model_can.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self.__normpdf( + Y_MC, std_MC, self.observations, sigma2Dict + ) + + # Check the Effective Sample Size (1<ESS<MCsize) + ESS = 1 / np.sum(np.square(likelihoods/np.sum(likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + print("--- increasing MC size---") + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # -------------------- Utility functions -------------------- + # Utility function Eq.2 in Ref. (2) + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods, dtype=np.longdouble)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Haun et al implementation + U_J_d = np.mean(np.log(likelihoods[likelihoods != 0]) - logBME) + + # U_J_d = np.sum(G_n_m_all) + # Ryan et al (2014) implementation + # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0]) + # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME + + # U_J_d = postExpLikelihoods - logBME + + # Marginal likelihood + elif var == 'BME': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + U_J_d = logBME + + # Bayes risk likelihood + elif var == 'BayesRisk': + + U_J_d = -1 * np.var(likelihoods) + + # Entropy-based information gain + elif var == 'infEntropy': + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postLikelihoods /= np.nansum(likelihoods[accepted]) + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + infEntropy = logBME - postExpPrior - postExpLikelihoods + + U_J_d = infEntropy * -1 # -1 for minimization + + # D-Posterior-precision + elif var == 'DPP': + X_Posterior = X_MC[accepted] + # covariance of the posterior parameters + U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior))) + + # A-Posterior-precision + elif var == 'APP': + X_Posterior = X_MC[accepted] + # trace of the posterior parameters + U_J_d = -np.log(np.trace(np.cov(X_Posterior))) + + else: + print('The algorithm you requested has not been implemented yet!') + + # Clear memory + del likelihoods + del Y_MC + del std_MC + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def subdomain(self, Bounds, n_new_samples): + """ + Divides a domain defined by Bounds into sub domains. + + Parameters + ---------- + Bounds : list of tuples + List of lower and upper bounds. + n_new_samples : TYPE + DESCRIPTION. + + Returns + ------- + Subdomains : TYPE + DESCRIPTION. + + """ + n_params = self.MetaModel.n_params + n_subdomains = n_new_samples + 1 + LinSpace = np.zeros((n_params, n_subdomains)) + + for i in range(n_params): + LinSpace[i] = np.linspace(start=Bounds[i][0], stop=Bounds[i][1], + num=n_subdomains) + Subdomains = [] + for k in range(n_subdomains-1): + mylist = [] + for i in range(n_params): + mylist.append((LinSpace[i, k+0], LinSpace[i, k+1])) + Subdomains.append(tuple(mylist)) + + return Subdomains + + # ------------------------------------------------------------------------- + def run_util_func(self, method, candidates, index, sigma2Dict=None, + var=None, X_MC=None): + """ + Runs the utility function based on the given method. + + Parameters + ---------- + method : string + Exploitation method: `VarOptDesign`, `BayesActDesign` and + `BayesOptDesign`. + candidates : array of shape (n_samples, n_params) + All candidate parameter sets. + index : int + ExpDesign index. + sigma2Dict : dict, optional + A dictionary containing the measurement errors (sigma^2). The + default is None. + var : string, optional + Utility function. The default is None. + X_MC : TYPE, optional + DESCRIPTION. The default is None. + + Returns + ------- + index : TYPE + DESCRIPTION. + List + Scores. + + """ + + if method.lower() == 'varoptdesign': + # U_J_d = self.util_VarBasedDesign(candidates, index, var) + U_J_d = np.zeros((candidates.shape[0])) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="varoptdesign"): + U_J_d[idx] = self.util_VarBasedDesign(X_can, index, var) + + elif method.lower() == 'bayesactdesign': + NCandidate = candidates.shape[0] + U_J_d = np.zeros((NCandidate)) + # Evaluate all candidates + y_can, std_can = self.MetaModel.eval_metamodel(samples=candidates) + # loop through candidates + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="BAL Design"): + y_hat = {key: items[idx] for key, items in y_can.items()} + std = {key: items[idx] for key, items in std_can.items()} + U_J_d[idx] = self.util_BayesianActiveDesign( + y_hat, std, sigma2Dict, var) + + elif method.lower() == 'bayesoptdesign': + NCandidate = candidates.shape[0] + U_J_d = np.zeros((NCandidate)) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="OptBayesianDesign"): + U_J_d[idx] = self.util_BayesianDesign(X_can, X_MC, sigma2Dict, + var) + return (index, -1 * U_J_d) + + # ------------------------------------------------------------------------- + def dual_annealing(self, method, Bounds, sigma2Dict, var, Run_No, + verbose=False): + """ + Exploration algorithim to find the optimum parameter space. + + Parameters + ---------- + method : string + Exploitation method: `VarOptDesign`, `BayesActDesign` and + `BayesOptDesign`. + Bounds : list of tuples + List of lower and upper boundaries of parameters. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + Run_No : int + Run number. + verbose : bool, optional + Print out a summary. The default is False. + + Returns + ------- + Run_No : int + Run number. + array + Optimial candidate. + + """ + + Model = self.Model + max_func_itr = self.MetaModel.ExpDesign.max_func_itr + + if method == 'VarOptDesign': + Res_Global = opt.dual_annealing(self.util_VarBasedDesign, + bounds=Bounds, + args=(Model, var), + maxfun=max_func_itr) + + elif method == 'BayesOptDesign': + Res_Global = opt.dual_annealing(self.util_BayesianDesign, + bounds=Bounds, + args=(Model, sigma2Dict, var), + maxfun=max_func_itr) + + if verbose: + print(f"global minimum: xmin = {Res_Global.x}, " + f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}") + + return (Run_No, Res_Global.x) + + # ------------------------------------------------------------------------- + def tradoff_weights(self, tradeoff_scheme, old_EDX, old_EDY): + """ + Calculates weights for exploration scores based on the requested + scheme: `None`, `equal`, `epsilon-decreasing` and `adaptive`. + + `None`: No exploration. + `equal`: Same weights for exploration and exploitation scores. + `epsilon-decreasing`: Start with more exploration and increase the + influence of exploitation along the way with a exponential decay + function + `adaptive`: An adaptive method based on: + Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. "An adaptive sampling + approach for Kriging metamodeling by maximizing expected prediction + error." Computers & Chemical Engineering 106 (2017): 171-182. + + Parameters + ---------- + tradeoff_scheme : string + Trade-off scheme for exloration and exploitation scores. + old_EDX : array (n_samples, n_params) + Old experimental design (training points). + old_EDY : dict + Old model responses (targets). + + Returns + ------- + exploration_weight : float + Exploration weight. + exploitation_weight: float + Exploitation weight. + + """ + if tradeoff_scheme is None: + exploration_weight = 0 + + elif tradeoff_scheme == 'equal': + exploration_weight = 0.5 + + elif tradeoff_scheme == 'epsilon-decreasing': + # epsilon-decreasing scheme + # Start with more exploration and increase the influence of + # exploitation along the way with a exponential decay function + initNSamples = self.MetaModel.ExpDesign.n_init_samples + n_max_samples = self.MetaModel.ExpDesign.n_max_samples + + itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.MetaModel.ExpDesign.n_new_samples + + tau2 = -(n_max_samples-initNSamples-1) / np.log(1e-8) + exploration_weight = signal.exponential(n_max_samples-initNSamples, + 0, tau2, False)[itrNumber] + + elif tradeoff_scheme == 'adaptive': + + # Extract itrNumber + initNSamples = self.MetaModel.ExpDesign.n_init_samples + n_max_samples = self.MetaModel.ExpDesign.n_max_samples + itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.MetaModel.ExpDesign.n_new_samples + + if itrNumber == 0: + exploration_weight = 0.5 + else: + # New adaptive trade-off according to Liu et al. (2017) + # Mean squared error for last design point + last_EDX = old_EDX[-1].reshape(1, -1) + lastPCEY, _ = self.MetaModel.eval_metamodel(samples=last_EDX) + pce_y = np.array(list(lastPCEY.values()))[:, 0] + y = np.array(list(old_EDY.values()))[:, -1, :] + mseError = mean_squared_error(pce_y, y) + + # Mean squared CV - error for last design point + pce_y_prev = np.array(list(self._y_hat_prev.values()))[:, 0] + mseCVError = mean_squared_error(pce_y_prev, y) + + exploration_weight = min([0.5*mseError/mseCVError, 1]) + + # Exploitation weight + exploitation_weight = 1 - exploration_weight + + return exploration_weight, exploitation_weight + + # ------------------------------------------------------------------------- + def opt_SeqDesign(self, sigma2, n_candidates=5, var='DKL'): + """ + Runs optimal sequential design. + + Parameters + ---------- + sigma2 : dict, optional + A dictionary containing the measurement errors (sigma^2). The + default is None. + n_candidates : int, optional + Number of candidate samples. The default is 5. + var : string, optional + Utility function. The default is None. + + Raises + ------ + NameError + Wrong utility function. + + Returns + ------- + Xnew : array (n_samples, n_params) + Selected new training point(s). + """ + + # Initialization + MetaModel = self.MetaModel + Bounds = MetaModel.bound_tuples + n_new_samples = MetaModel.ExpDesign.n_new_samples + explore_method = MetaModel.ExpDesign.explore_method + exploit_method = MetaModel.ExpDesign.exploit_method + n_cand_groups = MetaModel.ExpDesign.n_cand_groups + tradeoff_scheme = MetaModel.ExpDesign.tradeoff_scheme + + old_EDX = MetaModel.ExpDesign.X + old_EDY = MetaModel.ExpDesign.Y.copy() + ndim = MetaModel.ExpDesign.X.shape[1] + OutputNames = MetaModel.ModelObj.Output.names + + # ----------------------------------------- + # ----------- CUSTOMIZED METHODS ---------- + # ----------------------------------------- + # Utility function exploit_method provided by user + if exploit_method.lower() == 'user': + + Xnew, filteredSamples = MetaModel.ExpDesign.ExploitFunction(self) + + print("\n") + print("\nXnew:\n", Xnew) + + return Xnew, filteredSamples + + # ----------------------------------------- + # ---------- EXPLORATION METHODS ---------- + # ----------------------------------------- + if explore_method == 'dual annealing': + # ------- EXPLORATION: OPTIMIZATION ------- + import time + start_time = time.time() + + # Divide the domain to subdomains + args = [] + subdomains = self.subdomain(Bounds, n_new_samples) + for i in range(n_new_samples): + args.append((exploit_method, subdomains[i], sigma2, var, i)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + + # With Pool.starmap_async() + results = pool.starmap_async(self.dual_annealing, args).get() + + # Close the pool + pool.close() + + Xnew = np.array([results[i][1] for i in range(n_new_samples)]) + + print("\nXnew:\n", Xnew) + + elapsed_time = time.time() - start_time + print("\n") + print(f"elapsed_time: {round(elapsed_time,2)} sec.") + print('-'*20) + + elif explore_method == 'LOOCV': + # ----------------------------------------------------------------- + # TODO: LOOCV model construnction based on Feng et al. (2020) + # 'LOOCV': + # Initilize the ExploitScore array + + # Generate random samples + allCandidates = MetaModel.ExpDesign.generate_samples(n_candidates, + 'random') + + # Construct error model based on LCerror + errorModel = MetaModel.create_ModelError(old_EDX, self.LCerror) + self.errorModel.append(copy(errorModel)) + + # Evaluate the error models for allCandidates + eLCAllCands, _ = errorModel.eval_errormodel(allCandidates) + # Select the maximum as the representative error + eLCAllCands = np.dstack(eLCAllCands.values()) + eLCAllCandidates = np.max(eLCAllCands, axis=1)[:, 0] + + # Normalize the error w.r.t the maximum error + scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates) + + else: + # ------- EXPLORATION: SPACE-FILLING DESIGN ------- + # Generate candidate samples from Exploration class + explore = Exploration(MetaModel, n_candidates) + explore.w = 100 # * ndim #500 + # Select criterion (mc-intersite-proj-th, mc-intersite-proj) + explore.mc_criterion = 'mc-intersite-proj' + allCandidates, scoreExploration = explore.get_exploration_samples() + + # Temp: ---- Plot all candidates ----- + if ndim == 2: + def plotter(points, allCandidates, Method, + scoreExploration=None): + if Method == 'Voronoi': + from scipy.spatial import Voronoi, voronoi_plot_2d + vor = Voronoi(points) + fig = voronoi_plot_2d(vor) + ax1 = fig.axes[0] + else: + fig = plt.figure() + ax1 = fig.add_subplot(111) + ax1.scatter(points[:, 0], points[:, 1], s=10, c='r', + marker="s", label='Old Design Points') + ax1.scatter(allCandidates[:, 0], allCandidates[:, 1], s=10, + c='b', marker="o", label='Design candidates') + for i in range(points.shape[0]): + txt = 'p'+str(i+1) + ax1.annotate(txt, (points[i, 0], points[i, 1])) + if scoreExploration is not None: + for i in range(allCandidates.shape[0]): + txt = str(round(scoreExploration[i], 5)) + ax1.annotate(txt, (allCandidates[i, 0], + allCandidates[i, 1])) + + plt.xlim(self.bound_tuples[0]) + plt.ylim(self.bound_tuples[1]) + # plt.show() + plt.legend(loc='upper left') + + # ----------------------------------------- + # --------- EXPLOITATION METHODS ---------- + # ----------------------------------------- + if exploit_method == 'BayesOptDesign' or\ + exploit_method == 'BayesActDesign': + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme, + old_EDX, + old_EDY) + print(f"\n Exploration weight={explore_w:0.3f} " + f"Exploitation weight={exploit_w:0.3f}\n") + + # ------- EXPLOITATION: BayesOptDesign & ActiveLearning ------- + if explore_w != 1.0: + + # Create a sample pool for rejection sampling + MCsize = 15000 + X_MC = MetaModel.ExpDesign.generate_samples(MCsize, 'random') + candidates = MetaModel.ExpDesign.generate_samples( + MetaModel.ExpDesign.max_func_itr, 'latin_hypercube') + + # Split the candidates in groups for multiprocessing + split_cand = np.array_split( + candidates, n_cand_groups, axis=0 + ) + + results = Parallel(n_jobs=-1, backend='multiprocessing')( + delayed(self.run_util_func)( + exploit_method, split_cand[i], i, sigma2, var, X_MC) + for i in range(n_cand_groups)) + # out = map(self.run_util_func, + # [exploit_method]*n_cand_groups, + # split_cand, + # range(n_cand_groups), + # [sigma2] * n_cand_groups, + # [var] * n_cand_groups, + # [X_MC] * n_cand_groups + # ) + # results = list(out) + + # Retrieve the results and append them + U_J_d = np.concatenate([results[NofE][1] for NofE in + range(n_cand_groups)]) + + # Check if all scores are inf + if np.isinf(U_J_d).all() or np.isnan(U_J_d).all(): + U_J_d = np.ones(len(U_J_d)) + + # Get the expected value (mean) of the Utility score + # for each cell + if explore_method == 'Voronoi': + U_J_d = np.mean(U_J_d.reshape(-1, n_candidates), axis=1) + + # create surrogate model for U_J_d + # from sklearn.preprocessing import MinMaxScaler + # # Take care of inf entries + # good_indices = [i for i, arr in enumerate(U_J_d) + # if np.isfinite(arr).all()] + # scaler = MinMaxScaler() + # X_S = scaler.fit_transform(candidates[good_indices]) + # gp = MetaModel.gaussian_process_emulator( + # X_S, U_J_d[good_indices], autoSelect=False + # ) + # U_J_d = gp.predict(scaler.transform(allCandidates)) + + # Normalize U_J_d + norm_U_J_d = U_J_d / np.sum(U_J_d) + else: + norm_U_J_d = np.zeros((len(scoreExploration))) + + # ------- Calculate Total score ------- + # ------- Trade off between EXPLORATION & EXPLOITATION ------- + # Accumulate the samples + # TODO: added this, recheck!! + finalCandidates = np.concatenate((allCandidates, candidates), axis = 0) + finalCandidates = np.unique(finalCandidates, axis = 0) + + # TODO: changed this from the above to take into account both exploration and exploitation samples without duplicates + totalScore = np.zeros(finalCandidates.shape[0]) + #self.totalScore = totalScore + + for cand_idx in range(finalCandidates.shape[0]): + # find candidate indices + idx1 = np.where(allCandidates == finalCandidates[cand_idx])[0] + idx2 = np.where(candidates == finalCandidates[cand_idx])[0] + + # exploration + if idx1 != []: + idx1 = idx1[0] + totalScore[cand_idx] += explore_w * scoreExploration[idx1] + + # exploitation + if idx2 != []: + idx2 = idx2[0] + totalScore[cand_idx] += exploit_w * norm_U_J_d[idx2] + + + # temp: Plot + # dim = self.ExpDesign.X.shape[1] + # if dim == 2: + # plotter(self.ExpDesign.X, allCandidates, explore_method) + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + bestIdx = sorted_idxtotalScore[:n_new_samples] + + # select the requested number of samples + if explore_method == 'Voronoi': + Xnew = np.zeros((n_new_samples, ndim)) + for i, idx in enumerate(bestIdx): + X_can = explore.closestPoints[idx] + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.get_mc_samples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + else: + # TODO: changed this from allCandiates to full set of candidates - still not changed for e.g. 'Voronoi' + Xnew = finalCandidates[sorted_idxtotalScore[:n_new_samples]] # here candidates(exploitation) vs allCandidates (exploration)!! + + elif exploit_method == 'VarOptDesign': + # ------- EXPLOITATION: VarOptDesign ------- + UtilMethod = var + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme, + old_EDX, + old_EDY) + print(f"\nweightExploration={explore_w:0.3f} " + f"weightExploitation={exploit_w:0.3f}") + + # Generate candidate samples from Exploration class + nMeasurement = old_EDY[OutputNames[0]].shape[1] + + # Find sensitive region + if UtilMethod == 'LOOCV': + LCerror = MetaModel.LCerror + allModifiedLOO = np.zeros((len(old_EDX), len(OutputNames), + nMeasurement)) + for y_idx, y_key in enumerate(OutputNames): + for idx, key in enumerate(LCerror[y_key].keys()): + allModifiedLOO[:, y_idx, idx] = abs( + LCerror[y_key][key]) + + ExploitScore = np.max(np.max(allModifiedLOO, axis=1), axis=1) + + elif UtilMethod in ['EIGF', 'ALM']: + # ----- All other in ['EIGF', 'ALM'] ----- + # Initilize the ExploitScore array + ExploitScore = np.zeros((len(old_EDX), len(OutputNames))) + + # Split the candidates in groups for multiprocessing + if explore_method != 'Voronoi': + split_cand = np.array_split(allCandidates, + n_cand_groups, + axis=0) + goodSampleIdx = range(n_cand_groups) + else: + # Find indices of the Vornoi cells with samples + goodSampleIdx = [] + for idx in range(len(explore.closest_points)): + if len(explore.closest_points[idx]) != 0: + goodSampleIdx.append(idx) + split_cand = explore.closest_points + + # Split the candidates in groups for multiprocessing + args = [] + for index in goodSampleIdx: + args.append((exploit_method, split_cand[index], index, + sigma2, var)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + # With Pool.starmap_async() + results = pool.starmap_async(self.run_util_func, args).get() + + # Close the pool + pool.close() + # out = map(self.run_util_func, + # [exploit_method]*len(goodSampleIdx), + # split_cand, + # range(len(goodSampleIdx)), + # [sigma2] * len(goodSampleIdx), + # [var] * len(goodSampleIdx) + # ) + # results = list(out) + + # Retrieve the results and append them + if explore_method == 'Voronoi': + ExploitScore = [np.mean(results[k][1]) for k in + range(len(goodSampleIdx))] + else: + ExploitScore = np.concatenate( + [results[k][1] for k in range(len(goodSampleIdx))]) + + else: + raise NameError('The requested utility function is not ' + 'available.') + + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + # Total score + # Normalize U_J_d + ExploitScore = ExploitScore / np.sum(ExploitScore) + totalScore = exploit_w * ExploitScore + totalScore += explore_w * scoreExploration + + temp = totalScore.copy() + sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1] + bestIdx = sorted_idxtotalScore[:n_new_samples] + + Xnew = np.zeros((n_new_samples, ndim)) + if explore_method != 'Voronoi': + Xnew = allCandidates[bestIdx] + else: + for i, idx in enumerate(bestIdx.flatten()): + X_can = explore.closest_points[idx] + # plotter(self.ExpDesign.X, X_can, explore_method, + # scoreExploration=None) + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.get_mc_samples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + + elif exploit_method == 'alphabetic': + # ------- EXPLOITATION: ALPHABETIC ------- + Xnew = self.util_AlphOptDesign(allCandidates, var) + + elif exploit_method == 'Space-filling': + # ------- EXPLOITATION: SPACE-FILLING ------- + totalScore = scoreExploration + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + + # select the requested number of samples + Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]] + + else: + raise NameError('The requested design method is not available.') + + print("\n") + print("\nRun No. {}:".format(old_EDX.shape[0]+1)) + print("Xnew:\n", Xnew) + + return Xnew, None + + # ------------------------------------------------------------------------- + def util_AlphOptDesign(self, candidates, var='D-Opt'): + """ + Enriches the Experimental design with the requested alphabetic + criterion based on exploring the space with number of sampling points. + + Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos + expansion: A review of sampling strategies., Computer Methods in + Applied Mechanics and Engineering, 332, 382-407. + + Arguments + --------- + NCandidate : int + Number of candidate points to be searched + + var : string + Alphabetic optimality criterion + + Returns + ------- + X_new : array of shape (1, n_params) + The new sampling location in the input space. + """ + MetaModelOrig = self + Model = self.Model + n_new_samples = MetaModelOrig.ExpDesign.n_new_samples + NCandidate = candidates.shape[0] + + # TODO: Loop over outputs + OutputName = Model.Output.names[0] + + # To avoid changes ub original aPCE object + MetaModel = deepcopy(MetaModelOrig) + + # Old Experimental design + oldExpDesignX = MetaModel.ExpDesign.X + + # TODO: Only one psi can be selected. + # Suggestion: Go for the one with the highest LOO error + Scores = list(MetaModel.score_dict[OutputName].values()) + ModifiedLOO = [1-score for score in Scores] + outIdx = np.argmax(ModifiedLOO) + + # Initialize Phi to save the criterion's values + Phi = np.zeros((NCandidate)) + + BasisIndices = MetaModelOrig.basis_dict[OutputName]["y_"+str(outIdx+1)] + P = len(BasisIndices) + + # ------ Old Psi ------------ + univ_p_val = MetaModelOrig.univ_basis_vals(oldExpDesignX) + Psi = MetaModelOrig.create_psi(BasisIndices, univ_p_val) + + # ------ New candidates (Psi_c) ------------ + # Assemble Psi_c + univ_p_val_c = self.univ_basis_vals(candidates) + Psi_c = self.create_psi(BasisIndices, univ_p_val_c) + + for idx in range(NCandidate): + + # Include the new row to the original Psi + Psi_cand = np.vstack((Psi, Psi_c[idx])) + + # Information matrix + PsiTPsi = np.dot(Psi_cand.T, Psi_cand) + M = PsiTPsi / (len(oldExpDesignX)+1) + + if np.linalg.cond(PsiTPsi) > 1e-12 \ + and np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon: + # faster + invM = linalg.solve(M, sparse.eye(PsiTPsi.shape[0]).toarray()) + else: + # stabler + invM = np.linalg.pinv(M) + + # ---------- Calculate optimality criterion ---------- + # Optimality criteria according to Section 4.5.1 in Ref. + + # D-Opt + if var == 'D-Opt': + Phi[idx] = (np.linalg.det(invM)) ** (1/P) + + # A-Opt + elif var == 'A-Opt': + Phi[idx] = np.trace(invM) + + # K-Opt + elif var == 'K-Opt': + Phi[idx] = np.linalg.cond(M) + + else: + raise Exception('The optimality criterion you requested has ' + 'not been implemented yet!') + + # find an optimal point subset to add to the initial design + # by minimization of the Phi + sorted_idxtotalScore = np.argsort(Phi) + + # select the requested number of samples + Xnew = candidates[sorted_idxtotalScore[:n_new_samples]] + + return Xnew + + # ------------------------------------------------------------------------- + def __normpdf(self, y_hat_pce, std_pce, obs_data, total_sigma2s, + rmse=None): + + Model = self.Model + likelihoods = 1.0 + + # Loop over the outputs + for idx, out in enumerate(Model.Output.names): + + # (Meta)Model Output + nsamples, nout = y_hat_pce[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout].values + + # Surrogate error if valid dataset is given. + if rmse is not None: + tot_sigma2s += rmse[out]**2 + else: + tot_sigma2s += np.mean(std_pce[out])**2 + + likelihoods *= stats.multivariate_normal.pdf( + y_hat_pce[out], data, np.diag(tot_sigma2s), + allow_singular=True) + + self.Likelihoods = likelihoods + + return likelihoods + + # ------------------------------------------------------------------------- + def __corr_factor_BME(self, obs_data, total_sigma2s, logBME): + """ + Calculates the correction factor for BMEs. + """ + MetaModel = self.MetaModel + samples = MetaModel.ExpDesign.X # valid_samples + model_outputs = MetaModel.ExpDesign.Y # valid_model_runs + Model = MetaModel.ModelObj + n_samples = samples.shape[0] + + # Extract the requested model outputs for likelihood calulation + output_names = Model.Output.names + + # TODO: Evaluate MetaModel on the experimental design and ValidSet + OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples) + + logLik_data = np.zeros((n_samples)) + logLik_model = np.zeros((n_samples)) + # Loop over the outputs + for idx, out in enumerate(output_names): + + # (Meta)Model Output + nsamples, nout = model_outputs[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout] + + # Covariance Matrix + covMatrix_data = np.diag(tot_sigma2s) + + for i, sample in enumerate(samples): + + # Simulation run + y_m = model_outputs[out][i] + + # Surrogate prediction + y_m_hat = OutputRS[out][i] + + # CovMatrix with the surrogate error + # covMatrix = np.diag(stdOutputRS[out][i]**2) + covMatrix = np.diag((y_m-y_m_hat)**2) + covMatrix = np.diag( + np.mean((model_outputs[out]-OutputRS[out]), axis=0)**2 + ) + + # Compute likelilhood output vs data + logLik_data[i] += self.__logpdf( + y_m_hat, data, covMatrix_data + ) + + # Compute likelilhood output vs surrogate + logLik_model[i] += self.__logpdf(y_m_hat, y_m, covMatrix) + + # Weight + logLik_data -= logBME + weights = np.exp(logLik_model+logLik_data) + + return np.log(np.mean(weights)) + + # ------------------------------------------------------------------------- + def __logpdf(self, x, mean, cov): + """ + computes the likelihood based on a multivariate normal distribution. + + Parameters + ---------- + x : TYPE + DESCRIPTION. + mean : array_like + Observation data. + cov : 2d array + Covariance matrix of the distribution. + + Returns + ------- + log_lik : float + Log likelihood. + + """ + n = len(mean) + L = linalg.cholesky(cov, lower=True) + beta = np.sum(np.log(np.diag(L))) + dev = x - mean + alpha = dev.dot(linalg.cho_solve((L, True), dev)) + log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi) + + return log_lik + + # ------------------------------------------------------------------------- + def __posteriorPlot(self, posterior, par_names, key): + + # Initialization + newpath = (r'Outputs_SeqPosteriorComparison/posterior') + os.makedirs(newpath, exist_ok=True) + + bound_tuples = self.MetaModel.bound_tuples + n_params = len(par_names) + font_size = 40 + if n_params == 2: + + figPosterior, ax = plt.subplots(figsize=(15, 15)) + + sns.kdeplot(x=posterior[:, 0], y=posterior[:, 1], + fill=True, ax=ax, cmap=plt.cm.jet, + clip=bound_tuples) + # Axis labels + plt.xlabel(par_names[0], fontsize=font_size) + plt.ylabel(par_names[1], fontsize=font_size) + + # Set axis limit + plt.xlim(bound_tuples[0]) + plt.ylim(bound_tuples[1]) + + # Increase font size + plt.xticks(fontsize=font_size) + plt.yticks(fontsize=font_size) + + # Switch off the grids + plt.grid(False) + + else: + import corner + figPosterior = corner.corner(posterior, labels=par_names, + title_fmt='.2e', show_titles=True, + title_kwargs={"fontsize": 12}) + + figPosterior.savefig(f'./{newpath}/{key}.pdf', bbox_inches='tight') + plt.close() + + # Save the posterior as .npy + np.save(f'./{newpath}/{key}.npy', posterior) + + return figPosterior + + # ------------------------------------------------------------------------- + def __hellinger_distance(self, P, Q): + """ + Hellinger distance between two continuous distributions. + + The maximum distance 1 is achieved when P assigns probability zero to + every set to which Q assigns a positive probability, and vice versa. + 0 (identical) and 1 (maximally different) + + Parameters + ---------- + P : array + Reference likelihood. + Q : array + Estimated likelihood. + + Returns + ------- + float + Hellinger distance of two distributions. + + """ + mu1 = P.mean() + Sigma1 = np.std(P) + + mu2 = Q.mean() + Sigma2 = np.std(Q) + + term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2)) + + term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2)) + + H_squared = 1 - term1 * term2 + + return np.sqrt(H_squared) + + # ------------------------------------------------------------------------- + def __BME_Calculator(self, MetaModel, obs_data, sigma2Dict, rmse=None): + """ + This function computes the Bayesian model evidence (BME) via Monte + Carlo integration. + + """ + # Initializations + if hasattr(MetaModel, 'valid_likelihoods'): + valid_likelihoods = MetaModel.valid_likelihoods + else: + valid_likelihoods = [] + + post_snapshot = MetaModel.ExpDesign.post_snapshot + #print(f'post_snapshot: {post_snapshot}') + if post_snapshot or len(valid_likelihoods) != 0: + newpath = (r'Outputs_SeqPosteriorComparison/likelihood_vs_ref') + os.makedirs(newpath, exist_ok=True) + + SamplingMethod = 'random' + MCsize = 10000 + ESS = 0 + + # Estimation of the integral via Monte Varlo integration + while (ESS > MCsize) or (ESS < 1): + + # Generate samples for Monte Carlo simulation + X_MC = MetaModel.ExpDesign.generate_samples( + MCsize, SamplingMethod + ) + + # Monte Carlo simulation for the candidate design + Y_MC, std_MC = MetaModel.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and + # simulation results via PCE with candidate design) + Likelihoods = self.__normpdf( + Y_MC, std_MC, obs_data, sigma2Dict, rmse + ) + + # Check the Effective Sample Size (1000<ESS<MCsize) + ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if (ESS > MCsize) or (ESS < 1): + print(f'ESS={ESS} MC size should be larger.') + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (Likelihoods/np.max(Likelihoods)) >= unif + X_Posterior = X_MC[accepted] + + # ------------------------------------------------------------ + # --- Kullback-Leibler Divergence & Information Entropy ------ + # ------------------------------------------------------------ + # Prior-based estimation of BME + logBME = np.log(np.nanmean(Likelihoods)) + + # TODO: Correction factor + # log_weight = self.__corr_factor_BME(obs_data, sigma2Dict, logBME) + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean( + np.log(MetaModel.ExpDesign.JDist.pdf(X_Posterior.T)) + ) + + # Calculate Kullback-Leibler Divergence + # KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + KLD = postExpLikelihoods - logBME + + # Information Entropy based on Entropy paper Eq. 38 + infEntropy = logBME - postExpPrior - postExpLikelihoods + + # If post_snapshot is True, plot likelihood vs refrence + if post_snapshot or valid_likelihoods: + # Hellinger distance + valid_likelihoods = np.array(valid_likelihoods) + ref_like = np.log(valid_likelihoods[(valid_likelihoods > 0)]) + est_like = np.log(Likelihoods[Likelihoods > 0]) + distHellinger = self.__hellinger_distance(ref_like, est_like) + + idx = len([name for name in os.listdir(newpath) if 'Likelihoods_' + in name and os.path.isfile(os.path.join(newpath, name))]) + fig, ax = plt.subplots() + try: + sns.kdeplot(np.log(valid_likelihoods[valid_likelihoods > 0]), + shade=True, color="g", label='Ref. Likelihood') + sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), shade=True, + color="b", label='Likelihood with PCE') + except: + pass + + text = f"Hellinger Dist.={distHellinger:.3f}\n logBME={logBME:.3f}" + "\n DKL={KLD:.3f}" + + plt.text(0.05, 0.75, text, bbox=dict(facecolor='wheat', + edgecolor='black', + boxstyle='round,pad=1'), + transform=ax.transAxes) + + fig.savefig(f'./{newpath}/Likelihoods_{idx}.pdf', + bbox_inches='tight') + plt.close() + + else: + distHellinger = 0.0 + + # Bayesian inference with Emulator only for 2D problem + if post_snapshot and MetaModel.n_params == 2 and not idx % 5: + BayesOpts = BayesInference(MetaModel) + BayesOpts.emulator = True + BayesOpts.plot_post_pred = False + + # Select the inference method + import emcee + BayesOpts.inference_method = "MCMC" + # Set the MCMC parameters passed to self.mcmc_params + BayesOpts.mcmc_params = { + 'n_steps': 1e5, + 'n_walkers': 30, + 'moves': emcee.moves.KDEMove(), + 'verbose': False + } + + # ----- Define the discrepancy model ------- + obs_data = pd.DataFrame(obs_data, columns=self.Model.Output.names) + BayesOpts.measurement_error = obs_data + + # # -- (Option B) -- + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obs_data**2 + BayesOpts.Discrepancy = DiscrepancyOpts + # Start the calibration/inference + Bayes_PCE = BayesOpts.create_inference() + X_Posterior = Bayes_PCE.posterior_df.values + + return (logBME, KLD, X_Posterior, Likelihoods, distHellinger) + + # ------------------------------------------------------------------------- + def __validError(self, MetaModel): + + # MetaModel = self.MetaModel + Model = MetaModel.ModelObj + OutputName = Model.Output.names + + # Extract the original model with the generated samples + valid_samples = MetaModel.valid_samples + valid_model_runs = MetaModel.valid_model_runs + + # Run the PCE model with the generated samples + valid_PCE_runs, _ = MetaModel.eval_metamodel(samples=valid_samples) + + rms_error = {} + valid_error = {} + # Loop over the keys and compute RMSE error. + for key in OutputName: + rms_error[key] = mean_squared_error( + valid_model_runs[key], valid_PCE_runs[key], + multioutput='raw_values', + sample_weight=None, + squared=False) + # Validation error + valid_error[key] = (rms_error[key]**2) + valid_error[key] /= np.var(valid_model_runs[key], ddof=1, axis=0) + + # Print a report table + print("\n>>>>> Updated Errors of {} <<<<<".format(key)) + print("\nIndex | RMSE | Validation Error") + print('-'*35) + print('\n'.join(f'{i+1} | {k:.3e} | {j:.3e}' for i, (k, j) + in enumerate(zip(rms_error[key], + valid_error[key])))) + + return rms_error, valid_error + + # ------------------------------------------------------------------------- + def __error_Mean_Std(self): + + MetaModel = self.MetaModel + # Extract the mean and std provided by user + df_MCReference = MetaModel.ModelObj.mc_reference + + # Compute the mean and std based on the MetaModel + pce_means, pce_stds = self._compute_pce_moments(MetaModel) + + # Compute the root mean squared error + for output in MetaModel.ModelObj.Output.names: + + # Compute the error between mean and std of MetaModel and OrigModel + RMSE_Mean = mean_squared_error( + df_MCReference['mean'], pce_means[output], squared=False + ) + RMSE_std = mean_squared_error( + df_MCReference['std'], pce_means[output], squared=False + ) + + return RMSE_Mean, RMSE_std + + # ------------------------------------------------------------------------- + def _compute_pce_moments(self, MetaModel): + """ + Computes the first two moments using the PCE-based meta-model. + + Returns + ------- + pce_means: dict + The first moment (mean) of the surrogate. + pce_stds: dict + The second moment (standard deviation) of the surrogate. + + """ + outputs = MetaModel.ModelObj.Output.names + pce_means_b = {} + pce_stds_b = {} + + # Loop over bootstrap iterations + for b_i in range(MetaModel.n_bootstrap_itrs): + # Loop over the metamodels + coeffs_dicts = MetaModel.coeffs_dict[f'b_{b_i+1}'].items() + means = {} + stds = {} + for output, coef_dict in coeffs_dicts: + + pce_mean = np.zeros((len(coef_dict))) + pce_var = np.zeros((len(coef_dict))) + + for index, values in coef_dict.items(): + idx = int(index.split('_')[1]) - 1 + coeffs = MetaModel.coeffs_dict[f'b_{b_i+1}'][output][index] + + # Mean = c_0 + if coeffs[0] != 0: + pce_mean[idx] = coeffs[0] + else: + clf_poly = MetaModel.clf_poly[f'b_{b_i+1}'][output] + pce_mean[idx] = clf_poly[index].intercept_ + # Var = sum(coeffs[1:]**2) + pce_var[idx] = np.sum(np.square(coeffs[1:])) + + # Save predictions for each output + if MetaModel.dim_red_method.lower() == 'pca': + PCA = MetaModel.pca[f'b_{b_i+1}'][output] + means[output] = PCA.inverse_transform(pce_mean) + stds[output] = PCA.inverse_transform(np.sqrt(pce_var)) + else: + means[output] = pce_mean + stds[output] = np.sqrt(pce_var) + + # Save predictions for each bootstrap iteration + pce_means_b[b_i] = means + pce_stds_b[b_i] = stds + + # Change the order of nesting + mean_all = {} + for i in sorted(pce_means_b): + for k, v in pce_means_b[i].items(): + if k not in mean_all: + mean_all[k] = [None] * len(pce_means_b) + mean_all[k][i] = v + std_all = {} + for i in sorted(pce_stds_b): + for k, v in pce_stds_b[i].items(): + if k not in std_all: + std_all[k] = [None] * len(pce_stds_b) + std_all[k][i] = v + + # Back transformation if PCA is selected. + pce_means, pce_stds = {}, {} + for output in outputs: + pce_means[output] = np.mean(mean_all[output], axis=0) + pce_stds[output] = np.mean(std_all[output], axis=0) + + return pce_means, pce_stds diff --git a/examples/only-model/bayesvalidrox/surrogate_models/orthogonal_matching_pursuit.py b/examples/only-model/bayesvalidrox/surrogate_models/orthogonal_matching_pursuit.py new file mode 100644 index 0000000000000000000000000000000000000000..d4f99b8a19bb5dbdf41f093bd454c80c63a321bb --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/orthogonal_matching_pursuit.py @@ -0,0 +1,366 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Jul 15 14:08:59 2022 + +@author: farid +""" +import numpy as np +from sklearn.base import RegressorMixin +from sklearn.linear_model._base import LinearModel +from sklearn.utils import check_X_y + + +def corr(x, y): + return abs(x.dot(y))/np.sqrt((x**2).sum()) + + +class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): + ''' + Regression with Orthogonal Matching Pursuit [1]. + + Parameters + ---------- + fit_intercept : boolean, optional (DEFAULT = True) + whether to calculate the intercept for this model. If set + to false, no intercept will be used in calculations + (e.g. data is expected to be already centered). + + copy_X : boolean, optional (DEFAULT = True) + If True, X will be copied; else, it may be overwritten. + + verbose : boolean, optional (DEFAULT = FALSE) + Verbose mode when fitting the model + + Attributes + ---------- + coef_ : array, shape = (n_features) + Coefficients of the regression model (mean of posterior distribution) + + active_ : array, dtype = np.bool, shape = (n_features) + True for non-zero coefficients, False otherwise + + References + ---------- + [1] Pati, Y., Rezaiifar, R., Krishnaprasad, P. (1993). Orthogonal matching + pursuit: recursive function approximation with application to wavelet + decomposition. Proceedings of 27th Asilomar Conference on Signals, + Systems and Computers, 40-44. + ''' + + def __init__(self, fit_intercept=True, normalize=False, copy_X=True, + verbose=False): + self.fit_intercept = fit_intercept + self.normalize = normalize + self.copy_X = copy_X + self.verbose = verbose + + def _preprocess_data(self, X, y): + """Center and scale data. + Centers data to have mean zero along axis 0. If fit_intercept=False or + if the X is a sparse matrix, no centering is done, but normalization + can still be applied. The function returns the statistics necessary to + reconstruct the input data, which are X_offset, y_offset, X_scale, such + that the output + X = (X - X_offset) / X_scale + X_scale is the L2 norm of X - X_offset. + """ + + if self.copy_X: + X = X.copy(order='K') + + y = np.asarray(y, dtype=X.dtype) + + if self.fit_intercept: + X_offset = np.average(X, axis=0) + X -= X_offset + if self.normalize: + X_scale = np.ones(X.shape[1], dtype=X.dtype) + std = np.sqrt(np.sum(X**2, axis=0)/(len(X)-1)) + X_scale[std != 0] = std[std != 0] + X /= X_scale + else: + X_scale = np.ones(X.shape[1], dtype=X.dtype) + y_offset = np.mean(y) + y = y - y_offset + else: + X_offset = np.zeros(X.shape[1], dtype=X.dtype) + X_scale = np.ones(X.shape[1], dtype=X.dtype) + if y.ndim == 1: + y_offset = X.dtype.type(0) + else: + y_offset = np.zeros(y.shape[1], dtype=X.dtype) + + return X, y, X_offset, y_offset, X_scale + + def fit(self, X, y): + ''' + Fits Regression with Orthogonal Matching Pursuit Algorithm. + + Parameters + ----------- + X: {array-like, sparse matrix} of size (n_samples, n_features) + Training data, matrix of explanatory variables + + y: array-like of size [n_samples, n_features] + Target values + + Returns + ------- + self : object + Returns self. + ''' + X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) + n_samples, n_features = X.shape + + X, y, X_mean, y_mean, X_std = self._preprocess_data(X, y) + self._x_mean_ = X_mean + self._y_mean = y_mean + self._x_std = X_std + + # Normalize columns of Psi, so that each column has norm = 1 + norm_X = np.linalg.norm(X, axis=0) + X_norm = X/norm_X + + # Initialize residual vector to full model response and normalize + R = y + norm_y = np.sqrt(np.dot(y, y)) + r = y/norm_y + + # Check for constant regressors + const_indices = np.where(~np.diff(X, axis=0).any(axis=0))[0] + bool_const = not const_indices + + # Start regression using OPM algorithm + precision = 0 # Set precision criterion to precision of program + early_stop = True + cond_early = True # Initialize condition for early stop + ind = [] + iindx = [] # index of selected columns + indtot = np.arange(n_features) # Full index set for remaining columns + kmax = min(n_samples, n_features) # Maximum number of iterations + LOO = np.PINF * np.ones(kmax) # Store LOO error at each iteration + LOOmin = np.PINF # Initialize minimum value of LOO + coeff = np.zeros((n_features, kmax)) + count = 0 + k = 0.1 # Percentage of iteration history for early stop + + # Begin iteration over regressors set (Matrix X) + while (np.linalg.norm(R) > precision) and (count <= kmax-1) and \ + ((cond_early or early_stop) ^ ~cond_early): + + # Update index set of columns yet to select + if count != 0: + indtot = np.delete(indtot, iindx) + + # Find column of X that is most correlated with residual + h = abs(np.dot(r, X_norm)) + iindx = np.argmax(h[indtot]) + indx = indtot[iindx] + + # initialize with the constant regressor, if it exists in the basis + if (count == 0) and bool_const: + # overwrite values for iindx and indx + iindx = const_indices[0] + indx = indtot[iindx] + + # Invert the information matrix at the first iteration, later only + # update its value on the basis of the previously inverted one, + if count == 0: + M = 1 / np.dot(X[:, indx], X[:, indx]) + else: + x = np.dot(X[:, ind].T, X[:, indx]) + r = np.dot(X[:, indx], X[:, indx]) + M = self.blockwise_inverse(M, x, x.T, r) + + # Add newly found index to the selected indexes set + ind.append(indx) + + # Select regressors subset (Projection subspace) + Xpro = X[:, ind] + + # Obtain coefficient by performing OLS + TT = np.dot(y, Xpro) + beta = np.dot(M, TT) + coeff[ind, count] = beta + + # Compute LOO error + LOO[count] = self.loo_error(Xpro, M, y, beta) + + # Compute new residual due to new projection + R = y - np.dot(Xpro, beta) + + # Normalize residual + norm_R = np.sqrt(np.dot(R, R)) + r = R / norm_R + + # Update counters and early-stop criterions + countinf = max(0, int(count-k*kmax)) + LOOmin = min(LOOmin, LOO[count]) + + if count == 0: + cond_early = (LOO[0] <= LOOmin) + else: + cond_early = (min(LOO[countinf:count+1]) <= LOOmin) + + if self.verbose: + print(f'Iteration: {count+1}, mod. LOOCV error : ' + f'{LOO[count]:.2e}') + + # Update counter + count += 1 + + # Select projection with smallest cross-validation error + countmin = np.argmin(LOO[:-1]) + self.coef_ = coeff[:, countmin] + self.active = coeff[:, countmin] != 0.0 + + # set intercept_ + if self.fit_intercept: + self.coef_ = self.coef_ / X_std + self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T) + else: + self.intercept_ = 0. + + return self + + def predict(self, X): + ''' + Computes predictive distribution for test set. + + Parameters + ----------- + X: {array-like, sparse} (n_samples_test, n_features) + Test data, matrix of explanatory variables + + Returns + ------- + y_hat: numpy array of size (n_samples_test,) + Estimated values of targets on test set (i.e. mean of + predictive distribution) + ''' + + y_hat = np.dot(X, self.coef_) + self.intercept_ + + return y_hat + + def loo_error(self, psi, inv_inf_matrix, y, coeffs): + """ + Calculates the corrected LOO error for regression on regressor + matrix `psi` that generated the coefficients based on [1] and [2]. + + [1] Blatman, G., 2009. Adaptive sparse polynomial chaos expansions for + uncertainty propagation and sensitivity analysis (Doctoral + dissertation, Clermont-Ferrand 2). + + [2] Blatman, G. and Sudret, B., 2011. Adaptive sparse polynomial chaos + expansion based on least angle regression. Journal of computational + Physics, 230(6), pp.2345-2367. + + Parameters + ---------- + psi : array of shape (n_samples, n_feature) + Orthogonal bases evaluated at the samples. + inv_inf_matrix : array + Inverse of the information matrix. + y : array of shape (n_samples, ) + Targets. + coeffs : array + Computed regresssor cofficients. + + Returns + ------- + loo_error : float + Modified LOOCV error. + + """ + + # NrEvaluation (Size of experimental design) + N, P = psi.shape + + # h factor (the full matrix is not calculated explicitly, + # only the trace is, to save memory) + PsiM = np.dot(psi, inv_inf_matrix) + + h = np.sum(np.multiply(PsiM, psi), axis=1, dtype=np.float128) + + # ------ Calculate Error Loocv for each measurement point ---- + # Residuals + residual = np.dot(psi, coeffs) - y + + # Variance + varY = np.var(y) + + if varY == 0: + norm_emp_error = 0 + loo_error = 0 + else: + norm_emp_error = np.mean(residual**2)/varY + + loo_error = np.mean(np.square(residual / (1-h))) / varY + + # if there are NaNs, just return an infinite LOO error (this + # happens, e.g., when a strongly underdetermined problem is solved) + if np.isnan(loo_error): + loo_error = np.inf + + # Corrected Error for over-determined system + tr_M = np.trace(np.atleast_2d(inv_inf_matrix)) + if tr_M < 0 or abs(tr_M) > 1e6: + tr_M = np.trace(np.linalg.pinv(np.dot(psi.T, psi))) + + # Over-determined system of Equation + if N > P: + T_factor = N/(N-P) * (1 + tr_M) + + # Under-determined system of Equation + else: + T_factor = np.inf + + loo_error *= T_factor + + return loo_error + + def blockwise_inverse(self, Ainv, B, C, D): + """ + non-singular square matrix M defined as M = [[A B]; [C D]] . + B, C and D can have any dimension, provided their combination defines + a square matrix M. + + Parameters + ---------- + Ainv : float or array + inverse of the square-submatrix A. + B : float or array + Information matrix with all new regressor. + C : float or array + Transpose of B. + D : float or array + Information matrix with all selected regressors. + + Returns + ------- + M : array + Inverse of the information matrix. + + """ + if np.isscalar(D): + # Inverse of D + Dinv = 1/D + # Schur complement + SCinv = 1/(D - np.dot(C, np.dot(Ainv, B[:, None])))[0] + else: + # Inverse of D + Dinv = np.linalg.solve(D, np.eye(D.shape)) + # Schur complement + SCinv = np.linalg.solve((D - C*Ainv*B), np.eye(D.shape)) + + T1 = np.dot(Ainv, np.dot(B[:, None], SCinv)) + T2 = np.dot(C, Ainv) + + # Assemble the inverse matrix + M = np.vstack(( + np.hstack((Ainv+T1*T2, -T1)), + np.hstack((-(SCinv)*T2, SCinv)) + )) + return M diff --git a/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_ard.py b/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_ard.py new file mode 100644 index 0000000000000000000000000000000000000000..44073da8e78642ba3b3914f6ce55a2d01986b1f1 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_ard.py @@ -0,0 +1,475 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Tue Mar 24 19:41:45 2020 + +@author: farid +""" +import numpy as np +from scipy.linalg import solve_triangular +from numpy.linalg import LinAlgError +from sklearn.base import RegressorMixin +from sklearn.linear_model._base import LinearModel +import warnings +from sklearn.utils import check_X_y +from scipy.linalg import pinvh + + +def update_precisions(Q,S,q,s,A,active,tol,n_samples,clf_bias): + ''' + Selects one feature to be added/recomputed/deleted to model based on + effect it will have on value of log marginal likelihood. + ''' + # initialise vector holding changes in log marginal likelihood + deltaL = np.zeros(Q.shape[0]) + + # identify features that can be added , recomputed and deleted in model + theta = q**2 - s + add = (theta > 0) * (active == False) + recompute = (theta > 0) * (active == True) + delete = ~(add + recompute) + + # compute sparsity & quality parameters corresponding to features in + # three groups identified above + Qadd,Sadd = Q[add], S[add] + Qrec,Srec,Arec = Q[recompute], S[recompute], A[recompute] + Qdel,Sdel,Adel = Q[delete], S[delete], A[delete] + + # compute new alpha's (precision parameters) for features that are + # currently in model and will be recomputed + Anew = s[recompute]**2/ ( theta[recompute] + np.finfo(np.float32).eps) + delta_alpha = (1./Anew - 1./Arec) + + # compute change in log marginal likelihood + deltaL[add] = ( Qadd**2 - Sadd ) / Sadd + np.log(Sadd/Qadd**2 ) + deltaL[recompute] = Qrec**2 / (Srec + 1. / delta_alpha) - np.log(1 + Srec*delta_alpha) + deltaL[delete] = Qdel**2 / (Sdel - Adel) - np.log(1 - Sdel / Adel) + deltaL = deltaL / n_samples + + # find feature which caused largest change in likelihood + feature_index = np.argmax(deltaL) + + # no deletions or additions + same_features = np.sum( theta[~recompute] > 0) == 0 + + # changes in precision for features already in model is below threshold + no_delta = np.sum( abs( Anew - Arec ) > tol ) == 0 + # if same_features: print(abs( Anew - Arec )) + # print("same_features = {} no_delta = {}".format(same_features,no_delta)) + # check convergence: if no features to add or delete and small change in + # precision for current features then terminate + converged = False + if same_features and no_delta: + converged = True + return [A,converged] + + # if not converged update precision parameter of weights and return + if theta[feature_index] > 0: + A[feature_index] = s[feature_index]**2 / theta[feature_index] + if active[feature_index] == False: + active[feature_index] = True + else: + # at least two active features + if active[feature_index] == True and np.sum(active) >= 2: + # do not remove bias term in classification + # (in regression it is factored in through centering) + if not (feature_index == 0 and clf_bias): + active[feature_index] = False + A[feature_index] = np.PINF + + return [A,converged] + + +class RegressionFastARD(LinearModel, RegressorMixin): + ''' + Regression with Automatic Relevance Determination (Fast Version uses + Sparse Bayesian Learning) + https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/rvm_ard_models/fast_rvm.py + + Parameters + ---------- + n_iter: int, optional (DEFAULT = 100) + Maximum number of iterations + + start: list, optional (DEFAULT = None) + Initial selected features. + + tol: float, optional (DEFAULT = 1e-3) + If absolute change in precision parameter for weights is below threshold + algorithm terminates. + + fit_intercept : boolean, optional (DEFAULT = True) + whether to calculate the intercept for this model. If set + to false, no intercept will be used in calculations + (e.g. data is expected to be already centered). + + copy_X : boolean, optional (DEFAULT = True) + If True, X will be copied; else, it may be overwritten. + + compute_score : bool, default=False + If True, compute the log marginal likelihood at each iteration of the + optimization. + + verbose : boolean, optional (DEFAULT = FALSE) + Verbose mode when fitting the model + + Attributes + ---------- + coef_ : array, shape = (n_features) + Coefficients of the regression model (mean of posterior distribution) + + alpha_ : float + estimated precision of the noise + + active_ : array, dtype = np.bool, shape = (n_features) + True for non-zero coefficients, False otherwise + + lambda_ : array, shape = (n_features) + estimated precisions of the coefficients + + sigma_ : array, shape = (n_features, n_features) + estimated covariance matrix of the weights, computed only + for non-zero coefficients + + scores_ : array-like of shape (n_iter_+1,) + If computed_score is True, value of the log marginal likelihood (to be + maximized) at each iteration of the optimization. + + References + ---------- + [1] Fast marginal likelihood maximisation for sparse Bayesian models + (Tipping & Faul 2003) (http://www.miketipping.com/papers/met-fastsbl.pdf) + [2] Analysis of sparse Bayesian learning (Tipping & Faul 2001) + (http://www.miketipping.com/abstracts.htm#Faul:NIPS01) + ''' + + def __init__(self, n_iter=300, start=None, tol=1e-3, fit_intercept=True, + normalize=False, copy_X=True, compute_score=False, verbose=False): + self.n_iter = n_iter + self.start = start + self.tol = tol + self.scores_ = list() + self.fit_intercept = fit_intercept + self.normalize = normalize + self.copy_X = copy_X + self.compute_score = compute_score + self.verbose = verbose + + def _preprocess_data(self, X, y): + """Center and scale data. + Centers data to have mean zero along axis 0. If fit_intercept=False or + if the X is a sparse matrix, no centering is done, but normalization + can still be applied. The function returns the statistics necessary to + reconstruct the input data, which are X_offset, y_offset, X_scale, such + that the output + X = (X - X_offset) / X_scale + X_scale is the L2 norm of X - X_offset. + """ + + if self.copy_X: + X = X.copy(order='K') + + y = np.asarray(y, dtype=X.dtype) + + if self.fit_intercept: + X_offset = np.average(X, axis=0) + X -= X_offset + if self.normalize: + X_scale = np.ones(X.shape[1], dtype=X.dtype) + std = np.sqrt(np.sum(X**2, axis=0)/(len(X)-1)) + X_scale[std != 0] = std[std != 0] + X /= X_scale + else: + X_scale = np.ones(X.shape[1], dtype=X.dtype) + y_offset = np.mean(y) + y = y - y_offset + else: + X_offset = np.zeros(X.shape[1], dtype=X.dtype) + X_scale = np.ones(X.shape[1], dtype=X.dtype) + if y.ndim == 1: + y_offset = X.dtype.type(0) + else: + y_offset = np.zeros(y.shape[1], dtype=X.dtype) + + return X, y, X_offset, y_offset, X_scale + + def fit(self, X, y): + ''' + Fits ARD Regression with Sequential Sparse Bayes Algorithm. + + Parameters + ----------- + X: {array-like, sparse matrix} of size (n_samples, n_features) + Training data, matrix of explanatory variables + + y: array-like of size [n_samples, n_features] + Target values + + Returns + ------- + self : object + Returns self. + ''' + X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) + n_samples, n_features = X.shape + + X, y, X_mean, y_mean, X_std = self._preprocess_data(X, y) + self._x_mean_ = X_mean + self._y_mean = y_mean + self._x_std = X_std + + # precompute X'*Y , X'*X for faster iterations & allocate memory for + # sparsity & quality vectors + XY = np.dot(X.T, y) + XX = np.dot(X.T, X) + XXd = np.diag(XX) + + # initialise precision of noise & and coefficients + var_y = np.var(y) + + # check that variance is non zero !!! + if var_y == 0: + beta = 1e-2 + self.var_y = True + else: + beta = 1. / np.var(y) + self.var_y = False + + A = np.PINF * np.ones(n_features) + active = np.zeros(n_features, dtype=np.bool) + + if self.start is not None and not hasattr(self, 'active_'): + start = self.start + # start from a given start basis vector + proj = XY**2 / XXd + active[start] = True + A[start] = XXd[start]/(proj[start] - var_y) + + else: + # in case of almost perfect multicollinearity between some features + # start from feature 0 + if np.sum(XXd - X_mean**2 < np.finfo(np.float32).eps) > 0: + A[0] = np.finfo(np.float16).eps + active[0] = True + + else: + # start from a single basis vector with largest projection on + # targets + proj = XY**2 / XXd + start = np.argmax(proj) + active[start] = True + A[start] = XXd[start]/(proj[start] - var_y + + np.finfo(np.float32).eps) + + warning_flag = 0 + scores_ = [] + for i in range(self.n_iter): + # Handle variance zero + if self.var_y: + A[0] = y_mean + active[0] = True + converged = True + break + + XXa = XX[active, :][:, active] + XYa = XY[active] + Aa = A[active] + + # mean & covariance of posterior distribution + Mn, Ri, cholesky = self._posterior_dist(Aa, beta, XXa, XYa) + if cholesky: + Sdiag = np.sum(Ri**2, 0) + else: + Sdiag = np.copy(np.diag(Ri)) + warning_flag += 1 + + # raise warning in case cholesky fails + if warning_flag == 1: + warnings.warn(("Cholesky decomposition failed! Algorithm uses " + "pinvh, which is significantly slower, if you " + "use RVR it is advised to change parameters of " + "kernel")) + + # compute quality & sparsity parameters + s, q, S, Q = self._sparsity_quality(XX, XXd, XY, XYa, Aa, Ri, + active, beta, cholesky) + + # update precision parameter for noise distribution + rss = np.sum((y - np.dot(X[:, active], Mn))**2) + + # if near perfect fit , then terminate + if (rss / n_samples/var_y) < self.tol: + warnings.warn('Early termination due to near perfect fit') + converged = True + break + beta = n_samples - np.sum(active) + np.sum(Aa * Sdiag) + beta /= rss + # beta /= (rss + np.finfo(np.float32).eps) + + # update precision parameters of coefficients + A, converged = update_precisions(Q, S, q, s, A, active, self.tol, + n_samples, False) + + if self.compute_score: + scores_.append(self.log_marginal_like(XXa, XYa, Aa, beta)) + + if self.verbose: + print(('Iteration: {0}, number of features ' + 'in the model: {1}').format(i, np.sum(active))) + + if converged or i == self.n_iter - 1: + if converged and self.verbose: + print('Algorithm converged !') + break + + # after last update of alpha & beta update parameters + # of posterior distribution + XXa, XYa, Aa = XX[active, :][:, active], XY[active], A[active] + Mn, Sn, cholesky = self._posterior_dist(Aa, beta, XXa, XYa, True) + self.coef_ = np.zeros(n_features) + self.coef_[active] = Mn + self.sigma_ = Sn + self.active_ = active + self.lambda_ = A + self.alpha_ = beta + self.converged = converged + if self.compute_score: + self.scores_ = np.array(scores_) + + # set intercept_ + if self.fit_intercept: + self.coef_ = self.coef_ / X_std + self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T) + else: + self.intercept_ = 0. + return self + + def log_marginal_like(self, XXa, XYa, Aa, beta): + """Computes the log of the marginal likelihood.""" + N, M = XXa.shape + A = np.diag(Aa) + + Mn, sigma_, cholesky = self._posterior_dist(Aa, beta, XXa, XYa, + full_covar=True) + + C = sigma_ + np.dot(np.dot(XXa.T, np.linalg.pinv(A)), XXa) + + score = np.dot(np.dot(XYa.T, np.linalg.pinv(C)), XYa) +\ + np.log(np.linalg.det(C)) + N * np.log(2 * np.pi) + + return -0.5 * score + + def predict(self, X, return_std=False): + ''' + Computes predictive distribution for test set. + Predictive distribution for each data point is one dimensional + Gaussian and therefore is characterised by mean and variance based on + Ref.[1] Section 3.3.2. + + Parameters + ----------- + X: {array-like, sparse} (n_samples_test, n_features) + Test data, matrix of explanatory variables + + Returns + ------- + : list of length two [y_hat, var_hat] + + y_hat: numpy array of size (n_samples_test,) + Estimated values of targets on test set (i.e. mean of + predictive distribution) + + var_hat: numpy array of size (n_samples_test,) + Variance of predictive distribution + References + ---------- + [1] Bishop, C. M. (2006). Pattern recognition and machine learning. + springer. + ''' + + y_hat = np.dot(X, self.coef_) + self.intercept_ + + if return_std: + # Handle the zero variance case + if self.var_y: + return y_hat, np.zeros_like(y_hat) + + if self.normalize: + X -= self._x_mean_[self.active_] + X /= self._x_std[self.active_] + var_hat = 1./self.alpha_ + var_hat += np.sum(X.dot(self.sigma_) * X, axis=1) + std_hat = np.sqrt(var_hat) + return y_hat, std_hat + else: + return y_hat + + def _posterior_dist(self, A, beta, XX, XY, full_covar=False): + ''' + Calculates mean and covariance matrix of posterior distribution + of coefficients. + ''' + # compute precision matrix for active features + Sinv = beta * XX + np.fill_diagonal(Sinv, np.diag(Sinv) + A) + cholesky = True + + # try cholesky, if it fails go back to pinvh + try: + # find posterior mean : R*R.T*mean = beta*X.T*Y + # solve(R*z = beta*X.T*Y) =>find z=> solve(R.T*mean = z)=>find mean + R = np.linalg.cholesky(Sinv) + Z = solve_triangular(R, beta*XY, check_finite=True, lower=True) + Mn = solve_triangular(R.T, Z, check_finite=True, lower=False) + + # invert lower triangular matrix from cholesky decomposition + Ri = solve_triangular(R, np.eye(A.shape[0]), check_finite=False, + lower=True) + if full_covar: + Sn = np.dot(Ri.T, Ri) + return Mn, Sn, cholesky + else: + return Mn, Ri, cholesky + except LinAlgError: + cholesky = False + Sn = pinvh(Sinv) + Mn = beta*np.dot(Sinv, XY) + return Mn, Sn, cholesky + + def _sparsity_quality(self, XX, XXd, XY, XYa, Aa, Ri, active, beta, cholesky): + ''' + Calculates sparsity and quality parameters for each feature + + Theoretical Note: + ----------------- + Here we used Woodbury Identity for inverting covariance matrix + of target distribution + C = 1/beta + 1/alpha * X' * X + C^-1 = beta - beta^2 * X * Sn * X' + ''' + bxy = beta*XY + bxx = beta*XXd + if cholesky: + # here Ri is inverse of lower triangular matrix obtained from + # cholesky decomp + xxr = np.dot(XX[:, active], Ri.T) + rxy = np.dot(Ri, XYa) + S = bxx - beta**2 * np.sum(xxr**2, axis=1) + Q = bxy - beta**2 * np.dot(xxr, rxy) + else: + # here Ri is covariance matrix + XXa = XX[:, active] + XS = np.dot(XXa, Ri) + S = bxx - beta**2 * np.sum(XS*XXa, 1) + Q = bxy - beta**2 * np.dot(XS, XYa) + # Use following: + # (EQ 1) q = A*Q/(A - S) ; s = A*S/(A-S) + # so if A = np.PINF q = Q, s = S + qi = np.copy(Q) + si = np.copy(S) + # If A is not np.PINF, then it should be 'active' feature => use (EQ 1) + Qa, Sa = Q[active], S[active] + qi[active] = Aa * Qa / (Aa - Sa) + si[active] = Aa * Sa / (Aa - Sa) + + return [si, qi, S, Q] diff --git a/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_laplace.py b/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_laplace.py new file mode 100644 index 0000000000000000000000000000000000000000..bdff324ede818a42d226e9aa55aaf01666ca8fc8 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/reg_fast_laplace.py @@ -0,0 +1,452 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +import numpy as np +from sklearn.utils import as_float_array +from sklearn.model_selection import KFold + + +class RegressionFastLaplace(): + ''' + Sparse regression with Bayesian Compressive Sensing as described in Alg. 1 + (Fast Laplace) of Ref.[1], which updated formulas from [2]. + + sigma2: noise precision (sigma^2) + nu fixed to 0 + + uqlab/lib/uq_regression/BCS/uq_bsc.m + + Parameters + ---------- + n_iter: int, optional (DEFAULT = 1000) + Maximum number of iterations + + tol: float, optional (DEFAULT = 1e-7) + If absolute change in precision parameter for weights is below + threshold algorithm terminates. + + fit_intercept : boolean, optional (DEFAULT = True) + whether to calculate the intercept for this model. If set + to false, no intercept will be used in calculations + (e.g. data is expected to be already centered). + + copy_X : boolean, optional (DEFAULT = True) + If True, X will be copied; else, it may be overwritten. + + verbose : boolean, optional (DEFAULT = FALSE) + Verbose mode when fitting the model + + Attributes + ---------- + coef_ : array, shape = (n_features) + Coefficients of the regression model (mean of posterior distribution) + + alpha_ : float + estimated precision of the noise + + active_ : array, dtype = np.bool, shape = (n_features) + True for non-zero coefficients, False otherwise + + lambda_ : array, shape = (n_features) + estimated precisions of the coefficients + + sigma_ : array, shape = (n_features, n_features) + estimated covariance matrix of the weights, computed only + for non-zero coefficients + + References + ---------- + [1] Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2009). Bayesian + compressive sensing using Laplace priors. IEEE Transactions on image + processing, 19(1), 53-63. + [2] Fast marginal likelihood maximisation for sparse Bayesian models + (Tipping & Faul 2003). + (http://www.miketipping.com/papers/met-fastsbl.pdf) + ''' + + def __init__(self, n_iter=1000, n_Kfold=10, tol=1e-7, fit_intercept=False, + bias_term=True, copy_X=True, verbose=False): + self.n_iter = n_iter + self.n_Kfold = n_Kfold + self.tol = tol + self.fit_intercept = fit_intercept + self.bias_term = bias_term + self.copy_X = copy_X + self.verbose = verbose + + def _center_data(self, X, y): + ''' Centers data''' + X = as_float_array(X, self.copy_X) + + # normalisation should be done in preprocessing! + X_std = np.ones(X.shape[1], dtype=X.dtype) + if self.fit_intercept: + X_mean = np.average(X, axis=0) + y_mean = np.average(y, axis=0) + X -= X_mean + y -= y_mean + else: + X_mean = np.zeros(X.shape[1], dtype=X.dtype) + y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype) + return X, y, X_mean, y_mean, X_std + + def fit(self, X, y): + + k_fold = KFold(n_splits=self.n_Kfold) + + varY = np.var(y, ddof=1) if np.var(y, ddof=1) != 0 else 1.0 + sigma2s = len(y)*varY*(10**np.linspace(-16, -1, self.n_Kfold)) + + errors = np.zeros((len(sigma2s), self.n_Kfold)) + for s, sigma2 in enumerate(sigma2s): + for k, (train, test) in enumerate(k_fold.split(X, y)): + self.fit_(X[train], y[train], sigma2) + errors[s, k] = np.linalg.norm( + y[test] - self.predict(X[test]) + )**2/len(test) + + KfCVerror = np.sum(errors, axis=1)/self.n_Kfold/varY + i_minCV = np.argmin(KfCVerror) + + self.kfoldCVerror = np.min(KfCVerror) + + return self.fit_(X, y, sigma2s[i_minCV]) + + def fit_(self, X, y, sigma2): + + N, P = X.shape + # n_samples, n_features = X.shape + + X, y, X_mean, y_mean, X_std = self._center_data(X, y) + self._x_mean_ = X_mean + self._y_mean = y_mean + self._x_std = X_std + + # check that variance is non zero !!! + if np.var(y) == 0: + self.var_y = True + else: + self.var_y = False + beta = 1./sigma2 + + # precompute X'*Y , X'*X for faster iterations & allocate memory for + # sparsity & quality vectors X=Psi + PsiTY = np.dot(X.T, y) + PsiTPsi = np.dot(X.T, X) + XXd = np.diag(PsiTPsi) + + # initialize with constant regressor, or if that one does not exist, + # with the one that has the largest correlation with Y + ind_global_to_local = np.zeros(P, dtype=np.int32) + + # identify constant regressors + constidx = np.where(~np.diff(X, axis=0).all(axis=0))[0] + + if self.bias_term and constidx.size != 0: + ind_start = constidx[0] + ind_global_to_local[ind_start] = True + else: + # start from a single basis vector with largest projection on + # targets + proj = np.divide(np.square(PsiTY), XXd) + ind_start = np.argmax(proj) + ind_global_to_local[ind_start] = True + + num_active = 1 + active_indices = [ind_start] + deleted_indices = [] + bcs_path = [ind_start] + gamma = np.zeros(P) + # for the initial value of gamma(ind_start), use the RVM formula + # gamma = (q^2 - s) / (s^2) + # and the fact that initially s = S = beta*Psi_i'*Psi_i and q = Q = + # beta*Psi_i'*Y + gamma[ind_start] = np.square(PsiTY[ind_start]) + gamma[ind_start] -= sigma2 * PsiTPsi[ind_start, ind_start] + gamma[ind_start] /= np.square(PsiTPsi[ind_start, ind_start]) + + Sigma = 1. / (beta * PsiTPsi[ind_start, ind_start] + + 1./gamma[ind_start]) + + mu = Sigma * PsiTY[ind_start] * beta + tmp1 = beta * PsiTPsi[ind_start] + S = beta * np.diag(PsiTPsi).T - Sigma * np.square(tmp1) + Q = beta * PsiTY.T - mu*(tmp1) + + tmp2 = np.ones(P) # alternative computation for the initial s,q + q0tilde = PsiTY[ind_start] + s0tilde = PsiTPsi[ind_start, ind_start] + tmp2[ind_start] = s0tilde / (q0tilde**2) / beta + s = np.divide(S, tmp2) + q = np.divide(Q, tmp2) + Lambda = 2*(num_active - 1) / np.sum(gamma) + + Delta_L_max = [] + for i in range(self.n_iter): + # Handle variance zero + if self.var_y: + mu = np.mean(y) + break + + if self.verbose: + print(' lambda = {0:.6e}\n'.format(Lambda)) + + # Calculate the potential updated value of each gamma[i] + if Lambda == 0.0: # RVM + gamma_potential = np.multiply(( + (q**2 - s) > Lambda), + np.divide(q**2 - s, s**2) + ) + else: + a = Lambda * s**2 + b = s**2 + 2*Lambda*s + c = Lambda + s - q**2 + gamma_potential = np.multiply( + (c < 0), np.divide( + -b + np.sqrt(b**2 - 4*np.multiply(a, c)), 2*a) + ) + + l_gamma = - np.log(np.absolute(1 + np.multiply(gamma, s))) + l_gamma += np.divide(np.multiply(q**2, gamma), + (1 + np.multiply(gamma, s))) + l_gamma -= Lambda*gamma # omitted the factor 1/2 + + # Contribution of each updated gamma(i) to L(gamma) + l_gamma_potential = - np.log( + np.absolute(1 + np.multiply(gamma_potential, s)) + ) + l_gamma_potential += np.divide( + np.multiply(q**2, gamma_potential), + (1 + np.multiply(gamma_potential, s)) + ) + # omitted the factor 1/2 + l_gamma_potential -= Lambda*gamma_potential + + # Check how L(gamma) would change if we replaced gamma(i) by the + # updated gamma_potential(i), for each i separately + Delta_L_potential = l_gamma_potential - l_gamma + + # deleted indices should not be chosen again + if len(deleted_indices) != 0: + values = -np.inf * np.ones(len(deleted_indices)) + Delta_L_potential[deleted_indices] = values + + Delta_L_max.append(np.nanmax(Delta_L_potential)) + ind_L_max = np.nanargmax(Delta_L_potential) + + # in case there is only 1 regressor in the model and it would now + # be deleted + if len(active_indices) == 1 and ind_L_max == active_indices[0] \ + and gamma_potential[ind_L_max] == 0.0: + Delta_L_potential[ind_L_max] = -np.inf + Delta_L_max[i] = np.max(Delta_L_potential) + ind_L_max = np.argmax(Delta_L_potential) + + # If L did not change significantly anymore, break + if Delta_L_max[i] <= 0.0 or\ + (i > 0 and all(np.absolute(Delta_L_max[i-1:]) + < sum(Delta_L_max)*self.tol)) or \ + (i > 0 and all(np.diff(bcs_path)[i-1:] == 0.0)): + if self.verbose: + print('Increase in L: {0:.6e} (eta = {1:.3e})\ + -- break\n'.format(Delta_L_max[i], self.tol)) + break + + # Print information + if self.verbose: + print(' Delta L = {0:.6e} \n'.format(Delta_L_max[i])) + + what_changed = int(gamma[ind_L_max] == 0.0) + what_changed -= int(gamma_potential[ind_L_max] == 0.0) + + # Print information + if self.verbose: + if what_changed < 0: + print(f'{i+1} - Remove regressor #{ind_L_max+1}..\n') + elif what_changed == 0: + print(f'{i+1} - Recompute regressor #{ind_L_max+1}..\n') + else: + print(f'{i+1} - Add regressor #{ind_L_max+1}..\n') + + # --- Update all quantities ---- + if what_changed == 1: + # adding a regressor + + # update gamma + gamma[ind_L_max] = gamma_potential[ind_L_max] + + Sigma_ii = 1.0 / (1.0/gamma[ind_L_max] + S[ind_L_max]) + try: + x_i = np.matmul( + Sigma, PsiTPsi[active_indices, ind_L_max].reshape(-1, 1) + ) + except ValueError: + x_i = Sigma * PsiTPsi[active_indices, ind_L_max] + tmp_1 = - (beta * Sigma_ii) * x_i + Sigma = np.vstack( + (np.hstack(((beta**2 * Sigma_ii) * np.dot(x_i, x_i.T) + + Sigma, tmp_1)), np.append(tmp_1.T, Sigma_ii)) + ) + mu_i = Sigma_ii * Q[ind_L_max] + mu = np.vstack((mu - (beta * mu_i) * x_i, mu_i)) + + tmp2_1 = PsiTPsi[:, ind_L_max] - beta * np.squeeze( + np.matmul(PsiTPsi[:, active_indices], x_i) + ) + if i == 0: + tmp2_1[0] /= 2 + tmp2 = beta * tmp2_1.T + S = S - Sigma_ii * np.square(tmp2) + Q = Q - mu_i * tmp2 + + num_active += 1 + ind_global_to_local[ind_L_max] = num_active + active_indices.append(ind_L_max) + bcs_path.append(ind_L_max) + + elif what_changed == 0: + # recomputation + # zero if regressor has not been chosen yet + if not ind_global_to_local[ind_L_max]: + raise Exception('cannot recompute index{0} -- not yet\ + part of the model!'.format(ind_L_max)) + Sigma = np.atleast_2d(Sigma) + mu = np.atleast_2d(mu) + gamma_i_new = gamma_potential[ind_L_max] + gamma_i_old = gamma[ind_L_max] + # update gamma + gamma[ind_L_max] = gamma_potential[ind_L_max] + + # index of regressor in Sigma + local_ind = ind_global_to_local[ind_L_max]-1 + + kappa_i = (1.0/gamma_i_new - 1.0/gamma_i_old) + kappa_i = 1.0 / kappa_i + kappa_i += Sigma[local_ind, local_ind] + kappa_i = 1 / kappa_i + Sigma_i_col = Sigma[:, local_ind] + + Sigma = Sigma - kappa_i * (Sigma_i_col * Sigma_i_col.T) + mu_i = mu[local_ind] + mu = mu - (kappa_i * mu_i) * Sigma_i_col[:, None] + + tmp1 = beta * np.dot( + Sigma_i_col.reshape(1, -1), PsiTPsi[active_indices])[0] + S = S + kappa_i * np.square(tmp1) + Q = Q + (kappa_i * mu_i) * tmp1 + + # no change in active_indices or ind_global_to_local + bcs_path.append(ind_L_max + 0.1) + + elif what_changed == -1: + gamma[ind_L_max] = 0 + + # index of regressor in Sigma + local_ind = ind_global_to_local[ind_L_max]-1 + + Sigma_ii_inv = 1. / Sigma[local_ind, local_ind] + Sigma_i_col = Sigma[:, local_ind] + + Sigma = Sigma - Sigma_ii_inv * (Sigma_i_col * Sigma_i_col.T) + + Sigma = np.delete( + np.delete(Sigma, local_ind, axis=0), local_ind, axis=1) + + mu = mu - (mu[local_ind] * Sigma_ii_inv) * Sigma_i_col[:, None] + mu = np.delete(mu, local_ind, axis=0) + + tmp1 = beta * np.dot(Sigma_i_col, PsiTPsi[active_indices]) + S = S + Sigma_ii_inv * np.square(tmp1) + Q = Q + (mu_i * Sigma_ii_inv) * tmp1 + + num_active -= 1 + ind_global_to_local[ind_L_max] = 0.0 + v = ind_global_to_local[ind_global_to_local > local_ind] - 1 + ind_global_to_local[ind_global_to_local > local_ind] = v + del active_indices[local_ind] + deleted_indices.append(ind_L_max) + # and therefore ineligible + bcs_path.append(-ind_L_max) + + # same for all three cases + tmp3 = 1 - np.multiply(gamma, S) + s = np.divide(S, tmp3) + q = np.divide(Q, tmp3) + + # Update lambda + Lambda = 2*(num_active - 1) / np.sum(gamma) + + # Prepare the result object + self.coef_ = np.zeros(P) + self.coef_[active_indices] = np.squeeze(mu) + self.sigma_ = Sigma + self.active_ = active_indices + self.gamma = gamma + self.Lambda = Lambda + self.beta = beta + self.bcs_path = bcs_path + + # set intercept_ + if self.fit_intercept: + self.coef_ = self.coef_ / X_std + self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T) + else: + self.intercept_ = 0. + + return self + + def predict(self, X, return_std=False): + ''' + Computes predictive distribution for test set. + Predictive distribution for each data point is one dimensional + Gaussian and therefore is characterised by mean and variance based on + Ref.[1] Section 3.3.2. + + Parameters + ----------- + X: {array-like, sparse} (n_samples_test, n_features) + Test data, matrix of explanatory variables + + Returns + ------- + : list of length two [y_hat, var_hat] + + y_hat: numpy array of size (n_samples_test,) + Estimated values of targets on test set (i.e. mean of + predictive distribution) + + var_hat: numpy array of size (n_samples_test,) + Variance of predictive distribution + + References + ---------- + [1] Bishop, C. M. (2006). Pattern recognition and machine learning. + springer. + ''' + y_hat = np.dot(X, self.coef_) + self.intercept_ + + if return_std: + # Handle the zero variance case + if self.var_y: + return y_hat, np.zeros_like(y_hat) + + var_hat = 1./self.beta + var_hat += np.sum(X.dot(self.sigma_) * X, axis=1) + std_hat = np.sqrt(var_hat) + return y_hat, std_hat + else: + return y_hat + +# l2norm = 0.0 +# for idx in range(10): +# sigma2 = np.genfromtxt('./test/sigma2_{0}.csv'.format(idx+1), delimiter=',') +# Psi_train = np.genfromtxt('./test/Psi_train_{0}.csv'.format(idx+1), delimiter=',') +# Y_train = np.genfromtxt('./test/Y_train_{0}.csv'.format(idx+1)) +# Psi_test = np.genfromtxt('./test/Psi_test_{0}.csv'.format(idx+1), delimiter=',') +# Y_test = np.genfromtxt('./test/Y_test_{0}.csv'.format(idx+1)) + +# clf = RegressionFastLaplace(verbose=True) +# clf.fit_(Psi_train, Y_train, sigma2) +# coeffs_fold = np.genfromtxt('./test/coeffs_fold_{0}.csv'.format(idx+1)) +# print("coeffs error: {0:.4g}".format(np.linalg.norm(clf.coef_ - coeffs_fold))) +# l2norm += np.linalg.norm(Y_test - clf.predict(Psi_test))**2/len(Y_test) +# print("l2norm error: {0:.4g}".format(l2norm)) diff --git a/examples/only-model/bayesvalidrox/surrogate_models/sequential_design.py b/examples/only-model/bayesvalidrox/surrogate_models/sequential_design.py new file mode 100644 index 0000000000000000000000000000000000000000..fc81dcd4529ca0708dfba47385aef4415992eb3e --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/sequential_design.py @@ -0,0 +1,2187 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Jan 28 09:21:18 2022 + +@author: farid +""" +import numpy as np +from scipy import stats, signal, linalg, sparse +from scipy.spatial import distance +from copy import deepcopy, copy +from tqdm import tqdm +import scipy.optimize as opt +from sklearn.metrics import mean_squared_error +import multiprocessing +import matplotlib.pyplot as plt +import sys +import os +import gc +import seaborn as sns +from joblib import Parallel, delayed +import resource +from .exploration import Exploration + + +class SeqDesign(): + """ Sequential experimental design + This class provieds method for trainig the meta-model in an iterative + manners. + The main method to execute the task is `train_seq_design`, which + recieves a model object and returns the trained metamodel. + """ + + # ------------------------------------------------------------------------- + def train_seq_design(self, MetaModel): + """ + Starts the adaptive sequential design for refining the surrogate model + by selecting training points in a sequential manner. + + Parameters + ---------- + Model : object + An object containing all model specifications. + + Returns + ------- + MetaModel : object + Meta model object. + + """ + # MetaModel = self + Model = MetaModel.ModelObj + self.MetaModel = MetaModel + self.Model = Model + + # Initialization + MetaModel.SeqModifiedLOO = {} + MetaModel.seqValidError = {} + MetaModel.SeqBME = {} + MetaModel.SeqKLD = {} + MetaModel.SeqDistHellinger = {} + MetaModel.seqRMSEMean = {} + MetaModel.seqRMSEStd = {} + MetaModel.seqMinDist = [] + pce = True if MetaModel.meta_model_type.lower() != 'gpe' else False + mc_ref = True if bool(Model.mc_reference) else False + if mc_ref: + Model.read_mc_reference() + + if not hasattr(MetaModel, 'valid_likelihoods'): + MetaModel.valid_samples = [] + MetaModel.valid_model_runs = [] + MetaModel.valid_likelihoods = [] + + # Get the parameters + max_n_samples = MetaModel.ExpDesign.n_max_samples + mod_LOO_threshold = MetaModel.ExpDesign.mod_LOO_threshold + n_canddidate = MetaModel.ExpDesign.n_canddidate + post_snapshot = MetaModel.ExpDesign.post_snapshot + n_replication = MetaModel.ExpDesign.n_replication + util_func = MetaModel.ExpDesign.util_func + output_name = Model.Output.names + validError = None + # Handle if only one UtilityFunctions is provided + if not isinstance(util_func, list): + util_func = [MetaModel.ExpDesign.util_func] + + # Read observations or MCReference + if len(Model.observations) != 0 or Model.meas_file is not None: + self.observations = Model.read_observation() + obs_data = self.observations + else: + obs_data = [] + TotalSigma2 = {} + # ---------- Initial MetaModel ---------- + initMetaModel = deepcopy(MetaModel) + + # Validation error if validation set is provided. + if len(MetaModel.valid_model_runs) != 0: + init_rmse, init_valid_error = self.__validError(initMetaModel) + init_valid_error = list(init_valid_error.values()) + else: + init_rmse = None + + # Check if discrepancy is provided + if len(obs_data) != 0 and hasattr(MetaModel, 'Discrepancy'): + TotalSigma2 = MetaModel.Discrepancy.parameters + + # Calculate the initial BME + out = self.__BME_Calculator( + initMetaModel, obs_data, TotalSigma2, init_rmse) + init_BME, init_KLD, init_post, init_likes, init_dist_hellinger = out + print(f"\nInitial BME: {init_BME:.2f}") + print(f"Initial KLD: {init_KLD:.2f}") + + # Posterior snapshot (initial) + if post_snapshot: + parNames = MetaModel.ExpDesign.par_names + print('Posterior snapshot (initial) is being plotted...') + self.__posteriorPlot(init_post, parNames, 'SeqPosterior_init') + + # Check the convergence of the Mean & Std + if mc_ref and pce: + init_rmse_mean, init_rmse_std = self.__error_Mean_Std() + print(f"Initial Mean and Std error: {init_rmse_mean}," + f" {init_rmse_std}") + + # Read the initial experimental design + Xinit = initMetaModel.ExpDesign.X + init_n_samples = len(MetaModel.ExpDesign.X) + initYprev = initMetaModel.ModelOutputDict + initLCerror = initMetaModel.LCerror + n_itrs = max_n_samples - init_n_samples + + # Read the initial ModifiedLOO + if pce: + Scores_all, varExpDesignY = [], [] + for out_name in output_name: + y = initMetaModel.ExpDesign.Y[out_name] + Scores_all.append(list( + initMetaModel.score_dict['b_1'][out_name].values())) + if MetaModel.dim_red_method.lower() == 'pca': + pca = MetaModel.pca['b_1'][out_name] + components = pca.transform(y) + varExpDesignY.append(np.var(components, axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + + Scores = [item for sublist in Scores_all for item in sublist] + weights = [item for sublist in varExpDesignY for item in sublist] + init_mod_LOO = [np.average([1-score for score in Scores], + weights=weights)] + + prevMetaModel_dict = {} + # Replicate the sequential design + for repIdx in range(n_replication): + print(f'\n>>>> Replication: {repIdx+1}<<<<') + + # To avoid changes ub original aPCE object + MetaModel.ExpDesign.X = Xinit + MetaModel.ExpDesign.Y = initYprev + MetaModel.LCerror = initLCerror + + for util_f in util_func: + print(f'\n>>>> Utility Function: {util_f} <<<<') + # To avoid changes ub original aPCE object + MetaModel.ExpDesign.X = Xinit + MetaModel.ExpDesign.Y = initYprev + MetaModel.LCerror = initLCerror + + # Set the experimental design + Xprev = Xinit + total_n_samples = init_n_samples + Yprev = initYprev + + Xfull = [] + Yfull = [] + + # Store the initial ModifiedLOO + if pce: + print("\nInitial ModifiedLOO:", init_mod_LOO) + SeqModifiedLOO = np.array(init_mod_LOO) + + if len(MetaModel.valid_model_runs) != 0: + SeqValidError = np.array(init_valid_error) + + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.array([init_BME]) + SeqKLD = np.array([init_KLD]) + SeqDistHellinger = np.array([init_dist_hellinger]) + + if mc_ref and pce: + seqRMSEMean = np.array([init_rmse_mean]) + seqRMSEStd = np.array([init_rmse_std]) + + # ------- Start Sequential Experimental Design ------- + postcnt = 1 + for itr_no in range(1, n_itrs+1): + print(f'\n>>>> Iteration number {itr_no} <<<<') + + # Save the metamodel prediction before updating + prevMetaModel_dict[itr_no] = deepcopy(MetaModel) + if itr_no > 1: + pc_model = prevMetaModel_dict[itr_no-1] + self._y_hat_prev, _ = pc_model.eval_metamodel( + samples=Xfull[-1].reshape(1, -1)) + + # Optimal Bayesian Design + m_1 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + MetaModel.ExpDesignFlag = 'sequential' + Xnew, updatedPrior = self.opt_SeqDesign(TotalSigma2, + n_canddidate, + util_f) + m_2 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + S = np.min(distance.cdist(Xinit, Xnew, 'euclidean')) + MetaModel.seqMinDist.append(S) + print(f"\nmin Dist from OldExpDesign: {S:2f}") + print("\n") + + # Evaluate the full model response at the new sample + Ynew, _ = Model.run_model_parallel( + Xnew, prevRun_No=total_n_samples + ) + total_n_samples += Xnew.shape[0] + # ------ Plot the surrogate model vs Origninal Model ------ + if hasattr(MetaModel, 'adapt_verbose') and \ + MetaModel.adapt_verbose: + from .adaptPlot import adaptPlot + y_hat, std_hat = MetaModel.eval_metamodel(samples=Xnew) + adaptPlot(MetaModel, Ynew, y_hat, std_hat, plotED=False) + + # -------- Retrain the surrogate model ------- + # Extend new experimental design + Xfull = np.vstack((Xprev, Xnew)) + + # Updating experimental design Y + for out_name in output_name: + Yfull = np.vstack((Yprev[out_name], Ynew[out_name])) + MetaModel.ModelOutputDict[out_name] = Yfull + + # Pass new design to the metamodel object + MetaModel.ExpDesign.sampling_method = 'user' + MetaModel.ExpDesign.X = Xfull + MetaModel.ExpDesign.Y = MetaModel.ModelOutputDict + + # Save the Experimental Design for next iteration + Xprev = Xfull + Yprev = MetaModel.ModelOutputDict + + # Pass the new prior as the input + MetaModel.input_obj.poly_coeffs_flag = False + if updatedPrior is not None: + MetaModel.input_obj.poly_coeffs_flag = True + print("updatedPrior:", updatedPrior.shape) + # Arbitrary polynomial chaos + for i in range(updatedPrior.shape[1]): + MetaModel.input_obj.Marginals[i].dist_type = None + x = updatedPrior[:, i] + MetaModel.input_obj.Marginals[i].raw_data = x + + # Train the surrogate model for new ExpDesign + MetaModel.train_norm_design(parallel=False) + m_3 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + + # -------- Evaluate the retrained surrogate model ------- + # Extract Modified LOO from Output + if pce: + Scores_all, varExpDesignY = [], [] + for out_name in output_name: + y = MetaModel.ExpDesign.Y[out_name] + Scores_all.append(list( + MetaModel.score_dict['b_1'][out_name].values())) + if MetaModel.dim_red_method.lower() == 'pca': + pca = MetaModel.pca['b_1'][out_name] + components = pca.transform(y) + varExpDesignY.append(np.var(components, + axis=0)) + else: + varExpDesignY.append(np.var(y, axis=0)) + Scores = [item for sublist in Scores_all for item + in sublist] + weights = [item for sublist in varExpDesignY for item + in sublist] + ModifiedLOO = [np.average( + [1-score for score in Scores], weights=weights)] + + print('\n') + print(f"Updated ModifiedLOO {util_f}:\n", ModifiedLOO) + print('\n') + + # Compute the validation error + if len(MetaModel.valid_model_runs) != 0: + rmse, validError = self.__validError(MetaModel) + ValidError = list(validError.values()) + else: + rmse = None + + # Store updated ModifiedLOO + if pce: + SeqModifiedLOO = np.vstack( + (SeqModifiedLOO, ModifiedLOO)) + if len(MetaModel.valid_model_runs) != 0: + SeqValidError = np.vstack( + (SeqValidError, ValidError)) + m_4 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + # -------- Caclulation of BME as accuracy metric ------- + # Check if data is provided + if len(obs_data) != 0: + # Calculate the initial BME + out = self.__BME_Calculator(MetaModel, obs_data, + TotalSigma2, rmse) + BME, KLD, Posterior, likes, DistHellinger = out + print('\n') + print(f"Updated BME: {BME:.2f}") + print(f"Updated KLD: {KLD:.2f}") + print('\n') + + # Plot some snapshots of the posterior + step_snapshot = MetaModel.ExpDesign.step_snapshot + if post_snapshot and postcnt % step_snapshot == 0: + parNames = MetaModel.ExpDesign.par_names + print('Posterior snapshot is being plotted...') + self.__posteriorPlot(Posterior, parNames, + f'SeqPosterior_{postcnt}') + postcnt += 1 + m_5 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + + # Check the convergence of the Mean&Std + if mc_ref and pce: + print('\n') + RMSE_Mean, RMSE_std = self.__error_Mean_Std() + print(f"Updated Mean and Std error: {RMSE_Mean:.2f}, " + f"{RMSE_std:.2f}") + print('\n') + + # Store the updated BME & KLD + # Check if data is provided + if len(obs_data) != 0: + SeqBME = np.vstack((SeqBME, BME)) + SeqKLD = np.vstack((SeqKLD, KLD)) + SeqDistHellinger = np.vstack((SeqDistHellinger, + DistHellinger)) + if mc_ref and pce: + seqRMSEMean = np.vstack((seqRMSEMean, RMSE_Mean)) + seqRMSEStd = np.vstack((seqRMSEStd, RMSE_std)) + + if pce and any(LOO < mod_LOO_threshold + for LOO in ModifiedLOO): + break + + print(f"Memory itr {itr_no}: I: {m_2-m_1:.2f} MB") + print(f"Memory itr {itr_no}: II: {m_3-m_2:.2f} MB") + print(f"Memory itr {itr_no}: III: {m_4-m_3:.2f} MB") + print(f"Memory itr {itr_no}: IV: {m_5-m_4:.2f} MB") + m_6 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + print(f"Memory itr {itr_no}: total: {m_6:.2f} MB") + + # Clean up + if len(obs_data) != 0: + del out + gc.collect() + print() + print('-'*50) + print() + + # Store updated ModifiedLOO and BME in dictonary + strKey = f'{util_f}_rep_{repIdx+1}' + if pce: + MetaModel.SeqModifiedLOO[strKey] = SeqModifiedLOO + if len(MetaModel.valid_model_runs) != 0: + MetaModel.seqValidError[strKey] = SeqValidError + + # Check if data is provided + if len(obs_data) != 0: + MetaModel.SeqBME[strKey] = SeqBME + MetaModel.SeqKLD[strKey] = SeqKLD + if len(MetaModel.valid_likelihoods) != 0: + MetaModel.SeqDistHellinger[strKey] = SeqDistHellinger + if mc_ref and pce: + MetaModel.seqRMSEMean[strKey] = seqRMSEMean + MetaModel.seqRMSEStd[strKey] = seqRMSEStd + + return MetaModel + + # ------------------------------------------------------------------------- + def util_VarBasedDesign(self, X_can, index, util_func='Entropy'): + """ + Computes the exploitation scores based on: + active learning MacKay(ALM) and active learning Cohn (ALC) + Paper: Sequential Design with Mutual Information for Computer + Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas + (2016) + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + index : int + Model output index. + UtilMethod : string, optional + Exploitation utility function. The default is 'Entropy'. + + Returns + ------- + float + Score. + + """ + MetaModel = self.MetaModel + ED_X = MetaModel.ExpDesign.X + out_dict_y = MetaModel.ExpDesign.Y + out_names = MetaModel.ModelObj.Output.names + + # Run the Metamodel for the candidate + X_can = X_can.reshape(1, -1) + Y_PC_can, std_PC_can = MetaModel.eval_metamodel(samples=X_can) + + if util_func.lower() == 'alm': + # ----- Entropy/MMSE/active learning MacKay(ALM) ----- + # Compute perdiction variance of the old model + canPredVar = {key: std_PC_can[key]**2 for key in out_names} + + varPCE = np.zeros((len(out_names), X_can.shape[0])) + for KeyIdx, key in enumerate(out_names): + varPCE[KeyIdx] = np.max(canPredVar[key], axis=1) + score = np.max(varPCE, axis=0) + + elif util_func.lower() == 'eigf': + # ----- Expected Improvement for Global fit ----- + # Find closest EDX to the candidate + distances = distance.cdist(ED_X, X_can, 'euclidean') + index = np.argmin(distances) + + # Compute perdiction error and variance of the old model + predError = {key: Y_PC_can[key] for key in out_names} + canPredVar = {key: std_PC_can[key]**2 for key in out_names} + + # Compute perdiction error and variance of the old model + # Eq (5) from Liu et al.(2018) + EIGF_PCE = np.zeros((len(out_names), X_can.shape[0])) + for KeyIdx, key in enumerate(out_names): + residual = predError[key] - out_dict_y[key][int(index)] + var = canPredVar[key] + EIGF_PCE[KeyIdx] = np.max(residual**2 + var, axis=1) + score = np.max(EIGF_PCE, axis=0) + + return -1 * score # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def util_BayesianActiveDesign(self, X_can, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian active design criterion (var). + + It is based on the following paper: + Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak. + "Bayesian3 active learning for the gaussian process emulator using + information theory." Entropy 22, no. 8 (2020): 890. + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + BAL design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # Evaluate the PCE metamodels at that location ??? + Y_mean_can, Y_std_can = self.MetaModel.eval_metamodel( + samples=np.array([X_can]) + ) + + # Get the data + obs_data = self.observations + n_obs = self.Model.n_obs + # TODO: Analytical DKL + # Sample a distribution for a normal dist + # with Y_mean_can as the mean and Y_std_can as std. + + # priorMean, priorSigma2, Obs = np.empty((0)),np.empty((0)),np.empty((0)) + + # for key in list(Y_mean_can): + # # concatenate the measurement error + # Obs = np.hstack((Obs,ObservationData[key])) + + # # concatenate the mean and variance of prior predictive + # means, stds = Y_mean_can[key][0], Y_std_can[key][0] + # priorMean = np.hstack((priorSigma2,means)) + # priorSigma2 = np.hstack((priorSigma2,stds**2)) + + # # Covariance Matrix of prior + # covPrior = np.zeros((priorSigma2.shape[0], priorSigma2.shape[0]), float) + # np.fill_diagonal(covPrior, priorSigma2) + + # # Covariance Matrix of Likelihood + # covLikelihood = np.zeros((sigma2Dict.shape[0], sigma2Dict.shape[0]), float) + # np.fill_diagonal(covLikelihood, sigma2Dict) + + # # Calculate moments of the posterior (Analytical derivation) + # n = priorSigma2.shape[0] + # covPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))),covLikelihood/n) + + # meanPost = np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))) , Obs) + \ + # np.dot(np.dot(covPrior,np.linalg.inv(covPrior+(covLikelihood/n))), + # priorMean/n) + # # Compute DKL from prior to posterior + # term1 = np.trace(np.dot(np.linalg.inv(covPrior),covPost)) + # deltaMean = priorMean-meanPost + # term2 = np.dot(np.dot(deltaMean,np.linalg.inv(covPrior)),deltaMean[:,None]) + # term3 = np.log(np.linalg.det(covPrior)/np.linalg.det(covPost)) + # DKL = 0.5 * (term1 + term2 - n + term3)[0] + + # ---------- Inner MC simulation for computing Utility Value ---------- + # Estimation of the integral via Monte Varlo integration + MCsize = 20000 + ESS = 0 + + while ((ESS > MCsize) or (ESS < 1)): + + # Sample a distribution for a normal dist + # with Y_mean_can as the mean and Y_std_can as std. + Y_MC, std_MC = {}, {} + logPriorLikelihoods = np.zeros((MCsize)) + for key in list(Y_mean_can): + means, stds = Y_mean_can[key][0], Y_std_can[key][0] + # cov = np.zeros((means.shape[0], means.shape[0]), float) + # np.fill_diagonal(cov, stds**2) + + Y_MC[key] = np.zeros((MCsize, n_obs)) + logsamples = np.zeros((MCsize, n_obs)) + for i in range(n_obs): + NormalDensity = stats.norm(means[i], stds[i]) + Y_MC[key][:, i] = NormalDensity.rvs(MCsize) + logsamples[:, i] = NormalDensity.logpdf(Y_MC[key][:, i]) + + logPriorLikelihoods = np.sum(logsamples, axis=1) + std_MC[key] = np.zeros((MCsize, means.shape[0])) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self.__normpdf(Y_MC, std_MC, obs_data, sigma2Dict) + + # Check the Effective Sample Size (1<ESS<MCsize) + ESS = 1 / np.sum(np.square(likelihoods/np.nansum(likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + # Utility function Eq.2 in Ref. (2) + # Posterior covariance matrix after observing data y + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # TODO: Calculate the correction factor for BME + # BMECorrFactor = self.BME_Corr_Weight(PCE_SparseBayes_can, + # ObservationData, sigma2Dict) + # BME += BMECorrFactor + # Haun et al implementation + # U_J_d = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + U_J_d = postExpLikelihoods - logBME + + # Marginal log likelihood + elif var == 'BME': + U_J_d = logBME + + # Entropy-based information gain + elif var == 'infEntropy': + logBME = np.log(np.nanmean(likelihoods)) + infEntropy = logBME - postExpPrior - postExpLikelihoods + U_J_d = infEntropy * -1 # -1 for minimization + + # Bayesian information criterion + elif var == 'BIC': + coeffs = self.MetaModel.coeffs_dict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxL = np.nanmax(likelihoods) + U_J_d = -2 * np.log(maxL) + np.log(n_obs) * nModelParams + + # Akaike information criterion + elif var == 'AIC': + coeffs = self.MetaModel.coeffs_dict.values() + nModelParams = max(len(v) for val in coeffs for v in val.values()) + maxlogL = np.log(np.nanmax(likelihoods)) + AIC = -2 * maxlogL + 2 * nModelParams + # 2 * nModelParams * (nModelParams+1) / (n_obs-nModelParams-1) + penTerm = 0 + U_J_d = 1*(AIC + penTerm) + + # Deviance information criterion + elif var == 'DIC': + # D_theta_bar = np.mean(-2 * Likelihoods) + N_star_p = 0.5 * np.var(np.log(likelihoods[likelihoods != 0])) + Likelihoods_theta_mean = self.__normpdf( + Y_mean_can, Y_std_can, obs_data, sigma2Dict + ) + DIC = -2 * np.log(Likelihoods_theta_mean) + 2 * N_star_p + + U_J_d = DIC + + else: + print('The algorithm you requested has not been implemented yet!') + + # Handle inf and NaN (replace by zero) + if np.isnan(U_J_d) or U_J_d == -np.inf or U_J_d == np.inf: + U_J_d = 0.0 + + # Clear memory + del likelihoods + del Y_MC + del std_MC + gc.collect(generation=2) + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def update_metamodel(self, MetaModel, output, y_hat_can, univ_p_val, index, + new_pca=False): + BasisIndices = MetaModel.basis_dict[output]["y_"+str(index+1)] + clf_poly = MetaModel.clf_poly[output]["y_"+str(index+1)] + Mn = clf_poly.coef_ + Sn = clf_poly.sigma_ + beta = clf_poly.alpha_ + active = clf_poly.active_ + Psi = self.MetaModel.create_psi(BasisIndices, univ_p_val) + + Sn_new_inv = np.linalg.inv(Sn) + Sn_new_inv += beta * np.dot(Psi[:, active].T, Psi[:, active]) + Sn_new = np.linalg.inv(Sn_new_inv) + + Mn_new = np.dot(Sn_new_inv, Mn[active]).reshape(-1, 1) + Mn_new += beta * np.dot(Psi[:, active].T, y_hat_can) + Mn_new = np.dot(Sn_new, Mn_new).flatten() + + # Compute the old and new moments of PCEs + mean_old = Mn[0] + mean_new = Mn_new[0] + std_old = np.sqrt(np.sum(np.square(Mn[1:]))) + std_new = np.sqrt(np.sum(np.square(Mn_new[1:]))) + + # Back transformation if PCA is selected. + if MetaModel.dim_red_method.lower() == 'pca': + old_pca = MetaModel.pca[output] + mean_old = old_pca.mean_[index] + mean_old += np.sum(mean_old * old_pca.components_[:, index]) + std_old = np.sqrt(np.sum(std_old**2 * + old_pca.components_[:, index]**2)) + mean_new = new_pca.mean_[index] + mean_new += np.sum(mean_new * new_pca.components_[:, index]) + std_new = np.sqrt(np.sum(std_new**2 * + new_pca.components_[:, index]**2)) + # print(f"mean_old: {mean_old:.2f} mean_new: {mean_new:.2f}") + # print(f"std_old: {std_old:.2f} std_new: {std_new:.2f}") + # Store the old and new moments of PCEs + results = { + 'mean_old': mean_old, + 'mean_new': mean_new, + 'std_old': std_old, + 'std_new': std_new + } + return results + + # ------------------------------------------------------------------------- + def util_BayesianDesign_old(self, X_can, X_MC, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian sequential design criterion (var). + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + Bayesian design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # To avoid changes ub original aPCE object + Model = self.Model + MetaModel = deepcopy(self.MetaModel) + old_EDY = MetaModel.ExpDesign.Y + + # Evaluate the PCE metamodels using the candidate design + Y_PC_can, Y_std_can = self.MetaModel.eval_metamodel( + samples=np.array([X_can]) + ) + + # Generate y from posterior predictive + m_size = 100 + y_hat_samples = {} + for idx, key in enumerate(Model.Output.names): + means, stds = Y_PC_can[key][0], Y_std_can[key][0] + y_hat_samples[key] = np.random.multivariate_normal( + means, np.diag(stds), m_size) + + # Create the SparseBayes-based PCE metamodel: + MetaModel.input_obj.poly_coeffs_flag = False + univ_p_val = self.MetaModel.univ_basis_vals(X_can) + G_n_m_all = np.zeros((m_size, len(Model.Output.names), Model.n_obs)) + + for i in range(m_size): + for idx, key in enumerate(Model.Output.names): + if MetaModel.dim_red_method.lower() == 'pca': + # Equal number of components + new_outputs = np.vstack( + (old_EDY[key], y_hat_samples[key][i]) + ) + new_pca, _ = MetaModel.pca_transformation(new_outputs) + target = new_pca.transform( + y_hat_samples[key][i].reshape(1, -1) + )[0] + else: + new_pca, target = False, y_hat_samples[key][i] + + for j in range(len(target)): + + # Update surrogate + result = self.update_metamodel( + MetaModel, key, target[j], univ_p_val, j, new_pca) + + # Compute Expected Information Gain (Eq. 39) + G_n_m = np.log(result['std_old']/result['std_new']) - 1./2 + G_n_m += result['std_new']**2 / (2*result['std_old']**2) + G_n_m += (result['mean_new'] - result['mean_old'])**2 /\ + (2*result['std_old']**2) + + G_n_m_all[i, idx, j] = G_n_m + + U_J_d = G_n_m_all.mean(axis=(1, 2)).mean() + return -1 * U_J_d + + # ------------------------------------------------------------------------- + def util_BayesianDesign(self, X_can, X_MC, sigma2Dict, var='DKL'): + """ + Computes scores based on Bayesian sequential design criterion (var). + + Parameters + ---------- + X_can : array of shape (n_samples, n_params) + Candidate samples. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + var : string, optional + Bayesian design criterion. The default is 'DKL'. + + Returns + ------- + float + Score. + + """ + + # To avoid changes ub original aPCE object + Model = self.Model + MetaModel = deepcopy(self.MetaModel) + out_names = MetaModel.ModelObj.Output.names + if X_can.ndim == 1: + X_can = X_can.reshape(1, -1) + + # Compute the mean and std based on the MetaModel + # pce_means, pce_stds = self._compute_pce_moments(MetaModel) + if var == 'ALC': + Y_MC, Y_MC_std = MetaModel.eval_metamodel(samples=X_MC) + + # Old Experimental design + oldExpDesignX = MetaModel.ExpDesign.X + oldExpDesignY = MetaModel.ExpDesign.Y + + # Evaluate the PCE metamodels at that location ??? + Y_PC_can, Y_std_can = MetaModel.eval_metamodel(samples=X_can) + + # Add all suggestion as new ExpDesign + NewExpDesignX = np.vstack((oldExpDesignX, X_can)) + + NewExpDesignY = {} + for key in oldExpDesignY.keys(): + try: + NewExpDesignY[key] = np.vstack((oldExpDesignY[key], + Y_PC_can[key])) + except: + NewExpDesignY[key] = oldExpDesignY[key] + + MetaModel.ExpDesign.sampling_method = 'user' + MetaModel.ExpDesign.X = NewExpDesignX + MetaModel.ExpDesign.Y = NewExpDesignY + + # Train the model for the observed data using x_can + MetaModel.input_obj.poly_coeffs_flag = False + MetaModel.train_norm_design(parallel=False) + PCE_Model_can = MetaModel + + if var.lower() == 'mi': + # Mutual information based on Krause et al + # Adapted from Beck & Guillas (MICE) paper + _, std_PC_can = PCE_Model_can.eval_metamodel(samples=X_can) + std_can = {key: std_PC_can[key] for key in out_names} + + std_old = {key: Y_std_can[key] for key in out_names} + + varPCE = np.zeros((len(out_names))) + for i, key in enumerate(out_names): + varPCE[i] = np.mean(std_old[key]**2/std_can[key]**2) + score = np.mean(varPCE) + + return -1 * score + + elif var.lower() == 'alc': + # Active learning based on Gramyc and Lee + # Adaptive design and analysis of supercomputer experiments Techno- + # metrics, 51 (2009), pp. 130–145. + + # Evaluate the MetaModel at the given samples + Y_MC_can, Y_MC_std_can = PCE_Model_can.eval_metamodel(samples=X_MC) + + # Compute the score + score = [] + for i, key in enumerate(out_names): + pce_var = Y_MC_std_can[key]**2 + pce_var_can = Y_MC_std[key]**2 + score.append(np.mean(pce_var-pce_var_can, axis=0)) + score = np.mean(score) + + return -1 * score + + # ---------- Inner MC simulation for computing Utility Value ---------- + # Estimation of the integral via Monte Varlo integration + MCsize = X_MC.shape[0] + ESS = 0 + + while ((ESS > MCsize) or (ESS < 1)): + + # Enriching Monte Carlo samples if need be + if ESS != 0: + X_MC = self.MetaModel.ExpDesign.generate_samples( + MCsize, 'random' + ) + + # Evaluate the MetaModel at the given samples + Y_MC, std_MC = PCE_Model_can.eval_metamodel(samples=X_MC) + + # Likelihood computation (Comparison of data and simulation + # results via PCE with candidate design) + likelihoods = self.__normpdf( + Y_MC, std_MC, self.observations, sigma2Dict + ) + + # Check the Effective Sample Size (1<ESS<MCsize) + ESS = 1 / np.sum(np.square(likelihoods/np.sum(likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if ((ESS > MCsize) or (ESS < 1)): + print("--- increasing MC size---") + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (likelihoods/np.max(likelihoods)) >= unif + + # -------------------- Utility functions -------------------- + # Utility function Eq.2 in Ref. (2) + # Kullback-Leibler Divergence (Sergey's paper) + if var == 'DKL': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods, dtype=np.float128)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Haun et al implementation + U_J_d = np.mean(np.log(likelihoods[likelihoods != 0]) - logBME) + + # U_J_d = np.sum(G_n_m_all) + # Ryan et al (2014) implementation + # importanceWeights = Likelihoods[Likelihoods!=0]/np.sum(Likelihoods[Likelihoods!=0]) + # U_J_d = np.mean(importanceWeights*np.log(Likelihoods[Likelihoods!=0])) - logBME + + # U_J_d = postExpLikelihoods - logBME + + # Marginal likelihood + elif var == 'BME': + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + U_J_d = logBME + + # Bayes risk likelihood + elif var == 'BayesRisk': + + U_J_d = -1 * np.var(likelihoods) + + # Entropy-based information gain + elif var == 'infEntropy': + # Prior-based estimation of BME + logBME = np.log(np.nanmean(likelihoods)) + + # Posterior-based expectation of likelihoods + postLikelihoods = likelihoods[accepted] / np.nansum(likelihoods[accepted]) + postExpLikelihoods = np.mean(np.log(postLikelihoods)) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean(logPriorLikelihoods[accepted]) + + infEntropy = logBME - postExpPrior - postExpLikelihoods + + U_J_d = infEntropy * -1 # -1 for minimization + + # D-Posterior-precision + elif var == 'DPP': + X_Posterior = X_MC[accepted] + # covariance of the posterior parameters + U_J_d = -np.log(np.linalg.det(np.cov(X_Posterior))) + + # A-Posterior-precision + elif var == 'APP': + X_Posterior = X_MC[accepted] + # trace of the posterior parameters + U_J_d = -np.log(np.trace(np.cov(X_Posterior))) + + else: + print('The algorithm you requested has not been implemented yet!') + + # Clear memory + del likelihoods + del Y_MC + del std_MC + gc.collect(generation=2) + + return -1 * U_J_d # -1 is for minimization instead of maximization + + # ------------------------------------------------------------------------- + def subdomain(self, Bounds, n_new_samples): + """ + Divides a domain defined by Bounds into sub domains. + + Parameters + ---------- + Bounds : list of tuples + List of lower and upper bounds. + n_new_samples : TYPE + DESCRIPTION. + + Returns + ------- + Subdomains : TYPE + DESCRIPTION. + + """ + n_params = self.MetaModel.n_params + n_subdomains = n_new_samples + 1 + LinSpace = np.zeros((n_params, n_subdomains)) + + for i in range(n_params): + LinSpace[i] = np.linspace(start=Bounds[i][0], stop=Bounds[i][1], + num=n_subdomains) + Subdomains = [] + for k in range(n_subdomains-1): + mylist = [] + for i in range(n_params): + mylist.append((LinSpace[i, k+0], LinSpace[i, k+1])) + Subdomains.append(tuple(mylist)) + + return Subdomains + + # ------------------------------------------------------------------------- + def run_util_func(self, method, candidates, index, sigma2Dict=None, + var=None, X_MC=None): + """ + Runs the utility function based on the given method. + + Parameters + ---------- + method : string + Exploitation method: `VarOptDesign`, `BayesActDesign` and + `BayesOptDesign`. + candidates : array of shape (n_samples, n_params) + All candidate parameter sets. + index : int + ExpDesign index. + sigma2Dict : dict, optional + A dictionary containing the measurement errors (sigma^2). The + default is None. + var : string, optional + Utility function. The default is None. + X_MC : TYPE, optional + DESCRIPTION. The default is None. + + Returns + ------- + index : TYPE + DESCRIPTION. + List + Scores. + + """ + + if method.lower() == 'varoptdesign': + # U_J_d = self.util_VarBasedDesign(candidates, index, var) + U_J_d = np.zeros((candidates.shape[0])) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="varoptdesign"): + U_J_d[idx] = self.util_VarBasedDesign(X_can, index, var) + + elif method.lower() == 'bayesactdesign': + NCandidate = candidates.shape[0] + U_J_d = np.zeros((NCandidate)) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="OptBayesianDesign"): + U_J_d[idx] = self.util_BayesianActiveDesign(X_can, sigma2Dict, + var) + elif method.lower() == 'bayesoptdesign': + NCandidate = candidates.shape[0] + U_J_d = np.zeros((NCandidate)) + for idx, X_can in tqdm(enumerate(candidates), ascii=True, + desc="OptBayesianDesign"): + U_J_d[idx] = self.util_BayesianDesign(X_can, X_MC, sigma2Dict, + var) + return (index, -1 * U_J_d) + + # ------------------------------------------------------------------------- + def dual_annealing(self, method, Bounds, sigma2Dict, var, Run_No, + verbose=False): + """ + Exploration algorithim to find the optimum parameter space. + + Parameters + ---------- + method : string + Exploitation method: `VarOptDesign`, `BayesActDesign` and + `BayesOptDesign`. + Bounds : list of tuples + List of lower and upper boundaries of parameters. + sigma2Dict : dict + A dictionary containing the measurement errors (sigma^2). + Run_No : int + Run number. + verbose : bool, optional + Print out a summary. The default is False. + + Returns + ------- + Run_No : int + Run number. + array + Optimial candidate. + + """ + + Model = self.Model + max_func_itr = self.MetaModel.ExpDesign.max_func_itr + + if method == 'VarOptDesign': + Res_Global = opt.dual_annealing(self.util_VarBasedDesign, + bounds=Bounds, + args=(Model, var), + maxfun=max_func_itr) + + elif method == 'BayesOptDesign': + Res_Global = opt.dual_annealing(self.util_BayesianDesign, + bounds=Bounds, + args=(Model, sigma2Dict, var), + maxfun=max_func_itr) + + if verbose: + print(f"global minimum: xmin = {Res_Global.x}, " + f"f(xmin) = {Res_Global.fun:.6f}, nfev = {Res_Global.nfev}") + + return (Run_No, Res_Global.x) + + # ------------------------------------------------------------------------- + def tradoff_weights(self, tradeoff_scheme, old_EDX, old_EDY): + """ + Calculates weights for exploration scores based on the requested + scheme: `None`, `equal`, `epsilon-decreasing` and `adaptive`. + + `None`: No exploration. + `equal`: Same weights for exploration and exploitation scores. + `epsilon-decreasing`: Start with more exploration and increase the + influence of exploitation along the way with a exponential decay + function + `adaptive`: An adaptive method based on: + Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. "An adaptive sampling + approach for Kriging metamodeling by maximizing expected prediction + error." Computers & Chemical Engineering 106 (2017): 171-182. + + Parameters + ---------- + tradeoff_scheme : string + Trade-off scheme for exloration and exploitation scores. + old_EDX : array (n_samples, n_params) + Old experimental design (training points). + old_EDY : dict + Old model responses (targets). + + Returns + ------- + exploration_weight : float + Exploration weight. + exploitation_weight: float + Exploitation weight. + + """ + if tradeoff_scheme is None: + exploration_weight = 0 + + elif tradeoff_scheme == 'equal': + exploration_weight = 0.5 + + elif tradeoff_scheme == 'epsilon-decreasing': + # epsilon-decreasing scheme + # Start with more exploration and increase the influence of + # exploitation along the way with a exponential decay function + initNSamples = self.MetaModel.ExpDesign.n_init_samples + n_max_samples = self.MetaModel.ExpDesign.n_max_samples + + itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.MetaModel.ExpDesign.n_new_samples + + tau2 = -(n_max_samples-initNSamples-1) / np.log(1e-8) + exploration_weight = signal.exponential(n_max_samples-initNSamples, + 0, tau2, False)[itrNumber] + + elif tradeoff_scheme == 'adaptive': + + # Extract itrNumber + initNSamples = self.MetaModel.ExpDesign.n_init_samples + n_max_samples = self.MetaModel.ExpDesign.n_max_samples + itrNumber = (self.MetaModel.ExpDesign.X.shape[0] - initNSamples) + itrNumber //= self.MetaModel.ExpDesign.n_new_samples + + if itrNumber == 0: + exploration_weight = 0.5 + else: + # New adaptive trade-off according to Liu et al. (2017) + # Mean squared error for last design point + last_EDX = old_EDX[-1].reshape(1, -1) + lastPCEY, _ = self.MetaModel.eval_metamodel(samples=last_EDX) + pce_y = np.array(list(lastPCEY.values()))[:, 0] + y = np.array(list(old_EDY.values()))[:, -1, :] + mseError = mean_squared_error(pce_y, y) + + # Mean squared CV - error for last design point + pce_y_prev = np.array(list(self._y_hat_prev.values()))[:, 0] + mseCVError = mean_squared_error(pce_y_prev, y) + + exploration_weight = min([0.5*mseError/mseCVError, 1]) + + # Exploitation weight + exploitation_weight = 1 - exploration_weight + + return exploration_weight, exploitation_weight + + # ------------------------------------------------------------------------- + def opt_SeqDesign(self, sigma2, n_candidates=5, var='DKL'): + """ + Runs optimal sequential design. + + Parameters + ---------- + sigma2 : dict, optional + A dictionary containing the measurement errors (sigma^2). The + default is None. + n_candidates : int, optional + Number of candidate samples. The default is 5. + var : string, optional + Utility function. The default is None. + + Raises + ------ + NameError + Wrong utility function. + + Returns + ------- + Xnew : array (n_samples, n_params) + Selected new training point(s). + """ + + # Initialization + MetaModel = self.MetaModel + Bounds = MetaModel.bound_tuples + n_new_samples = MetaModel.ExpDesign.n_new_samples + explore_method = MetaModel.ExpDesign.explore_method + exploit_method = MetaModel.ExpDesign.exploit_method + n_cand_groups = MetaModel.ExpDesign.n_cand_groups + tradeoff_scheme = MetaModel.ExpDesign.tradeoff_scheme + + old_EDX = MetaModel.ExpDesign.X + old_EDY = MetaModel.ExpDesign.Y.copy() + ndim = MetaModel.ExpDesign.X.shape[1] + OutputNames = MetaModel.ModelObj.Output.names + + # ----------------------------------------- + # ----------- CUSTOMIZED METHODS ---------- + # ----------------------------------------- + # Utility function exploit_method provided by user + if exploit_method.lower() == 'user': + + Xnew, filteredSamples = MetaModel.ExpDesign.ExploitFunction(self) + + print("\n") + print("\nXnew:\n", Xnew) + + return Xnew, filteredSamples + + # ----------------------------------------- + # ---------- EXPLORATION METHODS ---------- + # ----------------------------------------- + if explore_method == 'dual annealing': + # ------- EXPLORATION: OPTIMIZATION ------- + import time + start_time = time.time() + + # Divide the domain to subdomains + args = [] + subdomains = self.subdomain(Bounds, n_new_samples) + for i in range(n_new_samples): + args.append((exploit_method, subdomains[i], sigma2, var, i)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + + # With Pool.starmap_async() + results = pool.starmap_async(self.dual_annealing, args).get() + + # Close the pool + pool.close() + + Xnew = np.array([results[i][1] for i in range(n_new_samples)]) + + print("\nXnew:\n", Xnew) + + elapsed_time = time.time() - start_time + print("\n") + print(f"elapsed_time: {round(elapsed_time,2)} sec.") + print('-'*20) + + elif explore_method == 'LOOCV': + # ----------------------------------------------------------------- + # TODO: LOOCV model construnction based on Feng et al. (2020) + # 'LOOCV': + # Initilize the ExploitScore array + + # Generate random samples + allCandidates = MetaModel.ExpDesign.generate_samples(n_candidates, + 'random') + + # Construct error model based on LCerror + errorModel = MetaModel.create_ModelError(old_EDX, self.LCerror) + self.errorModel.append(copy(errorModel)) + + # Evaluate the error models for allCandidates + eLCAllCands, _ = errorModel.eval_errormodel(allCandidates) + # Select the maximum as the representative error + eLCAllCands = np.dstack(eLCAllCands.values()) + eLCAllCandidates = np.max(eLCAllCands, axis=1)[:, 0] + + # Normalize the error w.r.t the maximum error + scoreExploration = eLCAllCandidates / np.sum(eLCAllCandidates) + + else: + # ------- EXPLORATION: SPACE-FILLING DESIGN ------- + # Generate candidate samples from Exploration class + explore = Exploration(MetaModel, n_candidates) + explore.w = 100 # * ndim #500 + # Select criterion (mc-intersite-proj-th, mc-intersite-proj) + explore.mc_criterion = 'mc-intersite-proj' + allCandidates, scoreExploration = explore.get_exploration_samples() + + # Temp: ---- Plot all candidates ----- + if ndim == 2: + def plotter(points, allCandidates, Method, + scoreExploration=None): + if Method == 'Voronoi': + from scipy.spatial import Voronoi, voronoi_plot_2d + vor = Voronoi(points) + fig = voronoi_plot_2d(vor) + ax1 = fig.axes[0] + else: + fig = plt.figure() + ax1 = fig.add_subplot(111) + ax1.scatter(points[:, 0], points[:, 1], s=10, c='r', + marker="s", label='Old Design Points') + ax1.scatter(allCandidates[:, 0], allCandidates[:, 1], s=10, + c='b', marker="o", label='Design candidates') + for i in range(points.shape[0]): + txt = 'p'+str(i+1) + ax1.annotate(txt, (points[i, 0], points[i, 1])) + if scoreExploration is not None: + for i in range(allCandidates.shape[0]): + txt = str(round(scoreExploration[i], 5)) + ax1.annotate(txt, (allCandidates[i, 0], + allCandidates[i, 1])) + + plt.xlim(self.bound_tuples[0]) + plt.ylim(self.bound_tuples[1]) + # plt.show() + plt.legend(loc='upper left') + + # ----------------------------------------- + # --------- EXPLOITATION METHODS ---------- + # ----------------------------------------- + if exploit_method == 'BayesOptDesign' or\ + exploit_method == 'BayesActDesign': + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme, + old_EDX, + old_EDY) + print(f"\n Exploration weight={explore_w:0.3f} " + f"Exploitation weight={exploit_w:0.3f}\n") + + # ------- EXPLOITATION: BayesOptDesign & ActiveLearning ------- + if explore_w != 1.0: + + # Create a sample pool for rejection sampling + MCsize = 15000 + X_MC = MetaModel.ExpDesign.generate_samples(MCsize, 'random') + candidates = MetaModel.ExpDesign.generate_samples( + MetaModel.ExpDesign.max_func_itr, 'latin_hypercube') + + # Split the candidates in groups for multiprocessing + split_cand = np.array_split( + candidates, n_cand_groups, axis=0 + ) + + results = Parallel(n_jobs=-1, backend='threading')( + delayed(self.run_util_func)( + exploit_method, split_cand[i], i, sigma2, var, X_MC) + for i in range(n_cand_groups)) + # out = map(self.run_util_func, + # [exploit_method]*n_cand_groups, + # split_cand, + # range(n_cand_groups), + # [sigma2] * n_cand_groups, + # [var] * n_cand_groups, + # [X_MC] * n_cand_groups + # ) + # results = list(out) + + # Retrieve the results and append them + U_J_d = np.concatenate([results[NofE][1] for NofE in + range(n_cand_groups)]) + + # Check if all scores are inf + if np.isinf(U_J_d).all() or np.isnan(U_J_d).all(): + U_J_d = np.ones(len(U_J_d)) + + # Get the expected value (mean) of the Utility score + # for each cell + if explore_method == 'Voronoi': + U_J_d = np.mean(U_J_d.reshape(-1, n_candidates), axis=1) + + # create surrogate model for U_J_d + from sklearn.preprocessing import MinMaxScaler + # Take care of inf entries + good_indices = [i for i, arr in enumerate(U_J_d) + if np.isfinite(arr).all()] + scaler = MinMaxScaler() + X_S = scaler.fit_transform(candidates[good_indices]) + gp = MetaModel.gaussian_process_emulator( + X_S, U_J_d[good_indices], autoSelect=True + ) + U_J_d = gp.predict(scaler.transform(allCandidates)) + + # Normalize U_J_d + norm_U_J_d = U_J_d / np.sum(U_J_d) + print("norm_U_J_d:\n", norm_U_J_d) + else: + norm_U_J_d = np.zeros((len(scoreExploration))) + + # ------- Calculate Total score ------- + # ------- Trade off between EXPLORATION & EXPLOITATION ------- + # Total score + totalScore = exploit_w * norm_U_J_d + totalScore += explore_w * scoreExploration + + # temp: Plot + # dim = self.ExpDesign.X.shape[1] + # if dim == 2: + # plotter(self.ExpDesign.X, allCandidates, explore_method) + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + bestIdx = sorted_idxtotalScore[:n_new_samples] + + # select the requested number of samples + if explore_method == 'Voronoi': + Xnew = np.zeros((n_new_samples, ndim)) + for i, idx in enumerate(bestIdx): + X_can = explore.closestPoints[idx] + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.get_mc_samples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + else: + Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]] + + elif exploit_method == 'VarOptDesign': + # ------- EXPLOITATION: VarOptDesign ------- + UtilMethod = var + + # ------- Calculate Exoploration weight ------- + # Compute exploration weight based on trade off scheme + explore_w, exploit_w = self.tradoff_weights(tradeoff_scheme, + old_EDX, + old_EDY) + print(f"\nweightExploration={explore_w:0.3f} " + f"weightExploitation={exploit_w:0.3f}") + + # Generate candidate samples from Exploration class + nMeasurement = old_EDY[OutputNames[0]].shape[1] + + # Find sensitive region + if UtilMethod == 'LOOCV': + LCerror = MetaModel.LCerror + allModifiedLOO = np.zeros((len(old_EDX), len(OutputNames), + nMeasurement)) + for y_idx, y_key in enumerate(OutputNames): + for idx, key in enumerate(LCerror[y_key].keys()): + allModifiedLOO[:, y_idx, idx] = abs( + LCerror[y_key][key]) + + ExploitScore = np.max(np.max(allModifiedLOO, axis=1), axis=1) + + elif UtilMethod in ['EIGF', 'ALM']: + # ----- All other in ['EIGF', 'ALM'] ----- + # Initilize the ExploitScore array + ExploitScore = np.zeros((len(old_EDX), len(OutputNames))) + + # Split the candidates in groups for multiprocessing + if explore_method != 'Voronoi': + split_cand = np.array_split(allCandidates, + n_cand_groups, + axis=0) + goodSampleIdx = range(n_cand_groups) + else: + # Find indices of the Vornoi cells with samples + goodSampleIdx = [] + for idx in range(len(explore.closest_points)): + if len(explore.closest_points[idx]) != 0: + goodSampleIdx.append(idx) + split_cand = explore.closest_points + + # Split the candidates in groups for multiprocessing + args = [] + for index in goodSampleIdx: + args.append((exploit_method, split_cand[index], index, + sigma2, var)) + + # Multiprocessing + pool = multiprocessing.Pool(multiprocessing.cpu_count()) + # With Pool.starmap_async() + results = pool.starmap_async(self.run_util_func, args).get() + + # Close the pool + pool.close() + # out = map(self.run_util_func, + # [exploit_method]*len(goodSampleIdx), + # split_cand, + # range(len(goodSampleIdx)), + # [sigma2] * len(goodSampleIdx), + # [var] * len(goodSampleIdx) + # ) + # results = list(out) + + # Retrieve the results and append them + if explore_method == 'Voronoi': + ExploitScore = [np.mean(results[k][1]) for k in + range(len(goodSampleIdx))] + else: + ExploitScore = np.concatenate( + [results[k][1] for k in range(len(goodSampleIdx))]) + + else: + raise NameError('The requested utility function is not ' + 'available.') + + # print("ExploitScore:\n", ExploitScore) + + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + # Total score + # Normalize U_J_d + ExploitScore = ExploitScore / np.sum(ExploitScore) + totalScore = exploit_w * ExploitScore + totalScore += explore_w * scoreExploration + + temp = totalScore.copy() + sorted_idxtotalScore = np.argsort(temp, axis=0)[::-1] + bestIdx = sorted_idxtotalScore[:n_new_samples] + + Xnew = np.zeros((n_new_samples, ndim)) + if explore_method != 'Voronoi': + Xnew = allCandidates[bestIdx] + else: + for i, idx in enumerate(bestIdx.flatten()): + X_can = explore.closest_points[idx] + # plotter(self.ExpDesign.X, X_can, explore_method, + # scoreExploration=None) + + # Calculate the maxmin score for the region of interest + newSamples, maxminScore = explore.get_mc_samples(X_can) + + # select the requested number of samples + Xnew[i] = newSamples[np.argmax(maxminScore)] + + elif exploit_method == 'alphabetic': + # ------- EXPLOITATION: ALPHABETIC ------- + Xnew = self.util_AlphOptDesign(allCandidates, var) + + elif exploit_method == 'Space-filling': + # ------- EXPLOITATION: SPACE-FILLING ------- + totalScore = scoreExploration + + # ------- Select the best candidate ------- + # find an optimal point subset to add to the initial design by + # maximization of the utility score and taking care of NaN values + temp = totalScore.copy() + temp[np.isnan(totalScore)] = -np.inf + sorted_idxtotalScore = np.argsort(temp)[::-1] + + # select the requested number of samples + Xnew = allCandidates[sorted_idxtotalScore[:n_new_samples]] + + else: + raise NameError('The requested design method is not available.') + + print("\n") + print("\nRun No. {}:".format(old_EDX.shape[0]+1)) + print("Xnew:\n", Xnew) + gc.collect() + + return Xnew, None + + # ------------------------------------------------------------------------- + def util_AlphOptDesign(self, candidates, var='D-Opt'): + """ + Enriches the Experimental design with the requested alphabetic + criterion based on exploring the space with number of sampling points. + + Ref: Hadigol, M., & Doostan, A. (2018). Least squares polynomial chaos + expansion: A review of sampling strategies., Computer Methods in + Applied Mechanics and Engineering, 332, 382-407. + + Arguments + --------- + NCandidate : int + Number of candidate points to be searched + + var : string + Alphabetic optimality criterion + + Returns + ------- + X_new : array of shape (1, n_params) + The new sampling location in the input space. + """ + MetaModelOrig = self + Model = self.Model + n_new_samples = MetaModelOrig.ExpDesign.n_new_samples + NCandidate = candidates.shape[0] + + # TODO: Loop over outputs + OutputName = Model.Output.names[0] + + # To avoid changes ub original aPCE object + MetaModel = deepcopy(MetaModelOrig) + + # Old Experimental design + oldExpDesignX = MetaModel.ExpDesign.X + + # TODO: Only one psi can be selected. + # Suggestion: Go for the one with the highest LOO error + Scores = list(MetaModel.score_dict[OutputName].values()) + ModifiedLOO = [1-score for score in Scores] + outIdx = np.argmax(ModifiedLOO) + + # Initialize Phi to save the criterion's values + Phi = np.zeros((NCandidate)) + + BasisIndices = MetaModelOrig.basis_dict[OutputName]["y_"+str(outIdx+1)] + P = len(BasisIndices) + + # ------ Old Psi ------------ + univ_p_val = MetaModelOrig.univ_basis_vals(oldExpDesignX) + Psi = MetaModelOrig.create_psi(BasisIndices, univ_p_val) + + # ------ New candidates (Psi_c) ------------ + # Assemble Psi_c + univ_p_val_c = self.univ_basis_vals(candidates) + Psi_c = self.create_psi(BasisIndices, univ_p_val_c) + + for idx in range(NCandidate): + + # Include the new row to the original Psi + Psi_cand = np.vstack((Psi, Psi_c[idx])) + + # Information matrix + PsiTPsi = np.dot(Psi_cand.T, Psi_cand) + M = PsiTPsi / (len(oldExpDesignX)+1) + + if np.linalg.cond(PsiTPsi) > 1e-12 \ + and np.linalg.cond(PsiTPsi) < 1 / sys.float_info.epsilon: + # faster + invM = linalg.solve(M, sparse.eye(PsiTPsi.shape[0]).toarray()) + else: + # stabler + invM = np.linalg.pinv(M) + + # ---------- Calculate optimality criterion ---------- + # Optimality criteria according to Section 4.5.1 in Ref. + + # D-Opt + if var == 'D-Opt': + Phi[idx] = (np.linalg.det(invM)) ** (1/P) + + # A-Opt + elif var == 'A-Opt': + Phi[idx] = np.trace(invM) + + # K-Opt + elif var == 'K-Opt': + Phi[idx] = np.linalg.cond(M) + + else: + raise Exception('The optimality criterion you requested has ' + 'not been implemented yet!') + + # find an optimal point subset to add to the initial design + # by minimization of the Phi + sorted_idxtotalScore = np.argsort(Phi) + + # select the requested number of samples + Xnew = candidates[sorted_idxtotalScore[:n_new_samples]] + + return Xnew + + # ------------------------------------------------------------------------- + def __normpdf(self, y_hat_pce, std_pce, obs_data, total_sigma2s, + rmse=None): + + Model = self.Model + likelihoods = 1.0 + + # Loop over the outputs + for idx, out in enumerate(Model.Output.names): + + # (Meta)Model Output + nsamples, nout = y_hat_pce[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout].values + + # Surrogate error if valid dataset is given. + if rmse is not None: + tot_sigma2s += rmse[out]**2 + + likelihoods *= stats.multivariate_normal.pdf( + y_hat_pce[out], data, np.diag(tot_sigma2s), + allow_singular=True) + self.Likelihoods = likelihoods + + return likelihoods + + # ------------------------------------------------------------------------- + def __corr_factor_BME(self, obs_data, total_sigma2s, logBME): + """ + Calculates the correction factor for BMEs. + """ + MetaModel = self.MetaModel + samples = MetaModel.ExpDesign.X # valid_samples + model_outputs = MetaModel.ExpDesign.Y # valid_model_runs + Model = MetaModel.ModelObj + n_samples = samples.shape[0] + + # Extract the requested model outputs for likelihood calulation + output_names = Model.Output.names + + # TODO: Evaluate MetaModel on the experimental design and ValidSet + OutputRS, stdOutputRS = MetaModel.eval_metamodel(samples=samples) + + logLik_data = np.zeros((n_samples)) + logLik_model = np.zeros((n_samples)) + # Loop over the outputs + for idx, out in enumerate(output_names): + + # (Meta)Model Output + nsamples, nout = model_outputs[out].shape + + # Prepare data and remove NaN + try: + data = obs_data[out].values[~np.isnan(obs_data[out])] + except AttributeError: + data = obs_data[out][~np.isnan(obs_data[out])] + + # Prepare sigma2s + non_nan_indices = ~np.isnan(total_sigma2s[out]) + tot_sigma2s = total_sigma2s[out][non_nan_indices][:nout] + + # Covariance Matrix + covMatrix_data = np.diag(tot_sigma2s) + + for i, sample in enumerate(samples): + + # Simulation run + y_m = model_outputs[out][i] + + # Surrogate prediction + y_m_hat = OutputRS[out][i] + + # CovMatrix with the surrogate error + # covMatrix = np.diag(stdOutputRS[out][i]**2) + covMatrix = np.diag((y_m-y_m_hat)**2) + covMatrix = np.diag( + np.mean((model_outputs[out]-OutputRS[out]), axis=0)**2 + ) + + # Compute likelilhood output vs data + logLik_data[i] += self.__logpdf( + y_m_hat, data, covMatrix_data + ) + + # Compute likelilhood output vs surrogate + logLik_model[i] += self.__logpdf(y_m_hat, y_m, covMatrix) + + # Weight + logLik_data -= logBME + weights = np.exp(logLik_model+logLik_data) + + return np.log(np.mean(weights)) + + # ------------------------------------------------------------------------- + def __logpdf(self, x, mean, cov): + """ + computes the likelihood based on a multivariate normal distribution. + + Parameters + ---------- + x : TYPE + DESCRIPTION. + mean : array_like + Observation data. + cov : 2d array + Covariance matrix of the distribution. + + Returns + ------- + log_lik : float + Log likelihood. + + """ + n = len(mean) + L = linalg.cholesky(cov, lower=True) + beta = np.sum(np.log(np.diag(L))) + dev = x - mean + alpha = dev.dot(linalg.cho_solve((L, True), dev)) + log_lik = -0.5 * alpha - beta - n / 2. * np.log(2 * np.pi) + + return log_lik + + # ------------------------------------------------------------------------- + def __posteriorPlot(self, posterior, par_names, key): + + # Initialization + newpath = (r'Outputs_SeqPosteriorComparison/posterior') + os.makedirs(newpath, exist_ok=True) + + bound_tuples = self.MetaModel.bound_tuples + n_params = len(par_names) + font_size = 40 + if n_params == 2: + + figPosterior, ax = plt.subplots(figsize=(15, 15)) + + sns.kdeplot(x=posterior[:, 0], y=posterior[:, 1], + fill=True, ax=ax, cmap=plt.cm.jet, + clip=bound_tuples) + # Axis labels + plt.xlabel(par_names[0], fontsize=font_size) + plt.ylabel(par_names[1], fontsize=font_size) + + # Set axis limit + plt.xlim(bound_tuples[0]) + plt.ylim(bound_tuples[1]) + + # Increase font size + plt.xticks(fontsize=font_size) + plt.yticks(fontsize=font_size) + + # Switch off the grids + plt.grid(False) + + else: + import corner + figPosterior = corner.corner(posterior, labels=par_names, + title_fmt='.2e', show_titles=True, + title_kwargs={"fontsize": 12}) + + figPosterior.savefig(f'./{newpath}/{key}.pdf', bbox_inches='tight') + plt.close() + + # Save the posterior as .npy + np.save(f'./{newpath}/{key}.npy', posterior) + + return figPosterior + + # ------------------------------------------------------------------------- + def __hellinger_distance(self, P, Q): + """ + Hellinger distance between two continuous distributions. + + The maximum distance 1 is achieved when P assigns probability zero to + every set to which Q assigns a positive probability, and vice versa. + 0 (identical) and 1 (maximally different) + + Parameters + ---------- + P : array + Reference likelihood. + Q : array + Estimated likelihood. + + Returns + ------- + float + Hellinger distance of two distributions. + + """ + mu1 = P.mean() + Sigma1 = np.std(P) + + mu2 = Q.mean() + Sigma2 = np.std(Q) + + term1 = np.sqrt(2*Sigma1*Sigma2 / (Sigma1**2 + Sigma2**2)) + + term2 = np.exp(-.25 * (mu1 - mu2)**2 / (Sigma1**2 + Sigma2**2)) + + H_squared = 1 - term1 * term2 + + return np.sqrt(H_squared) + + # ------------------------------------------------------------------------- + def __BME_Calculator(self, MetaModel, obs_data, sigma2Dict, rmse=None): + """ + This function computes the Bayesian model evidence (BME) via Monte + Carlo integration. + + """ + # Initializations + valid_likelihoods = MetaModel.valid_likelihoods + + post_snapshot = MetaModel.ExpDesign.post_snapshot + if post_snapshot or len(valid_likelihoods) != 0: + newpath = (r'Outputs_SeqPosteriorComparison/likelihood_vs_ref') + os.makedirs(newpath, exist_ok=True) + + SamplingMethod = 'random' + MCsize = 10000 + ESS = 0 + + # Estimation of the integral via Monte Varlo integration + while (ESS > MCsize) or (ESS < 1): + + # Generate samples for Monte Carlo simulation + X_MC = MetaModel.ExpDesign.generate_samples( + MCsize, SamplingMethod + ) + + # Monte Carlo simulation for the candidate design + m_1 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + Y_MC, std_MC = MetaModel.eval_metamodel(samples=X_MC) + m_2 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + print(f"\nMemory eval_metamodel in BME: {m_2-m_1:.2f} MB") + + # Likelihood computation (Comparison of data and + # simulation results via PCE with candidate design) + Likelihoods = self.__normpdf( + Y_MC, std_MC, obs_data, sigma2Dict, rmse + ) + + # Check the Effective Sample Size (1000<ESS<MCsize) + ESS = 1 / np.sum(np.square(Likelihoods/np.sum(Likelihoods))) + + # Enlarge sample size if it doesn't fulfill the criteria + if (ESS > MCsize) or (ESS < 1): + print(f'ESS={ESS} MC size should be larger.') + MCsize *= 10 + ESS = 0 + + # Rejection Step + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCsize)[0] + + # Reject the poorly performed prior + accepted = (Likelihoods/np.max(Likelihoods)) >= unif + X_Posterior = X_MC[accepted] + + # ------------------------------------------------------------ + # --- Kullback-Leibler Divergence & Information Entropy ------ + # ------------------------------------------------------------ + # Prior-based estimation of BME + logBME = np.log(np.nanmean(Likelihoods)) + + # TODO: Correction factor + # log_weight = self.__corr_factor_BME(obs_data, sigma2Dict, logBME) + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) + + # Posterior-based expectation of prior densities + postExpPrior = np.mean( + np.log(MetaModel.ExpDesign.JDist.pdf(X_Posterior.T)) + ) + + # Calculate Kullback-Leibler Divergence + # KLD = np.mean(np.log(Likelihoods[Likelihoods!=0])- logBME) + KLD = postExpLikelihoods - logBME + + # Information Entropy based on Entropy paper Eq. 38 + infEntropy = logBME - postExpPrior - postExpLikelihoods + + # If post_snapshot is True, plot likelihood vs refrence + if post_snapshot or len(valid_likelihoods) != 0: + # Hellinger distance + ref_like = np.log(valid_likelihoods[valid_likelihoods > 0]) + est_like = np.log(Likelihoods[Likelihoods > 0]) + distHellinger = self.__hellinger_distance(ref_like, est_like) + + idx = len([name for name in os.listdir(newpath) if 'Likelihoods_' + in name and os.path.isfile(os.path.join(newpath, name))]) + fig, ax = plt.subplots() + try: + sns.kdeplot(np.log(valid_likelihoods[valid_likelihoods > 0]), + shade=True, color="g", label='Ref. Likelihood') + sns.kdeplot(np.log(Likelihoods[Likelihoods > 0]), shade=True, + color="b", label='Likelihood with PCE') + except: + pass + + text = f"Hellinger Dist.={distHellinger:.3f}\n logBME={logBME:.3f}" + "\n DKL={KLD:.3f}" + + plt.text(0.05, 0.75, text, bbox=dict(facecolor='wheat', + edgecolor='black', + boxstyle='round,pad=1'), + transform=ax.transAxes) + + fig.savefig(f'./{newpath}/Likelihoods_{idx}.pdf', + bbox_inches='tight') + plt.close() + + else: + distHellinger = 0.0 + + # Bayesian inference with Emulator only for 2D problem + if post_snapshot and MetaModel.n_params == 2 and not idx % 5: + from bayes_inference.bayes_inference import BayesInference + from bayes_inference.discrepancy import Discrepancy + import pandas as pd + BayesOpts = BayesInference(MetaModel) + BayesOpts.emulator = True + BayesOpts.plot_post_pred = False + + # Select the inference method + import emcee + BayesOpts.inference_method = "MCMC" + # Set the MCMC parameters passed to self.mcmc_params + BayesOpts.mcmc_params = { + 'n_steps': 1e5, + 'n_walkers': 30, + 'moves': emcee.moves.KDEMove(), + 'verbose': False + } + + # ----- Define the discrepancy model ------- + obs_data = pd.DataFrame(obs_data, columns=self.Model.Output.names) + BayesOpts.measurement_error = obs_data + + # # -- (Option B) -- + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obs_data**2 + BayesOpts.Discrepancy = DiscrepancyOpts + # Start the calibration/inference + Bayes_PCE = BayesOpts.create_inference() + X_Posterior = Bayes_PCE.posterior_df.values + + # Clean up + del Y_MC, std_MC + gc.collect() + + return (logBME, KLD, X_Posterior, Likelihoods, distHellinger) + + # ------------------------------------------------------------------------- + def __validError(self, MetaModel): + + # MetaModel = self.MetaModel + Model = MetaModel.ModelObj + OutputName = Model.Output.names + + # Extract the original model with the generated samples + valid_samples = MetaModel.valid_samples + valid_model_runs = MetaModel.valid_model_runs + + # Run the PCE model with the generated samples + m_1 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + valid_PCE_runs, valid_PCE_std = MetaModel.eval_metamodel(samples=valid_samples) + m_2 = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024 + print(f"\nMemory eval_metamodel: {m_2-m_1:.2f} MB") + + rms_error = {} + valid_error = {} + # Loop over the keys and compute RMSE error. + for key in OutputName: + rms_error[key] = mean_squared_error( + valid_model_runs[key], valid_PCE_runs[key], + multioutput='raw_values', + sample_weight=None, + squared=False) + + # Validation error + valid_error[key] = (rms_error[key]**2) + valid_error[key] /= np.var(valid_model_runs[key], ddof=1, axis=0) + + # Print a report table + print("\n>>>>> Updated Errors of {} <<<<<".format(key)) + print("\nIndex | RMSE | Validation Error") + print('-'*35) + print('\n'.join(f'{i+1} | {k:.3e} | {j:.3e}' for i, (k, j) + in enumerate(zip(rms_error[key], + valid_error[key])))) + + return rms_error, valid_error + + # ------------------------------------------------------------------------- + def __error_Mean_Std(self): + + MetaModel = self.MetaModel + # Extract the mean and std provided by user + df_MCReference = MetaModel.ModelObj.mc_reference + + # Compute the mean and std based on the MetaModel + pce_means, pce_stds = self._compute_pce_moments(MetaModel) + + # Compute the root mean squared error + for output in MetaModel.ModelObj.Output.names: + + # Compute the error between mean and std of MetaModel and OrigModel + RMSE_Mean = mean_squared_error( + df_MCReference['mean'], pce_means[output], squared=False + ) + RMSE_std = mean_squared_error( + df_MCReference['std'], pce_means[output], squared=False + ) + + return RMSE_Mean, RMSE_std + + # ------------------------------------------------------------------------- + def _compute_pce_moments(self, MetaModel): + """ + Computes the first two moments using the PCE-based meta-model. + + Returns + ------- + pce_means: dict + The first moment (mean) of the surrogate. + pce_stds: dict + The second moment (standard deviation) of the surrogate. + + """ + outputs = MetaModel.ModelObj.Output.names + pce_means_b = {} + pce_stds_b = {} + + # Loop over bootstrap iterations + for b_i in range(MetaModel.n_bootstrap_itrs): + # Loop over the metamodels + coeffs_dicts = MetaModel.coeffs_dict[f'b_{b_i+1}'].items() + means = {} + stds = {} + for output, coef_dict in coeffs_dicts: + + pce_mean = np.zeros((len(coef_dict))) + pce_var = np.zeros((len(coef_dict))) + + for index, values in coef_dict.items(): + idx = int(index.split('_')[1]) - 1 + coeffs = MetaModel.coeffs_dict[f'b_{b_i+1}'][output][index] + + # Mean = c_0 + if coeffs[0] != 0: + pce_mean[idx] = coeffs[0] + else: + clf_poly = MetaModel.clf_poly[f'b_{b_i+1}'][output] + pce_mean[idx] = clf_poly[index].intercept_ + # Var = sum(coeffs[1:]**2) + pce_var[idx] = np.sum(np.square(coeffs[1:])) + + # Save predictions for each output + if MetaModel.dim_red_method.lower() == 'pca': + PCA = MetaModel.pca[f'b_{b_i+1}'][output] + means[output] = PCA.mean_ + np.dot( + pce_mean, PCA.components_) + stds[output] = np.sqrt(np.dot(pce_var, + PCA.components_**2)) + else: + means[output] = pce_mean + stds[output] = np.sqrt(pce_var) + + # Save predictions for each bootstrap iteration + pce_means_b[b_i] = means + pce_stds_b[b_i] = stds + + # Change the order of nesting + mean_all = {} + for i in sorted(pce_means_b): + for k, v in pce_means_b[i].items(): + if k not in mean_all: + mean_all[k] = [None] * len(pce_means_b) + mean_all[k][i] = v + std_all = {} + for i in sorted(pce_stds_b): + for k, v in pce_stds_b[i].items(): + if k not in std_all: + std_all[k] = [None] * len(pce_stds_b) + std_all[k][i] = v + + # Back transformation if PCA is selected. + pce_means, pce_stds = {}, {} + for output in outputs: + pce_means[output] = np.mean(mean_all[output], axis=0) + pce_stds[output] = np.mean(std_all[output], axis=0) + + return pce_means, pce_stds diff --git a/examples/only-model/bayesvalidrox/surrogate_models/surrogate_models.py b/examples/only-model/bayesvalidrox/surrogate_models/surrogate_models.py new file mode 100644 index 0000000000000000000000000000000000000000..fc6b83947f6b51cd1aee297fe07794a3a31332d6 --- /dev/null +++ b/examples/only-model/bayesvalidrox/surrogate_models/surrogate_models.py @@ -0,0 +1,1498 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import warnings +import numpy as np +import math +import h5py +import matplotlib.pyplot as plt +from sklearn.preprocessing import MinMaxScaler +import scipy as sp +from tqdm import tqdm +from sklearn.decomposition import PCA as sklearnPCA +import sklearn.linear_model as lm +from sklearn.gaussian_process import GaussianProcessRegressor +import sklearn.gaussian_process.kernels as kernels +import os +from joblib import Parallel, delayed +import copy + +from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns +from bayesvalidrox.surrogate_models.glexindex import glexindex +from bayesvalidrox.surrogate_models.eval_rec_rule import eval_univ_basis +from bayesvalidrox.surrogate_models.reg_fast_ard import RegressionFastARD +from bayesvalidrox.surrogate_models.reg_fast_laplace import RegressionFastLaplace +from bayesvalidrox.surrogate_models.orthogonal_matching_pursuit import OrthogonalMatchingPursuit +from bayesvalidrox.surrogate_models.bayes_linear import VBLinearRegression, EBLinearRegression +warnings.filterwarnings("ignore") +# Load the mplstyle +#plt.style.use(os.path.join(os.path.split(__file__)[0], +# '../', 'bayesvalidrox.mplstyle')) + + +class MetaModel(): + """ + Meta (surrogate) model + + This class trains a surrogate model. It accepts an input object (input_obj) + containing the specification of the distributions for uncertain parameters + and a model object with instructions on how to run the computational model. + + Attributes + ---------- + input_obj : obj + Input object with the information on the model input parameters. + meta_model_type : str + Surrogate model types. Three surrogate model types are supported: + polynomial chaos expansion (`PCE`), arbitrary PCE (`aPCE`) and + Gaussian process regression (`GPE`). Default is PCE. + pce_reg_method : str + PCE regression method to compute the coefficients. The following + regression methods are available: + + 1. OLS: Ordinary Least Square method + 2. BRR: Bayesian Ridge Regression + 3. LARS: Least angle regression + 4. ARD: Bayesian ARD Regression + 5. FastARD: Fast Bayesian ARD Regression + 6. VBL: Variational Bayesian Learning + 7. EBL: Emperical Bayesian Learning + Default is `OLS`. + bootstrap_method : str + Bootstraping method. Options are `'normal'` and `'fast'`. The default + is `'fast'`. It means that in each iteration except the first one, only + the coefficent are recalculated with the ordinary least square method. + n_bootstrap_itrs : int + Number of iterations for the bootstrap sampling. The default is `1`. + pce_deg : int or list of int + Polynomial degree(s). If a list is given, an adaptive algorithm is used + to find the best degree with the lowest Leave-One-Out cross-validation + (LOO) error (or the highest score=1-LOO). Default is `1`. + pce_q_norm : float + Hyperbolic (or q-norm) truncation for multi-indices of multivariate + polynomials. Default is `1.0`. + dim_red_method : str + Dimensionality reduction method for the output space. The available + method is based on principal component analysis (PCA). The Default is + `'no'`. There are two ways to select number of components: use + percentage of the explainable variance threshold (between 0 and 100) + (Option A) or direct prescription of components' number (Option B): + + >>> MetaModelOpts.dim_red_method = 'PCA' + >>> MetaModelOpts.var_pca_threshold = 99.999 # Option A + >>> MetaModelOpts.n_pca_components = 12 # Option B + + verbose : bool + Prints summary of the regression results. Default is `False`. + + Note + ------- + To define the sampling methods and the training set, an experimental design + instance shall be defined. This can be done by: + + >>> MetaModelOpts.add_ExpDesign() + + Two experimental design schemes are supported: one-shot (`normal`) and + adaptive sequential (`sequential`) designs. + For experimental design refer to `ExpDesigns`. + + """ + + def __init__(self, input_obj, model_obj = 'None', meta_model_type='PCE', + pce_reg_method='OLS', bootstrap_method='fast', + n_bootstrap_itrs=1, pce_deg=1, pce_q_norm=1.0, + dim_red_method='no', verbose=False): # added the 'None' behind model_obj + + self.input_obj = input_obj + self.ModelObj = model_obj + self.meta_model_type = meta_model_type + self.pce_reg_method = pce_reg_method + self.bootstrap_method = bootstrap_method + self.n_bootstrap_itrs = n_bootstrap_itrs + self.pce_deg = pce_deg + self.pce_q_norm = pce_q_norm + self.dim_red_method = dim_red_method + self.verbose = False + + # ------------------------------------------------------------------------- + def create_metamodel(self, ModelObj = None): # added ModelObj here + """ + Starts the training of the meta-model for the model objects containg + the given computational model. + + Returns + ------- + metamodel : obj + The meta model object. + + """ + if ModelObj: + self.ModelObj = ModelObj + Model = self.ModelObj + self.n_params = len(self.input_obj.Marginals) + self.ExpDesignFlag = 'normal' + # --- Prepare pce degree --- + if self.meta_model_type.lower() == 'pce': + if type(self.pce_deg) is not np.ndarray: + self.pce_deg = np.array(self.pce_deg) + + if self.ExpDesign.method == 'sequential': + raise Exception( + "Please use MetaModelEngine class for the sequential design!" + ) + + elif self.ExpDesign.method == 'normal': + self.train_norm_design(Model, verbose=True) + + else: + raise Exception("The method for experimental design you requested" + " has not been implemented yet.") + + # Zip the model run directories + if self.ModelObj.link_type.lower() == 'pylink' and\ + self.ExpDesign.sampling_method.lower() != 'user': + Model.zip_subdirs(Model.name, f'{Model.name}_') + + return self + + # ------------------------------------------------------------------------- + def train_norm_design(self, parallel=False, verbose=False): + """ + This function loops over the outputs and each time step/point and fits + the meta model. + + Parameters + ---------- + parallel : bool + The parallel computation of coefficents. The default is True. + verbose : bool, optional + Flag for a sequential design in silent mode. The default is False. + + Returns + ------- + self: obj + Meta-model object. + + """ + self.ExpDesignFlag = 'normal' + Model = self.ModelObj + # Get the collocation points to run the forward model + CollocationPoints, OutputDict = self.generate_ExpDesign(Model) + + # Initialize the nested dictionaries + if self.meta_model_type.lower() == 'gpe': + self.gp_poly = self.auto_vivification() + self.x_scaler = self.auto_vivification() + self.LCerror = self.auto_vivification() + else: + self.deg_dict = self.auto_vivification() + self.q_norm_dict = self.auto_vivification() + self.coeffs_dict = self.auto_vivification() + self.basis_dict = self.auto_vivification() + self.score_dict = self.auto_vivification() + self.clf_poly = self.auto_vivification() + self.LCerror = self.auto_vivification() + if self.dim_red_method.lower() == 'pca': + self.pca = self.auto_vivification() + + # Define an array containing the degrees + n_samples, ndim = CollocationPoints.shape + self.deg_array = self.__select_degree(ndim, n_samples) + + # Generate all basis indices + self.allBasisIndices = self.auto_vivification() + for deg in self.deg_array: + keys = self.allBasisIndices.keys() + if deg not in np.fromiter(keys, dtype=float): + # Generate the polynomial basis indices + for qidx, q in enumerate(self.pce_q_norm): + basis_indices = self.create_basis_indices(degree=deg, + q_norm=q) + self.allBasisIndices[str(deg)][str(q)] = basis_indices + + # Evaluate the univariate polynomials on ExpDesign + if self.meta_model_type.lower() != 'gpe': + univ_p_val = self.univ_basis_vals(CollocationPoints) # TODO: issue appears in here: 'ExpDesigns' object has no attribute 'polycoeffs' + + if 'x_values' in OutputDict: + self.ExpDesign.x_values = OutputDict['x_values'] + del OutputDict['x_values'] + + # --- Loop through data points and fit the surrogate --- + if verbose: + print(f"\n>>>> Training the {self.meta_model_type} metamodel " + "started. <<<<<<\n") + + # --- Bootstrap sampling --- + # Correct number of bootstrap if PCA transformation is required. + if self.dim_red_method.lower() == 'pca' and self.n_bootstrap_itrs == 1: + self.n_bootstrap_itrs = 100 + + # Check if fast version (update coeffs with OLS) is selected. + if self.bootstrap_method.lower() == 'fast': + fast_bootstrap = True + first_out = {} + n_comp_dict = {} + else: + fast_bootstrap = False + + # Prepare tqdm iteration maessage + if verbose and self.n_bootstrap_itrs > 1: + enum_obj = tqdm(range(self.n_bootstrap_itrs), + total=self.n_bootstrap_itrs, + desc="Boostraping the metamodel", + ascii=True) + else: + enum_obj = range(self.n_bootstrap_itrs) + + # Loop over the bootstrap iterations + for b_i in enum_obj: + if b_i > 0: + b_indices = np.random.randint(n_samples, size=n_samples) + else: + b_indices = np.arange(len(CollocationPoints)) + + X_train_b = CollocationPoints[b_indices] + + if verbose and self.n_bootstrap_itrs == 1: + items = tqdm(OutputDict.items(), desc="Fitting regression") + else: + items = OutputDict.items() + + # For loop over the components/outputs + for key, Output in items: + + # Dimensionality reduction with PCA, if specified + if self.dim_red_method.lower() == 'pca': + + # Use the stored n_comp for fast bootsrtrapping + if fast_bootstrap and b_i > 0: + self.n_pca_components = n_comp_dict[key] + + # Start transformation + pca, target, n_comp = self.pca_transformation( + Output[b_indices], verbose=False + ) + self.pca[f'b_{b_i+1}'][key] = pca + # Store the number of components for fast bootsrtrapping + if fast_bootstrap and b_i == 0: + n_comp_dict[key] = n_comp + else: + target = Output[b_indices] + + # Parallel fit regression + if self.meta_model_type.lower() == 'gpe': + # Prepare the input matrix + scaler = MinMaxScaler() + X_S = scaler.fit_transform(X_train_b) + + self.x_scaler[f'b_{b_i+1}'][key] = scaler + if parallel: + out = Parallel(n_jobs=-1, backend='multiprocessing')( + delayed(self.gaussian_process_emulator)( + X_S, target[:, idx]) for idx in + range(target.shape[1])) + else: + results = map(self.gaussian_process_emulator, + [X_train_b]*target.shape[1], + [target[:, idx] for idx in + range(target.shape[1])] + ) + out = list(results) + + for idx in range(target.shape[1]): + self.gp_poly[f'b_{b_i+1}'][key][f"y_{idx+1}"] = out[idx] + + else: + self.univ_p_val = univ_p_val[b_indices] + if parallel and (not fast_bootstrap or b_i == 0): + out = Parallel(n_jobs=-1, backend='multiprocessing')( + delayed(self.adaptive_regression)(X_train_b, + target[:, idx], + idx) + for idx in range(target.shape[1])) + elif not parallel and (not fast_bootstrap or b_i == 0): + results = map(self.adaptive_regression, + [X_train_b]*target.shape[1], + [target[:, idx] for idx in + range(target.shape[1])], + range(target.shape[1])) + out = list(results) + + # Store the first out dictionary + if fast_bootstrap and b_i == 0: + first_out[key] = copy.deepcopy(out) + + if b_i > 0 and fast_bootstrap: + + # fast bootstrap + out = self.update_pce_coeffs( + X_train_b, target, first_out[key]) + + for i in range(target.shape[1]): + # Create a dict to pass the variables + self.deg_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['degree'] + self.q_norm_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['qnorm'] + self.coeffs_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['coeffs'] + self.basis_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['multi_indices'] + self.score_dict[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['LOOCVScore'] + self.clf_poly[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['clf_poly'] + #self.LCerror[f'b_{b_i+1}'][key][f"y_{i+1}"] = out[i]['LCerror'] + + if verbose: + print(f"\n>>>> Training the {self.meta_model_type} metamodel" + " sucessfully completed. <<<<<<\n") + + # ------------------------------------------------------------------------- + def update_pce_coeffs(self, X, y, out_dict): + """ + Updates the PCE coefficents using only the ordinary least square method + for the fast version of the bootsrtrapping. + + Parameters + ---------- + X : array of shape (n_samples, n_params) + Training set. + y : array of shape (n_samples, n_outs) + The (transformed) model responses. + out_dict : dict + The training output dictionary of the first iteration, i.e. + the surrogate model for the original experimental design. + + Returns + ------- + final_out_dict : dict + The updated training output dictionary. + + """ + # Make a copy + final_out_dict = copy.deepcopy(out_dict) + + # Loop over the points + for i in range(y.shape[1]): + + # Extract nonzero basis indices + nnz_idx = np.nonzero(out_dict[i]['coeffs'])[0] + if len(nnz_idx) != 0: + basis_indices = out_dict[i]['multi_indices'] + + # Evaluate the multivariate polynomials on CollocationPoints + psi = self.create_psi(basis_indices, self.univ_p_val) + + # Calulate the cofficients of surrogate model + updated_out = self.fit( + psi, y[:, i], basis_indices, reg_method='OLS', + sparsity=False + ) + + # Update coeffs in out_dict + final_out_dict[i]['coeffs'][nnz_idx] = updated_out['coeffs'] + + return final_out_dict + + # ------------------------------------------------------------------------- + def create_basis_indices(self, degree, q_norm): + """ + Creates set of selected multi-indices of multivariate polynomials for + certain parameter numbers, polynomial degree, hyperbolic (or q-norm) + truncation scheme. + + Parameters + ---------- + degree : int + Polynomial degree. + q_norm : float + hyperbolic (or q-norm) truncation. + + Returns + ------- + basis_indices : array of shape (n_terms, n_params) + Multi-indices of multivariate polynomials. + + """ + basis_indices = glexindex(start=0, stop=degree+1, + dimensions=self.n_params, + cross_truncation=q_norm, + reverse=False, graded=True) + return basis_indices + + # ------------------------------------------------------------------------- + def add_ExpDesign(self): + """ + Instanciates experimental design object. + + Returns + ------- + None. + + """ + self.ExpDesign = ExpDesigns(self.input_obj, + meta_Model=self.meta_model_type) + + # ------------------------------------------------------------------------- + def generate_ExpDesign(self, Model): + """ + Prepares the experimental design either by reading from the prescribed + data or running simulations. + + Parameters + ---------- + Model : obj + Model object. + + Raises + ------ + Exception + If model sumulations are not provided properly. + + Returns + ------- + ED_X_tr: array of shape (n_samples, n_params) + Training samples transformed by an isoprobabilistic transformation. + ED_Y: dict + Model simulations (target) for all outputs. + """ + ExpDesign = self.ExpDesign + if self.ExpDesignFlag != 'sequential': + # Read ExpDesign (training and targets) from the provided hdf5 + if ExpDesign.hdf5_file is not None: + + # Read hdf5 file + f = h5py.File(ExpDesign.hdf5_file, 'r+') + + # Read EDX and pass it to ExpDesign object + try: + ExpDesign.X = np.array(f["EDX/New_init_"]) + except KeyError: + ExpDesign.X = np.array(f["EDX/init_"]) + + # Update number of initial samples + ExpDesign.n_init_samples = ExpDesign.X.shape[0] + + # Read EDX and pass it to ExpDesign object + out_names = self.ModelObj.Output.names + ExpDesign.Y = {} + + # Extract x values + try: + ExpDesign.Y["x_values"] = dict() + for varIdx, var in enumerate(out_names): + x = np.array(f[f"x_values/{var}"]) + ExpDesign.Y["x_values"][var] = x + except KeyError: + ExpDesign.Y["x_values"] = np.array(f["x_values"]) + + # Store the output + for varIdx, var in enumerate(out_names): + try: + y = np.array(f[f"EDY/{var}/New_init_"]) + except KeyError: + y = np.array(f[f"EDY/{var}/init_"]) + ExpDesign.Y[var] = y + f.close() + else: # changed from else + # Check if an old hdf5 file exists: if yes, rename it + hdf5file = f'ExpDesign_{self.ModelObj.name}.hdf5' + if os.path.exists(hdf5file): + os.rename(hdf5file, 'old_'+hdf5file) + + # ---- Prepare X samples ---- + ED_X, ED_X_tr = ExpDesign.generate_ED(ExpDesign.n_init_samples, + ExpDesign.sampling_method, + transform=True, + max_pce_deg=np.max(self.pce_deg)) + ExpDesign.X = ED_X + ExpDesign.collocationPoints = ED_X_tr + self.bound_tuples = ExpDesign.bound_tuples + + # ---- Run simulations at X ---- + if not hasattr(ExpDesign, 'Y') or ExpDesign.Y is None: + print('\n Now the forward model needs to be run!\n') + ED_Y, up_ED_X = Model.run_model_parallel(ED_X) + ExpDesign.X = up_ED_X + self.ModelOutputDict = ED_Y + ExpDesign.Y = ED_Y + else: + # Check if a dict has been passed. + if type(ExpDesign.Y) is dict: + self.ModelOutputDict = ExpDesign.Y + else: + raise Exception('Please provide either a dictionary or a hdf5' + 'file to ExpDesign.hdf5_file argument.') + + return ED_X_tr, self.ModelOutputDict + + # ------------------------------------------------------------------------- + def univ_basis_vals(self, samples, n_max=None): + """ + Evaluates univariate regressors along input directions. + + Parameters + ---------- + samples : array of shape (n_samples, n_params) + Samples. + n_max : int, optional + Maximum polynomial degree. The default is `None`. + + Returns + ------- + univ_basis: array of shape (n_samples, n_params, n_max+1) + All univariate regressors up to n_max. + """ + # Extract information + poly_types = self.ExpDesign.poly_types + if samples.ndim != 2: + samples = samples.reshape(1, len(samples)) + n_max = np.max(self.pce_deg) if n_max is None else n_max + + # Extract poly coeffs + if self.ExpDesign.input_data_given or self.ExpDesign.apce: + apolycoeffs = self.ExpDesign.polycoeffs + else: + apolycoeffs = None + + # Evaluate univariate basis + univ_basis = eval_univ_basis(samples, n_max, poly_types, apolycoeffs) + + return univ_basis + + # ------------------------------------------------------------------------- + def create_psi(self, basis_indices, univ_p_val): + """ + This function assemble the design matrix Psi from the given basis index + set INDICES and the univariate polynomial evaluations univ_p_val. + + Parameters + ---------- + basis_indices : array of shape (n_terms, n_params) + Multi-indices of multivariate polynomials. + univ_p_val : array of (n_samples, n_params, n_max+1) + All univariate regressors up to `n_max`. + + Raises + ------ + ValueError + n_terms in arguments do not match. + + Returns + ------- + psi : array of shape (n_samples, n_terms) + Multivariate regressors. + + """ + # Check if BasisIndices is a sparse matrix + sparsity = sp.sparse.issparse(basis_indices) + if sparsity: + basis_indices = basis_indices.toarray() + + # Initialization and consistency checks + # number of input variables + n_params = univ_p_val.shape[1] + + # Size of the experimental design + n_samples = univ_p_val.shape[0] + + # number of basis terms + n_terms = basis_indices.shape[0] + + # check that the variables have consistent sizes + if n_params != basis_indices.shape[1]: + raise ValueError( + f"The shapes of basis_indices ({basis_indices.shape[1]}) and " + f"univ_p_val ({n_params}) don't match!!" + ) + + # Preallocate the Psi matrix for performance + psi = np.ones((n_samples, n_terms)) + # Assemble the Psi matrix + for m in range(basis_indices.shape[1]): + aa = np.where(basis_indices[:, m] > 0)[0] + try: + basisIdx = basis_indices[aa, m] + bb = univ_p_val[:, m, basisIdx].reshape(psi[:, aa].shape) + psi[:, aa] = np.multiply(psi[:, aa], bb) + except ValueError as err: + raise err + return psi + + # ------------------------------------------------------------------------- + def fit(self, X, y, basis_indices, reg_method=None, sparsity=True): + """ + Fit regression using the regression method provided. + + Parameters + ---------- + X : array of shape (n_samples, n_features) + Training vector, where n_samples is the number of samples and + n_features is the number of features. + y : array of shape (n_samples,) + Target values. + basis_indices : array of shape (n_terms, n_params) + Multi-indices of multivariate polynomials. + reg_method : str, optional + DESCRIPTION. The default is None. + + Returns + ------- + return_out_dict : Dict + Fitted estimator, spareMulti-Index, sparseX and coefficients. + + """ + if reg_method is None: + reg_method = self.pce_reg_method + + bias_term = self.dim_red_method.lower() != 'pca' + + compute_score = True if self.verbose else False + + # inverse of the observed variance of the data + if np.var(y) != 0: + Lambda = 1 / np.var(y) + else: + Lambda = 1e-6 + + # Bayes sparse adaptive aPCE + if reg_method.lower() == 'ols': + clf_poly = lm.LinearRegression(fit_intercept=False) + elif reg_method.lower() == 'brr': + clf_poly = lm.BayesianRidge(n_iter=1000, tol=1e-7, + fit_intercept=False, + normalize=True, + compute_score=compute_score, + alpha_1=1e-04, alpha_2=1e-04, + lambda_1=Lambda, lambda_2=Lambda) + clf_poly.converged = True + + elif reg_method.lower() == 'ard': + clf_poly = lm.ARDRegression(fit_intercept=False, + normalize=True, + compute_score=compute_score, + n_iter=1000, tol=0.0001, + alpha_1=1e-3, alpha_2=1e-3, + lambda_1=Lambda, lambda_2=Lambda) + + elif reg_method.lower() == 'fastard': + clf_poly = RegressionFastARD(fit_intercept=False, + normalize=True, + compute_score=compute_score, + n_iter=300, tol=1e-10) + + elif reg_method.lower() == 'bcs': + clf_poly = RegressionFastLaplace(fit_intercept=False, + bias_term=bias_term, + n_iter=1000, tol=1e-7) + + elif reg_method.lower() == 'lars': + clf_poly = lm.LassoLarsCV(fit_intercept=False) + + elif reg_method.lower() == 'sgdr': + clf_poly = lm.SGDRegressor(fit_intercept=False, + max_iter=5000, tol=1e-7) + + elif reg_method.lower() == 'omp': + clf_poly = OrthogonalMatchingPursuit(fit_intercept=False) + + elif reg_method.lower() == 'vbl': + clf_poly = VBLinearRegression(fit_intercept=False) + + elif reg_method.lower() == 'ebl': + clf_poly = EBLinearRegression(optimizer='em') + + # Fit + clf_poly.fit(X, y) + + # Select the nonzero entries of coefficients + if sparsity: + nnz_idx = np.nonzero(clf_poly.coef_)[0] + else: + nnz_idx = np.arange(clf_poly.coef_.shape[0]) + + # This is for the case where all outputs are zero, thereby + # all coefficients are zero + if (y == 0).all(): + nnz_idx = np.insert(np.nonzero(clf_poly.coef_)[0], 0, 0) + + sparse_basis_indices = basis_indices[nnz_idx] + sparse_X = X[:, nnz_idx] + coeffs = clf_poly.coef_[nnz_idx] + clf_poly.coef_ = coeffs + + # Create a dict to pass the outputs + return_out_dict = dict() + return_out_dict['clf_poly'] = clf_poly + return_out_dict['spareMulti-Index'] = sparse_basis_indices + return_out_dict['sparePsi'] = sparse_X + return_out_dict['coeffs'] = coeffs + return return_out_dict + + # -------------------------------------------------------------------------------------------------------- + def adaptive_regression(self, ED_X, ED_Y, varIdx, verbose=False): + """ + Adaptively fits the PCE model by comparing the scores of different + degrees and q-norm. + + Parameters + ---------- + ED_X : array of shape (n_samples, n_params) + Experimental design. + ED_Y : array of shape (n_samples,) + Target values, i.e. simulation results for the Experimental design. + varIdx : int + Index of the output. + verbose : bool, optional + Print out summary. The default is False. + + Returns + ------- + returnVars : Dict + Fitted estimator, best degree, best q-norm, LOOCVScore and + coefficients. + + """ + + n_samples, n_params = ED_X.shape + # Initialization + qAllCoeffs, AllCoeffs = {}, {} + qAllIndices_Sparse, AllIndices_Sparse = {}, {} + qAllclf_poly, Allclf_poly = {}, {} + qAllnTerms, AllnTerms = {}, {} + qAllLCerror, AllLCerror = {}, {} + + # Extract degree array and qnorm array + deg_array = np.array([*self.allBasisIndices], dtype=int) + qnorm = [*self.allBasisIndices[str(int(deg_array[0]))]] + + # Some options for EarlyStop + errorIncreases = False + # Stop degree, if LOO error does not decrease n_checks_degree times + n_checks_degree = 3 + # Stop qNorm, if criterion isn't fulfilled n_checks_qNorm times + n_checks_qNorm = 2 + nqnorms = len(qnorm) + qNormEarlyStop = True + if nqnorms < n_checks_qNorm+1: + qNormEarlyStop = False + + # ===================================================================== + # basis adaptive polynomial chaos: repeat the calculation by increasing + # polynomial degree until the highest accuracy is reached + # ===================================================================== + # For each degree check all q-norms and choose the best one + scores = -np.inf * np.ones(deg_array.shape[0]) + qNormScores = -np.inf * np.ones(nqnorms) + + for degIdx, deg in enumerate(deg_array): + + for qidx, q in enumerate(qnorm): + + # Extract the polynomial basis indices from the pool of + # allBasisIndices + BasisIndices = self.allBasisIndices[str(deg)][str(q)] + + # Assemble the Psi matrix + Psi = self.create_psi(BasisIndices, self.univ_p_val) + + # Calulate the cofficients of the meta model + outs = self.fit(Psi, ED_Y, BasisIndices) + + # Calculate and save the score of LOOCV + score, LCerror = self.corr_loocv_error(outs['clf_poly'], + outs['sparePsi'], + outs['coeffs'], + ED_Y) + + # Check the convergence of noise for FastARD + if self.pce_reg_method == 'FastARD' and \ + outs['clf_poly'].alpha_ < np.finfo(np.float32).eps: + score = -np.inf + + qNormScores[qidx] = score + qAllCoeffs[str(qidx+1)] = outs['coeffs'] + qAllIndices_Sparse[str(qidx+1)] = outs['spareMulti-Index'] + qAllclf_poly[str(qidx+1)] = outs['clf_poly'] + qAllnTerms[str(qidx+1)] = BasisIndices.shape[0] + qAllLCerror[str(qidx+1)] = LCerror + + # EarlyStop check + # if there are at least n_checks_qNorm entries after the + # best one, we stop + if qNormEarlyStop and \ + sum(np.isfinite(qNormScores)) > n_checks_qNorm: + # If the error has increased the last two iterations, stop! + qNormScores_nonInf = qNormScores[np.isfinite(qNormScores)] + deltas = np.sign(np.diff(qNormScores_nonInf)) + if sum(deltas[-n_checks_qNorm+1:]) == 2: + # stop the q-norm loop here + break + if np.var(ED_Y) == 0: + break + + # Store the score in the scores list + best_q = np.nanargmax(qNormScores) + scores[degIdx] = qNormScores[best_q] + + AllCoeffs[str(degIdx+1)] = qAllCoeffs[str(best_q+1)] + AllIndices_Sparse[str(degIdx+1)] = qAllIndices_Sparse[str(best_q+1)] + Allclf_poly[str(degIdx+1)] = qAllclf_poly[str(best_q+1)] + AllnTerms[str(degIdx+1)] = qAllnTerms[str(best_q+1)] + AllLCerror[str(degIdx+1)] = qAllLCerror[str(best_q+1)] + + # Check the direction of the error (on average): + # if it increases consistently stop the iterations + if len(scores[scores != -np.inf]) > n_checks_degree: + scores_nonInf = scores[scores != -np.inf] + ss = np.sign(scores_nonInf - np.max(scores_nonInf)) + # ss<0 error decreasing + errorIncreases = np.sum(np.sum(ss[-2:])) <= -1*n_checks_degree + + if errorIncreases: + break + + # Check only one degree, if target matrix has zero variance + if np.var(ED_Y) == 0: + break + + # ------------------ Summary of results ------------------ + # Select the one with the best score and save the necessary outputs + best_deg = np.nanargmax(scores)+1 + coeffs = AllCoeffs[str(best_deg)] + basis_indices = AllIndices_Sparse[str(best_deg)] + clf_poly = Allclf_poly[str(best_deg)] + LOOCVScore = np.nanmax(scores) + P = AllnTerms[str(best_deg)] + LCerror = AllLCerror[str(best_deg)] + degree = deg_array[np.nanargmax(scores)] + qnorm = float(qnorm[best_q]) + + # ------------------ Print out Summary of results ------------------ + if self.verbose: + # Create PSI_Sparse by removing redundent terms + nnz_idx = np.nonzero(coeffs)[0] + BasisIndices_Sparse = basis_indices[nnz_idx] + + print(f'Output variable {varIdx+1}:') + print('The estimation of PCE coefficients converged at polynomial ' + f'degree {deg_array[best_deg-1]} with ' + f'{len(BasisIndices_Sparse)} terms (Sparsity index = ' + f'{round(len(BasisIndices_Sparse)/P, 3)}).') + + print(f'Final ModLOO error estimate: {1-max(scores):.3e}') + print('\n'+'-'*50) + + if verbose: + print('='*50) + print(' '*10 + ' Summary of results ') + print('='*50) + + print("scores:\n", scores) + print("Best score's degree:", self.deg_array[best_deg-1]) + print("NO. of terms:", len(basis_indices)) + print("Sparsity index:", round(len(basis_indices)/P, 3)) + print("Best Indices:\n", basis_indices) + + if self.pce_reg_method in ['BRR', 'ARD']: + fig, ax = plt.subplots(figsize=(12, 10)) + plt.title("Marginal log-likelihood") + plt.plot(clf_poly.scores_, color='navy', linewidth=2) + plt.ylabel("Score") + plt.xlabel("Iterations") + if self.pce_reg_method.lower() == 'bbr': + text = f"$\\alpha={clf_poly.alpha_:.1f}$\n" + f"$\\lambda={clf_poly.lambda_:.3f}$\n" + f"$L={clf_poly.scores_[-1]:.1f}$" + else: + text = f"$\\alpha={clf_poly.alpha_:.1f}$\n$" + f"\\L={clf_poly.scores_[-1]:.1f}$" + + plt.text(0.75, 0.5, text, fontsize=18, transform=ax.transAxes) + plt.show() + print('='*80) + + # Create a dict to pass the outputs + returnVars = dict() + returnVars['clf_poly'] = clf_poly + returnVars['degree'] = degree + returnVars['qnorm'] = qnorm + returnVars['coeffs'] = coeffs + returnVars['multi_indices'] = basis_indices + returnVars['LOOCVScore'] = LOOCVScore + returnVars['LCerror'] = LCerror + + return returnVars + + # ------------------------------------------------------------------------- + def corr_loocv_error(self, clf, psi, coeffs, y): + """ + Calculates the corrected LOO error for regression on regressor + matrix `psi` that generated the coefficients based on [1] and [2]. + + [1] Blatman, G., 2009. Adaptive sparse polynomial chaos expansions for + uncertainty propagation and sensitivity analysis (Doctoral + dissertation, Clermont-Ferrand 2). + + [2] Blatman, G. and Sudret, B., 2011. Adaptive sparse polynomial chaos + expansion based on least angle regression. Journal of computational + Physics, 230(6), pp.2345-2367. + + Parameters + ---------- + clf : object + Fitted estimator. + psi : array of shape (n_samples, n_features) + The multivariate orthogonal polynomials (regressor). + coeffs : array-like of shape (n_features,) + Estimated cofficients. + y : array of shape (n_samples,) + Target values. + + Returns + ------- + R_2 : float + LOOCV Validation score (1-LOOCV erro). + residual : array of shape (n_samples,) + Residual values (y - predicted targets). + + """ + psi = np.array(psi, dtype=float) + + # Create PSI_Sparse by removing redundent terms + nnz_idx = np.nonzero(coeffs)[0] + if len(nnz_idx) == 0: + nnz_idx = [0] + psi_sparse = psi[:, nnz_idx] + + # NrCoeffs of aPCEs + P = len(nnz_idx) + # NrEvaluation (Size of experimental design) + N = psi.shape[0] + + # Build the projection matrix + PsiTPsi = np.dot(psi_sparse.T, psi_sparse) + + if np.linalg.cond(PsiTPsi) > 1e-12: #and \ + # np.linalg.cond(PsiTPsi) < 1/sys.float_info.epsilon: + # faster + M = sp.linalg.solve(PsiTPsi, + sp.sparse.eye(PsiTPsi.shape[0]).toarray()) + else: + # stabler + M = np.linalg.pinv(PsiTPsi) + + # h factor (the full matrix is not calculated explicitly, + # only the trace is, to save memory) + PsiM = np.dot(psi_sparse, M) + + h = np.sum(np.multiply(PsiM, psi_sparse), axis=1, dtype=np.longdouble) # changed from np.float128 + + # ------ Calculate Error Loocv for each measurement point ---- + # Residuals + try: + residual = clf.predict(psi) - y + except: + residual = np.dot(psi, coeffs) - y + + # Variance + var_y = np.var(y) + + if var_y == 0: + norm_emp_error = 0 + loo_error = 0 + LCerror = np.zeros((y.shape)) + return 1-loo_error, LCerror + else: + norm_emp_error = np.mean(residual**2)/var_y + + # LCerror = np.divide(residual, (1-h)) + LCerror = residual / (1-h) + loo_error = np.mean(np.square(LCerror)) / var_y + # if there are NaNs, just return an infinite LOO error (this + # happens, e.g., when a strongly underdetermined problem is solved) + if np.isnan(loo_error): + loo_error = np.inf + + # Corrected Error for over-determined system + tr_M = np.trace(M) + if tr_M < 0 or abs(tr_M) > 1e6: + tr_M = np.trace(np.linalg.pinv(np.dot(psi.T, psi))) + + # Over-determined system of Equation + if N > P: + T_factor = N/(N-P) * (1 + tr_M) + + # Under-determined system of Equation + else: + T_factor = np.inf + + corrected_loo_error = loo_error * T_factor + + R_2 = 1 - corrected_loo_error + + return R_2, LCerror + + # ------------------------------------------------------------------------- + def pca_transformation(self, target, verbose=False): + """ + Transforms the targets (outputs) via Principal Component Analysis + + Parameters + ---------- + target : array of shape (n_samples,) + Target values. + + Returns + ------- + pca : obj + Fitted sklearnPCA object. + OutputMatrix : array of shape (n_samples,) + Transformed target values. + n_pca_components : int + Number of selected principal components. + + """ + # Transform via Principal Component Analysis + if hasattr(self, 'var_pca_threshold'): + var_pca_threshold = self.var_pca_threshold + else: + var_pca_threshold = 100.0 + n_samples, n_features = target.shape + + if hasattr(self, 'n_pca_components'): + n_pca_components = self.n_pca_components + else: + # Instantiate and fit sklearnPCA object + covar_matrix = sklearnPCA(n_components=None) + covar_matrix.fit(target) + var = np.cumsum(np.round(covar_matrix.explained_variance_ratio_, + decimals=5)*100) + # Find the number of components to explain self.varPCAThreshold of + # variance + try: + n_components = np.where(var >= var_pca_threshold)[0][0] + 1 + except IndexError: + n_components = min(n_samples, n_features) + + n_pca_components = min(n_samples, n_features, n_components) + + # Print out a report + if verbose: + print() + print('-' * 50) + print(f"PCA transformation is performed with {n_pca_components}" + " components.") + print('-' * 50) + print() + + # Fit and transform with the selected number of components + pca = sklearnPCA(n_components=n_pca_components, svd_solver='arpack') + scaled_target = pca.fit_transform(target) + + return pca, scaled_target, n_pca_components + + # ------------------------------------------------------------------------- + def gaussian_process_emulator(self, X, y, nug_term=None, autoSelect=False, + varIdx=None): + """ + Fits a Gaussian Process Emulator to the target given the training + points. + + Parameters + ---------- + X : array of shape (n_samples, n_params) + Training points. + y : array of shape (n_samples,) + Target values. + nug_term : float, optional + Nugget term. The default is None, i.e. variance of y. + autoSelect : bool, optional + Loop over some kernels and select the best. The default is False. + varIdx : int, optional + The index number. The default is None. + + Returns + ------- + gp : object + Fitted estimator. + + """ + + nug_term = nug_term if nug_term else np.var(y) + + Kernels = [nug_term * kernels.RBF(length_scale=1.0, + length_scale_bounds=(1e-25, 1e15)), + nug_term * kernels.RationalQuadratic(length_scale=0.2, + alpha=1.0), + nug_term * kernels.Matern(length_scale=1.0, + length_scale_bounds=(1e-15, 1e5), + nu=1.5)] + + # Automatic selection of the kernel + if autoSelect: + gp = {} + BME = [] + for i, kernel in enumerate(Kernels): + gp[i] = GaussianProcessRegressor(kernel=kernel, + n_restarts_optimizer=3, + normalize_y=False) + + # Fit to data using Maximum Likelihood Estimation + gp[i].fit(X, y) + + # Store the MLE as BME score + BME.append(gp[i].log_marginal_likelihood()) + + gp = gp[np.argmax(BME)] + + else: + gp = GaussianProcessRegressor(kernel=Kernels[0], + n_restarts_optimizer=3, + normalize_y=False) + gp.fit(X, y) + + # Compute score + if varIdx is not None: + Score = gp.score(X, y) + print('-'*50) + print(f'Output variable {varIdx}:') + print('The estimation of GPE coefficients converged,') + print(f'with the R^2 score: {Score:.3f}') + print('-'*50) + + return gp + + # ------------------------------------------------------------------------- + def eval_metamodel(self, samples=None, nsamples=None, + sampling_method='random', return_samples=False): + """ + Evaluates meta-model at the requested samples. One can also generate + nsamples. + + Parameters + ---------- + samples : array of shape (n_samples, n_params), optional + Samples to evaluate meta-model at. The default is None. + nsamples : int, optional + Number of samples to generate, if no `samples` is provided. The + default is None. + sampling_method : str, optional + Type of sampling, if no `samples` is provided. The default is + 'random'. + return_samples : bool, optional + Retun samples, if no `samples` is provided. The default is False. + + Returns + ------- + mean_pred : dict + Mean of the predictions. + std_pred : dict + Standard deviatioon of the predictions. + """ + outputs = self.ModelObj.Output.names + + # Generate or transform (if need be) samples + if samples is None: + # Generate + samples = self.ExpDesign.generate_samples( + nsamples, + sampling_method + ) + + # Transform samples to the independent space + samples = self.ExpDesign.transform( + samples, + method='user' + ) + + # Compute univariate bases for the given samples + if self.meta_model_type.lower() != 'gpe': + univ_p_val = self.univ_basis_vals( + samples, + n_max=np.max(self.pce_deg) + ) + + mean_pred_b = {} + std_pred_b = {} + # Loop over bootstrap iterations + for b_i in range(self.n_bootstrap_itrs): + + # Extract model dictionary + if self.meta_model_type.lower() == 'gpe': + model_dict = self.gp_poly[f'b_{b_i+1}'] + else: + model_dict = self.coeffs_dict[f'b_{b_i+1}'] + + # Loop over outputs + mean_pred = {} + std_pred = {} + for output, values in model_dict.items(): + + mean = np.empty((len(samples), len(values))) + std = np.empty((len(samples), len(values))) + idx = 0 + for in_key, InIdxValues in values.items(): + + # Perdiction with GPE + if self.meta_model_type.lower() == 'gpe': + X_T = self.x_scaler[f'b_{b_i+1}'][output].transform(samples) + gp = self.gp_poly[f'b_{b_i+1}'][output][in_key] + y_mean, y_std = gp.predict(X_T, return_std=True) + + else: + # Perdiction with PCE + # Assemble Psi matrix + basis = self.basis_dict[f'b_{b_i+1}'][output][in_key] + psi = self.create_psi(basis, univ_p_val) + + # Perdiction + if self.bootstrap_method != 'fast' or b_i == 0: + # with error bar, i.e. use clf_poly + clf_poly = self.clf_poly[f'b_{b_i+1}'][output][in_key] + try: + y_mean, y_std = clf_poly.predict( + psi, return_std=True + ) + except TypeError: + y_mean = clf_poly.predict(psi) + y_std = np.zeros_like(y_mean) + else: + # without error bar + coeffs = self.coeffs_dict[f'b_{b_i+1}'][output][in_key] + y_mean = np.dot(psi, coeffs) + y_std = np.zeros_like(y_mean) + + mean[:, idx] = y_mean + std[:, idx] = y_std + idx += 1 + + # Save predictions for each output + if self.dim_red_method.lower() == 'pca': + PCA = self.pca[f'b_{b_i+1}'][output] + mean_pred[output] = PCA.inverse_transform(mean) + std_pred[output] = np.zeros(mean.shape) + else: + mean_pred[output] = mean + std_pred[output] = std + + # Save predictions for each bootstrap iteration + mean_pred_b[b_i] = mean_pred + std_pred_b[b_i] = std_pred + + # Change the order of nesting + mean_pred_all = {} + for i in sorted(mean_pred_b): + for k, v in mean_pred_b[i].items(): + if k not in mean_pred_all: + mean_pred_all[k] = [None] * len(mean_pred_b) + mean_pred_all[k][i] = v + + # Compute the moments of predictions over the predictions + for output in outputs: + # Only use bootstraps with finite values + finite_rows = np.isfinite( + mean_pred_all[output]).all(axis=2).all(axis=1) + outs = np.asarray(mean_pred_all[output])[finite_rows] + # Compute mean + mean_pred[output] = np.mean(outs, axis=0) + # Compute standard deviation + if self.n_bootstrap_itrs > 1: + std_pred[output] = np.std(outs, axis=0) + else: + std_pred[output] = std_pred_b[b_i][output] + + if return_samples: + return mean_pred, std_pred, samples + else: + return mean_pred, std_pred + + # ------------------------------------------------------------------------- + def create_model_error(self, X, y, name='Calib'): + """ + Fits a GPE-based model error. + + Parameters + ---------- + X : array of shape (n_outputs, n_inputs) + Input array. It can contain any forcing inputs or coordinates of + extracted data. + y : array of shape (n_outputs,) + The model response for the MAP parameter set. + name : str, optional + Calibration or validation. The default is `'Calib'`. + + Returns + ------- + self: object + Self object. + + """ + Model = self.ModelObj + outputNames = Model.Output.names + self.errorRegMethod = 'GPE' + self.errorclf_poly = self.auto_vivification() + self.errorScale = self.auto_vivification() + + # Read data + MeasuredData = Model.read_observation(case=name) + + # Fitting GPR based bias model + for out in outputNames: + nan_idx = ~np.isnan(MeasuredData[out]) + # Select data + try: + data = MeasuredData[out].values[nan_idx] + except AttributeError: + data = MeasuredData[out][nan_idx] + + # Prepare the input matrix + scaler = MinMaxScaler() + delta = data # - y[out][0] + BiasInputs = np.hstack((X[out], y[out].reshape(-1, 1))) + X_S = scaler.fit_transform(BiasInputs) + gp = self.gaussian_process_emulator(X_S, delta) + + self.errorScale[out]["y_1"] = scaler + self.errorclf_poly[out]["y_1"] = gp + + return self + + # ------------------------------------------------------------------------- + def eval_model_error(self, X, y_pred): + """ + Evaluates the error model. + + Parameters + ---------- + X : array + Inputs. + y_pred : dict + Predictions. + + Returns + ------- + mean_pred : dict + Mean predition of the GPE-based error model. + std_pred : dict + standard deviation of the GPE-based error model. + + """ + mean_pred = {} + std_pred = {} + + for Outkey, ValuesDict in self.errorclf_poly.items(): + + pred_mean = np.zeros_like(y_pred[Outkey]) + pred_std = np.zeros_like(y_pred[Outkey]) + + for Inkey, InIdxValues in ValuesDict.items(): + + gp = self.errorclf_poly[Outkey][Inkey] + scaler = self.errorScale[Outkey][Inkey] + + # Transform Samples using scaler + for j, pred in enumerate(y_pred[Outkey]): + BiasInputs = np.hstack((X[Outkey], pred.reshape(-1, 1))) + Samples_S = scaler.transform(BiasInputs) + y_hat, y_std = gp.predict(Samples_S, return_std=True) + pred_mean[j] = y_hat + pred_std[j] = y_std + # pred_mean[j] += pred + + mean_pred[Outkey] = pred_mean + std_pred[Outkey] = pred_std + + return mean_pred, std_pred + + # ------------------------------------------------------------------------- + class auto_vivification(dict): + """ + Implementation of perl's AutoVivification feature. + + Source: https://stackoverflow.com/a/651879/18082457 + """ + + def __getitem__(self, item): + try: + return dict.__getitem__(self, item) + except KeyError: + value = self[item] = type(self)() + return value + + # ------------------------------------------------------------------------- + def copy_meta_model_opts(self, InputObj, ModelObj = 'None'): # added the None here + """ + This method is a convinient function to copy the metamodel options. + + Parameters + ---------- + InputObj : object + The input object. + ModelObj : object + The Model object. + + Returns + ------- + new_MetaModelOpts : object + The copied object. + + """ + new_MetaModelOpts = copy.deepcopy(self) + new_MetaModelOpts.ModelObj = ModelObj + new_MetaModelOpts.input_obj = InputObj + new_MetaModelOpts.ExpDesign.meta_Model = 'aPCE' + new_MetaModelOpts.ExpDesign.InputObj = InputObj + new_MetaModelOpts.ExpDesign.ndim = len(InputObj.Marginals) + new_MetaModelOpts.n_params = len(InputObj.Marginals) + new_MetaModelOpts.ExpDesign.hdf5_file = None + + return new_MetaModelOpts + + # ------------------------------------------------------------------------- + def __select_degree(self, ndim, n_samples): + """ + Selects degree based on the number of samples and parameters in the + sequential design. + + Parameters + ---------- + ndim : int + Dimension of the parameter space. + n_samples : int + Number of samples. + + Returns + ------- + deg_array: array + Array containing the arrays. + + """ + # Define the deg_array + max_deg = np.max(self.pce_deg) + min_Deg = np.min(self.pce_deg) + nitr = n_samples - self.ExpDesign.n_init_samples + + # Check q-norm + if not np.isscalar(self.pce_q_norm): + self.pce_q_norm = np.array(self.pce_q_norm) + else: + self.pce_q_norm = np.array([self.pce_q_norm]) + + def M_uptoMax(maxDeg): + n_combo = np.zeros(maxDeg) + for i, d in enumerate(range(1, maxDeg+1)): + n_combo[i] = math.factorial(ndim+d) + n_combo[i] /= math.factorial(ndim) * math.factorial(d) + return n_combo + + if self.ExpDesignFlag != 'sequential': + deg_new = max_deg + else: + d = nitr if nitr != 0 and self.n_params > 5 else 1 + min_index = np.argmin(abs(M_uptoMax(max_deg)-ndim*n_samples*d)) + deg_new = max_deg + # deg_new = range(1, max_deg+1)[min_index] + + if deg_new > min_Deg and self.pce_reg_method.lower() != 'fastard': + deg_array = np.arange(min_Deg, deg_new+1) + else: + deg_array = np.array([deg_new]) + + return deg_array diff --git a/examples/only-model/data/InputParameters_10.npy b/examples/only-model/data/InputParameters_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..6f16cc2a38146eb45d01148d096ea0e74a6595b0 Binary files /dev/null and b/examples/only-model/data/InputParameters_10.npy differ diff --git a/examples/only-model/data/InputParameters_2.npy b/examples/only-model/data/InputParameters_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..e7ed5508ce54f3418f64584415e3a0f9d73d1f7c Binary files /dev/null and b/examples/only-model/data/InputParameters_2.npy differ diff --git a/examples/only-model/data/Prior_10.npy b/examples/only-model/data/Prior_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..0ef9027c700223ec27f63247e9dfe11534587485 Binary files /dev/null and b/examples/only-model/data/Prior_10.npy differ diff --git a/examples/only-model/data/Prior_2.npy b/examples/only-model/data/Prior_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..e991269614a37c6e397ba20de41e2f0fd7c0ddc5 Binary files /dev/null and b/examples/only-model/data/Prior_2.npy differ diff --git a/examples/only-model/data/Samples.npy b/examples/only-model/data/Samples.npy new file mode 100644 index 0000000000000000000000000000000000000000..deab589fd2fdf1128784b542ff1a7401ea9f2ff7 Binary files /dev/null and b/examples/only-model/data/Samples.npy differ diff --git a/examples/only-model/data/mean_10.npy b/examples/only-model/data/mean_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..3b6e58a3df4d1d02113056ffc2c1c7feb675edc3 Binary files /dev/null and b/examples/only-model/data/mean_10.npy differ diff --git a/examples/only-model/data/mean_2.npy b/examples/only-model/data/mean_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..2722cb0b932350329f5af40944b6571fd5ad1f74 Binary files /dev/null and b/examples/only-model/data/mean_2.npy differ diff --git a/examples/only-model/data/origModelOutput_10.npy b/examples/only-model/data/origModelOutput_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..4c81d15c3b543aad233f47b05fe44298c706ebf3 Binary files /dev/null and b/examples/only-model/data/origModelOutput_10.npy differ diff --git a/examples/only-model/data/origModelOutput_2.npy b/examples/only-model/data/origModelOutput_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..5e71859eef62f56f908b2c2e75ecc7e7de951db0 Binary files /dev/null and b/examples/only-model/data/origModelOutput_2.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_1.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_1.npy new file mode 100644 index 0000000000000000000000000000000000000000..58d2650394f650a6436ed5932bbda05b7f6f90ab Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_1.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_10.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..3c42a71708a6510d7f7493880c667d0460a613e1 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_10.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_11.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_11.npy new file mode 100644 index 0000000000000000000000000000000000000000..8408441185940760cb6dc02b12630fc7770cfcf9 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_11.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_12.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_12.npy new file mode 100644 index 0000000000000000000000000000000000000000..83e60bd054704f07d5f25bbee1fe6d593b572ff4 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_12.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_13.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_13.npy new file mode 100644 index 0000000000000000000000000000000000000000..8dd26b3f277753998c4f47daa43cd0d773a3ee19 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_13.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_14.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_14.npy new file mode 100644 index 0000000000000000000000000000000000000000..06911cd4722a51d726d36b79ab9bc600c9e82ffb Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_14.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_15.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_15.npy new file mode 100644 index 0000000000000000000000000000000000000000..d5ee2de4c138728f05cc3d6388f9ff421931e677 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_15.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_16.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_16.npy new file mode 100644 index 0000000000000000000000000000000000000000..86a34893a169b05e50a21ddd71be260f4c2e9b55 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_16.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_17.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_17.npy new file mode 100644 index 0000000000000000000000000000000000000000..d4f57970f31a6774401fdfd166c3599b14ef7467 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_17.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_18.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_18.npy new file mode 100644 index 0000000000000000000000000000000000000000..ecf2f77f270f6f857eff0ea891e8c4b22bbd266f Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_18.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_19.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_19.npy new file mode 100644 index 0000000000000000000000000000000000000000..fcc94211eb35cabc00b5f7a6767b8e8f7a087050 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_19.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_2.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..11e20672d5b9f3360bccd90dd1a6a4d56d576d1d Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_2.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_20.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_20.npy new file mode 100644 index 0000000000000000000000000000000000000000..23c02b1104973eb291bf8f027094cb32f74e840d Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_20.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_21.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_21.npy new file mode 100644 index 0000000000000000000000000000000000000000..747fddb486983ce0bd0dc1c96f8f6e25b23e36fa Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_21.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_22.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_22.npy new file mode 100644 index 0000000000000000000000000000000000000000..1e1ffe72d4aca881f29430d809fff3c0892dd17f Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_22.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_23.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_23.npy new file mode 100644 index 0000000000000000000000000000000000000000..824932636e400de9c958f01ea00e5d20104e6d2c Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_23.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_24.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_24.npy new file mode 100644 index 0000000000000000000000000000000000000000..acce8e21984b60caa1a7d03b176920660175ea62 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_24.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_25.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_25.npy new file mode 100644 index 0000000000000000000000000000000000000000..ef2ed1ed90e72903967f07a6811684d43fabeeae Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_25.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_26.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_26.npy new file mode 100644 index 0000000000000000000000000000000000000000..3826ff6805364488b2cd200ae2d98c87b8d83a2e Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_26.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_27.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_27.npy new file mode 100644 index 0000000000000000000000000000000000000000..3e5e74b92da1704803ef6a2374647bf5a67f4382 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_27.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_28.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_28.npy new file mode 100644 index 0000000000000000000000000000000000000000..ab8507910ab4311ac6ed8b8660c2beb6b95cbc10 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_28.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_29.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_29.npy new file mode 100644 index 0000000000000000000000000000000000000000..1e37fada5b7832715c44db653285ace0e3bbcb6b Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_29.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_3.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_3.npy new file mode 100644 index 0000000000000000000000000000000000000000..a21fe8a3fc7c1044a7e150a3023807e958bb8bc1 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_3.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_30.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_30.npy new file mode 100644 index 0000000000000000000000000000000000000000..958941edb482c3af37dc9c5aa11996e5628cfeb0 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_30.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_31.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_31.npy new file mode 100644 index 0000000000000000000000000000000000000000..209c7b52c447685885d4935892fc83435c0831b6 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_31.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_32.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_32.npy new file mode 100644 index 0000000000000000000000000000000000000000..4e0864f38b0c96424cdfe0b924c5cd67e6e65322 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_32.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_33.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_33.npy new file mode 100644 index 0000000000000000000000000000000000000000..8279b27ac1716c694f5bbff93f0f2cb0c2ee1029 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_33.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_34.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_34.npy new file mode 100644 index 0000000000000000000000000000000000000000..069937840094083adbd1bbca9760e178401d9b50 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_34.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_35.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_35.npy new file mode 100644 index 0000000000000000000000000000000000000000..f03f2b9452ff2ff96578ff6e4346f0f1a7990225 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_35.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_36.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_36.npy new file mode 100644 index 0000000000000000000000000000000000000000..d17ddeb0517bdf395d710163cf2ed96a65033154 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_36.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_37.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_37.npy new file mode 100644 index 0000000000000000000000000000000000000000..050bd926cd62c0e199bcdd8924cfc48fd56321d6 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_37.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_38.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_38.npy new file mode 100644 index 0000000000000000000000000000000000000000..1cc12ec60aa9586880c5ac322273c7ec13491ac8 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_38.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_39.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_39.npy new file mode 100644 index 0000000000000000000000000000000000000000..795c7d7a1bfa4058b21a0615937c78c018b1003c Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_39.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_4.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_4.npy new file mode 100644 index 0000000000000000000000000000000000000000..1f85637a22c0e1ad06de73c82e86d89173901a1f Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_4.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_40.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_40.npy new file mode 100644 index 0000000000000000000000000000000000000000..1d155926d4edf4f46012ce11a2bd4ac527368199 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_40.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_41.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_41.npy new file mode 100644 index 0000000000000000000000000000000000000000..9bf4183344f47fecbf4a119ebb0555b2b6dc5a77 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_41.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_42.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_42.npy new file mode 100644 index 0000000000000000000000000000000000000000..83c25fe4b1457399191ec15c291e89f63a6cac86 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_42.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_43.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_43.npy new file mode 100644 index 0000000000000000000000000000000000000000..bf30ffcd3284dc6f3c78e10500f383ead29570d8 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_43.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_44.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_44.npy new file mode 100644 index 0000000000000000000000000000000000000000..23be23b1ce4fedaee1f547e6b39b30110b02eae8 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_44.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_45.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_45.npy new file mode 100644 index 0000000000000000000000000000000000000000..144f305f3baac6c7f984bac654f29e6054acb0e4 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_45.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_46.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_46.npy new file mode 100644 index 0000000000000000000000000000000000000000..7fe93e468eb90eb4be3f555ac2e063b4b14ba017 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_46.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_47.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_47.npy new file mode 100644 index 0000000000000000000000000000000000000000..cb61fefd4c793cae614be1a3edeb58da28731f0d Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_47.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_48.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_48.npy new file mode 100644 index 0000000000000000000000000000000000000000..5664ea3b4a0313420cb96643647cab662e2d5408 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_48.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_5.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_5.npy new file mode 100644 index 0000000000000000000000000000000000000000..87d29e876d5a7fe28529d210fb5931ae99bb85dd Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_5.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_6.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_6.npy new file mode 100644 index 0000000000000000000000000000000000000000..568d390111d31aef703453bb2622cd86ba6e4b55 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_6.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_7.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_7.npy new file mode 100644 index 0000000000000000000000000000000000000000..4e12137059b7a1ed03a8aea854576f0d45a23677 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_7.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_8.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_8.npy new file mode 100644 index 0000000000000000000000000000000000000000..0ccbc53d605e6b18ef3ef8f2c99f76defbdca16b Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_8.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_9.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_9.npy new file mode 100644 index 0000000000000000000000000000000000000000..ddfa0fc1d41a9e7716c4e20b09a88541f438806a Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_9.npy differ diff --git a/examples/only-model/data/posterior/AL_MI/SeqPosterior_init.npy b/examples/only-model/data/posterior/AL_MI/SeqPosterior_init.npy new file mode 100644 index 0000000000000000000000000000000000000000..38a4eb43f12ef5dfe406a35bec20bfd494b80f43 Binary files /dev/null and b/examples/only-model/data/posterior/AL_MI/SeqPosterior_init.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_1.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_1.npy new file mode 100644 index 0000000000000000000000000000000000000000..c34775a4fcc7ea1095eebb63e39fbdc934cb7631 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_1.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_10.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..cab61893e562500c707c7b1947de0957487bb4ae Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_10.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_11.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_11.npy new file mode 100644 index 0000000000000000000000000000000000000000..49adae27f0b52aa6f18c4777023f4cb5d810c0e6 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_11.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_12.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_12.npy new file mode 100644 index 0000000000000000000000000000000000000000..3f5151347c895a778e2d8df393b6dfef328037b6 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_12.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_13.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_13.npy new file mode 100644 index 0000000000000000000000000000000000000000..50f04221c5d66bba8f36bb1e979b87c75be95c61 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_13.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_14.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_14.npy new file mode 100644 index 0000000000000000000000000000000000000000..43f3c0e9a2e72b391e1643b6e1542400e7dba7de Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_14.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_15.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_15.npy new file mode 100644 index 0000000000000000000000000000000000000000..43c9b76a6921dcb00600a6fa2ffb30926d99c3bc Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_15.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_16.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_16.npy new file mode 100644 index 0000000000000000000000000000000000000000..ab44393d17afb2da51d4308143db99fa21ac4922 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_16.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_17.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_17.npy new file mode 100644 index 0000000000000000000000000000000000000000..93bc74d44b2ce909ff52a77e0fda780d8f2ba814 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_17.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_18.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_18.npy new file mode 100644 index 0000000000000000000000000000000000000000..ea7200ceb535182df10a280a118283e327f2b5a4 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_18.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_19.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_19.npy new file mode 100644 index 0000000000000000000000000000000000000000..f624fd4a9982a74f9882d1a53629297833396dfb Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_19.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_2.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..777d6b42bfcd7eca9957b9a188bc3341c4cfc2a5 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_2.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_20.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_20.npy new file mode 100644 index 0000000000000000000000000000000000000000..eb2599e7d5533da07d4eb7baa2641cb44e9a2525 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_20.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_21.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_21.npy new file mode 100644 index 0000000000000000000000000000000000000000..a024ba5b3bcf534bf37819b545384c927ffb43b5 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_21.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_22.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_22.npy new file mode 100644 index 0000000000000000000000000000000000000000..fe01856a91d758d36fb9c94daa9fc94b125ec74b Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_22.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_23.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_23.npy new file mode 100644 index 0000000000000000000000000000000000000000..e78c794045249cd88a770ffba0cb645587e038bc Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_23.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_24.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_24.npy new file mode 100644 index 0000000000000000000000000000000000000000..123c525632549c9aa3135fd2db1052256a1be531 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_24.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_25.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_25.npy new file mode 100644 index 0000000000000000000000000000000000000000..41fc49bc8f4d36c0a949f7ecafe24e54a03ce638 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_25.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_26.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_26.npy new file mode 100644 index 0000000000000000000000000000000000000000..da0f0ba273e9b5304ade216a9cc033da587cae32 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_26.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_27.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_27.npy new file mode 100644 index 0000000000000000000000000000000000000000..148015b740c668bab7727b63bfb5c532766a9554 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_27.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_28.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_28.npy new file mode 100644 index 0000000000000000000000000000000000000000..a2e9734751a86bdf3caa2b4c34c06f3333b0f567 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_28.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_29.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_29.npy new file mode 100644 index 0000000000000000000000000000000000000000..2e7288954075a2f0d639765022fe3c0b9e457223 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_29.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_3.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_3.npy new file mode 100644 index 0000000000000000000000000000000000000000..f589a277b2418b0fe228a53ea98bbdf574719870 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_3.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_30.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_30.npy new file mode 100644 index 0000000000000000000000000000000000000000..eaea6efbd66fa9ad146b685b7bbdbac8390927a5 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_30.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_31.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_31.npy new file mode 100644 index 0000000000000000000000000000000000000000..6b1217b9aa0dedbae5efd53f65bb4a8ed963514a Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_31.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_32.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_32.npy new file mode 100644 index 0000000000000000000000000000000000000000..92c7b6c6b7be9d2743898754cc4920ee03382c94 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_32.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_33.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_33.npy new file mode 100644 index 0000000000000000000000000000000000000000..e26de7c08182378092a6d0de6a12a1c7081a19bf Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_33.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_34.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_34.npy new file mode 100644 index 0000000000000000000000000000000000000000..0741feede98ccc7370d19db824a1c9cd489bee34 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_34.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_35.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_35.npy new file mode 100644 index 0000000000000000000000000000000000000000..e459f827bfea17caddc78276f476d4cdce37e348 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_35.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_36.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_36.npy new file mode 100644 index 0000000000000000000000000000000000000000..b7190075e5cdd1b26699e0f3abcea2987ddb7ddc Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_36.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_37.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_37.npy new file mode 100644 index 0000000000000000000000000000000000000000..4ee3216674fa00ce207f6787751707f680b6ffd3 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_37.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_38.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_38.npy new file mode 100644 index 0000000000000000000000000000000000000000..a9c37c16695a202eeb9d9108d71deebe17aa6db1 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_38.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_39.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_39.npy new file mode 100644 index 0000000000000000000000000000000000000000..f89804a1adbfde9f9f426e3b03861c0204436a83 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_39.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_4.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_4.npy new file mode 100644 index 0000000000000000000000000000000000000000..b4aff5c1388dd25bba6c0642f7aafc718217742c Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_4.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_40.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_40.npy new file mode 100644 index 0000000000000000000000000000000000000000..9e36b2d568d2fd3421701320c6e1df5d0ce0bca6 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_40.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_41.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_41.npy new file mode 100644 index 0000000000000000000000000000000000000000..55aaeb78facd6c6c75f1b82ca18995f10f9cc627 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_41.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_42.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_42.npy new file mode 100644 index 0000000000000000000000000000000000000000..0b3dae3cc30bda13736ca486ae901c13ca2be9f2 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_42.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_43.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_43.npy new file mode 100644 index 0000000000000000000000000000000000000000..9a53d114de5309a25cfcfde96102d507e04c744e Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_43.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_44.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_44.npy new file mode 100644 index 0000000000000000000000000000000000000000..2eb93e1b29eaf18e32b44a3b0a24e38cbea43be9 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_44.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_45.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_45.npy new file mode 100644 index 0000000000000000000000000000000000000000..8c0dd9a32b6c5bb887e4db36b1276e8b4621cbcf Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_45.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_46.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_46.npy new file mode 100644 index 0000000000000000000000000000000000000000..5e0da670a62a624964cb38258219fae55e247654 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_46.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_47.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_47.npy new file mode 100644 index 0000000000000000000000000000000000000000..2711da8a5ebe1d4ce0b34ef46f0c11f12fa8d6cf Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_47.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_48.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_48.npy new file mode 100644 index 0000000000000000000000000000000000000000..a294d19315e97f33de7519332728621f127e13cd Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_48.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_5.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_5.npy new file mode 100644 index 0000000000000000000000000000000000000000..a7c4c5ba912eb3e45f2b9f7ddcb2b56bd2b4701d Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_5.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_6.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_6.npy new file mode 100644 index 0000000000000000000000000000000000000000..2664d172e7f30ef9975575625092ad7fadc4fb8a Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_6.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_7.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_7.npy new file mode 100644 index 0000000000000000000000000000000000000000..9e26a49798920618950fed29b246343d48946bf9 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_7.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_8.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_8.npy new file mode 100644 index 0000000000000000000000000000000000000000..7a6ce02d3b0c87a30f93fc585dc31957329892b4 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_8.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_9.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_9.npy new file mode 100644 index 0000000000000000000000000000000000000000..06e4dddf69d837205acdc47036c7ea8437646b63 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_9.npy differ diff --git a/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_init.npy b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_init.npy new file mode 100644 index 0000000000000000000000000000000000000000..f4bd7917b76442f91900be31bb7344b3221853d6 Binary files /dev/null and b/examples/only-model/data/posterior/BAL_DKL/SeqPosterior_init.npy differ diff --git a/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_20.npy b/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_20.npy new file mode 100644 index 0000000000000000000000000000000000000000..fda8ba1ceab66e45ecac8eb3ef96f12d1a479417 Binary files /dev/null and b/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_20.npy differ diff --git a/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_40.npy b/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_40.npy new file mode 100644 index 0000000000000000000000000000000000000000..1b741429b327d9d5bd248a0ba8b6a65f51041141 Binary files /dev/null and b/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_40.npy differ diff --git a/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_5.npy b/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_5.npy new file mode 100644 index 0000000000000000000000000000000000000000..c10fa3dc7b589f8e494c6c4e7b688e67f186dcde Binary files /dev/null and b/examples/only-model/data/posterior/BODE_DKL/SeqPosterior_5.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_1.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_1.npy new file mode 100644 index 0000000000000000000000000000000000000000..6b5413c58ece5a71bd9218d746973c97848524e7 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_1.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_10.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..241e47fa0d0b163f3e124378e395291d467a1799 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_10.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_11.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_11.npy new file mode 100644 index 0000000000000000000000000000000000000000..c1b0d9da3fc73f6026bc4e501723ae98cd1b5908 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_11.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_12.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_12.npy new file mode 100644 index 0000000000000000000000000000000000000000..96d8bf9226f83a46348f46e849719fe3eebbd531 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_12.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_13.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_13.npy new file mode 100644 index 0000000000000000000000000000000000000000..5a4720f22f5c27f067e4386113bb457cc1c6cf46 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_13.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_14.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_14.npy new file mode 100644 index 0000000000000000000000000000000000000000..1f70c967a90c6d46522c6ea378e8cde3ced45880 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_14.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_15.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_15.npy new file mode 100644 index 0000000000000000000000000000000000000000..1ac1c383f78dcdbb0081f965768e92f3d63cba67 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_15.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_16.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_16.npy new file mode 100644 index 0000000000000000000000000000000000000000..3d6a418b0f64254379ee14109e598e422a04cd41 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_16.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_17.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_17.npy new file mode 100644 index 0000000000000000000000000000000000000000..f7f2731ed4a7fe69bf2f6a14100282ae9572c2a5 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_17.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_18.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_18.npy new file mode 100644 index 0000000000000000000000000000000000000000..e4b6ffd7e99690060635a2d1c2d02dbab5febd60 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_18.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_19.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_19.npy new file mode 100644 index 0000000000000000000000000000000000000000..61f190f22b26d7184a31bcd588c01d8b380d67eb Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_19.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_2.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..3ccdca996f02b5d92e4e2b688551c2d55003c264 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_2.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_20.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_20.npy new file mode 100644 index 0000000000000000000000000000000000000000..b350309abc0c7bbf28d1331576fbd72f4803b954 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_20.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_21.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_21.npy new file mode 100644 index 0000000000000000000000000000000000000000..c0e350d92cafa7f683f922db74247e6af04c8a30 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_21.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_22.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_22.npy new file mode 100644 index 0000000000000000000000000000000000000000..19686eaaae0473da2c13ba547c31990bb3c38c41 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_22.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_23.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_23.npy new file mode 100644 index 0000000000000000000000000000000000000000..ba00848f7a9cb6a510314e327368d326046e3fe4 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_23.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_24.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_24.npy new file mode 100644 index 0000000000000000000000000000000000000000..9547f11de7a74563ededa94c04654638ec187dd3 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_24.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_25.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_25.npy new file mode 100644 index 0000000000000000000000000000000000000000..0111a52e70f47f91763b6e02ad42ba29b9931325 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_25.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_26.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_26.npy new file mode 100644 index 0000000000000000000000000000000000000000..cf4767cc96a74baf71b0d71deced59a01309292a Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_26.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_27.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_27.npy new file mode 100644 index 0000000000000000000000000000000000000000..838743d630ec7fc04bf62cb298d8346317dec999 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_27.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_28.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_28.npy new file mode 100644 index 0000000000000000000000000000000000000000..743b5eb5e1ebb5abd4e20eb524683fcf22742cb0 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_28.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_29.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_29.npy new file mode 100644 index 0000000000000000000000000000000000000000..c93b80f5be8013086d612e207b6592c76f421a22 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_29.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_3.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_3.npy new file mode 100644 index 0000000000000000000000000000000000000000..984f353f6e897a5e60ee097cd6918fc6a1b3551b Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_3.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_30.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_30.npy new file mode 100644 index 0000000000000000000000000000000000000000..7160ba971a5510e26f5d11acfe9608257138f878 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_30.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_31.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_31.npy new file mode 100644 index 0000000000000000000000000000000000000000..8fbe4fc5f504e04ddcaccbcd6184a33e9d59a859 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_31.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_32.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_32.npy new file mode 100644 index 0000000000000000000000000000000000000000..e894bcb71bf02e62fb763183e130d3b9cc087e81 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_32.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_33.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_33.npy new file mode 100644 index 0000000000000000000000000000000000000000..34249decfba931a7a4339b8e77e59448c3362e1a Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_33.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_34.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_34.npy new file mode 100644 index 0000000000000000000000000000000000000000..37839c7f3ea51df637fedd7ecb892ee6fc36e6c9 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_34.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_35.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_35.npy new file mode 100644 index 0000000000000000000000000000000000000000..5c895454eb6f8d40081b0f79b8c00cc6ecc1574a Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_35.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_36.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_36.npy new file mode 100644 index 0000000000000000000000000000000000000000..fd20a5f78d5a6cf461ca9c4c1673455127201132 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_36.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_37.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_37.npy new file mode 100644 index 0000000000000000000000000000000000000000..ed971444870677e639ade70febf414922c66e19c Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_37.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_38.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_38.npy new file mode 100644 index 0000000000000000000000000000000000000000..552028032255f68aad4752271b40fb9d064d979f Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_38.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_39.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_39.npy new file mode 100644 index 0000000000000000000000000000000000000000..87782d4449d8fbf4ab1c0a299a76f10d8b77b7fb Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_39.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_4.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_4.npy new file mode 100644 index 0000000000000000000000000000000000000000..2d09c96e6f4b22096fcbc3c057ae3015f38d69e3 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_4.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_40.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_40.npy new file mode 100644 index 0000000000000000000000000000000000000000..6e8c62be81b8bd5b94ae4cdc18ece4593d4e6546 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_40.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_5.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_5.npy new file mode 100644 index 0000000000000000000000000000000000000000..0c289921e1866a5a5d8c655eba896119e9c3e742 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_5.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_6.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_6.npy new file mode 100644 index 0000000000000000000000000000000000000000..2927102b083e314abddf6a916c0bde2e6442864e Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_6.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_7.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_7.npy new file mode 100644 index 0000000000000000000000000000000000000000..64ce5afc104aad7df693b09257681335d055e9bc Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_7.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_8.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_8.npy new file mode 100644 index 0000000000000000000000000000000000000000..23b0bc224ebd53307557be9247645fa50ce620c4 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_8.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_9.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_9.npy new file mode 100644 index 0000000000000000000000000000000000000000..d0df70d80536836353307b982c222eb26205c98d Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_9.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_init.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_init.npy new file mode 100644 index 0000000000000000000000000000000000000000..90cae135df98b14732e1b24d5c5e67d9dfa5eaba Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BAL/SeqPosterior_init.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_1.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_1.npy new file mode 100644 index 0000000000000000000000000000000000000000..ee0a4e2f642d227bf61c04a7d165cb037e0694d4 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_1.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_10.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..8f4265aea3f09220b8ba2ac265ec8f0fb25897a2 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_10.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_11.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_11.npy new file mode 100644 index 0000000000000000000000000000000000000000..807281d57783595c1225c590b3c0ea032ca5874b Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_11.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_12.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_12.npy new file mode 100644 index 0000000000000000000000000000000000000000..acd10283c931b15bb87265c55fd8d4afb7eb3823 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_12.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_13.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_13.npy new file mode 100644 index 0000000000000000000000000000000000000000..75801891aaf2188184cec607e8b04550ee290c65 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_13.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_14.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_14.npy new file mode 100644 index 0000000000000000000000000000000000000000..4a27492eda41a607f39c1d944993a03dcd20e511 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_14.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_15.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_15.npy new file mode 100644 index 0000000000000000000000000000000000000000..55a38d05f60e78123195a683ff9c8db9900d0e24 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_15.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_16.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_16.npy new file mode 100644 index 0000000000000000000000000000000000000000..571124512d188fcfab8c58157f468ddb0f51828d Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_16.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_17.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_17.npy new file mode 100644 index 0000000000000000000000000000000000000000..8034e6e94c444f1c8ae9052b193b33b6a1178557 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_17.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_18.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_18.npy new file mode 100644 index 0000000000000000000000000000000000000000..87bf58d252a03026f6949a360303e46777711b43 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_18.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_19.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_19.npy new file mode 100644 index 0000000000000000000000000000000000000000..781715681b45c1f18d4eba764e7acfeb2317e0e9 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_19.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_2.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..bf6e74487f47050c54f522bb41d29c08c47a0afe Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_2.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_20.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_20.npy new file mode 100644 index 0000000000000000000000000000000000000000..fda8ba1ceab66e45ecac8eb3ef96f12d1a479417 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_20.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_21.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_21.npy new file mode 100644 index 0000000000000000000000000000000000000000..7aaf5dfafe3a3f3fa1932540de52eeb755e8abe9 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_21.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_22.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_22.npy new file mode 100644 index 0000000000000000000000000000000000000000..d839d72cdf61ccbd30594833381f492587f07747 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_22.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_23.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_23.npy new file mode 100644 index 0000000000000000000000000000000000000000..cde4d49957a8cf4e281fd9c239a25a73ca8e7ec3 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_23.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_24.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_24.npy new file mode 100644 index 0000000000000000000000000000000000000000..579458830ff09de5b4f904315f4a7f779df6d0d7 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_24.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_25.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_25.npy new file mode 100644 index 0000000000000000000000000000000000000000..9211e517b13fe8cb3ab4cf01ad3f936d6adc632f Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_25.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_26.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_26.npy new file mode 100644 index 0000000000000000000000000000000000000000..82f73f893dfbb112d64ad8fc94c60600bfbd77f7 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_26.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_27.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_27.npy new file mode 100644 index 0000000000000000000000000000000000000000..3afe7642d7c23c5f3e5e6a336e2eb9fea703af75 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_27.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_28.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_28.npy new file mode 100644 index 0000000000000000000000000000000000000000..fc15c3a491407ee50db181e262f63f32e95fa72f Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_28.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_29.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_29.npy new file mode 100644 index 0000000000000000000000000000000000000000..32efa114d37b11439180fb7d31a23a124d4ccc2f Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_29.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_3.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_3.npy new file mode 100644 index 0000000000000000000000000000000000000000..e1187263971293e3b999ec7b1ba768168e77205b Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_3.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_30.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_30.npy new file mode 100644 index 0000000000000000000000000000000000000000..2ba02b9ca25de4b48002fc746ba0eefe0a03aa94 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_30.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_31.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_31.npy new file mode 100644 index 0000000000000000000000000000000000000000..7e6c114100a43d34a3faacef3d4934278ead3048 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_31.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_32.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_32.npy new file mode 100644 index 0000000000000000000000000000000000000000..e0b1c785ced57cd1d6c6ea3fe5febfc8ec71ece1 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_32.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_33.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_33.npy new file mode 100644 index 0000000000000000000000000000000000000000..6dcda0817a9b4fd89f0bba8922c2b52cff463dc2 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_33.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_34.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_34.npy new file mode 100644 index 0000000000000000000000000000000000000000..740a4b631c67944015a19df0767fe61f3738d2d9 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_34.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_35.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_35.npy new file mode 100644 index 0000000000000000000000000000000000000000..04cf3bcc1dbafa885e39eea988324acbdc63d1a9 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_35.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_36.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_36.npy new file mode 100644 index 0000000000000000000000000000000000000000..5b24d50a3d1cc7b96409f651340e1db697c8a423 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_36.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_37.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_37.npy new file mode 100644 index 0000000000000000000000000000000000000000..b3e2c03566cb8aee293f8de816ece3fe2748a3d3 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_37.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_38.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_38.npy new file mode 100644 index 0000000000000000000000000000000000000000..0d63728879a4c7df148e27a304139985d12e7017 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_38.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_39.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_39.npy new file mode 100644 index 0000000000000000000000000000000000000000..02d6b3ee69f8f39151920c42f72ff740b3ad58b8 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_39.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_4.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_4.npy new file mode 100644 index 0000000000000000000000000000000000000000..059a9f5bb18f7fd1039795fb6b749ad08dc585cb Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_4.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_40.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_40.npy new file mode 100644 index 0000000000000000000000000000000000000000..1b741429b327d9d5bd248a0ba8b6a65f51041141 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_40.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_5.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_5.npy new file mode 100644 index 0000000000000000000000000000000000000000..c10fa3dc7b589f8e494c6c4e7b688e67f186dcde Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_5.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_6.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_6.npy new file mode 100644 index 0000000000000000000000000000000000000000..7a95e3fbcec5c58c0f70fd0d5a8bc69b8bf7a963 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_6.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_7.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_7.npy new file mode 100644 index 0000000000000000000000000000000000000000..b7b20beb1435259ecfc1e7a902805a794ed900eb Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_7.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_8.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_8.npy new file mode 100644 index 0000000000000000000000000000000000000000..e956155e9421057f0504c616b11ea7ac7c681f41 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_8.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_9.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_9.npy new file mode 100644 index 0000000000000000000000000000000000000000..03632eea30ff6018ba57324335dcd5ec74d61037 Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_9.npy differ diff --git a/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_init.npy b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_init.npy new file mode 100644 index 0000000000000000000000000000000000000000..f573f56fbe19d93deb2d2a4a17c729844832ee2a Binary files /dev/null and b/examples/only-model/data/posterior/posterior_2D_DKL_BODE/SeqPosterior_init.npy differ diff --git a/examples/only-model/data/posterior/posterior_orig.csv b/examples/only-model/data/posterior/posterior_orig.csv new file mode 100644 index 0000000000000000000000000000000000000000..d50c4c4d928097785e4bc3fc46714d1257285c9f --- /dev/null +++ b/examples/only-model/data/posterior/posterior_orig.csv @@ -0,0 +1,17791 @@ +$\theta_{1}$,$\theta_{2}$ +-0.5053093321059516,0.3464209655227144 +-0.2503403924088539,1.5610839749457606 +1.3108380934712565,-0.4947653100675753 +-0.4499536611704508,0.33315304638308496 +0.7037002872643395,1.0536446663049537 +0.2639381847880326,-0.08475556473620599 +-0.7692170582461695,0.5628411893581614 +-0.5250575248261623,-0.24129701894736455 +0.27077384266910715,-0.3552056655207011 +-0.1516651180069023,-0.22472514665477483 +-0.4916617502636895,1.3290149861458507 +-1.154466140024725,-0.5264439196906422 +0.8638454401780578,0.6370887961504713 +0.08758184265789484,1.7825424800280465 +-0.8418679509524006,1.239976578898788 +-0.7102087777087558,0.6258584578029999 +-0.6025861531842995,0.6129883355002392 +-0.1635014514977523,0.5285302138061596 +1.2675503545405524,-0.27191599924718635 +1.722623520211238,-2.0093713908710864 +1.1999376790370633,-0.040912844635069945 +-0.4290081160945971,-0.1973312505774666 +-0.014978004247042029,1.9009498970256493 +-0.44167231139542196,-0.23273573437276085 +1.7758149671620844,-2.2146191806542244 +1.7520832346023985,-3.0769987336137845 +0.17564766491733047,-0.17090185930065385 +0.16604397505733415,1.2077947306624552 +1.1635921769861306,0.3250614211287881 +0.6552996494766703,-0.5557980237882176 +-0.5053093321059516,0.3464209655227144 +-0.2503403924088539,1.5610839749457606 +1.3108380934712565,-0.4947653100675753 +1.3410217792991614,-0.8179397142492559 +0.7037002872643395,1.0536446663049537 +0.2639381847880326,-0.08475556473620599 +1.2785176628328716,-1.633038901061103 +-0.5250575248261623,-0.24129701894736455 +-0.9068988352748052,0.8998307366038109 +0.35335586618343995,-0.3539020388514501 +0.1450003084058062,0.9292426607469267 +0.9742155939297248,-1.002879019207505 +1.4080478809050319,-0.4488708718806268 +1.183694781896851,0.5017071455928137 +-0.525339799472231,0.09664647707973373 +-0.18763560912296323,0.3803657962882169 +1.6115304607006014,-1.0510208452744814 +0.31443319961573807,2.0684383430564717 +1.2675503545405524,-0.27191599924718635 +-0.0033082431123794276,-0.08659059889670528 +1.1999376790370633,-0.040912844635069945 +0.19790016572768318,2.2877711796870277 +-0.014978004247042029,1.9009498970256493 +-0.1631074620290083,0.633034958072537 +0.17103405980865966,1.4267765969969046 +1.7520832346023985,-3.0769987336137845 +0.17564766491733047,-0.17090185930065385 +-0.9360854831721612,0.116344808632697 +1.1635921769861306,0.3250614211287881 +-0.7708227824482916,1.551867250464856 +0.6182935674934222,-0.5372486998530183 +-0.2503403924088539,1.5610839749457606 +-0.04879960478928339,1.6647469706753903 +-0.45266763919349096,0.21812156159554602 +0.7037002872643395,1.0536446663049537 +0.2639381847880326,-0.08475556473620599 +1.2785176628328716,-1.633038901061103 +-0.5250575248261623,-0.24129701894736455 +-0.9068988352748052,0.8998307366038109 +0.35335586618343995,-0.3539020388514501 +-0.43373622006151963,-0.32564218152609914 +0.9742155939297248,-1.002879019207505 +0.454046851749124,1.594785377954205 +1.183694781896851,0.5017071455928137 +-0.525339799472231,0.09664647707973373 +0.9407359838370817,1.2360444072800965 +1.6115304607006014,-1.0510208452744814 +0.18524588162757422,2.187815391469033 +1.2675503545405524,-0.27191599924718635 +-0.18067770699301405,1.0717833390219351 +0.46125820449152777,1.3127881784010684 +0.19790016572768318,2.2877711796870277 +-0.014978004247042029,1.9009498970256493 +-0.1631074620290083,0.633034958072537 +0.27647020099787245,2.357860503186485 +0.7499336493026392,-0.4987188155721806 +0.17564766491733047,-0.17090185930065385 +0.22072058423295826,2.0967888817084055 +0.11608176667951817,1.7094562729066778 +1.2088313952441543,-1.6078222956267787 +0.6182935674934222,-0.5372486998530183 +0.4195723739489977,-0.5758257851191217 +0.7085809528909399,-1.0398911654061997 +-0.45266763919349096,0.21812156159554602 +0.7037002872643395,1.0536446663049537 +-0.7848956489111826,0.6910510899230419 +0.7883818564808993,-0.7128685648056312 +-0.5149573041165096,1.5209317071998028 +-0.9068988352748052,0.8998307366038109 +0.35335586618343995,-0.3539020388514501 +-0.43373622006151963,-0.32564218152609914 +0.9742155939297248,-1.002879019207505 +0.599446657119634,1.7611926309209247 +0.5538757163900756,1.1130403981137975 +-0.525339799472231,0.09664647707973373 +0.9407359838370817,1.2360444072800965 +1.6115304607006014,-1.0510208452744814 +0.18524588162757422,2.187815391469033 +-0.6754276638279351,1.460948457551204 +-0.18067770699301405,1.0717833390219351 +-0.7514573838133519,0.598973942314105 +0.19790016572768318,2.2877711796870277 +0.30340850291028176,-0.684924427902603 +-0.1631074620290083,0.633034958072537 +1.1293577456430368,0.6799862689295298 +0.7499336493026392,-0.4987188155721806 +0.17564766491733047,-0.17090185930065385 +0.22072058423295826,2.0967888817084055 +0.11608176667951817,1.7094562729066778 +1.2088313952441543,-1.6078222956267787 +-0.33478579653129426,0.1311124725515458 +0.4195723739489977,-0.5758257851191217 +-0.3253651275477416,0.5066901649853139 +-0.45266763919349096,0.21812156159554602 +0.49107769881087693,-0.037052022114241856 +-0.6226475904351041,0.2589023347908567 +0.7883818564808993,-0.7128685648056312 +-0.5149573041165096,1.5209317071998028 +-0.9633199518581674,0.393072535817966 +0.9552001039599954,0.05422246320616064 +-0.43373622006151963,-0.32564218152609914 +0.9742155939297248,-1.002879019207505 +0.6984415692946255,-0.5720635498627894 +0.5538757163900756,1.1130403981137975 +-0.525339799472231,0.09664647707973373 +-0.11260151022394341,-0.1399176632826965 +1.6115304607006014,-1.0510208452744814 +0.18524588162757422,2.187815391469033 +-0.6754276638279351,1.460948457551204 +-0.596947756878451,0.7821676393989948 +-0.6801760069548315,0.6716094995202454 +0.02235736229315466,-0.030868086597104716 +0.48442792610087876,2.1505050477952667 +-0.6873579130906606,0.5389801365151143 +1.1293577456430368,0.6799862689295298 +0.7499336493026392,-0.4987188155721806 +0.17564766491733047,-0.17090185930065385 +0.22072058423295826,2.0967888817084055 +0.11608176667951817,1.7094562729066778 +1.2088313952441543,-1.6078222956267787 +-0.33478579653129426,0.1311124725515458 +0.4195723739489977,-0.5758257851191217 +-0.11743497836686867,-0.2386424815842973 +0.09756590109008184,1.329888021204482 +-0.5994269936936759,1.1586608446081375 +-0.6226475904351041,0.2589023347908567 +0.7883818564808993,-0.7128685648056312 +-0.24938316724166104,0.5338994785341503 +-0.2418850048764388,-0.12940973560982205 +0.9552001039599954,0.05422246320616064 +0.1745992679990781,1.562124182223414 +0.9742155939297248,-1.002879019207505 +1.0362367792121314,-0.8845173836955289 +-0.7180844898848368,0.6745485430910141 +-0.525339799472231,0.09664647707973373 +-0.11260151022394341,-0.1399176632826965 +1.6115304607006014,-1.0510208452744814 +0.18524588162757422,2.187815391469033 +1.427628766553249,-1.93943220063422 +-0.2045456494104021,2.396569972445869 +0.35849593437306526,1.015133096755812 +0.9780016636442144,0.12710903697812692 +0.48442792610087876,2.1505050477952667 +-0.6873579130906606,0.5389801365151143 +1.3020922892553133,-1.7113863678664565 +0.6730609633311938,-0.5472352522280904 +0.17564766491733047,-0.17090185930065385 +0.22072058423295826,2.0967888817084055 +0.11608176667951817,1.7094562729066778 +0.14581197773190313,0.7538389090294754 +-0.7348755419965166,0.03248451743484049 +0.8927962093043634,0.47092671946058795 +-0.6681120307739363,0.4064718549469103 +1.7029895689954184,-1.7019618696639327 +-0.5926820464971653,0.8080512566681 +-0.6226475904351041,0.2589023347908567 +0.7883818564808993,-0.7128685648056312 +-0.63544631280411,-0.33411925810854615 +-0.12898463652067022,0.4849147194032143 +0.9552001039599954,0.05422246320616064 +-0.6504004418501388,0.29384223326808745 +1.3945954327885872,-1.427166647300416 +1.0362367792121314,-0.8845173836955289 +-0.7180844898848368,0.6745485430910141 +-0.525339799472231,0.09664647707973373 +-0.11260151022394341,-0.1399176632826965 +-1.0923143519018743,-0.5262254018091825 +0.18524588162757422,2.187815391469033 +1.427628766553249,-1.93943220063422 +-0.4176378410089264,1.1272522404760366 +-0.7783721180931695,1.2654744031405272 +0.9780016636442144,0.12710903697812692 +0.48442792610087876,2.1505050477952667 +-0.7953485007033426,0.2902712630085715 +0.17945910330928022,-0.20610572177726993 +1.0863592666900423,-1.0120474432019777 +1.0612840278540154,0.8037326073399161 +0.22072058423295826,2.0967888817084055 +0.11608176667951817,1.7094562729066778 +0.5640726794242966,1.2540194938442863 +0.16191912623411064,0.40231927749796514 +-0.5174589067304702,-0.3706902407586618 +-0.5745719597946655,0.8988884647699387 +1.7029895689954184,-1.7019618696639327 +-0.5926820464971653,0.8080512566681 +-0.6226475904351041,0.2589023347908567 +0.7883818564808993,-0.7128685648056312 +0.5022610043199605,-0.6777302753398546 +-0.12898463652067022,0.4849147194032143 +1.6066189470963137,-1.1136111008520198 +0.7965591828845368,-0.32751229802780424 +1.3945954327885872,-1.427166647300416 +1.0362367792121314,-0.8845173836955289 +-0.7180844898848368,0.6745485430910141 +-0.525339799472231,0.09664647707973373 +-0.11260151022394341,-0.1399176632826965 +-0.5055626851805348,-0.4156086881562447 +0.18524588162757422,2.187815391469033 +-0.9045172078276738,1.1247952992858032 +-0.4176378410089264,1.1272522404760366 +-0.7783721180931695,1.2654744031405272 +0.3976933394943344,1.3344143853506978 +-0.403284268900615,1.8708628424025866 +-0.7953485007033426,0.2902712630085715 +0.17945910330928022,-0.20610572177726993 +1.0863592666900423,-1.0120474432019777 +1.0612840278540154,0.8037326073399161 +0.22072058423295826,2.0967888817084055 +-0.7705495917475944,1.3862932599399758 +0.5640726794242966,1.2540194938442863 +0.16191912623411064,0.40231927749796514 +-0.5174589067304702,-0.3706902407586618 +-0.20501051661305028,0.305368025213353 +0.922993207722996,-0.9163792975476552 +0.7699594110449504,-0.7170576677026601 +-0.6226475904351041,0.2589023347908567 +0.7883818564808993,-0.7128685648056312 +-0.10862278978756301,0.7732117615886062 +-0.12898463652067022,0.4849147194032143 +1.6066189470963137,-1.1136111008520198 +0.7993108041941217,-1.003553085853436 +0.12285700595016104,2.378742127862646 +1.0362367792121314,-0.8845173836955289 +-0.7180844898848368,0.6745485430910141 +-0.525339799472231,0.09664647707973373 +-0.4522432900785449,0.325326531521933 +-0.04651186388704569,0.7797548077587114 +0.18524588162757422,2.187815391469033 +0.20091910584611752,0.6814337532929979 +0.8164034885798728,-0.5908131870764267 +-0.7783721180931695,1.2654744031405272 +1.2409118166612045,-1.3504637931213364 +0.42525544949551963,1.5133533170103624 +-0.8432095021705539,0.3732773058733243 +0.17945910330928022,-0.20610572177726993 +1.0863592666900423,-1.0120474432019777 +1.0612840278540154,0.8037326073399161 +0.22072058423295826,2.0967888817084055 +1.3391702343514453,-1.1214337292809344 +1.8697417018199456,-2.5092354620810315 +0.16191912623411064,0.40231927749796514 +-0.5174589067304702,-0.3706902407586618 +1.4031282417662472,-1.3630717016004295 +-0.4967361447225084,1.252537807949157 +0.7699594110449504,-0.7170576677026601 +-0.15505005100453384,-0.06907639918302308 +0.7883818564808993,-0.7128685648056312 +0.6193518852704646,-0.4885831536852441 +0.09189146199074222,-0.3103021631988357 +1.6066189470963137,-1.1136111008520198 +0.7993108041941217,-1.003553085853436 +-0.1058977705150097,1.2382021994646641 +1.0362367792121314,-0.8845173836955289 +-0.7180844898848368,0.6745485430910141 +-0.525339799472231,0.09664647707973373 +-0.562374163034117,0.6806501681912499 +-0.6265593760563886,0.20643562147527839 +0.18524588162757422,2.187815391469033 +-0.2917379668173985,0.008353609620599611 +0.8164034885798728,-0.5908131870764267 +0.7329508042321565,-0.7894567703596095 +-0.6757512211788298,1.4645360502986566 +0.42525544949551963,1.5133533170103624 +0.8037735810110554,0.09732101142953709 +-0.749719841262179,0.46727391295764337 +1.0863592666900423,-1.0120474432019777 +1.0612840278540154,0.8037326073399161 +0.22072058423295826,2.0967888817084055 +-0.3383846885906139,0.8343285051002605 +1.8697417018199456,-2.5092354620810315 +1.4028912059085172,-1.0879767165835172 +-0.6197976713811776,0.9905846157954286 +0.4277994672870295,0.31117752425973927 +-0.4967361447225084,1.252537807949157 +1.5006050781759672,-0.5682360602901709 +-0.15505005100453384,-0.06907639918302308 +0.538371392273679,0.26388453634741593 +1.339597638263306,-0.6216366207014237 +0.09189146199074222,-0.3103021631988357 +0.9297653063844111,-0.5124125583475931 +-0.7654081507658069,0.007636047634596951 +-0.7808609954446696,0.00968419690805089 +1.0362367792121314,-0.8845173836955289 +0.24926111037960885,1.4310787516609644 +1.0276208553986867,0.5573523435784178 +-0.562374163034117,0.6806501681912499 +-0.45734734712903774,-0.03363605507623152 +0.18524588162757422,2.187815391469033 +0.7430534282780101,-0.2188970035934631 +0.8164034885798728,-0.5908131870764267 +0.7329508042321565,-0.7894567703596095 +-0.6757512211788298,1.4645360502986566 +0.42525544949551963,1.5133533170103624 +0.8037735810110554,0.09732101142953709 +-0.749719841262179,0.46727391295764337 +1.0863592666900423,-1.0120474432019777 +1.0612840278540154,0.8037326073399161 +0.22072058423295826,2.0967888817084055 +-0.3383846885906139,0.8343285051002605 +1.8697417018199456,-2.5092354620810315 +0.1966192691594344,-0.4376765395933403 +-0.6197976713811776,0.9905846157954286 +-0.577210622552996,1.7678463266622706 +0.8678801611507725,-1.1966075837756058 +1.249113331644049,-0.47176874785431444 +1.0798131336224124,-0.9540500145880517 +1.453258951426073,-1.2429034832615429 +1.339597638263306,-0.6216366207014237 +0.2864729168815008,0.16784217746368402 +-0.18172852672510725,-0.09956506105715701 +-0.7654081507658069,0.007636047634596951 +-0.19411635104206665,-0.11291645526747662 +-0.5100460101286504,0.46841252700182195 +-0.020217910873387923,-0.152191509353375 +1.0276208553986867,0.5573523435784178 +1.0193010586664288,-0.7100774306592084 +-0.45734734712903774,-0.03363605507623152 +0.18524588162757422,2.187815391469033 +0.7430534282780101,-0.2188970035934631 +0.4040891990322401,-0.5135309949965021 +-0.4222237829193909,1.1232040420525178 +-0.359984063356492,0.972156885868937 +0.42525544949551963,1.5133533170103624 +0.8037735810110554,0.09732101142953709 +-0.2325401053515746,0.99983792324578 +0.20157162855604305,2.22024030681062 +1.261173988723529,0.22510981475037517 +0.22072058423295826,2.0967888817084055 +1.2673278147640576,-1.120253577970324 +1.8697417018199456,-2.5092354620810315 +1.6921502687001537,-1.6307893820873005 +-0.6197976713811776,0.9905846157954286 +-0.577210622552996,1.7678463266622706 +0.7512576575528925,1.5976020844510335 +0.5492363824625133,-0.250792056384667 +1.0798131336224124,-0.9540500145880517 +1.453258951426073,-1.2429034832615429 +1.339597638263306,-0.6216366207014237 +1.2129728869630274,-0.1740742516035489 +-0.18172852672510725,-0.09956506105715701 +0.00618518629146958,1.2206994184380902 +0.15607438286746997,-0.4263540044268943 +-0.5100460101286504,0.46841252700182195 +0.15959445406437334,0.19345570527252487 +1.0276208553986867,0.5573523435784178 +-0.13764988107291265,-0.22761747640445507 +-0.45734734712903774,-0.03363605507623152 +0.7381355528391419,1.704323422391908 +0.8431885253932445,-0.06564356403721372 +0.4040891990322401,-0.5135309949965021 +0.4123714596804531,1.8524258973270817 +-0.359984063356492,0.972156885868937 +0.42525544949551963,1.5133533170103624 +0.13757581657266518,0.11800903083011827 +-0.2325401053515746,0.99983792324578 +0.9138542956856225,1.0802184956736034 +1.261173988723529,0.22510981475037517 +0.22072058423295826,2.0967888817084055 +-0.8878764535176389,0.8407193758765554 +0.7299410348000539,-0.7130440664351931 +1.6921502687001537,-1.6307893820873005 +-0.6197976713811776,0.9905846157954286 +-0.577210622552996,1.7678463266622706 +-0.2563568527353878,0.42267514832726083 +0.5712997398913231,-0.6396657566895774 +1.0798131336224124,-0.9540500145880517 +0.16467862037920988,2.3707041846067742 +1.339597638263306,-0.6216366207014237 +1.2129728869630274,-0.1740742516035489 +0.7407181158151038,-0.8347315178725216 +0.7407568750757356,0.7200049747227439 +-0.06202720630207914,1.8169561572121664 +-0.1817443668811746,0.1587133396465245 +0.15959445406437334,0.19345570527252487 +1.0276208553986867,0.5573523435784178 +-0.13764988107291265,-0.22761747640445507 +-0.45734734712903774,-0.03363605507623152 +-0.2949979906734477,1.1445755459908296 +0.9633186609386701,-0.20030680997360223 +0.014255394895904605,0.2609462213891709 +0.4123714596804531,1.8524258973270817 +0.219353885150393,2.19358819458457 +1.0946677436327423,-0.6264963779207244 +0.13757581657266518,0.11800903083011827 +-0.12934456736519473,0.18768847785142728 +1.2839112075373198,0.0949764469956389 +-0.5858317027549806,1.3638637592459695 +0.22072058423295826,2.0967888817084055 +-0.8878764535176389,0.8407193758765554 +0.7928440716707081,-0.9937701425216839 +1.6921502687001537,-1.6307893820873005 +-0.6197976713811776,0.9905846157954286 +-0.577210622552996,1.7678463266622706 +-0.2563568527353878,0.42267514832726083 +1.2227555561568857,-0.8510028758235189 +0.9322987644624694,1.3346800697817638 +0.16467862037920988,2.3707041846067742 +0.1460235148131448,-0.07474932482558144 +1.4519062558340856,-1.4310517774342562 +0.8636798586253789,-0.36150129221395183 +0.5327399678674061,-0.6142090933437763 +-0.15958507224383583,2.5495537211004926 +0.24580214017818622,1.7183223440025606 +0.7409801025075142,-0.984737003972104 +1.0276208553986867,0.5573523435784178 +-0.13764988107291265,-0.22761747640445507 +-0.45734734712903774,-0.03363605507623152 +0.9108254404418489,0.841079320173217 +0.9633186609386701,-0.20030680997360223 +0.014255394895904605,0.2609462213891709 +0.4123714596804531,1.8524258973270817 +0.219353885150393,2.19358819458457 +1.0946677436327423,-0.6264963779207244 +0.13757581657266518,0.11800903083011827 +-0.12934456736519473,0.18768847785142728 +0.06067101318672152,-0.28440313865415223 +-0.5858317027549806,1.3638637592459695 +0.4955360155211592,1.6535484551304362 +-0.8878764535176389,0.8407193758765554 +0.7928440716707081,-0.9937701425216839 +1.6351843362806453,-1.2969909005932614 +-0.6197976713811776,0.9905846157954286 +-0.577210622552996,1.7678463266622706 +-0.2563568527353878,0.42267514832726083 +1.2227555561568857,-0.8510028758235189 +0.9322987644624694,1.3346800697817638 +0.16467862037920988,2.3707041846067742 +0.1460235148131448,-0.07474932482558144 +1.4519062558340856,-1.4310517774342562 +0.8636798586253789,-0.36150129221395183 +0.5327399678674061,-0.6142090933437763 +1.1639419154672477,-1.8876990343237743 +0.24580214017818622,1.7183223440025606 +0.7409801025075142,-0.984737003972104 +1.0276208553986867,0.5573523435784178 +-0.13764988107291265,-0.22761747640445507 +-0.7640236747778975,0.5978317159083829 +-0.7764251344303268,0.6778732962580112 +0.9633186609386701,-0.20030680997360223 +0.5131195528387468,-0.007772842630351995 +0.4123714596804531,1.8524258973270817 +0.1486612273770691,0.035434704889841184 +1.0946677436327423,-0.6264963779207244 +0.13757581657266518,0.11800903083011827 +-0.17480108230296618,0.7212319883163519 +-0.8706058425064462,0.48025938610860175 +-0.5858317027549806,1.3638637592459695 +0.4955360155211592,1.6535484551304362 +-0.47724980230819547,-0.17601424523460818 +-0.3056190507325021,2.0127268961530866 +0.9416800442966607,0.25732556514007704 +-0.6197976713811776,0.9905846157954286 +-0.5563206199849793,-0.03488319153706168 +-0.21761048752652284,0.16599449143059314 +0.295422947680666,2.3504467266845612 +0.7701461857419032,0.6141169594509859 +1.0058162423380583,0.9067848212086931 +0.1460235148131448,-0.07474932482558144 +-0.19290757555540775,0.8110779404702647 +0.8636798586253789,-0.36150129221395183 +0.8640838772993594,0.465496576649854 +0.5630195491890806,0.25198772556764076 +0.24580214017818622,1.7183223440025606 +0.6915819275481158,1.0348907906811389 +1.0276208553986867,0.5573523435784178 +-0.13764988107291265,-0.22761747640445507 +-0.7640236747778975,0.5978317159083829 +0.5887872014104362,-0.7608357355208953 +0.9633186609386701,-0.20030680997360223 +1.3335967858005242,-1.9517855301936797 +0.4123714596804531,1.8524258973270817 +0.9274883272767281,-0.8671006236909593 +0.003037641401061386,2.313019869451193 +0.13757581657266518,0.11800903083011827 +1.749264953563672,-1.9194079532827752 +1.3539297112834008,-1.567449933011139 +-0.5858317027549806,1.3638637592459695 +0.4955360155211592,1.6535484551304362 +-0.47724980230819547,-0.17601424523460818 +-0.3056190507325021,2.0127268961530866 +0.9416800442966607,0.25732556514007704 +0.1555299955506278,2.096900740749002 +-0.5563206199849793,-0.03488319153706168 +-0.21761048752652284,0.16599449143059314 +1.6810731754526387,-1.7406868015427719 +-0.08091241606181776,2.5045709628545403 +1.0058162423380583,0.9067848212086931 +0.1460235148131448,-0.07474932482558144 +-0.19290757555540775,0.8110779404702647 +0.4638140048761582,0.35620193105039866 +0.7299439937678682,1.4452573987939137 +0.8332745700774429,-0.37231002897993115 +0.24580214017818622,1.7183223440025606 +-0.3333530750722078,1.3218894484849248 +1.3629293830032287,-1.3769545235716205 +-0.13764988107291265,-0.22761747640445507 +0.6838909627773953,1.6573029227842766 +1.059340582846612,0.629185639133528 +0.9633186609386701,-0.20030680997360223 +1.3335967858005242,-1.9517855301936797 +0.4123714596804531,1.8524258973270817 +0.9274883272767281,-0.8671006236909593 +0.003037641401061386,2.313019869451193 +0.337127042754364,0.772898290120486 +0.3808835913290728,1.2211114247165822 +0.4994811468662761,1.3860459099353606 +-0.5858317027549806,1.3638637592459695 +0.4955360155211592,1.6535484551304362 +-0.47724980230819547,-0.17601424523460818 +-0.3056190507325021,2.0127268961530866 +0.5831781118268866,1.6227303595170288 +1.4061369997130613,-0.2907311438029457 +-0.5563206199849793,-0.03488319153706168 +-0.21761048752652284,0.16599449143059314 +1.6810731754526387,-1.7406868015427719 +-0.08091241606181776,2.5045709628545403 +1.056897483931173,0.6236762877423453 +0.1460235148131448,-0.07474932482558144 +-0.19290757555540775,0.8110779404702647 +-0.9045957038655589,0.639810470119952 +1.2796826304389224,-0.2744419774595908 +0.04546897064007327,1.374276904516188 +0.24580214017818622,1.7183223440025606 +-0.3333530750722078,1.3218894484849248 +1.3629293830032287,-1.3769545235716205 +-0.13764988107291265,-0.22761747640445507 +-0.4208103825570006,1.7222189866165978 +1.059340582846612,0.629185639133528 +0.9633186609386701,-0.20030680997360223 +0.5495273365652522,1.7576229094464058 +0.4123714596804531,1.8524258973270817 +0.9274883272767281,-0.8671006236909593 +1.0679030660134416,1.0398841150643294 +-0.15229857580433648,1.5772059177235631 +0.3808835913290728,1.2211114247165822 +0.4994811468662761,1.3860459099353606 +-0.5858317027549806,1.3638637592459695 +1.284777693657457,-1.878796129548339 +-0.47724980230819547,-0.17601424523460818 +-0.3056190507325021,2.0127268961530866 +0.5831781118268866,1.6227303595170288 +1.4061369997130613,-0.2907311438029457 +-0.5563206199849793,-0.03488319153706168 +-0.21761048752652284,0.16599449143059314 +0.0668489154355204,1.6610488967867874 +0.6834254234265726,-0.5106114748792773 +-0.26749114135267316,0.3071682213420852 +0.7273441115693877,-0.6761481436589697 +-0.19290757555540775,0.8110779404702647 +0.919862632140398,-0.1969436890340459 +1.2796826304389224,-0.2744419774595908 +-0.7293115819293836,0.13092755825891386 +0.24580214017818622,1.7183223440025606 +-0.3333530750722078,1.3218894484849248 +1.3629293830032287,-1.3769545235716205 +-0.13764988107291265,-0.22761747640445507 +0.5474286176699372,-0.024930538477265785 +1.4846627350744883,-1.0018607897820437 +0.23349653797746178,2.283528868797296 +0.5495273365652522,1.7576229094464058 +0.4123714596804531,1.8524258973270817 +1.162753168468668,-0.7357901053216125 +0.07212107420328123,1.4973708016860654 +-0.6309909639074616,-0.34515681144138965 +0.3808835913290728,1.2211114247165822 +0.47405801024380406,1.6631497240479096 +-0.5858317027549806,1.3638637592459695 +1.284777693657457,-1.878796129548339 +0.6294929312640741,0.9338399614186432 +-0.3056190507325021,2.0127268961530866 +0.5831781118268866,1.6227303595170288 +1.4061369997130613,-0.2907311438029457 +-0.5563206199849793,-0.03488319153706168 +-0.21761048752652284,0.16599449143059314 +0.0668489154355204,1.6610488967867874 +0.6834254234265726,-0.5106114748792773 +-0.4985524720835245,-0.4965759967835648 +1.2717326755558966,-1.2976112810415588 +1.5726269604347625,-1.8190189689523077 +0.6662515562560418,-0.16326306011084324 +1.2796826304389224,-0.2744419774595908 +0.25825717232160805,0.04088161199750312 +0.24580214017818622,1.7183223440025606 +-0.15959414545240053,1.502268253626175 +1.3629293830032287,-1.3769545235716205 +-0.13764988107291265,-0.22761747640445507 +0.5474286176699372,-0.024930538477265785 +0.25735473337876985,1.7730578188972048 +0.23349653797746178,2.283528868797296 +0.5495273365652522,1.7576229094464058 +-0.00647350530119678,0.4342999231842476 +1.162753168468668,-0.7357901053216125 +0.07212107420328123,1.4973708016860654 +-0.12115067073042955,1.0821903041725855 +0.3808835913290728,1.2211114247165822 +0.14181667168040707,-0.4901912326979158 +-0.5858317027549806,1.3638637592459695 +0.78242451862788,1.2485643206180748 +0.6294929312640741,0.9338399614186432 +-0.3056190507325021,2.0127268961530866 +0.25582133347099945,1.9172814191911125 +1.4061369997130613,-0.2907311438029457 +1.0823148343631182,-0.39671160600206257 +-0.21761048752652284,0.16599449143059314 +-0.06722526046428567,0.6683171253639167 +0.6834254234265726,-0.5106114748792773 +0.006414193659293729,1.366374464281983 +1.3197521418419196,-1.7644563272887144 +-0.27506524208384087,0.2576017208612762 +-0.1266755590992561,2.251788380057598 +1.475058506656059,-1.597803860699713 +-0.5046683723026861,1.4564792518704226 +0.24580214017818622,1.7183223440025606 +-0.15959414545240053,1.502268253626175 +1.3629293830032287,-1.3769545235716205 +-0.13764988107291265,-0.22761747640445507 +-0.059777720816655736,2.0091974276272775 +0.25735473337876985,1.7730578188972048 +0.23349653797746178,2.283528868797296 +0.5495273365652522,1.7576229094464058 +0.010369414034276048,-0.2416899614047941 +0.158914142816727,0.4076441339305835 +-0.6123759093335387,1.8285144338092358 +-0.12115067073042955,1.0821903041725855 +-0.2332110007452023,1.9050456381085383 +1.1350836699919413,-0.10488367753763031 +-0.5381915754291811,0.5663100630535651 +-0.35742917512850847,-0.17224093906144428 +0.15330829011831293,1.1968486218979533 +0.5178641649238076,1.893312607258689 +0.25582133347099945,1.9172814191911125 +1.4061369997130613,-0.2907311438029457 +1.0823148343631182,-0.39671160600206257 +-0.21761048752652284,0.16599449143059314 +-0.24290437799911027,0.31730410656034125 +0.6834254234265726,-0.5106114748792773 +-0.11044763302849331,1.3694780898040102 +1.3197521418419196,-1.7644563272887144 +-0.27506524208384087,0.2576017208612762 +-0.5815116718496713,0.2658904418448459 +1.475058506656059,-1.597803860699713 +-0.5046683723026861,1.4564792518704226 +0.24580214017818622,1.7183223440025606 +-0.15959414545240053,1.502268253626175 +1.3629293830032287,-1.3769545235716205 +0.38069269306144804,1.4347787220267816 +-0.6943837657354685,0.8535566644785626 +1.4194938539720479,-0.5715525340871319 +0.23349653797746178,2.283528868797296 +0.5495273365652522,1.7576229094464058 +1.013791470547586,-1.223304105773275 +0.158914142816727,0.4076441339305835 +-0.6123759093335387,1.8285144338092358 +-0.12115067073042955,1.0821903041725855 +0.45327117676198586,-0.019125049626885826 +1.1350836699919413,-0.10488367753763031 +-0.5381915754291811,0.5663100630535651 +0.6652681515262548,1.7559426251583057 +-0.3136893196512578,2.426774478986558 +0.5178641649238076,1.893312607258689 +1.5245018155781285,-1.239036790250112 +1.4061369997130613,-0.2907311438029457 +1.0823148343631182,-0.39671160600206257 +-0.33297428523568906,1.3568455300312494 +-0.09721107123033654,0.3063241655716611 +-0.2529051508206548,0.26139105536560736 +-0.11044763302849331,1.3694780898040102 +1.7374192538407736,-2.2491186943832204 +-0.27506524208384087,0.2576017208612762 +0.27309242271004,0.4806174987986163 +1.475058506656059,-1.597803860699713 +1.5364939400644169,-1.7512093902525276 +0.24580214017818622,1.7183223440025606 +-0.15959414545240053,1.502268253626175 +-0.5395865391862176,1.1147393581890652 +0.39574877698198874,2.0241663321520935 +0.5434552336192018,-0.29341912463672104 +0.4944494377241129,1.8732154850573632 +0.2619514233968961,0.5002969419629121 +0.5495273365652522,1.7576229094464058 +1.1988259494445646,-1.3715838270960632 +0.22960344938270183,0.3775037236921687 +-0.6123759093335387,1.8285144338092358 +0.34325256250702674,-0.1698845657680308 +1.006329788102986,0.10977995008191699 +-0.7390982754973587,0.4997399676890179 +1.3096306908488984,0.41635008422535713 +0.6652681515262548,1.7559426251583057 +-0.994745589870548,0.9385110341417264 +-0.2543206490363833,2.497229450522481 +-0.22910680633412434,0.36296161859203413 +1.4061369997130613,-0.2907311438029457 +0.435353121299894,0.8942162742989905 +-0.33297428523568906,1.3568455300312494 +-0.09721107123033654,0.3063241655716611 +-0.2529051508206548,0.26139105536560736 +-0.11044763302849331,1.3694780898040102 +0.007246503789721248,0.03308653200946382 +-0.27506524208384087,0.2576017208612762 +0.08612319349445718,0.27707991107111857 +1.475058506656059,-1.597803860699713 +1.5364939400644169,-1.7512093902525276 +-0.5647462592261323,0.9192803335861466 +1.0842094451043573,0.7227801103901017 +0.20309209820281743,2.153667065353245 +-0.3468361225057024,0.07940651787644237 +-0.44130222674722563,2.100534788683657 +-0.6171201840100109,0.5219828012864138 +1.3453716047023807,-0.7830133444630382 +0.5495273365652522,1.7576229094464058 +1.1988259494445646,-1.3715838270960632 +0.22960344938270183,0.3775037236921687 +-0.6123759093335387,1.8285144338092358 +0.34325256250702674,-0.1698845657680308 +0.331002905052772,1.731127835305921 +-0.7390982754973587,0.4997399676890179 +0.7461549161885507,-0.3010913592936829 +-0.32088847703676215,1.3661739586077684 +-0.3220720322038296,0.6469908823775906 +0.6686056971476616,1.9651904647338003 +-0.22910680633412434,0.36296161859203413 +-0.4542109250743719,0.32688519281564016 +-0.2946518281133231,1.508235737734875 +-0.33297428523568906,1.3568455300312494 +0.08605065399834319,0.09579211952507316 +-0.2529051508206548,0.26139105536560736 +-0.11044763302849331,1.3694780898040102 +1.3158604408697723,-0.6114404970462768 +-0.27506524208384087,0.2576017208612762 +-0.8058884055683975,-0.26252883481113287 +1.475058506656059,-1.597803860699713 +-0.10710781199032537,0.5366152685914558 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +0.20309209820281743,2.153667065353245 +-0.6281968520015535,1.2882427150913687 +-0.44130222674722563,2.100534788683657 +-0.6171201840100109,0.5219828012864138 +1.3453716047023807,-0.7830133444630382 +0.5495273365652522,1.7576229094464058 +1.1988259494445646,-1.3715838270960632 +-0.27368608835545694,0.36389058355448567 +-0.6123759093335387,1.8285144338092358 +0.34325256250702674,-0.1698845657680308 +0.331002905052772,1.731127835305921 +-0.7390982754973587,0.4997399676890179 +0.7461549161885507,-0.3010913592936829 +-0.32088847703676215,1.3661739586077684 +-0.037405707175172886,0.03452434203221655 +1.341429860306229,-0.1278249144277086 +-0.5278823505186715,-0.5038107537220833 +-0.4542109250743719,0.32688519281564016 +0.1666810605372801,1.8334382371593119 +0.9513317594301796,0.02962250651487852 +0.08605065399834319,0.09579211952507316 +0.9167273783068495,0.9821538320749145 +1.0727985741363804,-0.11257416140285283 +1.3158604408697723,-0.6114404970462768 +0.5601058288375871,0.9717438741019873 +-0.8058884055683975,-0.26252883481113287 +1.475058506656059,-1.597803860699713 +-0.10710781199032537,0.5366152685914558 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +0.20309209820281743,2.153667065353245 +0.08945536308230623,1.1323378879380201 +-0.44130222674722563,2.100534788683657 +-0.6171201840100109,0.5219828012864138 +-0.4478488514838951,-0.33457230822780304 +0.5495273365652522,1.7576229094464058 +1.1988259494445646,-1.3715838270960632 +-0.5256137598745055,1.2630469300098728 +-0.3620692166260574,0.8909937401522092 +-0.40249291023409306,0.5529807111367505 +0.331002905052772,1.731127835305921 +-0.7390982754973587,0.4997399676890179 +-0.203036909702822,1.698174646826269 +-0.32088847703676215,1.3661739586077684 +-0.037405707175172886,0.03452434203221655 +1.341429860306229,-0.1278249144277086 +-0.5278823505186715,-0.5038107537220833 +-0.4542109250743719,0.32688519281564016 +0.1666810605372801,1.8334382371593119 +0.3275577231275953,1.9252654823282525 +0.08605065399834319,0.09579211952507316 +0.9167273783068495,0.9821538320749145 +1.0036614370546608,0.06857964625052715 +0.6140696533119498,1.631821202811619 +-0.5422805902361678,-0.20604389743532792 +1.5380719249923367,-1.8588211900956166 +1.475058506656059,-1.597803860699713 +-0.4750866428344256,0.00643839093742915 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +0.20309209820281743,2.153667065353245 +-0.20999993420928367,2.2103095530041235 +-0.44130222674722563,2.100534788683657 +-0.6171201840100109,0.5219828012864138 +-0.48825918445798344,-0.43101350960086227 +0.5495273365652522,1.7576229094464058 +0.7095832316792442,-0.3965825803206849 +-0.11471418617486148,0.37941092275932853 +1.1956614915376758,-1.3605751840091336 +-0.051482348712375225,1.743741522283246 +-0.8336685808917432,-0.310864902011023 +-0.7390982754973587,0.4997399676890179 +-0.203036909702822,1.698174646826269 +-0.32088847703676215,1.3661739586077684 +-0.31669754712758247,0.33936081903315607 +1.341429860306229,-0.1278249144277086 +-0.5278823505186715,-0.5038107537220833 +-0.4542109250743719,0.32688519281564016 +1.6494974034902299,-2.001793074623033 +0.17133094532302523,0.2175683262182741 +0.08605065399834319,0.09579211952507316 +0.9167273783068495,0.9821538320749145 +1.0036614370546608,0.06857964625052715 +0.6140696533119498,1.631821202811619 +-0.12671363033005645,2.333725239902757 +-0.23839042302029503,1.4934350373363603 +-0.04933504033454508,1.877490511008261 +-0.4750866428344256,0.00643839093742915 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +0.20309209820281743,2.153667065353245 +-0.20999993420928367,2.2103095530041235 +-0.14772036134774458,0.3936155357367722 +-0.7357446406496926,0.30772425055997116 +1.4596629988215135,-0.7870350422283396 +0.5495273365652522,1.7576229094464058 +0.7095832316792442,-0.3965825803206849 +-0.11471418617486148,0.37941092275932853 +1.1956614915376758,-1.3605751840091336 +-0.051482348712375225,1.743741522283246 +0.2621540503038641,0.15196143463422312 +0.12263265667185766,1.8158684202243311 +-0.203036909702822,1.698174646826269 +-0.7263057167092788,0.20418759632265127 +-0.31669754712758247,0.33936081903315607 +1.341429860306229,-0.1278249144277086 +0.20975039503630666,1.035946845310432 +-0.1208502278919231,2.111778586656669 +1.349459920122863,-1.4166617130095316 +0.5266099574356693,1.5468397672913878 +-0.5156568542180481,-0.12367506574681317 +0.9167273783068495,0.9821538320749145 +1.0036614370546608,0.06857964625052715 +0.6140696533119498,1.631821202811619 +1.6273077430099865,-1.9359103924891237 +0.5465335470725514,0.023784260695190573 +0.7319774742629195,1.362191352111813 +-0.4750866428344256,0.00643839093742915 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +0.20309209820281743,2.153667065353245 +-1.1739796356742322,-0.6305396527746236 +0.030724765811479315,-0.07570739066972385 +-0.7357446406496926,0.30772425055997116 +1.4596629988215135,-0.7870350422283396 +0.8442257865852412,-0.3258644420703314 +0.7095832316792442,-0.3965825803206849 +1.2050354022728862,-0.2777646603883557 +-0.9622921573843433,-0.6525006340657085 +1.4840927743336334,-1.1297060735087299 +0.2621540503038641,0.15196143463422312 +0.12263265667185766,1.8158684202243311 +-0.203036909702822,1.698174646826269 +-0.7263057167092788,0.20418759632265127 +0.9260534199001125,0.9089216707527437 +0.4241110500787162,1.9056470737645517 +0.20975039503630666,1.035946845310432 +-0.1208502278919231,2.111778586656669 +1.349459920122863,-1.4166617130095316 +-0.6670947040031743,-0.19550214653304632 +1.3815838230248445,-1.1525196660618025 +0.7426385550493957,1.5515037958242126 +-0.33542220307801573,0.5140787571963329 +0.6140696533119498,1.631821202811619 +1.6273077430099865,-1.9359103924891237 +0.21160397536115966,0.662038121894555 +0.7319774742629195,1.362191352111813 +-0.4750866428344256,0.00643839093742915 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +-0.9367856236552163,0.6467984608933983 +-1.1739796356742322,-0.6305396527746236 +0.030724765811479315,-0.07570739066972385 +-0.7357446406496926,0.30772425055997116 +1.4596629988215135,-0.7870350422283396 +0.8442257865852412,-0.3258644420703314 +0.556001117513534,1.4836257268997548 +1.3740429556514178,-0.6230871484765956 +-0.04654952524295897,2.1744297099319403 +1.4840927743336334,-1.1297060735087299 +0.2621540503038641,0.15196143463422312 +0.6348922159374122,1.4831975085911386 +-0.203036909702822,1.698174646826269 +-0.7263057167092788,0.20418759632265127 +0.36927507868205,-0.4011443460787072 +0.4241110500787162,1.9056470737645517 +-0.053215906818847025,0.47945065391260655 +-0.1208502278919231,2.111778586656669 +1.349459920122863,-1.4166617130095316 +-0.6670947040031743,-0.19550214653304632 +1.3815838230248445,-1.1525196660618025 +0.7426385550493957,1.5515037958242126 +-0.33542220307801573,0.5140787571963329 +-0.9287231462984,0.1511991384399634 +1.6273077430099865,-1.9359103924891237 +-0.6104732789870635,1.9410884503201353 +0.7319774742629195,1.362191352111813 +-0.4750866428344256,0.00643839093742915 +-0.051187663680789725,-0.3246116047594698 +1.0842094451043573,0.7227801103901017 +1.1439419797926986,0.860803788216442 +1.0493934727353496,1.27429091384551 +1.528575674765952,-1.932673243375019 +-0.7357446406496926,0.30772425055997116 +1.1275538880827944,0.09431597285698246 +1.4069252184229624,-1.3162228732965502 +0.556001117513534,1.4836257268997548 +-0.24886202450798775,0.2874801682967898 +-0.04654952524295897,2.1744297099319403 +1.4840927743336334,-1.1297060735087299 +0.2621540503038641,0.15196143463422312 +0.6348922159374122,1.4831975085911386 +-0.203036909702822,1.698174646826269 +1.2930111319223694,0.016648145993017574 +0.36927507868205,-0.4011443460787072 +-0.6682564978667466,0.523597871613683 +-0.24915908779454726,-0.09126083043045102 +-0.1208502278919231,2.111778586656669 +1.349459920122863,-1.4166617130095316 +-0.6670947040031743,-0.19550214653304632 +1.3815838230248445,-1.1525196660618025 +-0.04915236489580338,0.5071635493081947 +-0.33542220307801573,0.5140787571963329 +-0.9287231462984,0.1511991384399634 +0.8776136158506181,1.101937382882034 +-0.6104732789870635,1.9410884503201353 +0.7319774742629195,1.362191352111813 +-0.4750866428344256,0.00643839093742915 +1.5089603490010062,-1.0723384463692274 +1.0842094451043573,0.7227801103901017 +1.3531320318019873,-1.3243806882732936 +-0.6355350987047171,1.0335547496211417 +-0.8820875287130816,-0.11509604547775265 +-0.5879243293639729,0.3346525115568223 +1.1275538880827944,0.09431597285698246 +0.715746642420964,-0.20282106270923392 +-0.07333356927183271,2.287759546452317 +-0.24886202450798775,0.2874801682967898 +0.5618182976744743,0.6346507277209967 +1.5193510215483113,-0.5001986839629105 +0.2621540503038641,0.15196143463422312 +1.6638515862154708,-1.4637713014128113 +-0.203036909702822,1.698174646826269 +-0.3327891736032751,0.2985010197572714 +0.36927507868205,-0.4011443460787072 +0.9994740387805094,1.3245198084630947 +0.3516202277102889,-0.044293700509957235 +-0.1208502278919231,2.111778586656669 +1.349459920122863,-1.4166617130095316 +-0.6670947040031743,-0.19550214653304632 +1.5543095220721976,-2.1798364029087733 +-0.04727062592323039,0.33497546704622394 +0.25370170970141037,-0.2741998341701033 +-0.9287231462984,0.1511991384399634 +0.8776136158506181,1.101937382882034 +0.9344445372491514,0.05052637693582626 +0.7319774742629195,1.362191352111813 +-0.4750866428344256,0.00643839093742915 +1.019021129361066,0.32560269643912426 +-0.02343083942881663,0.12249988023512917 +1.3531320318019873,-1.3243806882732936 +-0.6355350987047171,1.0335547496211417 +-0.810917543735224,-0.8265434328766645 +0.5090275708078553,0.4800271697407422 +1.5971393117737502,-0.6803053116308502 +0.715746642420964,-0.20282106270923392 +-0.07333356927183271,2.287759546452317 +0.2550097587095146,1.62057593611415 +0.5618182976744743,0.6346507277209967 +0.8551089024878868,-0.6412927384792757 +1.427505544249627,-0.9821504846277782 +0.3035473733192566,1.5473989015126488 +1.6255504941183059,-0.6855424891312749 +1.91124946694094,-2.422936015388687 +1.0587359511907746,-0.3465031282465664 +-0.6064828043081543,1.7456139164973121 +0.3516202277102889,-0.044293700509957235 +-0.1208502278919231,2.111778586656669 +0.837039622022313,-0.7593824531816183 +0.8393644396512074,0.7180993939019387 +1.5543095220721976,-2.1798364029087733 +-0.5883286855548215,-0.4261288045517057 +-0.7103845994199904,1.5778816969815508 +-0.9287231462984,0.1511991384399634 +0.8776136158506181,1.101937382882034 +0.18691305046976936,0.12591458423656257 +0.7319774742629195,1.362191352111813 +-0.4750866428344256,0.00643839093742915 +1.019021129361066,0.32560269643912426 +-0.02343083942881663,0.12249988023512917 +1.3531320318019873,-1.3243806882732936 +-0.6355350987047171,1.0335547496211417 +-0.810917543735224,-0.8265434328766645 +0.6818007745835952,0.40788826178464244 +1.5971393117737502,-0.6803053116308502 +0.715746642420964,-0.20282106270923392 +-0.07333356927183271,2.287759546452317 +0.2550097587095146,1.62057593611415 +0.5618182976744743,0.6346507277209967 +-0.5970051036584914,0.3576392819673589 +1.427505544249627,-0.9821504846277782 +0.3035473733192566,1.5473989015126488 +1.6255504941183059,-0.6855424891312749 +-0.8438447003336329,0.1164281213497427 +0.7223781113302781,1.6116828899160083 +0.7294493895374978,-0.40784517758577776 +0.3516202277102889,-0.044293700509957235 +-0.1208502278919231,2.111778586656669 +1.6613921866781904,-1.6820084203390773 +0.8393644396512074,0.7180993939019387 +1.5543095220721976,-2.1798364029087733 +-0.5883286855548215,-0.4261288045517057 +-0.753668006124099,0.9397389795957094 +-0.44318962356516745,2.121353683164382 +0.8776136158506181,1.101937382882034 +0.18691305046976936,0.12591458423656257 +0.4734245920406963,0.773592119792974 +-0.6175258713219953,0.10736264289522117 +1.019021129361066,0.32560269643912426 +-0.02343083942881663,0.12249988023512917 +1.3531320318019873,-1.3243806882732936 +-0.6355350987047171,1.0335547496211417 +0.8364031290258416,-0.620006090256386 +-0.5467556590447314,-0.24451377904283164 +-0.09187054052241495,0.06101012367503156 +0.715746642420964,-0.20282106270923392 +-0.07333356927183271,2.287759546452317 +-0.5034515079000184,1.298710376695775 +-0.3785507759682868,0.9055952547103743 +1.4359483983330148,-1.5163676381203415 +0.6038245183117672,1.235909406156023 +0.8865501912162197,1.4035506240856996 +-0.6097238235682666,0.9599087857871466 +-0.8438447003336329,0.1164281213497427 +-1.0216226120701442,0.07802026316741384 +0.7294493895374978,-0.40784517758577776 +-0.5305615547425018,-0.1846125755503444 +-0.5258494333600681,0.25276257948002645 +0.9084963454295302,0.6856969626110273 +-0.8343690562397231,-0.6076735888187368 +1.5543095220721976,-2.1798364029087733 +-0.5883286855548215,-0.4261288045517057 +1.4947172526565962,-1.5858020367418768 +-0.9215300607824739,0.40278818340199307 +0.8776136158506181,1.101937382882034 +0.18691305046976936,0.12591458423656257 +0.4734245920406963,0.773592119792974 +-0.6175258713219953,0.10736264289522117 +1.019021129361066,0.32560269643912426 +-0.02343083942881663,0.12249988023512917 +1.3531320318019873,-1.3243806882732936 +-0.6355350987047171,1.0335547496211417 +0.8364031290258416,-0.620006090256386 +-0.5467556590447314,-0.24451377904283164 +-0.09187054052241495,0.06101012367503156 +0.715746642420964,-0.20282106270923392 +-0.07333356927183271,2.287759546452317 +-0.5034515079000184,1.298710376695775 +-0.3785507759682868,0.9055952547103743 +-0.36699935075198775,-0.27674367193055305 +0.6038245183117672,1.235909406156023 +-0.2874532583723888,1.2637646422883795 +-0.6097238235682666,0.9599087857871466 +0.572748020327026,0.9684507157056861 +-1.0216226120701442,0.07802026316741384 +0.7294493895374978,-0.40784517758577776 +-0.5305615547425018,-0.1846125755503444 +-0.5258494333600681,0.25276257948002645 +0.9084963454295302,0.6856969626110273 +0.28241329342667637,-0.21475825217713918 +1.5543095220721976,-2.1798364029087733 +0.4087567117673866,0.3468103622789519 +1.4947172526565962,-1.5858020367418768 +-0.9215300607824739,0.40278818340199307 +0.13542358672593124,0.5234880027307365 +0.18691305046976936,0.12591458423656257 +0.4734245920406963,0.773592119792974 +-0.6175258713219953,0.10736264289522117 +0.4508345660012219,-0.2865597038874732 +-0.02343083942881663,0.12249988023512917 +-0.5486882046661731,1.1557974482137063 +-0.6355350987047171,1.0335547496211417 +0.8364031290258416,-0.620006090256386 +0.27467509909703564,1.5507620202800063 +-0.09187054052241495,0.06101012367503156 +0.715746642420964,-0.20282106270923392 +-0.07333356927183271,2.287759546452317 +-0.5034515079000184,1.298710376695775 +-0.3785507759682868,0.9055952547103743 +-0.36699935075198775,-0.27674367193055305 +0.6038245183117672,1.235909406156023 +-0.2874532583723888,1.2637646422883795 +-0.6097238235682666,0.9599087857871466 +-0.19637699000510955,0.46104282256029805 +-1.0216226120701442,0.07802026316741384 +0.7294493895374978,-0.40784517758577776 +0.025144449182426087,1.4711590539519197 +0.06892708701965546,0.05730625905696206 +0.2217760578570207,0.9623200522753763 +1.4153436409481008,-1.082079891410346 +1.5543095220721976,-2.1798364029087733 +0.07261938463325435,0.38060337336083805 +1.4947172526565962,-1.5858020367418768 +-0.9215300607824739,0.40278818340199307 +0.4810593641836022,-0.6830065773900456 +-0.07036243404433914,1.0885052133958377 +-0.025374845956917927,0.3720735394444541 +-0.6175258713219953,0.10736264289522117 +0.6673437851565512,1.2825130429100844 +0.09073675239775444,-0.0050420581163198586 +-0.25353458614567015,1.0207634121302038 +-0.21483225992367705,0.45498797015191994 +0.9845133204290155,-1.1042226044354073 +0.27467509909703564,1.5507620202800063 +0.8561087473647206,-0.9655633481658901 +0.46449025900780605,-0.2939948405898738 +-0.07333356927183271,2.287759546452317 +-0.5034515079000184,1.298710376695775 +-0.3785507759682868,0.9055952547103743 +-0.36699935075198775,-0.27674367193055305 +0.08391092119398942,-0.16917215868880844 +-0.2874532583723888,1.2637646422883795 +-0.5265114491852236,1.956652815718153 +-0.19637699000510955,0.46104282256029805 +-1.0216226120701442,0.07802026316741384 +1.6169754698419774,-1.8361352988452637 +0.025144449182426087,1.4711590539519197 +0.06892708701965546,0.05730625905696206 +0.2217760578570207,0.9623200522753763 +0.5382155659632037,-0.20423907517252426 +1.5543095220721976,-2.1798364029087733 +0.07261938463325435,0.38060337336083805 +1.4947172526565962,-1.5858020367418768 +-0.9215300607824739,0.40278818340199307 +0.976227584615317,1.4052359936500318 +0.36216535958350965,1.1897706332851388 +-0.025374845956917927,0.3720735394444541 +-0.6175258713219953,0.10736264289522117 +0.6673437851565512,1.2825130429100844 +-0.5676507760750342,1.155448023555264 +-0.6035562601723347,1.5082905598874736 +-0.7730477580710463,0.9911085547427695 +0.07872775854583859,0.4537593248585239 +0.27467509909703564,1.5507620202800063 +0.5571422840587987,1.7040337446431977 +-0.3959969202306823,1.2582233710938915 +-0.07333356927183271,2.287759546452317 +-0.08211534334615467,0.09118091642644727 +-0.3785507759682868,0.9055952547103743 +-0.36699935075198775,-0.27674367193055305 +0.08391092119398942,-0.16917215868880844 +-0.39592819922936684,0.25632121382862627 +-0.38890270988082504,-0.04579025660380852 +0.4129200419782866,2.1152418220222358 +-1.0216226120701442,0.07802026316741384 +1.3303324863010824,-1.0754963487861944 +-0.6640272332588493,0.9768904435689993 +-0.0004406376682483115,-0.3421043839122822 +0.2217760578570207,0.9623200522753763 +0.5382155659632037,-0.20423907517252426 +1.5543095220721976,-2.1798364029087733 +-0.34366916530342234,0.4381123312756002 +1.4947172526565962,-1.5858020367418768 +-0.9215300607824739,0.40278818340199307 +-0.48738514872854966,0.4391326919856475 +0.072855373538042,-0.3040815730871951 +-0.28503987957510435,0.020516117025411673 +-0.26356946071556336,-0.21072161749639418 +0.6673437851565512,1.2825130429100844 +-0.5676507760750342,1.155448023555264 +-0.22464083689661773,1.7430668694674636 +0.37621062869312655,-0.27154693133816565 +0.07872775854583859,0.4537593248585239 +-0.4390186169323701,-0.16102568732798297 +0.5571422840587987,1.7040337446431977 +-0.3959969202306823,1.2582233710938915 +-0.07333356927183271,2.287759546452317 +0.1378780437997441,0.09743954252065645 +-0.3405234968258333,0.7374067981372237 +1.3495512269448182,-0.37828299248149655 +-0.6739922813241332,0.43233781879179345 +1.443442267371532,-0.8884135624599289 +-0.03086923626810878,2.589990116369016 +0.4129200419782866,2.1152418220222358 +-1.0216226120701442,0.07802026316741384 +1.3303324863010824,-1.0754963487861944 +-0.6640272332588493,0.9768904435689993 +-0.035113440996402456,1.6182080713645184 +1.467418542746094,-0.8405330914641768 +0.5382155659632037,-0.20423907517252426 +1.5543095220721976,-2.1798364029087733 +-0.34366916530342234,0.4381123312756002 +1.4947172526565962,-1.5858020367418768 +0.6558850237904946,1.8942338411225084 +1.0187873873363262,-0.6874907721363424 +0.072855373538042,-0.3040815730871951 +-0.12821010844475714,0.47115747195442853 +-0.26356946071556336,-0.21072161749639418 +0.6673437851565512,1.2825130429100844 +-0.5676507760750342,1.155448023555264 +0.460751762776165,-0.4052853045861413 +1.4429997685342568,-1.5356554078340616 +0.45556167486042803,1.1570242391583285 +-0.4390186169323701,-0.16102568732798297 +0.5571422840587987,1.7040337446431977 +-0.9209889324644156,-0.19422797828534033 +-0.35620530626136504,0.8976807356836201 +0.8918331322939956,0.5393282127435612 +-0.3405234968258333,0.7374067981372237 +0.9814639819857331,0.23624516320137573 +-0.6829866523908239,0.718481711187785 +-0.13628903296413866,-0.18196450852738666 +-0.03086923626810878,2.589990116369016 +0.4129200419782866,2.1152418220222358 +-0.09647572569393092,2.493449614822875 +1.3303324863010824,-1.0754963487861944 +-0.005641700390454307,0.49033916876096895 +-0.035113440996402456,1.6182080713645184 +0.7765602495912951,1.0064010706789694 +0.5382155659632037,-0.20423907517252426 +1.5543095220721976,-2.1798364029087733 +-0.34366916530342234,0.4381123312756002 +1.4947172526565962,-1.5858020367418768 +0.184141382541546,1.2172202905565848 +1.428220294553217,-1.8419823500870136 +0.22787464650245112,-0.5614661988832095 +1.9128493717970383,-2.2877669840527033 +-0.4089535137507917,-0.41268874219716045 +0.6673437851565512,1.2825130429100844 +-0.349418469985176,1.4445982951911045 +1.3602583971285531,0.025245772043837045 +1.4429997685342568,-1.5356554078340616 +1.248093999925318,-1.7656968390817072 +-0.4390186169323701,-0.16102568732798297 +0.5571422840587987,1.7040337446431977 +-0.9209889324644156,-0.19422797828534033 +-0.406564087478926,0.1765222418171628 +0.8918331322939956,0.5393282127435612 +-0.3405234968258333,0.7374067981372237 +-0.46768290649398125,0.65658729807344 +-0.6829866523908239,0.718481711187785 +-0.13628903296413866,-0.18196450852738666 +1.418602671338399,-1.7749844402179307 +0.7200591527561951,-0.142482881126082 +0.31446341576295317,0.6723848402078735 +1.3303324863010824,-1.0754963487861944 +-0.005641700390454307,0.49033916876096895 +-0.035113440996402456,1.6182080713645184 +0.7765602495912951,1.0064010706789694 +0.5382155659632037,-0.20423907517252426 +-0.35182634627311393,1.358332490093926 +-0.34366916530342234,0.4381123312756002 +0.8797504019753025,-0.7653634285385226 +0.6058461348530092,-0.8755526431419922 +0.6926069323893786,1.5843184816988474 +0.27088405061330134,-0.33695178096126 +1.9128493717970383,-2.2877669840527033 +0.45085960602751896,1.5947794763894825 +-0.7029230792573502,1.040533896437231 +1.2282852008344767,-0.3552751208700733 +1.3602583971285531,0.025245772043837045 +-0.5543329975590164,0.5253166621880729 +1.248093999925318,-1.7656968390817072 +0.9179575894221405,1.2284620511029947 +0.5571422840587987,1.7040337446431977 +-0.9209889324644156,-0.19422797828534033 +-0.406564087478926,0.1765222418171628 +0.8918331322939956,0.5393282127435612 +1.3252489376558554,-1.9799044453153045 +-0.46768290649398125,0.65658729807344 +-0.6829866523908239,0.718481711187785 +0.0834005315057444,0.3262852305128433 +1.1239237577824546,0.61210072917211 +-0.46430829402983254,-0.48399514142123534 +0.31446341576295317,0.6723848402078735 +1.3303324863010824,-1.0754963487861944 +0.6156475172228184,-0.2719658587727736 +-0.11253481745125331,1.6896425442527268 +0.7765602495912951,1.0064010706789694 +0.5382155659632037,-0.20423907517252426 +-0.35182634627311393,1.358332490093926 +0.23385886415303775,-0.5251101300832276 +0.5796725190493351,-0.7330406337974096 +0.10828230313098498,1.2634315597718517 +1.2381285135477602,-0.2519957769927609 +-0.6770828048960512,1.8865518727495496 +0.5388906671042059,1.5931751503495613 +-0.012116187306585646,0.43396357640010286 +-0.41369609418586534,0.7315509406099961 +1.2282852008344767,-0.3552751208700733 +1.3602583971285531,0.025245772043837045 +1.1217148473195313,-1.0036552218867156 +1.248093999925318,-1.7656968390817072 +0.6390689064085266,1.1289149682957584 +0.5571422840587987,1.7040337446431977 +-0.12014012172115207,1.8674959155051192 +0.34294386944291994,1.927061941536456 +0.8918331322939956,0.5393282127435612 +1.3252489376558554,-1.9799044453153045 +-0.46768290649398125,0.65658729807344 +-0.6829866523908239,0.718481711187785 +0.0834005315057444,0.3262852305128433 +1.1239237577824546,0.61210072917211 +0.719778794469403,-0.21894125190408276 +0.5080599349394436,1.4121170572271224 +1.3303324863010824,-1.0754963487861944 +0.6156475172228184,-0.2719658587727736 +-0.11253481745125331,1.6896425442527268 +0.7765602495912951,1.0064010706789694 +-0.5718768801467669,0.44134930369355024 +1.4003042863720143,-1.914366472534956 +0.23385886415303775,-0.5251101300832276 +1.1239632206870451,0.31793728214854944 +0.9686750750154064,-1.364422856615779 +1.2381285135477602,-0.2519957769927609 +-0.6770828048960512,1.8865518727495496 +0.45920208807214014,-0.16712663741828315 +-0.012116187306585646,0.43396357640010286 +-0.41369609418586534,0.7315509406099961 +1.2282852008344767,-0.3552751208700733 +-0.16237650485822935,1.5236849694211219 +1.1217148473195313,-1.0036552218867156 +1.248093999925318,-1.7656968390817072 +0.9616747297866876,-0.8357892352113446 +0.5571422840587987,1.7040337446431977 +-0.12014012172115207,1.8674959155051192 +0.34294386944291994,1.927061941536456 +0.8139610113393242,-0.519477131372873 +1.391607456319729,-1.769670590962079 +-0.46768290649398125,0.65658729807344 +-0.6829866523908239,0.718481711187785 +1.187861250485821,-1.3300508068578527 +1.1239237577824546,0.61210072917211 +0.719778794469403,-0.21894125190408276 +1.048590122706207,-0.37869294580582313 +0.09389888556814541,2.309418787600795 +0.1167952849590197,0.6074787400878074 +-0.11253481745125331,1.6896425442527268 +0.7765602495912951,1.0064010706789694 +-0.5718768801467669,0.44134930369355024 +1.4003042863720143,-1.914366472534956 +-0.34965338504970084,0.8354167253635756 +0.38882532743234194,1.6163632629092914 +0.2129212747331422,1.3575443313498288 +0.9318467526791842,-1.3543451057587472 +0.7588101358939062,-0.3284383175698087 +0.0074653824137529134,-0.13281487449516421 +1.1948496561951054,-0.8162111302395341 +-0.07629834244058759,1.602050346905704 +0.1270462827706451,0.6043212146761678 +-0.16237650485822935,1.5236849694211219 +1.1217148473195313,-1.0036552218867156 +1.248093999925318,-1.7656968390817072 +0.9616747297866876,-0.8357892352113446 +0.5571422840587987,1.7040337446431977 +-0.12014012172115207,1.8674959155051192 +0.34294386944291994,1.927061941536456 +0.8931782688085413,0.23213942023562506 +1.0000216282314498,0.9151451802645223 +-0.46768290649398125,0.65658729807344 +-0.6829866523908239,0.718481711187785 +1.116683224281162,-0.9256452388799029 +1.1239237577824546,0.61210072917211 +0.719778794469403,-0.21894125190408276 +-0.004889091110951205,1.0310858490302497 +-0.75380299744088,0.4292286488460058 +-0.6053450597690987,0.5653199736634718 +-0.5165905537014904,0.4430260607651752 +0.7162733061724013,0.12298416746501034 +-0.6665819971138374,0.8876591613019704 +1.4003042863720143,-1.914366472534956 +0.8440835700887639,-0.7542295397278724 +0.38882532743234194,1.6163632629092914 +0.6524666496889278,0.21802985402986136 +0.9318467526791842,-1.3543451057587472 +-0.4076582629878488,0.1860811994674515 +1.1412644027931436,-1.2128580025088214 +-0.35847116781872335,2.0754757504401193 +-0.07629834244058759,1.602050346905704 +-0.7026252384895,-0.422837091600618 +-0.16237650485822935,1.5236849694211219 +1.1217148473195313,-1.0036552218867156 +-0.20244850096708805,1.6630099929525997 +1.74404630141653,-2.3882998802757265 +0.5571422840587987,1.7040337446431977 +-0.12014012172115207,1.8674959155051192 +1.6735629786356279,-1.9864879763985757 +0.8931782688085413,0.23213942023562506 +0.7848161354324072,-0.3174531961502969 +-0.5132146673169378,-0.3230598621354476 +-0.6829866523908239,0.718481711187785 +-0.3698499104047988,1.8331371004998727 +-0.5843094835888868,0.6037600866504078 +0.719778794469403,-0.21894125190408276 +-0.09665824039714949,-0.17218227583431317 +1.5696825102197591,-2.3148577591519706 +0.1458326223419753,-0.25483915540128166 +-0.3792707700559737,0.0571404145294534 +0.7162733061724013,0.12298416746501034 +1.6203337264074327,-2.082219310399113 +0.9888826905681996,0.3275261552376963 +0.8440835700887639,-0.7542295397278724 +0.38882532743234194,1.6163632629092914 +0.6524666496889278,0.21802985402986136 +0.3622955676176106,-0.41182866643639515 +-0.5551762428209305,0.04890537321969578 +0.14813895717267356,0.7605753540440878 +1.011359666038826,-0.7759104951373188 +1.3570163498917946,-1.392723198252334 +-0.7026252384895,-0.422837091600618 +-0.16237650485822935,1.5236849694211219 +1.1217148473195313,-1.0036552218867156 +0.11607558576117694,0.6600377523922671 +1.74404630141653,-2.3882998802757265 +0.5571422840587987,1.7040337446431977 +-0.12014012172115207,1.8674959155051192 +-0.4587502837974817,0.6391798930075505 +1.3052786901841609,-1.688466012507873 +0.7848161354324072,-0.3174531961502969 +-0.5132146673169378,-0.3230598621354476 +0.3915158811511924,0.17440290504486816 +-0.3698499104047988,1.8331371004998727 +1.1851742197356727,0.279026903111008 +0.6241827945355922,0.23141776023201754 +1.6648698183696615,-1.943142769353786 +1.5696825102197591,-2.3148577591519706 +0.1458326223419753,-0.25483915540128166 +-0.3792707700559737,0.0571404145294534 +0.5660023936148406,0.18936788069878646 +1.6203337264074327,-2.082219310399113 +0.9888826905681996,0.3275261552376963 +0.8440835700887639,-0.7542295397278724 +0.49571941973594436,1.3146415034167573 +1.2227145156428818,-0.6205823260568635 +0.3622955676176106,-0.41182866643639515 +-0.5551762428209305,0.04890537321969578 +0.7053061863557466,-0.26373394123758453 +0.8838957322149662,-0.08855766509239021 +-1.077659638023223,-0.15797911595519365 +-0.7026252384895,-0.422837091600618 +-0.16237650485822935,1.5236849694211219 +-0.02379021389459257,0.2975580094639546 +-0.5271345071460172,1.1349555375959066 +1.74404630141653,-2.3882998802757265 +1.4196369709089653,-1.0808499583971376 +-0.12014012172115207,1.8674959155051192 +0.6388090563001716,0.9389724570821278 +-0.48959686937462726,1.6809721884132356 +1.1690058995352375,-1.2328408341891373 +-0.5132146673169378,-0.3230598621354476 +-0.5291688005336626,0.18103097607630528 +-0.3698499104047988,1.8331371004998727 +1.1851742197356727,0.279026903111008 +-0.47348784360844487,1.2689697768866917 +1.6648698183696615,-1.943142769353786 +0.8494946855562816,-0.907449364106086 +0.1458326223419753,-0.25483915540128166 +-0.15456351970261573,0.04108713877011083 +0.28639292510148207,-0.4660523358289332 +0.23636008050466017,-0.03493314066284098 +0.9888826905681996,0.3275261552376963 +-0.07752974436540871,1.1465242440718886 +-0.45532568440178056,1.6395268560201297 +-0.7597142390510496,0.05774768961007004 +0.3622955676176106,-0.41182866643639515 +0.08188272281915313,1.587294476805944 +0.4332984512326601,1.6513728849712601 +-0.08204775293813944,1.7972969546243558 +-1.077659638023223,-0.15797911595519365 +0.3543054037429678,-0.07663857344536945 +-0.35189605124996615,0.09308273539567179 +-0.8074389775928712,-0.012139870923214294 +-0.5271345071460172,1.1349555375959066 +1.74404630141653,-2.3882998802757265 +1.4196369709089653,-1.0808499583971376 +-0.12014012172115207,1.8674959155051192 +-0.7848584546249613,-0.11630331236662983 +-0.14518982038353356,0.12720781901966327 +-0.6865848338853147,-0.1813738482953669 +0.5758058711427921,1.7333928875794817 +-0.5291688005336626,0.18103097607630528 +0.7601260227922402,1.0698277418476785 +1.1851742197356727,0.279026903111008 +-0.2941164516499264,0.7157580784638117 +1.6648698183696615,-1.943142769353786 +0.7535250393413846,0.8680730942917789 +0.1458326223419753,-0.25483915540128166 +-0.15456351970261573,0.04108713877011083 +0.34304466079950724,-0.7551294271689318 +0.9295844808599056,-0.25498544683269403 +-0.43628808956084514,1.5504893805270505 +0.07741666619840631,0.09232283451670831 +-0.45532568440178056,1.6395268560201297 +-0.7164228313679566,-0.21402277640707051 +-0.645335668654773,0.8375936279675471 +0.08188272281915313,1.587294476805944 +0.4332984512326601,1.6513728849712601 +-0.08204775293813944,1.7972969546243558 +-0.3086142726731139,-0.12077280340737248 +-0.5911710863651527,1.0090796630654313 +-0.35189605124996615,0.09308273539567179 +-0.8074389775928712,-0.012139870923214294 +-0.5271345071460172,1.1349555375959066 +1.74404630141653,-2.3882998802757265 +1.4196369709089653,-1.0808499583971376 +-0.12014012172115207,1.8674959155051192 +-0.7848584546249613,-0.11630331236662983 +-0.03160623939852758,-0.11092015652408127 +-0.6865848338853147,-0.1813738482953669 +0.5758058711427921,1.7333928875794817 +-0.5291688005336626,0.18103097607630528 +-0.6427235397488298,1.3763456865754833 +1.1851742197356727,0.279026903111008 +-0.2941164516499264,0.7157580784638117 +1.6648698183696615,-1.943142769353786 +0.2964214422859211,-0.27819793928472364 +0.24256027407507144,-0.5880764817304032 +-0.15456351970261573,0.04108713877011083 +1.009851738858747,-1.5682394368201416 +-0.008588179089503524,0.5013629009391581 +-0.43628808956084514,1.5504893805270505 +0.9801088762573694,1.0223243149985546 +-0.45532568440178056,1.6395268560201297 +-0.7164228313679566,-0.21402277640707051 +-0.645335668654773,0.8375936279675471 +0.08188272281915313,1.587294476805944 +0.4332984512326601,1.6513728849712601 +-0.08204775293813944,1.7972969546243558 +0.31573575998319725,1.4312916275794407 +-0.5134315339197787,1.508910617984204 +-0.35189605124996615,0.09308273539567179 +-0.46280633463157417,1.6860988470925116 +-0.40488476792970374,0.7168712594173321 +1.74404630141653,-2.3882998802757265 +1.4196369709089653,-1.0808499583971376 +-0.2546238641318609,0.5672873619841796 +-0.7848584546249613,-0.11630331236662983 +-0.03160623939852758,-0.11092015652408127 +-0.6865848338853147,-0.1813738482953669 +0.8702918325564195,-0.5356462559270471 +-0.8251047101924929,1.1019992611116072 +1.0514732728727036,-1.247191217040586 +1.1851742197356727,0.279026903111008 +-0.2941164516499264,0.7157580784638117 +1.6648698183696615,-1.943142769353786 +-0.9618911469916492,0.11488258393278344 +-0.42550771854969077,0.8080610107144952 +-0.4342893061915721,1.8642711765200115 +0.09248010892002806,0.7028552154584972 +-0.008588179089503524,0.5013629009391581 +-0.6278349934368427,0.7410493800233193 +0.36399666820346543,1.4983656703483959 +-0.45532568440178056,1.6395268560201297 +0.5909327548385852,-0.5483711075990642 +1.3863748847109663,-0.8612940457072411 +0.08188272281915313,1.587294476805944 +0.4332984512326601,1.6513728849712601 +-0.08204775293813944,1.7972969546243558 +1.7821144089978112,-1.9101508817808481 +1.1666549087128666,-0.31559427120709715 +-0.35189605124996615,0.09308273539567179 +-0.46280633463157417,1.6860988470925116 +0.15676596292893819,0.02029891318373982 +-0.43798969247229624,1.6163537552472163 +1.4196369709089653,-1.0808499583971376 +1.1956356179203393,-1.433624065847971 +1.9334847915887392,-2.196206705772928 +1.172334575880923,-0.8660775386994444 +-0.6865848338853147,-0.1813738482953669 +-0.397047973895515,0.5721709239684325 +-0.03736537688491748,0.10356626042985717 +-0.8473450887433427,0.8827634123163695 +1.1851742197356727,0.279026903111008 +-0.2941164516499264,0.7157580784638117 +1.1898196523163878,-1.3515358955908254 +0.20535505990351555,-0.31945152816280364 +-0.16549737986528315,1.4941938571881843 +-0.4342893061915721,1.8642711765200115 +0.3310976186706845,1.8409989845680217 +-0.008588179089503524,0.5013629009391581 +-0.6278349934368427,0.7410493800233193 +1.0262360885966662,-0.873340773823429 +-0.4875486931716049,1.6514938307133498 +0.5909327548385852,-0.5483711075990642 +0.9261827685456552,0.3126769311684412 +0.08188272281915313,1.587294476805944 +-0.44926972164163304,0.35896941669202664 +1.2185289570540117,-1.171181459475265 +1.063953915276417,-0.07500420988639667 +0.04773827378362128,0.6201811956235012 +-0.35189605124996615,0.09308273539567179 +1.6733278042004829,-1.826052300334176 +1.280574169599579,-0.8800013156801089 +-0.43798969247229624,1.6163537552472163 +-0.1668052580662197,-0.05409844554030274 +1.1956356179203393,-1.433624065847971 +-0.8373378509930822,1.097898008121029 +1.491639329525936,-1.7072571187472108 +-0.6865848338853147,-0.1813738482953669 +0.6218247846278486,-0.7558843418493747 +-0.03736537688491748,0.10356626042985717 +-0.09113449038418503,1.9676322813055194 +1.1851742197356727,0.279026903111008 +0.21316621227028737,-0.3955576977964286 +-0.5469772623303779,1.7312449143228732 +0.9011788880009786,0.5957070111874455 +-0.16549737986528315,1.4941938571881843 +0.8465797572829996,0.89131755159318 +0.3310976186706845,1.8409989845680217 +-0.008588179089503524,0.5013629009391581 +-0.35745401980760527,0.0371376976110406 +1.942133111644701,-2.315943282524354 +0.6363124707794388,-0.6359227767559825 +0.5909327548385852,-0.5483711075990642 +0.9261827685456552,0.3126769311684412 +1.327024042739688,-0.44388337009685974 +-0.44926972164163304,0.35896941669202664 +-0.2242852088731668,1.6194228018626728 +1.063953915276417,-0.07500420988639667 +0.7430723448563451,-0.9197366050466322 +-0.35189605124996615,0.09308273539567179 +-0.23627446331138005,1.2709093585757807 +1.3201853444188962,-0.2411355448235173 +0.736761893492325,1.6672553621289985 +1.0163031904631934,0.18745270571344852 +1.1956356179203393,-1.433624065847971 +0.569077570160428,-0.41011734382089776 +1.491639329525936,-1.7072571187472108 +-0.6865848338853147,-0.1813738482953669 +-0.1481453428598291,0.8341557481581627 +-0.03736537688491748,0.10356626042985717 +-0.09113449038418503,1.9676322813055194 +1.1851742197356727,0.279026903111008 +-0.7176148978686852,0.0004386902061034731 +-0.5469772623303779,1.7312449143228732 +0.9011788880009786,0.5957070111874455 +-0.16549737986528315,1.4941938571881843 +0.8465797572829996,0.89131755159318 +0.9371787027954417,-0.6694198495190219 +-0.008588179089503524,0.5013629009391581 +-0.5285917947321879,1.086266271863758 +0.06855534292006316,0.5149820551048718 +0.6363124707794388,-0.6359227767559825 +0.7836477908742321,0.6231269334204789 +-0.4279150642202494,0.8874023414431758 +1.327024042739688,-0.44388337009685974 +-0.28730215150798083,1.1034434782664593 +-0.2242852088731668,1.6194228018626728 +1.1360953522805686,0.17469688313132364 +-0.5155275689125153,1.167580365749196 +-0.35189605124996615,0.09308273539567179 +0.8419523347737852,1.260302147321147 +1.3201853444188962,-0.2411355448235173 +0.736761893492325,1.6672553621289985 +1.0163031904631934,0.18745270571344852 +0.916919383915529,-0.6024861925263217 +0.569077570160428,-0.41011734382089776 +1.491639329525936,-1.7072571187472108 +-0.6865848338853147,-0.1813738482953669 +-0.1481453428598291,0.8341557481581627 +-0.03736537688491748,0.10356626042985717 +-0.09113449038418503,1.9676322813055194 +0.9904289465547353,-0.517703764626144 +0.2408609891831725,0.036578467032666206 +-0.5469772623303779,1.7312449143228732 +0.9011788880009786,0.5957070111874455 +0.26763938647829544,0.11913444046873212 +-0.9680959858843823,-0.5790219179527407 +1.9116849696940639,-2.7414038942559555 +-0.008588179089503524,0.5013629009391581 +-0.5285917947321879,1.086266271863758 +0.06855534292006316,0.5149820551048718 +-0.5163457682309138,0.4946286277455875 +2.02786691215436,-2.7971807708915826 +-0.7329117132578497,-0.1001211850735421 +1.3578318917586092,-1.8113514231618129 +1.4968061291843882,-2.3053724283029107 +-0.46389990348003385,1.768721333351891 +1.1360953522805686,0.17469688313132364 +0.7949526311660573,-0.0789740937801584 +-0.6854076607072643,1.192375098470856 +0.8419523347737852,1.260302147321147 +1.3201853444188962,-0.2411355448235173 +-1.2302549996156986,0.004723809963623038 +1.0788000342198663,0.5085132233071634 +0.916919383915529,-0.6024861925263217 +-1.1010971255427526,0.3654575971434849 +0.7898101731352392,1.5274178784860661 +-0.6986813643252263,-0.09285952910854034 +0.36576702941384087,0.13688924640107022 +-0.03736537688491748,0.10356626042985717 +-0.09113449038418503,1.9676322813055194 +-0.6450104537587895,0.8184406241598364 +0.2408609891831725,0.036578467032666206 +-0.5469772623303779,1.7312449143228732 +0.9011788880009786,0.5957070111874455 +0.26763938647829544,0.11913444046873212 +0.4614723316906497,-0.5528992458141427 +1.9116849696940639,-2.7414038942559555 +-0.008588179089503524,0.5013629009391581 +1.6665830402799595,-1.9686914101351147 +0.06855534292006316,0.5149820551048718 +0.5313615154150318,1.7132268001914874 +2.02786691215436,-2.7971807708915826 +-0.7329117132578497,-0.1001211850735421 +1.3578318917586092,-1.8113514231618129 +1.4968061291843882,-2.3053724283029107 +-0.46389990348003385,1.768721333351891 +1.1360953522805686,0.17469688313132364 +0.02727787000074569,2.0349007044384315 +-0.945059969195186,0.30379397821248244 +0.2606793042728228,1.5224737035624571 +1.3201853444188962,-0.2411355448235173 +0.6604504529602114,-0.23782117137149578 +1.0788000342198663,0.5085132233071634 +0.916919383915529,-0.6024861925263217 +-0.48064305073882485,0.16239404405908664 +0.7898101731352392,1.5274178784860661 +-0.6986813643252263,-0.09285952910854034 +-0.12486220310672408,2.3255443710201593 +-0.03736537688491748,0.10356626042985717 +-0.09113449038418503,1.9676322813055194 +0.1549985649433161,2.2210613616077945 +0.2408609891831725,0.036578467032666206 +-0.5124271521479431,1.62877035247617 +0.2775666823814288,-0.03208113497433818 +0.26763938647829544,0.11913444046873212 +-0.33038145820905207,1.5751275550362456 +1.9116849696940639,-2.7414038942559555 +-0.2575246942625886,-0.38860600652997995 +1.6665830402799595,-1.9686914101351147 +0.06855534292006316,0.5149820551048718 +0.5313615154150318,1.7132268001914874 +-0.34794564802862693,1.0997382558417748 +-0.7329117132578497,-0.1001211850735421 +1.6662670204052203,-1.8142901363061466 +0.09981152683140879,2.338080903635517 +-0.46389990348003385,1.768721333351891 +1.1360953522805686,0.17469688313132364 +0.02727787000074569,2.0349007044384315 +-0.945059969195186,0.30379397821248244 +0.2606793042728228,1.5224737035624571 +1.3201853444188962,-0.2411355448235173 +-0.0832591889067541,0.5659371040888043 +1.0788000342198663,0.5085132233071634 +0.916919383915529,-0.6024861925263217 +0.6400954629094214,-0.298660214710748 +1.4922348598688642,-0.5393704517882081 +-0.03193063753703812,2.2000337711650877 +-0.12486220310672408,2.3255443710201593 +-0.03736537688491748,0.10356626042985717 +-0.09113449038418503,1.9676322813055194 +0.1549985649433161,2.2210613616077945 +-0.2061254782711009,1.656166468978354 +-0.5124271521479431,1.62877035247617 +-0.5914385599061658,1.61074364327616 +-0.6131811457896645,1.1041640960560186 +0.8673833616881145,0.6849361284900781 +1.9116849696940639,-2.7414038942559555 +1.6630033294534394,-2.10515448731562 +1.6665830402799595,-1.9686914101351147 +0.06855534292006316,0.5149820551048718 +-0.26186150422357235,-0.030925931885480706 +1.2727408955668515,-0.4287599911462048 +0.6259101196866612,1.9601636527734132 +1.6662670204052203,-1.8142901363061466 +0.09981152683140879,2.338080903635517 +0.28381290977850626,1.152520488852774 +1.1360953522805686,0.17469688313132364 +0.02727787000074569,2.0349007044384315 +-0.945059969195186,0.30379397821248244 +0.2606793042728228,1.5224737035624571 +0.6484116699811986,-0.010669152263736104 +-0.0832591889067541,0.5659371040888043 +1.0788000342198663,0.5085132233071634 +0.7028573391042859,0.8568381452445857 +0.5521062086042776,-0.24508143236486768 +1.4922348598688642,-0.5393704517882081 +-0.599267327024372,0.9304577432400765 +-0.12486220310672408,2.3255443710201593 +0.447220145454809,-0.4793404829345376 +-0.09113449038418503,1.9676322813055194 +1.1122709020927108,-0.9621618795471552 +0.3374359930462501,2.2115216062628384 +-0.5124271521479431,1.62877035247617 +-0.46023398670918314,0.3393856342405746 +-0.6131811457896645,1.1041640960560186 +0.8673833616881145,0.6849361284900781 +1.9116849696940639,-2.7414038942559555 +1.6630033294534394,-2.10515448731562 +1.6665830402799595,-1.9686914101351147 +1.6481656599686323,-2.544569373645433 +-0.26186150422357235,-0.030925931885480706 +1.2727408955668515,-0.4287599911462048 +0.15961711394592082,-0.2199382008017895 +1.6662670204052203,-1.8142901363061466 +1.3429089490134944,-0.05915201006219728 +-0.41689024796275564,0.6895268110302983 +-0.06523569096876047,1.3168075545979896 +0.02727787000074569,2.0349007044384315 +-0.945059969195186,0.30379397821248244 +0.2606793042728228,1.5224737035624571 +0.6484116699811986,-0.010669152263736104 +-0.0832591889067541,0.5659371040888043 +1.0788000342198663,0.5085132233071634 +1.4515175140058367,-2.1831992959720536 +0.5521062086042776,-0.24508143236486768 +1.562253440757905,-0.5768382527827003 +-0.599267327024372,0.9304577432400765 +-0.427746825734088,0.44658237471299 +0.447220145454809,-0.4793404829345376 +-0.09113449038418503,1.9676322813055194 +1.1122709020927108,-0.9621618795471552 +0.3374359930462501,2.2115216062628384 +0.8401675280152672,-0.7795945883454634 +-0.04762388837524534,0.28693850512480656 +0.30114937532821906,0.09833265787926898 +-0.43540263291482484,-0.3163043778824158 +1.9116849696940639,-2.7414038942559555 +1.4877519124586154,-0.9014747453846826 +1.2277999170523612,-0.8128771486207353 +-0.4451464440959846,-0.14428266795406952 +-0.26186150422357235,-0.030925931885480706 +1.2727408955668515,-0.4287599911462048 +1.6284299337103243,-2.276390944618203 +-0.43383383354904514,2.0820443959192594 +1.3429089490134944,-0.05915201006219728 +-0.41689024796275564,0.6895268110302983 +-0.06413086974887441,0.8437255710722901 +1.1738258156112629,-0.7281493091679294 +-0.945059969195186,0.30379397821248244 +0.2606793042728228,1.5224737035624571 +-0.1834532689314467,1.2945151558020294 +-0.0832591889067541,0.5659371040888043 +1.0788000342198663,0.5085132233071634 +1.4515175140058367,-2.1831992959720536 +-0.6748608789005239,-0.3672769075916011 +1.562253440757905,-0.5768382527827003 +-0.599267327024372,0.9304577432400765 +-0.427746825734088,0.44658237471299 +-0.40786075697183855,1.5053761695711625 +-0.09113449038418503,1.9676322813055194 +1.1122709020927108,-0.9621618795471552 +0.3374359930462501,2.2115216062628384 +-0.711285092338142,0.36592560299201227 +-0.5973210321093207,1.889200664991451 +-0.4937832471263278,0.6241823150535907 +1.5736258340587503,-0.6338437868184076 +1.590900798458108,-2.5370187651013367 +0.936060529555713,1.0551544354169207 +1.2277999170523612,-0.8128771486207353 +-0.4451464440959846,-0.14428266795406952 +0.7778628419129696,-0.6218401365242596 +0.5242948043061273,0.056065268913000676 +1.3221727511136572,-1.150855525283117 +0.8799755042285475,-0.13960114613778818 +0.5233230408859528,1.8267047416411644 +-0.41689024796275564,0.6895268110302983 +0.08637410325278916,-0.3792722796765736 +-0.636799722882924,0.6999552865541274 +1.5160591697515815,-0.6834968541704526 +0.2606793042728228,1.5224737035624571 +-0.1834532689314467,1.2945151558020294 +-0.0832591889067541,0.5659371040888043 +0.14037260598387902,0.4581638458266918 +0.6710199735225755,-0.04268069747841985 +-0.6748608789005239,-0.3672769075916011 +1.562253440757905,-0.5768382527827003 +0.9801514331886017,-1.088952022305231 +-0.8314403716374582,-0.04721658033210363 +0.5998843334458043,0.6844436697116059 +-0.47452803265353827,-0.4478925362937423 +1.1122709020927108,-0.9621618795471552 +0.3374359930462501,2.2115216062628384 +-0.711285092338142,0.36592560299201227 +-0.5973210321093207,1.889200664991451 +1.1909744275596985,-2.137432204869869 +0.7166415389654367,1.0056952690800245 +1.590900798458108,-2.5370187651013367 +0.936060529555713,1.0551544354169207 +1.2277999170523612,-0.8128771486207353 +-0.4451464440959846,-0.14428266795406952 +0.7063458403877104,-0.6862013066600516 +0.5242948043061273,0.056065268913000676 +1.3221727511136572,-1.150855525283117 +0.8799755042285475,-0.13960114613778818 +0.36905552831088334,0.7401069244805641 +0.31752648494430036,-0.5567117093774522 +0.6781334716832502,-0.2773751065687531 +-0.636799722882924,0.6999552865541274 +0.24175298411606544,0.316077428749017 +0.6930842680348441,-0.8626391441518078 +-0.1834532689314467,1.2945151558020294 +0.7412457001692887,-0.7471976142792156 +-0.8537246612156864,0.09572139206749372 +0.6928813081495588,0.6567594189372276 +-0.2691561828613924,0.6917360995945872 +-0.7790589292427288,0.8861209158419778 +0.9801514331886017,-1.088952022305231 +-0.8314403716374582,-0.04721658033210363 +-0.7989229574352532,-0.5039294559553252 +0.8892676995406888,-0.6816788227055492 +1.1122709020927108,-0.9621618795471552 +0.8091823226375315,-0.033651754451322874 +-0.711285092338142,0.36592560299201227 +1.1610414360042218,-0.8813015232983847 +-0.6630924370339166,1.4203981251466211 +-0.40809058349288463,0.7870362883818347 +1.590900798458108,-2.5370187651013367 +0.936060529555713,1.0551544354169207 +0.500076035706693,-0.1256331940744987 +-0.4451464440959846,-0.14428266795406952 +-1.0492380283330736,0.2923275425053744 +0.5242948043061273,0.056065268913000676 +-0.2276322840003685,0.5102763389229281 +-0.2344859862631362,0.8566733597367167 +0.36905552831088334,0.7401069244805641 +0.31752648494430036,-0.5567117093774522 +0.6781334716832502,-0.2773751065687531 +0.21866470417618888,1.6516554198538895 +0.858815408865529,-0.9184905882474982 +0.6930842680348441,-0.8626391441518078 +0.21303132609852748,0.006307595097716112 +0.35991227922169533,0.2443429017757708 +-0.8537246612156864,0.09572139206749372 +-0.6777330322822226,0.348418837455167 +-0.2691561828613924,0.6917360995945872 +-0.7790589292427288,0.8861209158419778 +0.8682540836966219,-0.47576387869237124 +0.6488106632121393,1.0486677910081295 +-0.21758434444437452,2.418938926740918 +0.6621373205853627,-0.36441105514238437 +1.1122709020927108,-0.9621618795471552 +-0.7018441306827191,0.8195954962521752 +0.9528428908984965,0.05490373281411132 +0.8564927000052045,1.0413064906557743 +0.7334911032164918,1.4101659684247432 +-1.117411043679451,-0.4644147258154281 +0.9706051125805699,-0.7508712116085222 +0.936060529555713,1.0551544354169207 +0.613059801486083,-0.3699530515043645 +0.3389437450754026,-0.541867830792663 +-0.15775007407744973,0.5928909594520113 +0.5242948043061273,0.056065268913000676 +0.9391876440554048,-0.6135287429310651 +-0.2344859862631362,0.8566733597367167 +-0.1987347880637994,0.33933968702655876 +0.5945797963795673,-0.6260087304265782 +0.6781334716832502,-0.2773751065687531 +0.21866470417618888,1.6516554198538895 +0.858815408865529,-0.9184905882474982 +1.0163840085260256,0.7821182545477331 +-0.12943438724815104,1.1176767584275416 +1.483659759560854,-2.32737300559953 +-0.8537246612156864,0.09572139206749372 +0.8737442041769535,-0.43361553181597945 +-0.2691561828613924,0.6917360995945872 +-0.5548887246065255,0.39242822194581356 +0.6408094776273036,-0.790512766967201 +-0.2797333623953703,2.407466230956976 +-0.21758434444437452,2.418938926740918 +-0.41574689394430425,0.053031191869913674 +-0.6022181029146186,0.4986937935928059 +-0.7018441306827191,0.8195954962521752 +0.9528428908984965,0.05490373281411132 +0.8564927000052045,1.0413064906557743 +0.7334911032164918,1.4101659684247432 +-1.117411043679451,-0.4644147258154281 +0.9706051125805699,-0.7508712116085222 +0.433733197203489,1.203439874400284 +0.613059801486083,-0.3699530515043645 +-0.5819152928925438,0.10232737974793138 +-0.15775007407744973,0.5928909594520113 +-0.45362484872447323,0.5220941394657983 +0.9391876440554048,-0.6135287429310651 +-0.2344859862631362,0.8566733597367167 +1.6219880040560872,-1.5688334972573408 +0.5945797963795673,-0.6260087304265782 +1.1709981153132385,-0.2212008753241238 +0.21866470417618888,1.6516554198538895 +-0.6214710890994297,0.12718595152810275 +1.0163840085260256,0.7821182545477331 +-0.8862103159561202,0.24502507470700785 +1.483659759560854,-2.32737300559953 +-0.8537246612156864,0.09572139206749372 +0.47602435717827835,2.1278628987955113 +1.3903923612045186,-0.8456931477049128 +-0.27207765206551815,1.4722728130318052 +0.6408094776273036,-0.790512766967201 +-0.2797333623953703,2.407466230956976 +-0.21758434444437452,2.418938926740918 +0.7334293665321892,-0.06642093520388814 +-0.6022181029146186,0.4986937935928059 +0.6094759799092945,0.7064829728878954 +0.9528428908984965,0.05490373281411132 +-0.48806255742491417,1.0707834309045887 +1.208680737356222,-1.2340622513982349 +-1.117411043679451,-0.4644147258154281 +0.9706051125805699,-0.7508712116085222 +0.5786204597907348,0.9026810382048664 +1.0699525541442496,0.9559082805455044 +-0.5819152928925438,0.10232737974793138 +1.4589114421489937,-0.40957980226922763 +-0.45362484872447323,0.5220941394657983 +0.9391876440554048,-0.6135287429310651 +-0.2344859862631362,0.8566733597367167 +1.6219880040560872,-1.5688334972573408 +0.615246646531643,-0.43874180149128716 +-0.9161353776692289,0.11147030918068067 +-0.7661755598293649,1.3603724380659066 +-0.6214710890994297,0.12718595152810275 +1.0163840085260256,0.7821182545477331 +-0.5488221950330913,0.1392485405455649 +1.483659759560854,-2.32737300559953 +-0.8537246612156864,0.09572139206749372 +0.47602435717827835,2.1278628987955113 +1.941756216348554,-3.4721607462518183 +-0.8245434116292925,0.37971558250240545 +0.44807351671220286,0.1081562877154636 +0.92248402754293,-0.4737859947845221 +1.1178208882992906,-1.5604993173417925 +0.15765324491976868,1.5473989970100084 +0.789006068210531,1.55997042920765 +0.6094759799092945,0.7064829728878954 +0.9528428908984965,0.05490373281411132 +-0.48806255742491417,1.0707834309045887 +1.208680737356222,-1.2340622513982349 +-1.117411043679451,-0.4644147258154281 +0.9706051125805699,-0.7508712116085222 +0.20988200957566472,2.0693041576162834 +0.041168450418358704,-0.34283232952955045 +-0.5819152928925438,0.10232737974793138 +0.6063992902934248,1.5396857528066519 +-0.45362484872447323,0.5220941394657983 +0.09006099045547228,1.455052324363008 +0.266922152203527,0.2971085982370048 +1.6219880040560872,-1.5688334972573408 +0.615246646531643,-0.43874180149128716 +-0.9161353776692289,0.11147030918068067 +-0.7661755598293649,1.3603724380659066 +0.43686628274458306,0.12695510098407733 +1.0163840085260256,0.7821182545477331 +-0.10273801923154174,2.0999373899976828 +1.483659759560854,-2.32737300559953 +-0.8537246612156864,0.09572139206749372 +0.6121371681054653,1.1772080595811616 +1.941756216348554,-3.4721607462518183 +0.6451266770166011,0.04664465670900797 +-0.20412467204147766,0.7545452814664717 +0.09512419672091621,2.0276706093393737 +1.1178208882992906,-1.5604993173417925 +0.15765324491976868,1.5473989970100084 +0.789006068210531,1.55997042920765 +0.6094759799092945,0.7064829728878954 +0.1907258555772161,1.8278376901630615 +-0.48806255742491417,1.0707834309045887 +0.1498051424705544,0.19074265929980325 +-1.117411043679451,-0.4644147258154281 +0.9706051125805699,-0.7508712116085222 +-0.4753187168245504,0.9012192600751661 +0.041168450418358704,-0.34283232952955045 +-0.5819152928925438,0.10232737974793138 +0.6063992902934248,1.5396857528066519 +-0.05897820058717762,0.09844781802745106 +1.0323654627002574,0.026846822711109164 +0.9593411082509451,-1.1937200275181128 +1.6219880040560872,-1.5688334972573408 +0.09993206235941274,-0.5218386727717309 +-0.31236605253749494,1.0575683308800727 +1.059425553720423,-0.2907914628210798 +0.43686628274458306,0.12695510098407733 +1.0163840085260256,0.7821182545477331 +0.67538832117497,1.050875283833744 +1.483659759560854,-2.32737300559953 +-0.8537246612156864,0.09572139206749372 +0.5556991323539631,1.7713603110164884 +1.2197948691878149,-1.1881802191289856 +0.7674160174449355,0.8783251476216163 +0.197253910887694,0.12340464665792591 +0.09512419672091621,2.0276706093393737 +-0.213126588345949,1.561891845184845 +-0.2453714482567488,2.4683076175554097 +1.521425275831054,-1.630105286355692 +-0.03021657151303403,-0.23983183955274562 +0.7721181786495478,0.0667520895226722 +0.6641525728455747,-0.26031265435814555 +0.1498051424705544,0.19074265929980325 +-0.8843705598172261,0.9487076282305194 +1.0449777265829836,0.3166670031896439 +1.7231590014768647,-1.2189335926204836 +0.5597716631425215,-0.20838882482756557 +-0.5819152928925438,0.10232737974793138 +0.6063992902934248,1.5396857528066519 +1.5481089455026784,-1.3310586913029825 +1.0323654627002574,0.026846822711109164 +0.9593411082509451,-1.1937200275181128 +1.2123676610897889,-1.5493524164545749 +0.09993206235941274,-0.5218386727717309 +0.844921493746392,0.1892128574236711 +1.8062423414032136,-2.689079765221871 +0.6269805100520616,0.19434381592681488 +1.0163840085260256,0.7821182545477331 +0.67538832117497,1.050875283833744 +-0.6244130789758924,1.1470910690467468 +-0.8537246612156864,0.09572139206749372 +0.7209429228684949,-0.8330229310608994 +1.2197948691878149,-1.1881802191289856 +-0.3710653181494413,0.41435797828351906 +0.197253910887694,0.12340464665792591 +0.09512419672091621,2.0276706093393737 +-0.213126588345949,1.561891845184845 +0.04878919147514882,2.2448960871704737 +0.8701948359857854,0.1749642497093654 +-0.03021657151303403,-0.23983183955274562 +0.7721181786495478,0.0667520895226722 +0.6641525728455747,-0.26031265435814555 +0.1498051424705544,0.19074265929980325 +0.44808988735977945,1.738639763576544 +0.9313461682958526,0.6561051495758172 +-0.18143778193744106,0.9612992170261372 +0.7613045878387096,-0.4823343342916653 +-0.5819152928925438,0.10232737974793138 +0.6063992902934248,1.5396857528066519 +1.5481089455026784,-1.3310586913029825 +-0.21824540725828365,0.4948848830524066 +0.15945830485822776,-0.1014076245135348 +0.1080341747315734,1.4497673269649063 +-0.5397224431790257,0.7150597218134687 +0.844921493746392,0.1892128574236711 +1.8062423414032136,-2.689079765221871 +1.1158850557519382,0.8702056956455708 +0.13566750711066716,2.133305623910819 +-0.308354635205612,-0.1329706913833716 +-0.6244130789758924,1.1470910690467468 +-0.8537246612156864,0.09572139206749372 +0.6439154135896158,-0.5283458189202801 +1.2197948691878149,-1.1881802191289856 +-0.3710653181494413,0.41435797828351906 +0.197253910887694,0.12340464665792591 +-0.5081793877943144,1.3693483246752174 +-0.213126588345949,1.561891845184845 +0.04878919147514882,2.2448960871704737 +0.8028170822942589,-0.9210774128117454 +-0.03021657151303403,-0.23983183955274562 +0.7721181786495478,0.0667520895226722 +-0.657594969277096,1.594718480684995 +-0.6183544904232208,-0.2569212075298558 +0.44808988735977945,1.738639763576544 +0.9313461682958526,0.6561051495758172 +-0.18143778193744106,0.9612992170261372 +0.7613045878387096,-0.4823343342916653 +-0.5819152928925438,0.10232737974793138 +0.5692697038323908,1.217166684980213 +1.3849842187855501,-1.4022717077474103 +-0.21824540725828365,0.4948848830524066 +0.4321630255045852,0.9373482081310379 +0.1080341747315734,1.4497673269649063 +-0.5397224431790257,0.7150597218134687 +-0.778000323927563,0.7474585560572738 +1.8062423414032136,-2.689079765221871 +1.129692271232511,0.30670196853349574 +0.13566750711066716,2.133305623910819 +-0.10742230915251583,-0.24637920519049084 +0.07040586248825498,1.9045061654795012 +-0.8537246612156864,0.09572139206749372 +0.6439154135896158,-0.5283458189202801 +1.2197948691878149,-1.1881802191289856 +0.16998184225196467,-0.021519968340215356 +1.019998982548987,1.0839452280628374 +-0.30202393902600333,0.7051186350056131 +-0.213126588345949,1.561891845184845 +0.04878919147514882,2.2448960871704737 +0.8028170822942589,-0.9210774128117454 +-0.06077080288353587,1.7727710838144066 +-0.631542706211149,1.2108368322787355 +0.607565409531545,-0.8522432673948093 +-0.6183544904232208,-0.2569212075298558 +0.44808988735977945,1.738639763576544 +0.9313461682958526,0.6561051495758172 +-0.18143778193744106,0.9612992170261372 +0.7613045878387096,-0.4823343342916653 +-0.5819152928925438,0.10232737974793138 +-0.1990466069597528,-0.5427068815097285 +1.3849842187855501,-1.4022717077474103 +-0.21824540725828365,0.4948848830524066 +1.0229947127125167,-0.12349095043535785 +0.6183536725788816,0.9448588999161276 +1.3963132746251152,-0.23649226446819727 +-0.778000323927563,0.7474585560572738 +1.8062423414032136,-2.689079765221871 +1.129692271232511,0.30670196853349574 +0.2688787977863326,-0.017538668327713836 +0.08309084393409483,2.1609241199721487 +0.8265524133553572,0.6281714488838182 +-0.1997247999310819,2.3419297686744964 +-0.667372707809024,0.43669485031493827 +1.2197948691878149,-1.1881802191289856 +0.16998184225196467,-0.021519968340215356 +1.019998982548987,1.0839452280628374 +0.6395973086591643,1.7419011958526285 +0.6666505221506722,-0.4731244466104904 +-0.24299116884262523,1.8784353850245636 +0.8028170822942589,-0.9210774128117454 +-0.06077080288353587,1.7727710838144066 +-0.631542706211149,1.2108368322787355 +-0.7975036620062503,-0.06428709364612062 +0.3781228457092899,1.1661548386728118 +0.743756224329923,0.47466497843253674 +0.28878828516754484,0.3301765417064899 +-0.18143778193744106,0.9612992170261372 +0.20452446988388845,1.932107625872469 +-0.5819152928925438,0.10232737974793138 +-0.1990466069597528,-0.5427068815097285 +0.43440146499867716,1.535226661707851 +-0.21824540725828365,0.4948848830524066 +0.38423515866993885,2.1657273692036707 +0.4906385253481518,0.7817867544277899 +1.3963132746251152,-0.23649226446819727 +-0.778000323927563,0.7474585560572738 +1.8062423414032136,-2.689079765221871 +0.22389126562602668,2.3285471969464746 +0.2688787977863326,-0.017538668327713836 +1.082589876405453,-1.0881601073860059 +0.7536730768529504,-0.5669030241931575 +-0.15260328766397002,1.108131425970832 +-0.6467649248439773,-0.004163530787149261 +1.2197948691878149,-1.1881802191289856 +0.9545032786232122,0.08262553208148204 +1.019998982548987,1.0839452280628374 +0.6395973086591643,1.7419011958526285 +0.6666505221506722,-0.4731244466104904 +0.15303657846409804,2.348669643858655 +0.8028170822942589,-0.9210774128117454 +0.004269649295520789,0.06763071874351734 +-0.0762506312307076,1.9983141706007914 +-0.44907241591765457,0.3282714909265546 +-0.016075178256929612,1.683769506638195 +0.743756224329923,0.47466497843253674 +0.28878828516754484,0.3301765417064899 +0.454802833094453,0.05338349356670062 +0.20452446988388845,1.932107625872469 +-0.5819152928925438,0.10232737974793138 +0.027637293992943124,0.3602877432909474 +0.43440146499867716,1.535226661707851 +0.6343863519112234,-0.21100326797660734 +-0.6354152304945068,0.42781689333545975 +0.8690493657736994,1.1542049282362952 +0.1945622355067004,2.191993453834893 +-0.778000323927563,0.7474585560572738 +1.8062423414032136,-2.689079765221871 +0.22389126562602668,2.3285471969464746 +0.34976904486661464,-0.0011914929810522348 +1.082589876405453,-1.0881601073860059 +0.7536730768529504,-0.5669030241931575 +-0.15260328766397002,1.108131425970832 +-0.6467649248439773,-0.004163530787149261 +1.2197948691878149,-1.1881802191289856 +0.16955672822099238,-0.30885583302409725 +-0.6930736737376727,-0.018522311092164512 +0.7515491447424002,1.3589639869546493 +0.6666505221506722,-0.4731244466104904 +0.6360839912414135,-0.453369184821506 +0.6382376126002293,-0.4480317228838947 +0.38965301730921265,0.8077886796753854 +-0.0762506312307076,1.9983141706007914 +0.7709454973613029,1.4537872972928625 +1.0779023270114874,0.3760819636809361 +-0.16030251880456134,0.6087729661931277 +0.19656974612526243,2.0716417990508265 +1.0145785100005498,0.6764512568892186 +0.20452446988388845,1.932107625872469 +-0.4511438855071423,1.7822794611289137 +0.027637293992943124,0.3602877432909474 +0.43440146499867716,1.535226661707851 +-0.7802752024617547,-0.31959262762850565 +1.0315835617574318,-0.8582210383523996 +0.8690493657736994,1.1542049282362952 +0.1945622355067004,2.191993453834893 +0.5362030405500754,1.4077838461829875 +-0.7102415948088086,0.33208988566355235 +1.1709737208815736,0.4188835012876011 +1.2129411514177215,-1.4314358843855173 +1.082589876405453,-1.0881601073860059 +0.7536730768529504,-0.5669030241931575 +-0.15260328766397002,1.108131425970832 +-0.88281035686051,0.1483586392387147 +1.2197948691878149,-1.1881802191289856 +0.16955672822099238,-0.30885583302409725 +-0.6930736737376727,-0.018522311092164512 +-0.17492985329762298,2.335122384796981 +0.6666505221506722,-0.4731244466104904 +0.6360839912414135,-0.453369184821506 +-0.9367991647215891,-0.5799731841242557 +0.4526531125904356,-0.44570651991793686 +-0.0762506312307076,1.9983141706007914 +0.5881512920479184,-0.6728930489590752 +1.486291461120073,-0.4354166184135988 +-0.16030251880456134,0.6087729661931277 +0.19656974612526243,2.0716417990508265 +0.6337552702317079,1.2555122790003033 +1.2309239284570948,-0.38496357694458844 +-0.4511438855071423,1.7822794611289137 +-0.047063700884379334,0.7083846594441054 +0.43440146499867716,1.535226661707851 +-0.7802752024617547,-0.31959262762850565 +0.2641597105469201,0.44786603425213367 +-0.1595592905795807,1.3906615290663207 +0.1945622355067004,2.191993453834893 +0.5362030405500754,1.4077838461829875 +-0.7102415948088086,0.33208988566355235 +1.1709737208815736,0.4188835012876011 +1.2129411514177215,-1.4314358843855173 +1.082589876405453,-1.0881601073860059 +0.7536730768529504,-0.5669030241931575 +-0.15260328766397002,1.108131425970832 +-0.88281035686051,0.1483586392387147 +1.2197948691878149,-1.1881802191289856 +-0.05417782029290788,-0.047936339948049 +-0.6930736737376727,-0.018522311092164512 +-0.17492985329762298,2.335122384796981 +1.0364763141163684,-0.9504452679762767 +0.219115894791895,-0.08847958869635913 +-0.9367991647215891,-0.5799731841242557 +0.4526531125904356,-0.44570651991793686 +-0.0762506312307076,1.9983141706007914 +0.5881512920479184,-0.6728930489590752 +1.486291461120073,-0.4354166184135988 +1.2910783051504415,-1.209768396146065 +0.19656974612526243,2.0716417990508265 +0.6337552702317079,1.2555122790003033 +-0.16810179345131154,0.6892786867107441 +-0.23566885151316067,0.9934043907239112 +-0.5290239065764876,1.6383597854625125 +0.43440146499867716,1.535226661707851 +-0.7802752024617547,-0.31959262762850565 +-0.22236656345352318,1.4715866560933226 +-0.1595592905795807,1.3906615290663207 +0.1945622355067004,2.191993453834893 +0.5362030405500754,1.4077838461829875 +-0.7102415948088086,0.33208988566355235 +1.1709737208815736,0.4188835012876011 +1.2129411514177215,-1.4314358843855173 +0.7211271140182107,0.03328491562261371 +0.5127357246812586,-0.5441889665850362 +0.3265510872912223,-0.36758190676219943 +-0.88281035686051,0.1483586392387147 +-0.0030618087374918446,1.5803172309347067 +1.0141675032631405,-0.7483583646873433 +1.3270143613262717,-1.670773476828578 +-0.47234221302789353,0.6644770074783513 +-0.12669542309580473,-0.5249779507126815 +-0.11622199093981656,1.5677483190865926 +-0.2866732103849353,1.4325997374917694 +0.8182522299937117,1.1434939437118052 +-0.5808301433951373,1.761164725522335 +-0.760869076847132,0.8494513881041669 +1.486291461120073,-0.4354166184135988 +1.2910783051504415,-1.209768396146065 +0.19656974612526243,2.0716417990508265 +-0.337155054264932,1.0968719583414093 +0.6487175015137207,-0.01810238792058705 +-0.23566885151316067,0.9934043907239112 +-0.5290239065764876,1.6383597854625125 +1.3444362904598697,-0.6070536252645801 +-0.7802752024617547,-0.31959262762850565 +-0.6909761114935127,1.0436982442491005 +-0.1595592905795807,1.3906615290663207 +0.1945622355067004,2.191993453834893 +0.5362030405500754,1.4077838461829875 +-0.7102415948088086,0.33208988566355235 +1.1709737208815736,0.4188835012876011 +1.2129411514177215,-1.4314358843855173 +0.7211271140182107,0.03328491562261371 +0.5127357246812586,-0.5441889665850362 +1.3508682992175767,0.10057193828012578 +-0.88281035686051,0.1483586392387147 +0.3866876670089884,1.8301449482657013 +1.158553554609077,-1.2842483024815772 +1.3270143613262717,-1.670773476828578 +-0.5800624003674053,0.669017730514047 +1.1344512672806117,-0.6870046631067953 +0.529399559476575,-0.6423628347127173 +-0.2866732103849353,1.4325997374917694 +0.8182522299937117,1.1434939437118052 +-0.5808301433951373,1.761164725522335 +-0.760869076847132,0.8494513881041669 +0.5330363005502511,-0.2969004693492949 +1.2910783051504415,-1.209768396146065 +0.7359251208431437,1.1380648826615198 +-0.735278614956279,0.5459649448191621 +0.16641530420781425,1.5549784404506979 +-0.23566885151316067,0.9934043907239112 +-0.5290239065764876,1.6383597854625125 +-0.33285572943358865,1.6097690270752545 +-0.7802752024617547,-0.31959262762850565 +0.3363640284782574,1.0479904941311493 +-0.1595592905795807,1.3906615290663207 +-0.7702876355062833,1.3358857516644984 +0.5362030405500754,1.4077838461829875 +-0.7102415948088086,0.33208988566355235 +1.1709737208815736,0.4188835012876011 +1.2129411514177215,-1.4314358843855173 +-0.21302367085070203,1.6066363717571113 +0.5127357246812586,-0.5441889665850362 +1.4506792920680966,-1.4533627237405753 +-0.4874157868184006,1.1665009338271946 +0.3866876670089884,1.8301449482657013 +-0.3044174152613668,1.183275969637104 +1.3270143613262717,-1.670773476828578 +1.2190196958347093,-0.31182386986264443 +-0.6550616316521086,0.7393783520872 +0.529399559476575,-0.6423628347127173 +1.3580150114346945,-1.4216746976214987 +0.53489272592124,1.5711218856759435 +0.737973531060388,1.5141982543671102 +-0.760869076847132,0.8494513881041669 +0.4886708067156961,0.423497669948939 +1.0428160129695647,0.1617042716460113 +0.7359251208431437,1.1380648826615198 +-0.24319192872977113,-0.03573712572790322 +0.16641530420781425,1.5549784404506979 +-0.23566885151316067,0.9934043907239112 +-0.5290239065764876,1.6383597854625125 +0.8057618870184806,0.4736740888350486 +-0.7802752024617547,-0.31959262762850565 +-0.007644090649552848,0.412884654299479 +0.3804655733535166,1.3508388502940232 +1.4837562060711276,-2.1224842639164514 +1.2696608512154453,-0.8422976522936451 +-0.4013575237679121,2.3452091092103404 +0.31350181147937894,1.7129249431418105 +1.2129411514177215,-1.4314358843855173 +-0.21302367085070203,1.6066363717571113 +0.5127357246812586,-0.5441889665850362 +1.4506792920680966,-1.4533627237405753 +-0.4874157868184006,1.1665009338271946 +0.3866876670089884,1.8301449482657013 +0.48244598800943783,0.7389438447342065 +0.8219263566301307,-0.9086314919452115 +1.2190196958347093,-0.31182386986264443 +0.11966498353639049,1.8094926047465467 +0.7415999661552233,-0.20675350753054503 +1.3580150114346945,-1.4216746976214987 +0.53489272592124,1.5711218856759435 +0.737973531060388,1.5141982543671102 +-0.760869076847132,0.8494513881041669 +1.540392908830821,-1.2782911120275013 +-0.5200396300566205,1.0185113571624143 +0.7359251208431437,1.1380648826615198 +-0.24319192872977113,-0.03573712572790322 +0.07133803450307527,1.451352395758872 +0.802325743256573,-0.6585394401127218 +-0.5290239065764876,1.6383597854625125 +0.6325039164154125,0.8958325020804304 +-0.7802752024617547,-0.31959262762850565 +1.4777744012036458,-1.8898351063062517 +0.3804655733535166,1.3508388502940232 +1.4837562060711276,-2.1224842639164514 +0.6718654838267109,-0.6803720059580657 +-0.4013575237679121,2.3452091092103404 +-0.7002415003709077,0.9566225505227612 +1.2129411514177215,-1.4314358843855173 +-0.21302367085070203,1.6066363717571113 +0.5127357246812586,-0.5441889665850362 +1.4506792920680966,-1.4533627237405753 +-0.4874157868184006,1.1665009338271946 +-0.791093830657823,0.8803018912081875 +-0.16883239183897547,1.4215192201590163 +0.303932101642179,1.2888434116291596 +0.9327501724886373,0.7355268872395024 +0.11966498353639049,1.8094926047465467 +0.7714147416497317,-0.3600981538523418 +1.3580150114346945,-1.4216746976214987 +-0.12320366627218624,0.6253847598661535 +0.737973531060388,1.5141982543671102 +1.1457346010760987,0.25845222118485855 +1.540392908830821,-1.2782911120275013 +-0.5200396300566205,1.0185113571624143 +0.7359251208431437,1.1380648826615198 +0.9087009599966424,-0.42988416064473567 +0.07133803450307527,1.451352395758872 +0.802325743256573,-0.6585394401127218 +0.22004628912997598,0.23464453525263285 +-0.6843679478905327,0.8816547970107307 +-0.7802752024617547,-0.31959262762850565 +0.31089890182519403,1.0761158785900393 +0.3804655733535166,1.3508388502940232 +-0.2074431464288552,0.3103845467818134 +0.6718654838267109,-0.6803720059580657 +1.342882369909837,-1.4474919766852505 +-0.7002415003709077,0.9566225505227612 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +0.5127357246812586,-0.5441889665850362 +0.696624300968828,0.6702993483689029 +-0.4874157868184006,1.1665009338271946 +-0.3982005308892142,0.7523247396028755 +-0.16883239183897547,1.4215192201590163 +-0.431982019841878,-0.1001111890099119 +0.9327501724886373,0.7355268872395024 +0.11966498353639049,1.8094926047465467 +0.7714147416497317,-0.3600981538523418 +1.3580150114346945,-1.4216746976214987 +-0.5108611932679166,0.8896786981082645 +0.737973531060388,1.5141982543671102 +1.5922189668369542,-1.3248068965211084 +1.540392908830821,-1.2782911120275013 +-0.5200396300566205,1.0185113571624143 +0.7359251208431437,1.1380648826615198 +1.151073172785002,-0.24365815860704765 +0.1448438101714615,2.050233815224754 +0.802325743256573,-0.6585394401127218 +0.6777138015709525,1.4557952788004473 +0.610546313502653,1.076866812763275 +-0.7802752024617547,-0.31959262762850565 +0.31089890182519403,1.0761158785900393 +0.3804655733535166,1.3508388502940232 +0.3363467595880479,1.7863360568178275 +1.1105271898378546,0.9847005134643096 +-0.18869033508074745,0.08109521112038637 +-0.7002415003709077,0.9566225505227612 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +0.5495814409509454,1.2137961952779632 +0.039153440485090854,0.9006284690277379 +0.7925685872511965,-0.5131280640736158 +0.0658471286118697,0.9301883404211378 +-0.16883239183897547,1.4215192201590163 +0.7605803594749548,1.3296712463480864 +-0.3566411917637936,2.259679632903972 +0.11966498353639049,1.8094926047465467 +0.7714147416497317,-0.3600981538523418 +1.242423087386121,-1.5879485953698058 +0.5285274840527985,0.14723672969477597 +0.5369427574466248,1.7267065712434762 +1.5922189668369542,-1.3248068965211084 +-1.136525321415806,-0.09397721842045223 +-0.5200396300566205,1.0185113571624143 +0.919196604914919,0.5652604161657775 +1.151073172785002,-0.24365815860704765 +0.1448438101714615,2.050233815224754 +0.802325743256573,-0.6585394401127218 +0.3895812022748029,1.6090250509382504 +0.610546313502653,1.076866812763275 +-0.7802752024617547,-0.31959262762850565 +0.31089890182519403,1.0761158785900393 +0.3804655733535166,1.3508388502940232 +0.3363467595880479,1.7863360568178275 +-0.6603276431008878,-0.2216437450943309 +-0.18869033508074745,0.08109521112038637 +-0.7002415003709077,0.9566225505227612 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +0.5495814409509454,1.2137961952779632 +-0.09965380743127816,1.5569499855976976 +0.7925685872511965,-0.5131280640736158 +0.5645530693789402,1.3657044770502709 +-0.5060121828888304,0.009986730713937797 +0.7605803594749548,1.3296712463480864 +-0.28755039143480665,1.0158962999261838 +0.11966498353639049,1.8094926047465467 +0.6865954959817342,0.674708787033081 +1.242423087386121,-1.5879485953698058 +0.1887445889625457,1.7368023521341176 +-0.8265245379278837,0.48542858512898623 +1.5922189668369542,-1.3248068965211084 +-1.136525321415806,-0.09397721842045223 +-0.26208928989923125,0.14509844518936243 +0.16705500313913949,2.389485448852072 +-0.3653303605838274,0.5371166545175377 +0.1448438101714615,2.050233815224754 +0.802325743256573,-0.6585394401127218 +-0.8076763119942296,0.32840303567687246 +0.5556329052104774,1.511724543696776 +-0.049012916862190725,2.202532398903881 +0.3319728119739508,-0.661475011040713 +1.2961602303960953,-0.7500740390881871 +0.3609279762675382,1.6663228295520098 +-0.6603276431008878,-0.2216437450943309 +-0.18869033508074745,0.08109521112038637 +-0.7002415003709077,0.9566225505227612 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +0.23904017092165342,1.0349773682437986 +0.017035380172740977,0.30536085239665145 +-0.7189651392641999,1.1761178837399264 +-0.711499060625069,0.6180609604154539 +0.12354690906212745,2.354406660614174 +0.7605803594749548,1.3296712463480864 +-0.28755039143480665,1.0158962999261838 +0.11966498353639049,1.8094926047465467 +0.6865954959817342,0.674708787033081 +1.242423087386121,-1.5879485953698058 +0.8065749851694183,-0.5516203011715612 +-0.08364546816987123,1.977223385814415 +1.5922189668369542,-1.3248068965211084 +-1.136525321415806,-0.09397721842045223 +0.30877155367624254,0.15594540674386254 +0.6715303164504761,0.19844285844430232 +0.29315679653483323,0.9825779951381862 +0.1448438101714615,2.050233815224754 +0.45349872388274637,-0.5882866980965333 +0.9032350976863452,0.8525259476112776 +-0.33120995726857466,1.5240106325248302 +-0.061320865175459094,0.40446237609087954 +1.5394280895282157,-0.6197388368275807 +1.2961602303960953,-0.7500740390881871 +0.3609279762675382,1.6663228295520098 +-0.10357041237274349,1.561956471059856 +0.7223075353202381,0.07853453283717055 +-0.7002415003709077,0.9566225505227612 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +-0.8075370009808456,0.3571484750264183 +0.33888555197797066,-0.7090869950155604 +1.1632409222280695,0.029086341004690874 +-0.711499060625069,0.6180609604154539 +0.6138516211334114,0.43507513180782664 +0.7605803594749548,1.3296712463480864 +-0.28755039143480665,1.0158962999261838 +-0.027374481750982227,1.9294570646361933 +-0.49404081624868196,-0.05060545332639754 +1.348211425197416,-1.954958992747892 +1.4916387862021414,-1.1499831734027919 +-0.08364546816987123,1.977223385814415 +1.5922189668369542,-1.3248068965211084 +-1.136525321415806,-0.09397721842045223 +0.30877155367624254,0.15594540674386254 +-0.11493124796742749,1.0944840940410563 +0.29315679653483323,0.9825779951381862 +0.1448438101714615,2.050233815224754 +0.45349872388274637,-0.5882866980965333 +1.5800377580266356,-1.2491275784957083 +-0.33120995726857466,1.5240106325248302 +-0.061320865175459094,0.40446237609087954 +1.5394280895282157,-0.6197388368275807 +1.2961602303960953,-0.7500740390881871 +0.3609279762675382,1.6663228295520098 +0.6143659161667288,1.339018733895423 +0.12443256198032229,1.3105656323218593 +0.8915138362634347,1.676199794617322 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +-0.8075370009808456,0.3571484750264183 +-0.04981157716205209,0.7223388501100099 +0.46719025331916897,-0.2312059444784771 +0.09050548458017982,0.9745652505435156 +0.5715603278717658,0.9127490335882599 +0.7605803594749548,1.3296712463480864 +-0.20393012030285365,2.4599406398694597 +-0.027374481750982227,1.9294570646361933 +-0.29849154887418305,1.9816782885621302 +1.348211425197416,-1.954958992747892 +1.4916387862021414,-1.1499831734027919 +-0.08364546816987123,1.977223385814415 +1.5922189668369542,-1.3248068965211084 +-1.136525321415806,-0.09397721842045223 +0.30877155367624254,0.15594540674386254 +-0.11493124796742749,1.0944840940410563 +0.29315679653483323,0.9825779951381862 +0.1448438101714615,2.050233815224754 +1.1938338888125117,0.1440360053914307 +-0.4480338521591736,0.904293661505978 +0.666959939712901,1.4390198289790426 +0.8346410381009259,0.39151869241943105 +1.4428520223447314,-0.24157984489181095 +1.1927005605842975,0.7889711931964583 +0.3609279762675382,1.6663228295520098 +-0.13446996189702135,2.0441357794442654 +0.12443256198032229,1.3105656323218593 +0.509741970242916,-0.389032652125994 +0.01086637007636948,-0.013059740208104579 +-0.5110857930260454,0.4443509309055964 +-0.8075370009808456,0.3571484750264183 +-0.04981157716205209,0.7223388501100099 +0.46719025331916897,-0.2312059444784771 +0.2788495920518239,1.033531660361003 +1.4922454569651902,-0.585851607672949 +0.7605803594749548,1.3296712463480864 +-0.20393012030285365,2.4599406398694597 +-0.4393207873838739,-0.1169913517933655 +-0.29849154887418305,1.9816782885621302 +1.348211425197416,-1.954958992747892 +1.4916387862021414,-1.1499831734027919 +-0.08364546816987123,1.977223385814415 +1.5922189668369542,-1.3248068965211084 +-1.136525321415806,-0.09397721842045223 +1.0506915367556608,0.11267272687440144 +0.7496929847005389,-0.7713604738890419 +-0.18215280498779352,1.0023272887008665 +0.8883632583182393,-0.3041832263935744 +-0.5784582846667417,0.14104276006088792 +-0.4480338521591736,0.904293661505978 +0.666959939712901,1.4390198289790426 +0.4250373701894733,1.9713196669618864 +-0.11044043457606051,0.3180706487967808 +1.1927005605842975,0.7889711931964583 +0.3609279762675382,1.6663228295520098 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +0.509741970242916,-0.389032652125994 +1.1710804541729667,0.7811206643243781 +-0.5110857930260454,0.4443509309055964 +-0.8075370009808456,0.3571484750264183 +-0.3243141584849304,-0.30017109642389117 +0.46719025331916897,-0.2312059444784771 +-0.42639168630174956,0.6230420417438025 +-0.07636025091611365,-0.02352098195461827 +0.26409777169797005,2.2339993045269266 +-0.5102687720912787,-0.04614378675019182 +0.7138489063389228,-0.4747648695914112 +-0.29849154887418305,1.9816782885621302 +1.348211425197416,-1.954958992747892 +1.3112549883211417,-0.38867162565930824 +-0.7794496368718207,0.7436542789954481 +0.7179132985689429,-0.8037663120930904 +1.1813180338517613,0.2128064570507161 +0.2717257554196131,-0.30032676515353085 +0.7496929847005389,-0.7713604738890419 +-0.18215280498779352,1.0023272887008665 +0.8883632583182393,-0.3041832263935744 +-0.2315438512810211,1.362680873297349 +-0.527805760642217,-0.2092096577915276 +0.666959939712901,1.4390198289790426 +0.4250373701894733,1.9713196669618864 +-0.16094256694129833,0.7633913226458268 +1.1927005605842975,0.7889711931964583 +0.4260037459219853,1.9244150709105317 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +0.509741970242916,-0.389032652125994 +1.1710804541729667,0.7811206643243781 +0.8717582905491835,1.2159985764022108 +-0.020699879040282254,0.6186939067027102 +-0.3243141584849304,-0.30017109642389117 +0.46719025331916897,-0.2312059444784771 +-0.42639168630174956,0.6230420417438025 +0.4221028617127678,1.3193059949531536 +-0.22261550787031886,1.8458115898342315 +1.472994519834086,-0.5801537117358284 +-0.41375771479223555,1.2207477386646304 +-0.29849154887418305,1.9816782885621302 +1.348211425197416,-1.954958992747892 +0.4347552427157545,-0.020609975468280917 +-0.7794496368718207,0.7436542789954481 +0.7179132985689429,-0.8037663120930904 +1.1813180338517613,0.2128064570507161 +0.2717257554196131,-0.30032676515353085 +0.300571254805592,-0.6066773524606829 +1.4880207746305247,-1.7745403500247905 +0.8883632583182393,-0.3041832263935744 +0.5851101409807222,0.39513471772159 +-0.8720500176608195,0.020946188398878116 +0.666959939712901,1.4390198289790426 +-0.5657171253847195,-0.14443902952540472 +-0.2937736664524351,1.0659305546954887 +1.1927005605842975,0.7889711931964583 +0.4260037459219853,1.9244150709105317 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +0.509741970242916,-0.389032652125994 +1.1710804541729667,0.7811206643243781 +0.8717582905491835,1.2159985764022108 +0.6185215273902884,-0.4065281595949899 +-0.3243141584849304,-0.30017109642389117 +0.46719025331916897,-0.2312059444784771 +-0.42639168630174956,0.6230420417438025 +0.4221028617127678,1.3193059949531536 +0.23601386582953232,-0.43574013964478747 +0.181973234563653,-0.2599646075435841 +-0.41375771479223555,1.2207477386646304 +-0.29849154887418305,1.9816782885621302 +1.348211425197416,-1.954958992747892 +0.4347552427157545,-0.020609975468280917 +-0.7794496368718207,0.7436542789954481 +0.8390996556898427,-1.1371941130183059 +1.1813180338517613,0.2128064570507161 +0.2717257554196131,-0.30032676515353085 +1.1306229506017524,-0.1969427960860647 +1.4880207746305247,-1.7745403500247905 +0.8883632583182393,-0.3041832263935744 +0.8477497417893031,0.48362073287329665 +-0.8720500176608195,0.020946188398878116 +0.666959939712901,1.4390198289790426 +-0.5657171253847195,-0.14443902952540472 +-0.2937736664524351,1.0659305546954887 +1.1927005605842975,0.7889711931964583 +1.590043571359757,-1.810043747510181 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +-0.13013836292632697,1.5547228402336257 +1.1710804541729667,0.7811206643243781 +0.5306363186290219,-0.7458278677704882 +1.091152843106359,0.48642318632176407 +-0.3243141584849304,-0.30017109642389117 +0.46719025331916897,-0.2312059444784771 +2.3189238767672933,-4.020030190114723 +-0.21949579386639617,-0.3390154745028251 +0.23601386582953232,-0.43574013964478747 +0.181973234563653,-0.2599646075435841 +-0.41375771479223555,1.2207477386646304 +-0.29849154887418305,1.9816782885621302 +0.9689144799894148,-0.624468794674603 +0.4347552427157545,-0.020609975468280917 +0.9382972405877146,1.0570653218691333 +-0.25468536715638235,2.441523133953132 +-0.36957553964149403,0.2792575766284601 +0.2717257554196131,-0.30032676515353085 +0.30469619297770456,1.1871488537000874 +1.4880207746305247,-1.7745403500247905 +0.8883632583182393,-0.3041832263935744 +0.32727331613901905,1.805606561346485 +-0.8720500176608195,0.020946188398878116 +0.6828808072611056,-0.374677012964746 +-0.5657171253847195,-0.14443902952540472 +0.5473111920547762,0.18149987856238664 +0.00043174530934003696,1.1236747320270282 +0.49540505642337995,0.4854105894973906 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +1.5545509052069173,-0.3100319160790347 +-0.5766174621378474,0.5167222061016175 +0.2953946482928238,0.003412634662583791 +1.091152843106359,0.48642318632176407 +0.8814523711204038,-1.104209290959166 +0.46719025331916897,-0.2312059444784771 +1.0610957160658743,0.4729676366027611 +-0.14379624327465834,0.387743144561697 +0.11290996813777135,-0.1252845227718694 +0.181973234563653,-0.2599646075435841 +-0.41375771479223555,1.2207477386646304 +0.5640912844297077,1.6513924902963808 +0.9689144799894148,-0.624468794674603 +1.1583149997582494,0.07363648496673358 +0.9382972405877146,1.0570653218691333 +-0.7663060406510832,1.3535026316196428 +-0.36957553964149403,0.2792575766284601 +0.2717257554196131,-0.30032676515353085 +1.0841242911868236,-1.0048557888297256 +1.4880207746305247,-1.7745403500247905 +0.2999116594731986,2.032453075813098 +-0.6334343680045866,-0.055971926884967105 +-0.8720500176608195,0.020946188398878116 +0.6828808072611056,-0.374677012964746 +1.6698781136861827,-1.178950287017678 +1.392830084030244,-1.961731851340192 +-0.7022033965729945,1.1727490009419852 +0.49540505642337995,0.4854105894973906 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +-0.783266028270128,1.697147282909762 +-0.5766174621378474,0.5167222061016175 +-0.7377660089701266,0.48412349757293927 +1.091152843106359,0.48642318632176407 +0.8814523711204038,-1.104209290959166 +0.5518658451832108,-0.4663558822485133 +0.6695179669538769,0.9416158225207061 +0.3686565248066751,1.3942945111618337 +-0.9329934454803455,0.3156562233368311 +0.181973234563653,-0.2599646075435841 +-0.41375771479223555,1.2207477386646304 +-0.509804894096402,0.9179763834184195 +0.9689144799894148,-0.624468794674603 +-0.37596694353561383,1.4143502096035512 +0.9382972405877146,1.0570653218691333 +1.0362594727949734,0.5180176286174262 +-0.2860867721071214,0.6900216599527127 +0.2717257554196131,-0.30032676515353085 +1.0841242911868236,-1.0048557888297256 +0.5918182217253397,0.15827478426763109 +1.42982720327451,-1.000371417370115 +0.8589785872446646,-0.5086188352778322 +-0.8720500176608195,0.020946188398878116 +0.7791236188024405,1.684155329151719 +-0.3453091149287994,1.809166132133998 +1.392830084030244,-1.961731851340192 +0.2870755228869936,-0.4236962790763022 +0.49540505642337995,0.4854105894973906 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +0.28544210703579703,2.4657619947785365 +1.5854486257129996,-0.6669647513003358 +-0.7377660089701266,0.48412349757293927 +-0.06151319218385626,0.2783244293241084 +-0.9705095051633528,0.7481051954265239 +0.5518658451832108,-0.4663558822485133 +1.1397836792937857,-1.530662009566325 +0.3686565248066751,1.3942945111618337 +0.6086673077863136,-0.1933411494193873 +0.2302267411484754,-0.0904956761383246 +-0.6599256125266371,1.2242972722558818 +-0.509804894096402,0.9179763834184195 +-0.45429186783836917,1.5628199767901974 +1.0667220380329039,0.7644531500079574 +0.9382972405877146,1.0570653218691333 +1.0362594727949734,0.5180176286174262 +1.0925388694952172,0.9498990291332492 +0.2717257554196131,-0.30032676515353085 +1.0841242911868236,-1.0048557888297256 +1.6345992659996602,-1.1370839854911114 +-0.2688557182899189,0.579439446083407 +0.8589785872446646,-0.5086188352778322 +0.3728627660366252,1.7536129058688237 +1.0519179676713553,0.9005674734033531 +-0.3453091149287994,1.809166132133998 +0.5111771395534086,1.3079378024576578 +0.2870755228869936,-0.4236962790763022 +1.2798968650831528,-1.2526992557830068 +-0.13446996189702135,2.0441357794442654 +-0.6455739025543217,0.07719356444818834 +0.28544210703579703,2.4657619947785365 +-1.025927107556821,0.22414960574336593 +-0.7377660089701266,0.48412349757293927 +1.4165302024547486,-1.024994041388208 +-0.9705095051633528,0.7481051954265239 +1.3729394089046445,-0.41801240558964015 +0.8633719831847326,0.9931195392920283 +0.6404642209200793,1.8059751958494799 +0.45112617984911724,-0.4908274462551007 +1.1391575902111124,0.7565574323513309 +0.5296567263878844,1.5774775221549975 +-0.21842252067271045,0.995757858773747 +-0.45429186783836917,1.5628199767901974 +1.0667220380329039,0.7644531500079574 +0.9382972405877146,1.0570653218691333 +1.0362594727949734,0.5180176286174262 +1.385017096659596,-1.6514331818474308 +0.2717257554196131,-0.30032676515353085 +1.0841242911868236,-1.0048557888297256 +1.6345992659996602,-1.1370839854911114 +-0.20438162788809838,0.29470047128734056 +0.8589785872446646,-0.5086188352778322 +0.3728627660366252,1.7536129058688237 +1.0519179676713553,0.9005674734033531 +-0.3453091149287994,1.809166132133998 +0.8214143093888432,0.3647374940399728 +-0.018953735992245258,0.30639197642687366 +1.3033865815321155,-0.18545665573613535 +-0.13446996189702135,2.0441357794442654 +0.4223291353840479,0.43126970472154436 +1.201433155415087,-0.5641771943663808 +-1.025927107556821,0.22414960574336593 +-0.7377660089701266,0.48412349757293927 +1.4165302024547486,-1.024994041388208 +0.47252879486334076,0.5202934301325591 +1.3729394089046445,-0.41801240558964015 +0.3593512831273141,0.4115908402540773 +0.6404642209200793,1.8059751958494799 +1.0522196937414234,-0.67647376452962 +1.1391575902111124,0.7565574323513309 +-0.6657025313980299,0.9463668178312856 +-0.629670795455643,0.6043054165808502 +-0.45429186783836917,1.5628199767901974 +1.4277830750211764,-1.8146881427742723 +1.3609297894120322,-1.3104416654590767 +1.0362594727949734,0.5180176286174262 +1.385017096659596,-1.6514331818474308 +0.2717257554196131,-0.30032676515353085 +-0.40404363914927877,0.8597630295696621 +-0.39396732380212984,2.253841359988296 +-0.20438162788809838,0.29470047128734056 +0.8250342332574323,0.9248561016382473 +0.3728627660366252,1.7536129058688237 +1.0495319404867232,-0.4591735590268805 +-0.3453091149287994,1.809166132133998 +0.8214143093888432,0.3647374940399728 +0.8276604777018473,-0.6111044222230053 +-0.6610054962042847,0.8799985920864558 +-0.13446996189702135,2.0441357794442654 +0.22244048561532423,1.4795013182827967 +-0.09468146206862799,0.25258563677643775 +-1.025927107556821,0.22414960574336593 +1.0257856069259699,-1.1929264168804208 +1.4165302024547486,-1.024994041388208 +0.47252879486334076,0.5202934301325591 +1.3729394089046445,-0.41801240558964015 +0.3593512831273141,0.4115908402540773 +0.6404642209200793,1.8059751958494799 +0.24069161509442066,-0.10324565476250341 +1.1391575902111124,0.7565574323513309 +-0.012623775369619228,1.9908108610507047 +-0.1689849034269666,-0.10107251743620518 +-0.45429186783836917,1.5628199767901974 +1.4277830750211764,-1.8146881427742723 +1.560266930978047,-1.0724681861050902 +1.68184952608451,-1.2972933672798679 +1.385017096659596,-1.6514331818474308 +0.2717257554196131,-0.30032676515353085 +0.4589122873929885,-0.16333829749511858 +0.8792526961572803,0.12540202993925886 +-0.20438162788809838,0.29470047128734056 +-0.01826919998617854,1.532960736967985 +0.3728627660366252,1.7536129058688237 +1.354185455257093,-1.1584672395148161 +-0.10303731931526106,0.7038137626586938 +1.3783806321662664,-0.9650870675867522 +0.8276604777018473,-0.6111044222230053 +-0.6610054962042847,0.8799985920864558 +-0.13446996189702135,2.0441357794442654 +0.22244048561532423,1.4795013182827967 +1.2538005064425688,-0.780169615068334 +0.8844570394882555,-0.867732134638496 +1.0257856069259699,-1.1929264168804208 +0.6536117334628305,1.7169316655606617 +0.47252879486334076,0.5202934301325591 +-0.08866912352016043,2.1379182521802464 +-0.7187991870953941,1.1462783619810666 +0.6404642209200793,1.8059751958494799 +0.24069161509442066,-0.10324565476250341 +1.1391575902111124,0.7565574323513309 +-0.012623775369619228,1.9908108610507047 +-0.1689849034269666,-0.10107251743620518 +-0.45429186783836917,1.5628199767901974 +0.03758383793584033,-0.14556324797265396 +0.021667632413574736,1.7291064809477985 +1.4475356048213754,-0.01596213254507628 +1.385017096659596,-1.6514331818474308 +0.2717257554196131,-0.30032676515353085 +0.4589122873929885,-0.16333829749511858 +0.8792526961572803,0.12540202993925886 +0.6243265311424462,1.3184498448428685 +-0.01826919998617854,1.532960736967985 +-0.32502872880184386,2.383950323065615 +1.354185455257093,-1.1584672395148161 +-0.10303731931526106,0.7038137626586938 +-0.7644880007524328,0.6854235021217066 +0.8276604777018473,-0.6111044222230053 +-0.6610054962042847,0.8799985920864558 +-0.13446996189702135,2.0441357794442654 +-0.5151054988020263,0.6251676391196953 +1.2808542587383238,-0.8598896766024323 +0.8844570394882555,-0.867732134638496 +-0.7182371155617235,1.03490711885486 +0.6536117334628305,1.7169316655606617 +0.2751410115142433,0.3017021796456798 +-0.08866912352016043,2.1379182521802464 +-0.7187991870953941,1.1462783619810666 +0.6404642209200793,1.8059751958494799 +-0.7168860252008514,0.7960263850362651 +1.1391575902111124,0.7565574323513309 +-0.09624503089795222,0.05860374112482522 +-0.1689849034269666,-0.10107251743620518 +-0.45429186783836917,1.5628199767901974 +0.03758383793584033,-0.14556324797265396 +0.021667632413574736,1.7291064809477985 +0.979852845596739,1.1452523265969843 +1.385017096659596,-1.6514331818474308 +0.2717257554196131,-0.30032676515353085 +1.616013851560628,-1.1591049068807024 +1.1116223761915083,0.736884423228254 +0.6243265311424462,1.3184498448428685 +1.2363017077975236,-1.4512725524184702 +-0.39762551439740906,0.6889972528304273 +1.354185455257093,-1.1584672395148161 +1.460410029536884,-1.5246579865346783 +-0.18842001372863953,-0.3750493063066409 +0.6686986429943891,-0.15582368474617847 +-0.6610054962042847,0.8799985920864558 +-0.13446996189702135,2.0441357794442654 +-0.5412500456712609,0.526483547102415 +1.2808542587383238,-0.8598896766024323 +-0.22269597244387684,-0.051827471288905025 +-0.4307779695442077,-0.47173600648216507 +0.6536117334628305,1.7169316655606617 +0.2751410115142433,0.3017021796456798 +-0.08866912352016043,2.1379182521802464 +-0.37768791193848394,0.31609879179546685 +0.6404642209200793,1.8059751958494799 +-0.7552241749836239,0.3309287737820922 +1.1391575902111124,0.7565574323513309 +-0.8094880724336098,1.1374632710404389 +-0.5598910164143176,1.2911537980904888 +1.2882643648796168,-0.8388413332314116 +-0.6136759654503463,0.592279286800463 +0.021667632413574736,1.7291064809477985 +0.30130151171276576,-0.12802312531221605 +1.385017096659596,-1.6514331818474308 +0.2717257554196131,-0.30032676515353085 +0.8460031982860079,0.5731503212658273 +-0.19707958845809098,0.5705436755616649 +0.6243265311424462,1.3184498448428685 +-0.625230679722908,0.8226404657184299 +1.5138886442556772,-0.7991458220569714 +1.354185455257093,-1.1584672395148161 +1.460410029536884,-1.5246579865346783 +0.0947458975294665,-0.18144004176076634 +0.22881841665070712,0.4087417871923118 +-0.6610054962042847,0.8799985920864558 +-0.13446996189702135,2.0441357794442654 +0.14573323521104808,2.1529754131101564 +-0.1997933957966762,0.6596230006452066 +-0.22269597244387684,-0.051827471288905025 +0.8714865430950913,0.49486151237878895 +0.6536117334628305,1.7169316655606617 +0.2751410115142433,0.3017021796456798 +-0.08866912352016043,2.1379182521802464 +-0.37768791193848394,0.31609879179546685 +0.6404642209200793,1.8059751958494799 +-0.7552241749836239,0.3309287737820922 +-0.7272532430726129,0.35588450752144374 +0.43769953934441086,1.4527650096713887 +0.44663569345393317,0.10502145153641829 +1.2882643648796168,-0.8388413332314116 +-0.6136759654503463,0.592279286800463 +0.021667632413574736,1.7291064809477985 +0.9053349539328485,1.121611511999356 +1.385017096659596,-1.6514331818474308 +-0.056146775880333455,-0.18508379233777916 +0.8460031982860079,0.5731503212658273 +-0.4733885965016867,1.4672559151297988 +0.5601214088613837,-0.3140102608676424 +-0.625230679722908,0.8226404657184299 +0.010942222449170425,0.12232250482725163 +-0.12014346950293141,0.30753102538153254 +1.460410029536884,-1.5246579865346783 +0.9801563114749864,0.035955889534547536 +0.15764189081175173,1.3625536860386076 +-0.6610054962042847,0.8799985920864558 +-0.13446996189702135,2.0441357794442654 +-0.21285775592619754,1.7490391469896687 +1.2680204652907359,-0.4595703849869943 +0.726380845543688,-0.5729719547380453 +0.8714865430950913,0.49486151237878895 +0.6536117334628305,1.7169316655606617 +0.2751410115142433,0.3017021796456798 +1.6879895252114736,-1.8980496880292992 +-0.37768791193848394,0.31609879179546685 +0.6404642209200793,1.8059751958494799 +-0.7552241749836239,0.3309287737820922 +1.265395178645548,0.3580264967285419 +0.43769953934441086,1.4527650096713887 +-0.6359739587747574,0.16193102521501224 +1.2882643648796168,-0.8388413332314116 +-0.6136759654503463,0.592279286800463 +0.021667632413574736,1.7291064809477985 +0.1915068827308875,2.143598876482239 +1.385017096659596,-1.6514331818474308 +0.8886000775211613,1.4786749597825226 +0.8460031982860079,0.5731503212658273 +0.8014395484575891,-0.3304527008341131 +0.5601214088613837,-0.3140102608676424 +-0.625230679722908,0.8226404657184299 +0.9547094987680695,-0.9410112839061542 +-0.12014346950293141,0.30753102538153254 +0.5984377519960471,1.4894540433050474 +0.8013958942439071,0.6818351885884888 +0.15764189081175173,1.3625536860386076 +-0.6610054962042847,0.8799985920864558 +-0.031439619790731066,0.7058859143955951 +1.2590720618668083,-0.8566123425838357 +1.2680204652907359,-0.4595703849869943 +-0.5179220657745369,2.004793239010856 +-0.4941455066191496,0.6379337006653789 +0.6536117334628305,1.7169316655606617 +-0.5614552286917474,-0.2566327144709697 +1.6879895252114736,-1.8980496880292992 +0.20553905109323545,2.0672160082453663 +1.628673108736594,-1.509313612553432 +-0.7552241749836239,0.3309287737820922 +1.265395178645548,0.3580264967285419 +-0.26443902213574694,-0.05126242478577664 +0.37007266082952933,-0.08685336274665267 +-0.05604129743328787,1.9037909536183706 +1.407806226161067,-1.6289718361417878 +0.7343171699495931,-0.7402941984158176 +0.1915068827308875,2.143598876482239 +0.30124138420309393,0.7173995212558291 +-1.0012982895911653,-0.3584819106614756 +1.3226984056624047,-1.8024081014567352 +-0.23959518402885233,1.4939184925790188 +0.762922118368357,-0.3226161097396014 +-0.625230679722908,0.8226404657184299 +0.9547094987680695,-0.9410112839061542 +1.0548112803147816,-0.6434027031961072 +-0.09960053458622509,0.27881266517186565 +0.7966535329215321,0.6757334606455457 +-0.3586608476629348,2.081684606995581 +0.49831875869784104,1.9422610875464696 +0.9019372972684039,0.6639230393388218 +-0.01305074193559519,1.8327779085317824 +1.0966889786192877,-0.6479762097590798 +-0.5179220657745369,2.004793239010856 +0.31799877131284854,0.16006345037154734 +0.6536117334628305,1.7169316655606617 +-0.5614552286917474,-0.2566327144709697 +1.6879895252114736,-1.8980496880292992 +0.20553905109323545,2.0672160082453663 +1.628673108736594,-1.509313612553432 +-0.7552241749836239,0.3309287737820922 +1.265395178645548,0.3580264967285419 +1.7786298730282684,-1.5778701496125096 +0.37007266082952933,-0.08685336274665267 +-0.19826729712410218,1.6846072091439939 +0.32775062176213066,2.204299621490223 +0.4406025729136588,-0.11482882716112985 +0.1915068827308875,2.143598876482239 +0.00921283908660836,0.8763942772160929 +-1.0012982895911653,-0.3584819106614756 +-0.5512504952616595,1.4292671819311662 +-0.24902099248491466,1.3473917586783313 +0.762922118368357,-0.3226161097396014 +-0.625230679722908,0.8226404657184299 +-0.49552364775706925,1.437084396645193 +1.0548112803147816,-0.6434027031961072 +-0.09960053458622509,0.27881266517186565 +0.7966535329215321,0.6757334606455457 +-0.3586608476629348,2.081684606995581 +-0.42594663029418606,1.8854799238018811 +1.1549561646173925,-1.1703521399243308 +-0.5666873990403599,-0.022415039128913766 +1.0966889786192877,-0.6479762097590798 +-0.5179220657745369,2.004793239010856 +0.5220909848908231,-0.1896965104926217 +0.7618921522657065,1.5702865719889596 +-0.5614552286917474,-0.2566327144709697 +1.6879895252114736,-1.8980496880292992 +0.20553905109323545,2.0672160082453663 +1.628673108736594,-1.509313612553432 +-0.7552241749836239,0.3309287737820922 +0.45519633712295415,0.7438641794453582 +1.7786298730282684,-1.5778701496125096 +0.37007266082952933,-0.08685336274665267 +-0.19826729712410218,1.6846072091439939 +-0.30703655327534357,0.4206424870673699 +0.04484339759507061,1.8235467931781033 +0.1915068827308875,2.143598876482239 +1.0359224483508735,-1.2721210463390062 +-0.5780668951048592,1.72816354094207 +-0.5512504952616595,1.4292671819311662 +-0.24902099248491466,1.3473917586783313 +-0.04984150537168153,0.6447551097723724 +-0.14480256941533529,1.2855935034188128 +-0.49552364775706925,1.437084396645193 +1.0548112803147816,-0.6434027031961072 +-0.6853668183601235,-0.06919309356936237 +-0.7512626790338519,0.9734628663854044 +0.7341055558383068,1.945163340087982 +-0.1964438960067459,1.5183741898858796 +-0.48231494869568603,-0.017398673034990077 +-0.5666873990403599,-0.022415039128913766 +1.0966889786192877,-0.6479762097590798 +-0.5179220657745369,2.004793239010856 +0.5220909848908231,-0.1896965104926217 +-0.0719486250903773,1.1552686690561509 +-0.3736477526689609,1.6328691834194031 +1.6879895252114736,-1.8980496880292992 +0.4850531029274158,1.6274265594913717 +1.628673108736594,-1.509313612553432 +0.5799292154841881,1.6110542637629466 +-0.6057268580387827,0.7207246362875093 +-0.5698234710784286,1.5705043658474782 +0.37007266082952933,-0.08685336274665267 +0.17700200209205705,1.4092803555703137 +-0.30703655327534357,0.4206424870673699 +0.04484339759507061,1.8235467931781033 +0.1915068827308875,2.143598876482239 +-0.49005500396880836,1.8819636424094397 +-0.5780668951048592,1.72816354094207 +-0.34423230238654046,0.3127266402965746 +0.8843787211170417,-0.39685064121323116 +-0.04984150537168153,0.6447551097723724 +1.2118214425813887,-0.6877858018296902 +-0.49552364775706925,1.437084396645193 +1.0548112803147816,-0.6434027031961072 +-0.6853668183601235,-0.06919309356936237 +-0.42700236451041207,-0.028946096663685472 +0.7341055558383068,1.945163340087982 +0.9870053043711012,1.2231836572380872 +-0.48231494869568603,-0.017398673034990077 +-0.5666873990403599,-0.022415039128913766 +1.0966889786192877,-0.6479762097590798 +-0.30406941685205036,1.3222971738009446 +0.5220909848908231,-0.1896965104926217 +-0.0719486250903773,1.1552686690561509 +-0.424571484813714,2.086574756323016 +1.6879895252114736,-1.8980496880292992 +-1.0085260120309332,0.3479527538381725 +1.628673108736594,-1.509313612553432 +0.5799292154841881,1.6110542637629466 +-0.6057268580387827,0.7207246362875093 +-0.5698234710784286,1.5705043658474782 +0.37007266082952933,-0.08685336274665267 +-0.5292157161147202,1.2715723507543897 +0.14723509369294951,-0.042224049364407046 +1.1894474587342654,-0.6300646663326732 +0.1915068827308875,2.143598876482239 +-0.898395089957416,0.6130789913124359 +-0.5780668951048592,1.72816354094207 +1.1023937311997565,-0.8120569177038153 +0.8843787211170417,-0.39685064121323116 +-0.04984150537168153,0.6447551097723724 +1.2118214425813887,-0.6877858018296902 +0.053938883442391186,1.6574000798010098 +0.15994858277453491,1.6453912511268232 +-0.49779386412032556,0.5729470221641597 +-0.42700236451041207,-0.028946096663685472 +0.20087749080296358,-0.08315996047207971 +0.9870053043711012,1.2231836572380872 +-0.2164090688724274,-0.23294830341259076 +-0.5666873990403599,-0.022415039128913766 +0.8013975160535889,-0.42729203020948314 +0.6364041823764893,-0.22310511989469328 +-0.3919456310048448,0.712749812987912 +-0.8126935621830724,0.9883822287593832 +-0.424571484813714,2.086574756323016 +1.6879895252114736,-1.8980496880292992 +-1.0085260120309332,0.3479527538381725 +-0.557131933623182,1.4909533503538368 +0.5799292154841881,1.6110542637629466 +-0.6057268580387827,0.7207246362875093 +-0.5698234710784286,1.5705043658474782 +0.37007266082952933,-0.08685336274665267 +0.17528608567606413,2.2105423236698907 +0.14723509369294951,-0.042224049364407046 +1.021979531333628,-0.8371428836306876 +1.556057890492565,-1.3769967877597924 +-0.898395089957416,0.6130789913124359 +-0.5780668951048592,1.72816354094207 +-0.35559924949512767,1.7335574127215878 +1.0343251961152258,-0.7605934422038403 +-0.04984150537168153,0.6447551097723724 +1.2118214425813887,-0.6877858018296902 +0.053938883442391186,1.6574000798010098 +0.15994858277453491,1.6453912511268232 +-0.49779386412032556,0.5729470221641597 +-0.42700236451041207,-0.028946096663685472 +0.20087749080296358,-0.08315996047207971 +-0.3314765474817386,-0.007246152469401683 +-0.2164090688724274,-0.23294830341259076 +-0.5666873990403599,-0.022415039128913766 +-0.15368332418169856,1.5324007262234014 +0.6364041823764893,-0.22310511989469328 +-0.3919456310048448,0.712749812987912 +-0.8126935621830724,0.9883822287593832 +-0.424571484813714,2.086574756323016 +1.6879895252114736,-1.8980496880292992 +-0.002374810238768066,-0.18296695681339936 +0.46312905022191797,0.04018027210690467 +0.5799292154841881,1.6110542637629466 +0.8229041449117163,0.7878696082934058 +-0.38835477060330226,0.36791363315508185 +0.3242533195596943,-0.4921501540045311 +-0.2047621812722841,2.4185978713435823 +0.14723509369294951,-0.042224049364407046 +-0.40630504529937783,-0.24132072124435877 +1.556057890492565,-1.3769967877597924 +-0.898395089957416,0.6130789913124359 +-0.5780668951048592,1.72816354094207 +0.02488745057202285,2.3307398100792613 +-0.1284606894375966,0.42812818304015976 +0.2277586123952502,-0.12172582539571583 +1.2118214425813887,-0.6877858018296902 +0.053938883442391186,1.6574000798010098 +1.0923992082515632,0.9120695117627148 +-0.23775471806417267,2.345203571724306 +-0.42700236451041207,-0.028946096663685472 +0.8159034055323103,-0.3179037288053006 +-0.3314765474817386,-0.007246152469401683 +-0.2164090688724274,-0.23294830341259076 +-0.03738717275940667,1.3808119280229139 +-0.31922889203730986,0.5760915435841186 +0.6364041823764893,-0.22310511989469328 +1.0926738809420353,-1.1108746619559908 +-0.8126935621830724,0.9883822287593832 +0.4813976023093312,0.7555421373081652 +1.6879895252114736,-1.8980496880292992 +-0.002374810238768066,-0.18296695681339936 +-0.08227063776043259,0.6767640635666571 +0.5799292154841881,1.6110542637629466 +0.8229041449117163,0.7878696082934058 +-0.38835477060330226,0.36791363315508185 +0.3242533195596943,-0.4921501540045311 +0.6879046716525568,0.36569779840527294 +0.10503159786040703,1.2747684057270323 +-0.40630504529937783,-0.24132072124435877 +1.556057890492565,-1.3769967877597924 +-0.898395089957416,0.6130789913124359 +-0.5780668951048592,1.72816354094207 +0.02488745057202285,2.3307398100792613 +-0.1284606894375966,0.42812818304015976 +0.2277586123952502,-0.12172582539571583 +1.2118214425813887,-0.6877858018296902 +0.053938883442391186,1.6574000798010098 +1.0923992082515632,0.9120695117627148 +1.5008668145064838,-0.8879886719302743 +-0.42700236451041207,-0.028946096663685472 +0.5410226040076752,-0.482542199738645 +0.15369730792669206,1.172452471998945 +0.4174183444993208,0.5107941524918481 +0.5771760450688609,0.31688743456239543 +0.9509018555508137,-0.16962234706046556 +-0.9348866080594933,-0.07421139097311491 +1.0926738809420353,-1.1108746619559908 +-0.8126935621830724,0.9883822287593832 +0.7052039785522718,-0.42985246179785896 +1.365354991310136,-1.238192043966083 +-0.9457216032308872,-0.12365616192568142 +0.7562504061332576,1.2085881191807695 +0.5799292154841881,1.6110542637629466 +0.8229041449117163,0.7878696082934058 +-0.38835477060330226,0.36791363315508185 +1.3079276244069151,-0.39131168382944337 +0.7876248046101848,0.43050044923295444 +1.3256643611122585,0.37272436751354193 +0.708938593136406,-0.5069147924175084 +1.2000103500349453,-0.04476631768989321 +-0.702799028516502,-0.04052205770639661 +-0.5780668951048592,1.72816354094207 +0.02488745057202285,2.3307398100792613 +-0.1284606894375966,0.42812818304015976 +0.24944950061810883,1.477134241524218 +0.7104838189796792,1.631282258411082 +0.053938883442391186,1.6574000798010098 +1.0923992082515632,0.9120695117627148 +1.5008668145064838,-0.8879886719302743 +-0.42700236451041207,-0.028946096663685472 +0.5410226040076752,-0.482542199738645 +-0.579506253947105,-0.150459331173325 +0.6724148348909199,0.04237361230346648 +0.42546774718500646,-0.5097295546856814 +-0.01579156019940256,1.1247786874059107 +-0.21320246300368395,1.8798832331883022 +1.0926738809420353,-1.1108746619559908 +-0.8126935621830724,0.9883822287593832 +-0.19026649736029566,1.1278051666654263 +1.365354991310136,-1.238192043966083 +-0.9457216032308872,-0.12365616192568142 +0.7562504061332576,1.2085881191807695 +0.5799292154841881,1.6110542637629466 +0.18070897236518446,0.6704011177161106 +-0.38835477060330226,0.36791363315508185 +1.3079276244069151,-0.39131168382944337 +0.7876248046101848,0.43050044923295444 +-0.12904445509082355,2.255461233707802 +0.708938593136406,-0.5069147924175084 +1.2000103500349453,-0.04476631768989321 +-0.2795521769017577,1.428125010455924 +-0.015215195244028479,-0.07900883642517745 +0.02488745057202285,2.3307398100792613 +-0.1284606894375966,0.42812818304015976 +0.5345689305038335,-0.3440649218892592 +-0.9860875073363881,-0.42204574415627355 +0.053938883442391186,1.6574000798010098 +1.0923992082515632,0.9120695117627148 +0.25774189557713034,0.11970661638646768 +-0.42700236451041207,-0.028946096663685472 +-0.13094782542924815,0.9210280974006131 +1.2946523414115556,-0.8142293624943335 +-0.05381852009312993,0.06448246120070245 +0.42546774718500646,-0.5097295546856814 +-0.01579156019940256,1.1247786874059107 +-0.21320246300368395,1.8798832331883022 +-0.510288920813571,2.2458843269655873 +-0.5727001601318663,1.8793977527334205 +-0.19026649736029566,1.1278051666654263 +1.365354991310136,-1.238192043966083 +-0.9457216032308872,-0.12365616192568142 +0.7562504061332576,1.2085881191807695 +0.5799292154841881,1.6110542637629466 +0.1875475587967409,-0.2231299968197884 +-0.38835477060330226,0.36791363315508185 +1.0860374562559487,-1.113767531400942 +0.14525167461594735,-0.2692458396437468 +-0.12904445509082355,2.255461233707802 +0.708938593136406,-0.5069147924175084 +1.2000103500349453,-0.04476631768989321 +0.8121323602460411,-1.0604070937179952 +0.5598199912779744,-0.6595947933301797 +0.02488745057202285,2.3307398100792613 +-0.8184980387845773,-0.006665186912546736 +0.5345689305038335,-0.3440649218892592 +0.8203974424748104,-0.7169653942018235 +-0.38010839897027476,0.8878075732792828 +0.45526761548929706,-0.35298749840946636 +-0.2943445582562033,1.899109116055913 +-0.42700236451041207,-0.028946096663685472 +-0.13094782542924815,0.9210280974006131 +0.18179279948573818,0.0646156101227231 +-0.05381852009312993,0.06448246120070245 +0.42546774718500646,-0.5097295546856814 +-0.01579156019940256,1.1247786874059107 +0.4148367788047994,1.8982400348062975 +-0.510288920813571,2.2458843269655873 +-0.5727001601318663,1.8793977527334205 +0.8849587197928178,-0.8385271547993618 +0.7539629227384135,1.401411550774977 +-0.9457216032308872,-0.12365616192568142 +0.7562504061332576,1.2085881191807695 +0.5799292154841881,1.6110542637629466 +0.1875475587967409,-0.2231299968197884 +-0.38835477060330226,0.36791363315508185 +-1.0036411870749864,0.16535076476965965 +0.14525167461594735,-0.2692458396437468 +1.439515647940711,-1.6457276474881222 +-0.7585908324539974,0.09892751809571353 +1.2000103500349453,-0.04476631768989321 +0.8121323602460411,-1.0604070937179952 +-0.222881005948097,0.5164955471743338 +0.02488745057202285,2.3307398100792613 +-0.8184980387845773,-0.006665186912546736 +0.5345689305038335,-0.3440649218892592 +0.8203974424748104,-0.7169653942018235 +-0.38010839897027476,0.8878075732792828 +0.45526761548929706,-0.35298749840946636 +-0.2943445582562033,1.899109116055913 +1.2435457741781708,-0.33837222354129726 +1.1906996337355382,-1.3049298161576264 +1.7101293826224646,-2.5995323759716005 +0.08362669976892581,1.2966423054187652 +-1.4328020283982346,-0.70506102470605 +-0.0729570269949586,1.6392447255954337 +0.7684540061854005,1.7422776581571837 +0.7312535066540424,-1.0060538728794124 +-0.5727001601318663,1.8793977527334205 +0.8849587197928178,-0.8385271547993618 +0.7539629227384135,1.401411550774977 +1.245277241311023,-1.799045401235379 +0.7562504061332576,1.2085881191807695 +0.5799292154841881,1.6110542637629466 +1.4410208917788079,-0.8684123163308591 +0.635516198558913,1.2569991625644492 +-1.0036411870749864,0.16535076476965965 +0.14525167461594735,-0.2692458396437468 +1.439515647940711,-1.6457276474881222 +1.0540084758105144,0.013042589560245545 +1.2000103500349453,-0.04476631768989321 +0.27468345465421784,2.273515747288122 +-0.222881005948097,0.5164955471743338 +1.7386093842489332,-1.4055214733217463 +-0.8184980387845773,-0.006665186912546736 +0.7198458151994126,0.17693877194444751 +-0.13221888284678776,0.30635597654274377 +0.5893588308973563,-0.48608380717559685 +1.3073649518639543,-1.0673168923567693 +-0.2943445582562033,1.899109116055913 +0.5022217980814644,0.9788786737401669 +1.1906996337355382,-1.3049298161576264 +0.26686008312678455,-0.30876851609458766 +-0.2877180147880257,1.602403288577322 +-1.4328020283982346,-0.70506102470605 +-0.07450620101568858,0.43081470309752223 +-0.34263276923099806,2.2437524007793908 +0.7312535066540424,-1.0060538728794124 +1.0227104906021232,-0.36898387428719537 +0.8849587197928178,-0.8385271547993618 +0.7539629227384135,1.401411550774977 +-0.16492022462953737,-0.019336245923159835 +1.7765644901738362,-1.960550858794135 +0.5799292154841881,1.6110542637629466 +1.4410208917788079,-0.8684123163308591 +0.635516198558913,1.2569991625644492 +-1.0036411870749864,0.16535076476965965 +1.012858662267527,-0.31726645902277073 +-0.14098678170011714,0.7081911527834837 +0.6282268535609747,0.04730717793777983 +1.2000103500349453,-0.04476631768989321 +1.2224635051872947,0.05573237712140722 +-0.222881005948097,0.5164955471743338 +1.7386093842489332,-1.4055214733217463 +1.2582364984060328,0.17170615515333493 +-0.2076521105354052,1.746823655916041 +0.26991621215169626,-0.112737094655192 +0.5893588308973563,-0.48608380717559685 +0.5547346387755017,1.340028081920725 +-0.3179996961993261,-0.2246585869788198 +0.5022217980814644,0.9788786737401669 +1.1906996337355382,-1.3049298161576264 +0.26686008312678455,-0.30876851609458766 +-1.0001963188738168,0.5639436501736521 +1.338089289702097,-0.834308866354727 +-0.7872591384155652,0.9098839435064592 +-0.34263276923099806,2.2437524007793908 +0.7312535066540424,-1.0060538728794124 +1.1506912027993748,0.594296662448357 +0.8849587197928178,-0.8385271547993618 +1.2781081891655564,-1.6676011353838938 +-0.16492022462953737,-0.019336245923159835 +1.7765644901738362,-1.960550858794135 +0.5799292154841881,1.6110542637629466 +0.7708165832415529,-0.4030022528671527 +0.635516198558913,1.2569991625644492 +-1.0036411870749864,0.16535076476965965 +1.012858662267527,-0.31726645902277073 +0.8004560164908381,-0.7862080044799663 +1.1720439715449458,-0.7966508821451878 +0.36244096951054555,1.8617832918155874 +-0.36320344815265126,0.6960680491551529 +-0.222881005948097,0.5164955471743338 +1.7386093842489332,-1.4055214733217463 +1.2582364984060328,0.17170615515333493 +-0.2076521105354052,1.746823655916041 +0.26991621215169626,-0.112737094655192 +0.5893588308973563,-0.48608380717559685 +1.3553692532515411,-1.45788811304763 +-0.3179996961993261,-0.2246585869788198 +-0.05048385224480162,1.9272988649163179 +0.22937277902608408,1.4803609671028695 +0.4132109329523918,1.962470125033899 +-0.1092348150583431,1.8976413098253082 +1.338089289702097,-0.834308866354727 +-0.7872591384155652,0.9098839435064592 +-0.9058144737435941,0.7226126618996213 +-0.3645271142663037,-0.03661748487081112 +1.1506912027993748,0.594296662448357 +0.8849587197928178,-0.8385271547993618 +1.2781081891655564,-1.6676011353838938 +0.37826178302986735,1.5755613415341163 +0.2911626581081762,1.133328422151638 +0.36465461720158054,1.8722362226583291 +0.7708165832415529,-0.4030022528671527 +0.635516198558913,1.2569991625644492 +-1.0036411870749864,0.16535076476965965 +0.12030724284702501,0.8625883395887484 +0.8004560164908381,-0.7862080044799663 +1.0154285215428749,-0.3811337317560477 +0.07048310586629042,1.8966641246961116 +-0.36320344815265126,0.6960680491551529 +-0.222881005948097,0.5164955471743338 +0.06579151523037055,1.8484632289416054 +-0.4558765763412158,1.6563010812948704 +-0.2076521105354052,1.746823655916041 +0.26991621215169626,-0.112737094655192 +0.5893588308973563,-0.48608380717559685 +0.27094378281658216,-0.5349476221917797 +-0.3179996961993261,-0.2246585869788198 +0.6009959932587934,0.757110483769715 +1.422699397870286,-1.5556965655236776 +0.4132109329523918,1.962470125033899 +-0.1092348150583431,1.8976413098253082 +-0.1886143628730872,1.65434376390216 +-0.7872591384155652,0.9098839435064592 +0.7078623675211798,-0.39859959766017344 +-0.029213152190969205,0.7994772228418925 +1.1506912027993748,0.594296662448357 +0.8075870530650413,0.7804838831787503 +0.8204511810085835,-0.23169816257654652 +-0.4984962650606961,-0.5081385422407829 +-0.20210115528986528,1.437002064959752 +0.36465461720158054,1.8722362226583291 +-0.18016843313225384,0.13700704380795314 +-0.06341222560153259,0.19469387751489936 +-1.0036411870749864,0.16535076476965965 +0.29209686588294115,1.3123215872856857 +0.9808985140523027,0.042686449633400014 +1.3313606632695532,-1.268016700986244 +1.1608887747962073,-0.7242299843892376 +-0.36320344815265126,0.6960680491551529 +-0.496096305977068,1.1192323880311157 +0.06579151523037055,1.8484632289416054 +-0.4558765763412158,1.6563010812948704 +-0.2076521105354052,1.746823655916041 +0.26991621215169626,-0.112737094655192 +1.411449307200885,-2.1271128472738843 +0.18803564323660726,1.4218395397425945 +-0.3179996961993261,-0.2246585869788198 +-1.243030633744628,-0.15351574312164734 +1.422699397870286,-1.5556965655236776 +-0.23128235362115152,1.6377619273053823 +-0.9520467715045948,0.4063813115806023 +0.11323274858356636,2.3242618579992067 +-0.7872591384155652,0.9098839435064592 +0.36015063472826336,0.748122581719078 +0.31723975678468447,0.40085537119742 +1.1506912027993748,0.594296662448357 +1.6413148318029633,-2.0515909482686245 +0.07387217847524796,0.16957363936402714 +-0.4984962650606961,-0.5081385422407829 +-0.03434864037254845,1.478611012622926 +1.608791515525227,-2.100129451249687 +-0.18016843313225384,0.13700704380795314 +1.0516244619848498,0.1598541903252496 +-1.0036411870749864,0.16535076476965965 +0.29209686588294115,1.3123215872856857 +0.3943626002078947,1.0128777837310692 +-0.6098104217755886,0.7826340373835415 +1.1608887747962073,-0.7242299843892376 +0.6548472030476626,0.17620213672567125 +-0.496096305977068,1.1192323880311157 +1.4241992881534495,0.13643547629599664 +-0.4558765763412158,1.6563010812948704 +-0.2076521105354052,1.746823655916041 +0.8466259877821576,-0.8389088976071173 +1.411449307200885,-2.1271128472738843 +1.0995405929308542,-1.6043070679379032 +-0.3714919104837127,0.32450081925728425 +-1.243030633744628,-0.15351574312164734 +1.422699397870286,-1.5556965655236776 +1.348550665136857,-0.17483648085640674 +0.7357137605299308,-0.0681526476188102 +-0.3823964383838636,0.5649190199283378 +0.2985813329933066,-0.0708160089446094 +0.8499146854073285,-0.09750517722778951 +-0.18055652232566144,-0.04319291264601238 +1.1556812353591153,-0.43003470666773636 +1.6413148318029633,-2.0515909482686245 +1.194731005336828,0.00928579308785471 +0.7330403099696783,0.7200388229111081 +-0.03434864037254845,1.478611012622926 +1.608791515525227,-2.100129451249687 +0.2633693159337933,-0.4134535421551584 +-0.05153077845009346,0.14862489580853383 +1.054611981505734,-0.7813606849940135 +0.8360596453671499,-0.39017888027643305 +0.3943626002078947,1.0128777837310692 +-0.43509618333059863,1.579065464421849 +1.1608887747962073,-0.7242299843892376 +0.34636532733675507,-0.48939108220510263 +-0.496096305977068,1.1192323880311157 +0.7618257667030712,-1.011385359259127 +-0.4558765763412158,1.6563010812948704 +-0.2076521105354052,1.746823655916041 +1.252462809413319,-0.4593740612709425 +1.24253548947969,0.8626610322044908 +1.0995405929308542,-1.6043070679379032 +-0.3714919104837127,0.32450081925728425 +-1.243030633744628,-0.15351574312164734 +1.422699397870286,-1.5556965655236776 +-0.3663882794546741,1.599577199620853 +1.331755348659721,-0.7675618031666891 +-0.3823964383838636,0.5649190199283378 +0.14979441751569045,1.6702750850974457 +0.3751157556021722,-0.14463680255917227 +-0.18055652232566144,-0.04319291264601238 +0.5438658766876032,1.125283544091816 +1.6413148318029633,-2.0515909482686245 +1.194731005336828,0.00928579308785471 +0.7330403099696783,0.7200388229111081 +1.318595706872132,-1.178025072911399 +0.9724534733058836,0.6333531462872863 +0.23783065817771748,1.334376772138424 +-0.0730689342306534,0.17232572005649366 +0.6230651749753484,0.07111828381730753 +0.8360596453671499,-0.39017888027643305 +1.183649049002018,-0.5778285881038592 +-0.43509618333059863,1.579065464421849 +-0.33548519090661266,-0.4011883383986693 +0.34636532733675507,-0.48939108220510263 +0.542374873193271,-0.7848775816097575 +0.17042310152747442,0.029256054422752528 +-0.4558765763412158,1.6563010812948704 +0.31730635261006346,-0.4060028175981324 +0.6098307322359509,0.005673153026088507 +0.9764725463299564,-0.6503628117717813 +-0.1306626323325567,1.6428325420960612 +-0.3714919104837127,0.32450081925728425 +-1.243030633744628,-0.15351574312164734 +1.422699397870286,-1.5556965655236776 +-0.3663882794546741,1.599577199620853 +-0.6133142077473834,1.46127578343512 +-0.3823964383838636,0.5649190199283378 +0.14979441751569045,1.6702750850974457 +0.3751157556021722,-0.14463680255917227 +-0.18055652232566144,-0.04319291264601238 +1.2734925071763201,0.3767654615969307 +0.11898163531576211,0.13950221966458487 +1.194731005336828,0.00928579308785471 +0.3313806474938241,-0.057018320340135986 +1.318595706872132,-1.178025072911399 +0.42646851469586333,0.9734533610209635 +0.23783065817771748,1.334376772138424 +-0.07828189132399344,1.6822895912084674 +0.6230651749753484,0.07111828381730753 +0.4272449129244468,0.5176595676451627 +1.183649049002018,-0.5778285881038592 +1.739000331780394,-2.5239338366333386 +-0.33548519090661266,-0.4011883383986693 +-0.12247962310260385,0.47641431368494425 +-1.1915212435936626,-0.47778726274360617 +0.17042310152747442,0.029256054422752528 +-0.4558765763412158,1.6563010812948704 +0.31730635261006346,-0.4060028175981324 +0.6098307322359509,0.005673153026088507 +0.9764725463299564,-0.6503628117717813 +-0.1306626323325567,1.6428325420960612 +-0.3714919104837127,0.32450081925728425 +-1.243030633744628,-0.15351574312164734 +0.29425213666319416,0.18727832849350132 +-0.3663882794546741,1.599577199620853 +-0.6133142077473834,1.46127578343512 +-0.3823964383838636,0.5649190199283378 +-0.27393794128973076,-0.1474874186068731 +0.02728437106898185,0.046282063163225085 +0.03085518350650146,-0.03255913270540445 +1.2734925071763201,0.3767654615969307 +1.3802976962724527,-0.3497070725360454 +1.194731005336828,0.00928579308785471 +1.5272760164284689,-1.1856260242486687 +1.3836809711314748,-1.46253937910747 +0.42646851469586333,0.9734533610209635 +1.8349167804857685,-1.8588401029188655 +-0.07828189132399344,1.6822895912084674 +0.8532482960866186,1.103220789059565 +0.5285909364083036,-0.682252122186528 +1.573827340922096,-1.4977814115959311 +0.33831287828624024,-0.2870951530886193 +-0.33548519090661266,-0.4011883383986693 +-0.12247962310260385,0.47641431368494425 +-1.1915212435936626,-0.47778726274360617 +0.9787518561952958,-0.48225026614495303 +-0.4558765763412158,1.6563010812948704 +0.31730635261006346,-0.4060028175981324 +0.40704855588633426,0.11048882041516317 +-0.2837053001640443,0.24425155757242942 +-0.1306626323325567,1.6428325420960612 +-0.3714919104837127,0.32450081925728425 +-1.243030633744628,-0.15351574312164734 +-0.04876699758602275,0.1553992849141329 +0.9552538884635953,-1.2903653005329563 +0.6896182384719838,-0.5299253798344294 +-0.5670811562318889,0.028890948172459102 +-0.27393794128973076,-0.1474874186068731 +1.0748709592042824,-0.6974494988419997 +-0.26752099435920973,1.177734938399801 +1.2734925071763201,0.3767654615969307 +1.3802976962724527,-0.3497070725360454 +1.194731005336828,0.00928579308785471 +1.5272760164284689,-1.1856260242486687 +1.3836809711314748,-1.46253937910747 +1.6630109461468487,-1.3185675784377566 +-0.35218909315802566,0.7182556912436657 +-0.07828189132399344,1.6822895912084674 +0.8532482960866186,1.103220789059565 +1.1379783918610242,0.6159615323052803 +0.3187907131327927,-0.7129875757658897 +-0.38839429035146145,0.9131171025629152 +0.09565571760820601,-0.2384601855917288 +0.28899351196263284,0.49741612642326516 +-0.009384698791653323,0.12321372673917708 +0.9787518561952958,-0.48225026614495303 +-0.4558765763412158,1.6563010812948704 +0.31730635261006346,-0.4060028175981324 +-0.6534364131393252,0.4649961721539737 +-0.2837053001640443,0.24425155757242942 +1.3029810011121457,-1.1528771751957732 +0.8949873250639937,-0.7479134148290546 +-1.243030633744628,-0.15351574312164734 +1.5910048088726043,-0.7276456040854635 +-0.10402406325369097,1.2829588393422482 +-0.4983241249240829,0.9577512866104109 +-0.5670811562318889,0.028890948172459102 +1.132293971801393,-0.14313522121940775 +1.0748709592042824,-0.6974494988419997 +-0.26752099435920973,1.177734938399801 +-0.9053197284412993,0.9068263845440114 +1.3802976962724527,-0.3497070725360454 +-0.22758193858608194,0.038883927586819356 +1.1925529863019761,-0.22909147543528732 +1.3836809711314748,-1.46253937910747 +1.6630109461468487,-1.3185675784377566 +-0.35218909315802566,0.7182556912436657 +-0.07828189132399344,1.6822895912084674 +0.8532482960866186,1.103220789059565 +-0.6920934985655969,0.7529453764337921 +-0.2175690584642874,0.7160449882870704 +-0.38839429035146145,0.9131171025629152 +0.014446346540631927,0.29853996833203555 +0.8037653255463826,0.06418811196507401 +-0.009384698791653323,0.12321372673917708 +1.3557835615392413,-1.3796540278295915 +-0.4558765763412158,1.6563010812948704 +0.119805751089604,1.3802512085114536 +0.5409186568981803,0.17780297129835398 +0.41480694081523195,1.2312695437234895 +1.3029810011121457,-1.1528771751957732 +0.8949873250639937,-0.7479134148290546 +-1.243030633744628,-0.15351574312164734 +1.0826055238206658,-0.8284260654331396 +-0.10402406325369097,1.2829588393422482 +-0.4983241249240829,0.9577512866104109 +-0.5670811562318889,0.028890948172459102 +1.849228165269999,-1.5309899691802868 +-0.10251362588877166,0.8295763722690567 +0.3294898289010407,1.3346719471902748 +-0.9053197284412993,0.9068263845440114 +-0.29606574075623304,1.5076782713460997 +-0.22758193858608194,0.038883927586819356 +0.7539928451378577,1.7266695695916745 +1.3836809711314748,-1.46253937910747 +1.6630109461468487,-1.3185675784377566 +0.15121321610202917,-0.364753967382485 +-0.07828189132399344,1.6822895912084674 +0.8532482960866186,1.103220789059565 +-0.6920934985655969,0.7529453764337921 +-0.2175690584642874,0.7160449882870704 +-0.5873684464196146,1.5645637407307151 +0.014446346540631927,0.29853996833203555 +0.8037653255463826,0.06418811196507401 +0.46745478061798373,2.0921329095438943 +0.47507839842543836,0.25542303219004425 +-0.4558765763412158,1.6563010812948704 +-0.39276493411113933,1.101018285790954 +0.13610581732724528,1.9622339316669126 +0.2866094319042907,1.4684465084106861 +-0.05812474320065847,2.020504787101614 +0.8949873250639937,-0.7479134148290546 +0.15944298881084573,-0.2008863755154039 +0.6302874642919452,1.6424834062591624 +1.1316974945652192,0.17947115694300067 +0.38607859611004486,-0.10096656698812384 +-0.5670811562318889,0.028890948172459102 +1.1929827075599182,0.4946053432882048 +-0.7031164657083162,0.5461108351181387 +0.7114761913460557,0.12295071734820934 +1.378732163011621,-0.4870969234302456 +-0.29606574075623304,1.5076782713460997 +-0.22758193858608194,0.038883927586819356 +0.7539928451378577,1.7266695695916745 +1.3836809711314748,-1.46253937910747 +0.7358337972876912,-0.9869478230587367 +-0.5255957567923636,1.5952165786581258 +-0.07828189132399344,1.6822895912084674 +0.8532482960866186,1.103220789059565 +-0.1441792030378366,0.109943630414824 +-0.8263229762305758,0.40634974949899205 +-0.5873684464196146,1.5645637407307151 +1.021878406072544,0.5284310620643883 +0.9833334372233964,0.19748039385304056 +0.46745478061798373,2.0921329095438943 +0.47507839842543836,0.25542303219004425 +-0.4558765763412158,1.6563010812948704 +-0.39276493411113933,1.101018285790954 +0.13610581732724528,1.9622339316669126 +1.311638411606707,0.3915051606479878 +-0.05812474320065847,2.020504787101614 +0.8949873250639937,-0.7479134148290546 +0.46835008796745337,-0.7382084796124587 +0.6302874642919452,1.6424834062591624 +1.1316974945652192,0.17947115694300067 +0.38607859611004486,-0.10096656698812384 +-0.5670811562318889,0.028890948172459102 +-0.5641264184877705,0.5652354876611613 +-0.7031164657083162,0.5461108351181387 +0.7114761913460557,0.12295071734820934 +1.378732163011621,-0.4870969234302456 +-0.9318590449451732,0.231196331321522 +-0.22758193858608194,0.038883927586819356 +0.7539928451378577,1.7266695695916745 +1.3836809711314748,-1.46253937910747 +0.7358337972876912,-0.9869478230587367 +-0.5255957567923636,1.5952165786581258 +-0.07828189132399344,1.6822895912084674 +0.8532482960866186,1.103220789059565 +-0.1441792030378366,0.109943630414824 +-0.7019561108539066,0.9969737372950103 +-0.5873684464196146,1.5645637407307151 +1.021878406072544,0.5284310620643883 +1.1579833081462314,0.3453181652454755 +0.46745478061798373,2.0921329095438943 +0.20265902885640352,-0.11818875538828044 +-0.4558765763412158,1.6563010812948704 +-0.583010166377037,0.44390383156939733 +0.8754777966226956,1.5634295195517551 +0.5305130762012863,1.2636697688545668 +-0.05812474320065847,2.020504787101614 +0.8949873250639937,-0.7479134148290546 +0.46835008796745337,-0.7382084796124587 +0.8241280129854978,0.2172085218770745 +1.1316974945652192,0.17947115694300067 +-0.7744919413252437,0.11927904661838952 +-0.14593037393408803,0.9924320978602663 +-0.5641264184877705,0.5652354876611613 +-0.7031164657083162,0.5461108351181387 +-0.44369233155328963,0.6148560153939243 +0.3090925183369466,-0.7728598940292155 +0.33494829166658174,-0.24661919103676755 +-0.6501139899943604,-0.2731677034017628 +-0.3047011887968862,1.5919512153943267 +1.3836809711314748,-1.46253937910747 +-0.5374610507437702,1.7985187489104797 +-0.5255957567923636,1.5952165786581258 +-0.07828189132399344,1.6822895912084674 +-0.6110557177333638,0.6612136791046876 +-0.1441792030378366,0.109943630414824 +-0.7019561108539066,0.9969737372950103 +-0.5873684464196146,1.5645637407307151 +-0.46057671771444775,0.2445544734238257 +1.1579833081462314,0.3453181652454755 +0.46745478061798373,2.0921329095438943 +0.20265902885640352,-0.11818875538828044 +-0.4558765763412158,1.6563010812948704 +0.8393947258201868,-0.13310276973757496 +0.9497864302020926,-0.08619839237857163 +0.5305130762012863,1.2636697688545668 +-0.05812474320065847,2.020504787101614 +0.8949873250639937,-0.7479134148290546 +0.8633606914086649,-0.28998855948582203 +2.0100866613323807,-3.2106381913082247 +1.5452047541103042,-1.985733334899018 +1.3040697326895407,-1.6498419713651593 +0.6636127026134542,-0.8610080448016045 +0.008899926989435897,1.6737548391296009 +-0.7031164657083162,0.5461108351181387 +0.691223000815081,0.260424773194154 +0.20092332791643291,-0.15841576065737378 +-0.22831991690112952,-0.11044771968608902 +0.19891868073631258,1.7525566213037325 +-0.3047011887968862,1.5919512153943267 +1.3836809711314748,-1.46253937910747 +-0.3962757823284208,2.1878226588890946 +-0.5255957567923636,1.5952165786581258 +-0.07828189132399344,1.6822895912084674 +-0.6110557177333638,0.6612136791046876 +1.7038390881357994,-1.9702378246285943 +0.28766371683988773,-0.33865074225895553 +1.6564221824441274,-1.03432296774754 +0.8746858196694212,-0.7421755084878979 +1.1579833081462314,0.3453181652454755 +0.46745478061798373,2.0921329095438943 +0.20265902885640352,-0.11818875538828044 +-0.4558765763412158,1.6563010812948704 +-0.37920043031700507,0.6741623145021958 +-0.40390782200338576,0.21395656560322823 +1.5536729092907657,-2.3257062414975844 +-0.05812474320065847,2.020504787101614 +-0.5757042783072338,0.008248453121037058 +0.8633606914086649,-0.28998855948582203 +1.2961764226591614,-1.2132072360502064 +1.5452047541103042,-1.985733334899018 +-0.8795584269261186,0.5191758496404016 +0.6636127026134542,-0.8610080448016045 +0.7205674603028893,1.4595262889377085 +-0.7031164657083162,0.5461108351181387 +0.691223000815081,0.260424773194154 +0.9897875353001451,-1.4801258152041867 +-0.22831991690112952,-0.11044771968608902 +1.0720924143098056,0.22441617582276338 +-0.23797349462511563,2.174488950672813 +1.3836809711314748,-1.46253937910747 +1.4832461178586371,-0.16440390954777329 +-0.5255957567923636,1.5952165786581258 +-0.33934312049408616,1.2445315746466188 +-0.3622979394703635,0.7760690128775787 +1.7038390881357994,-1.9702378246285943 +0.7277175961085885,-0.08653609465818277 +-0.8295994039458239,0.8198667839149298 +0.8746858196694212,-0.7421755084878979 +1.0557442621188649,-0.9247697126012513 +0.46745478061798373,2.0921329095438943 +-0.5182906414656008,1.0116540692441272 +-0.4558765763412158,1.6563010812948704 +-0.37920043031700507,0.6741623145021958 +-0.40390782200338576,0.21395656560322823 +1.5536729092907657,-2.3257062414975844 +-0.05812474320065847,2.020504787101614 +-0.5757042783072338,0.008248453121037058 +0.8633606914086649,-0.28998855948582203 +0.1708723955623842,0.524684420941849 +1.5452047541103042,-1.985733334899018 +1.32674253122146,-0.4464755184359126 +0.6636127026134542,-0.8610080448016045 +0.7205674603028893,1.4595262889377085 +-0.5576531211820371,-0.21975279981592238 +0.691223000815081,0.260424773194154 +-0.382678305104382,1.5155864435663047 +-0.22831991690112952,-0.11044771968608902 +0.9096839897947726,-0.850914711723395 +0.5692257835551793,-0.5191122150904222 +0.48870951538322055,1.293130338182169 +0.8016104609042165,1.2767538909094358 +-0.34504555660214137,0.5841097817412176 +-0.33934312049408616,1.2445315746466188 +0.5132639780604382,1.9997938079543442 +-0.7527205789201297,0.5060331434258842 +-0.25573479824076906,-0.07053126000496326 +-0.8295994039458239,0.8198667839149298 +0.3990738307094435,1.800066795593854 +1.0557442621188649,-0.9247697126012513 +0.46745478061798373,2.0921329095438943 +0.34421956475362553,1.6058808209048523 +-0.4558765763412158,1.6563010812948704 +-0.15240226049617722,1.269466385804919 +-0.40390782200338576,0.21395656560322823 +-0.5117638606896959,0.9031574684994746 +-0.05812474320065847,2.020504787101614 +-0.33970864514430243,1.6719560049374804 +-0.15509371464674143,0.6579833201949068 +1.4144064525220068,0.05088059638957115 +1.5452047541103042,-1.985733334899018 +1.32674253122146,-0.4464755184359126 +-0.2724171021262871,0.8480525247264555 +0.05428770958054063,-0.4048015492142869 +1.194865214439465,0.7410770606127357 +0.691223000815081,0.260424773194154 +-0.382678305104382,1.5155864435663047 +1.2177337555690115,-1.217489517973843 +0.9096839897947726,-0.850914711723395 +0.5692257835551793,-0.5191122150904222 +-0.6252132134561011,0.31501625240932446 +1.411726795290622,-0.9183448218633976 +-0.20972124690327656,0.5524227339522111 +-0.33934312049408616,1.2445315746466188 +0.5132639780604382,1.9997938079543442 +0.18722644746704953,0.28994725954002887 +-0.7729742606146973,0.3785426524484946 +-0.8295994039458239,0.8198667839149298 +0.3990738307094435,1.800066795593854 +1.0557442621188649,-0.9247697126012513 +0.9126539664147434,-1.2591434637087346 +0.34421956475362553,1.6058808209048523 +-0.4558765763412158,1.6563010812948704 +0.9813956254269793,-0.7500483907826628 +0.07220435455705845,-0.20884359423505686 +0.14936495453425574,0.6261998892007451 +0.6149846425399741,1.867833503834195 +-0.33970864514430243,1.6719560049374804 +0.9394549026512646,0.5842821900075488 +1.4144064525220068,0.05088059638957115 +1.5452047541103042,-1.985733334899018 +1.0667647133007403,-1.3162870588268905 +-0.2724171021262871,0.8480525247264555 +0.022911388880640815,-0.10277568154457578 +1.194865214439465,0.7410770606127357 +0.7981244870758875,-1.0223687447879388 +0.44287307674219634,1.5500601860888508 +-0.09818504035212794,1.506087630615429 +0.35804273245497154,2.0026438731044665 +1.5499397140055917,-0.21955857346933683 +-0.6252132134561011,0.31501625240932446 +1.411726795290622,-0.9183448218633976 +1.1565872494065894,0.01527198999248508 +1.4853233291344459,-1.4897248111626407 +0.5132639780604382,1.9997938079543442 +0.11672970973509136,2.156094488289266 +-0.7729742606146973,0.3785426524484946 +-0.8295994039458239,0.8198667839149298 +0.3990738307094435,1.800066795593854 +1.0557442621188649,-0.9247697126012513 +-0.5428770615102971,-0.251575791161712 +0.34421956475362553,1.6058808209048523 +-0.4558765763412158,1.6563010812948704 +0.9813956254269793,-0.7500483907826628 +0.07220435455705845,-0.20884359423505686 +1.1406801678220708,0.5887708963420291 +0.6149846425399741,1.867833503834195 +-0.33970864514430243,1.6719560049374804 +0.30979021401734863,0.35183343939523515 +0.7044761674187033,-0.8670867227795156 +0.1426124597720986,1.8790506746546698 +1.0667647133007403,-1.3162870588268905 +-0.2724171021262871,0.8480525247264555 +1.4849641149872668,-1.0984872587800312 +1.5542393151244789,-1.8578932477029602 +-0.19569157614560717,-0.5424885026779765 +0.44287307674219634,1.5500601860888508 +-0.4114024699518479,-0.1466840430169753 +0.6939744975059847,-0.6488032135982869 +0.98643890852839,-1.5378657723463172 +-0.6252132134561011,0.31501625240932446 +0.05847404496518949,0.5728654597905198 +0.4213077138464103,1.2536021680897145 +1.4853233291344459,-1.4897248111626407 +0.5132639780604382,1.9997938079543442 +0.11672970973509136,2.156094488289266 +-0.7729742606146973,0.3785426524484946 +-0.8295994039458239,0.8198667839149298 +0.3990738307094435,1.800066795593854 +1.472869494366021,-2.3333410956969307 +-0.43740778100551825,0.9536420029189149 +1.2286967352673461,-0.8387819116135486 +-0.4558765763412158,1.6563010812948704 +-0.29917855255162357,-0.1850736175696901 +-0.22077368929142965,0.4263583019849492 +1.1406801678220708,0.5887708963420291 +0.6149846425399741,1.867833503834195 +-0.2549885547388834,-0.11385122039618803 +0.30979021401734863,0.35183343939523515 +0.7044761674187033,-0.8670867227795156 +0.1426124597720986,1.8790506746546698 +1.0667647133007403,-1.3162870588268905 +-0.7661198299441951,0.6728946580326648 +1.4849641149872668,-1.0984872587800312 +-0.6899270797149789,0.6235619733160125 +0.6393715416137399,-1.2102199058745313 +0.923841863490886,0.04668156899968645 +-0.2583736262493441,-0.1845466232805654 +1.239299323727763,-0.5844145803225651 +0.98643890852839,-1.5378657723463172 +-0.6252132134561011,0.31501625240932446 +0.6642189636820321,-1.0440973974167973 +-0.5878783577420148,1.0887175343375328 +0.7606243127446112,1.1984810803360546 +0.8983478098084949,-0.8193946154279723 +0.11672970973509136,2.156094488289266 +0.07517434687056024,-0.41704334257009823 +0.6944184467019929,0.9809371565098584 +0.3990738307094435,1.800066795593854 +0.5101570168433864,1.564704588704412 +-0.43740778100551825,0.9536420029189149 +1.2286967352673461,-0.8387819116135486 +-0.4558765763412158,1.6563010812948704 +-0.29917855255162357,-0.1850736175696901 +-0.22077368929142965,0.4263583019849492 +0.5198878155354151,0.18896733633017193 +0.6149846425399741,1.867833503834195 +-0.2549885547388834,-0.11385122039618803 +0.07495457673972583,0.14107397314859427 +-0.471845126590825,1.2320551636164667 +0.1426124597720986,1.8790506746546698 +0.45095325435329875,-0.6006076016460197 +0.08077507656152685,2.420688661947642 +1.4849641149872668,-1.0984872587800312 +-0.6899270797149789,0.6235619733160125 +-0.6209626306205458,-0.69900045941736 +-0.7885837817809241,0.9893477181778153 +0.12734668372243663,1.4475114692444282 +-0.35451107248684177,1.3249070156579965 +0.98643890852839,-1.5378657723463172 +-0.6252132134561011,0.31501625240932446 +1.3054360989951315,-1.2781729051116657 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +0.8983478098084949,-0.8193946154279723 +0.11672970973509136,2.156094488289266 +0.07517434687056024,-0.41704334257009823 +1.5274629177001702,-0.5234103280889202 +0.3990738307094435,1.800066795593854 +0.5101570168433864,1.564704588704412 +-1.0986190497994095,-0.22993300711090475 +1.2286967352673461,-0.8387819116135486 +-0.4558765763412158,1.6563010812948704 +0.3879330994657516,-0.44174266408027774 +-0.22077368929142965,0.4263583019849492 +0.5198878155354151,0.18896733633017193 +0.6149846425399741,1.867833503834195 +-0.2549885547388834,-0.11385122039618803 +0.07495457673972583,0.14107397314859427 +-0.471845126590825,1.2320551636164667 +-0.10972718573813739,2.2550288945612382 +-0.4956362291074272,0.29839448105276345 +0.08077507656152685,2.420688661947642 +1.0704318049388295,0.6314625634946782 +-0.8069940916149513,0.13468792964822773 +-0.6209626306205458,-0.69900045941736 +-0.7101383569503812,0.2505301649825459 +-0.6735830145014953,-0.21147698772632867 +-0.35451107248684177,1.3249070156579965 +0.18961873580282984,2.202944502350669 +-0.6252132134561011,0.31501625240932446 +0.3829423124376454,0.6119309781572646 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +0.6888695106823287,-0.21056605478427803 +0.11672970973509136,2.156094488289266 +0.07517434687056024,-0.41704334257009823 +1.1689084838591401,-1.6413198144833792 +0.3990738307094435,1.800066795593854 +0.5101570168433864,1.564704588704412 +-1.0986190497994095,-0.22993300711090475 +0.264682368576049,2.0113949256383936 +-0.4558765763412158,1.6563010812948704 +0.3879330994657516,-0.44174266408027774 +-0.22077368929142965,0.4263583019849492 +0.5198878155354151,0.18896733633017193 +-0.15792656343370476,2.2339899614968237 +-0.7295087971440142,0.6810172186310518 +0.07495457673972583,0.14107397314859427 +-0.471845126590825,1.2320551636164667 +-0.10972718573813739,2.2550288945612382 +-0.46398433736901484,0.14648355760559748 +-0.47909165232584205,0.8324449743692963 +-0.5260510136127621,0.03164145114560887 +-0.8069940916149513,0.13468792964822773 +-0.6438670599619984,0.20150582790694965 +0.629071873083151,0.9328054894340003 +-0.6735830145014953,-0.21147698772632867 +-0.35451107248684177,1.3249070156579965 +0.7127342978523612,0.39780695098138374 +0.5741145245498764,0.04001165379535776 +0.2313208033643897,0.9805223658992619 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +-0.658797889856322,-0.48627317039028284 +0.4846652363356345,1.9067470758768277 +-0.2669202609122876,-0.34476101068162124 +0.26266756688482146,1.5784204112062574 +0.3990738307094435,1.800066795593854 +-0.523486117030636,-0.36419818189455155 +-1.0986190497994095,-0.22993300711090475 +-0.8466145043932546,0.4864935201991873 +-0.4558765763412158,1.6563010812948704 +0.3879330994657516,-0.44174266408027774 +0.333523354779425,-0.4861085591989984 +-0.33170337584960496,-0.07057182403865153 +-0.15792656343370476,2.2339899614968237 +-0.7295087971440142,0.6810172186310518 +-0.26072714406308506,0.835219710912907 +-0.26872573581006876,0.5101478749013242 +-0.6949923275201191,1.1985202889083753 +-0.46398433736901484,0.14648355760559748 +-0.47909165232584205,0.8324449743692963 +-0.5260510136127621,0.03164145114560887 +0.19993497513692526,1.9523564827139306 +-0.35432291184017817,1.7618699949056573 +-0.4634825803236568,-0.25557523166289264 +0.3643325668871208,1.7211190767607503 +0.13048604423455568,0.2921800284527417 +0.7127342978523612,0.39780695098138374 +0.6428078940268339,1.4446338310317666 +0.6257632820878011,0.3172909349717862 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +-0.9587657487409915,0.22149247638840427 +-0.4677274572033366,0.26813877876761694 +-0.2669202609122876,-0.34476101068162124 +0.26266756688482146,1.5784204112062574 +0.3990738307094435,1.800066795593854 +-0.2086944876775078,0.881013597307161 +-1.0986190497994095,-0.22993300711090475 +0.042391003317187814,-0.19104074278833916 +-0.4558765763412158,1.6563010812948704 +0.3879330994657516,-0.44174266408027774 +0.4795086946780299,1.6638689407885954 +-0.6993272466943535,1.0403325715578866 +-0.15792656343370476,2.2339899614968237 +0.40306656655547535,-0.28316990949345205 +-0.26072714406308506,0.835219710912907 +-0.00727501717142881,0.9990775720207016 +0.9348829951874448,-0.3358847469560292 +-0.46398433736901484,0.14648355760559748 +-0.47909165232584205,0.8324449743692963 +-0.5260510136127621,0.03164145114560887 +0.19993497513692526,1.9523564827139306 +-0.35432291184017817,1.7618699949056573 +-0.4634825803236568,-0.25557523166289264 +0.3643325668871208,1.7211190767607503 +1.0047120904018452,0.3371627965722278 +0.7127342978523612,0.39780695098138374 +0.6428078940268339,1.4446338310317666 +0.6711930571627546,1.7704387432876905 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +-0.9587657487409915,0.22149247638840427 +-0.6647600937530153,0.9633732101283191 +-0.8251916414660079,1.0065840139956488 +0.26266756688482146,1.5784204112062574 +0.3990738307094435,1.800066795593854 +-0.2086944876775078,0.881013597307161 +0.9535155984398926,0.5359496010729966 +0.042391003317187814,-0.19104074278833916 +-0.4558765763412158,1.6563010812948704 +0.3879330994657516,-0.44174266408027774 +0.4795086946780299,1.6638689407885954 +-0.6993272466943535,1.0403325715578866 +-0.15792656343370476,2.2339899614968237 +-0.6271435311328117,0.2104330292323715 +-0.26072714406308506,0.835219710912907 +-0.23847782546541002,-0.07151373415473677 +1.0225567899077637,1.311990466154266 +-0.20893206306879286,-0.012241734173398772 +-1.0158558057196196,-0.36015685218347715 +1.5392491187905912,-0.38659785728874363 +0.24683353738193645,-0.01710394170158519 +-0.35432291184017817,1.7618699949056573 +-0.4634825803236568,-0.25557523166289264 +-0.8363817259236592,-0.19270194680983943 +1.0047120904018452,0.3371627965722278 +-0.5089728012538379,1.03043133425505 +0.6428078940268339,1.4446338310317666 +0.6711930571627546,1.7704387432876905 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +-0.3953777970844389,1.0769809843792328 +-0.6647600937530153,0.9633732101283191 +1.3046635104624826,-1.7881257526816188 +-0.15466869609129696,0.09240616338926744 +0.3990738307094435,1.800066795593854 +-0.2086944876775078,0.881013597307161 +0.9535155984398926,0.5359496010729966 +0.042391003317187814,-0.19104074278833916 +-0.1889737700669042,0.1342042915801659 +0.3879330994657516,-0.44174266408027774 +0.4795086946780299,1.6638689407885954 +-0.0923570039623841,1.4947793352340684 +-0.15792656343370476,2.2339899614968237 +-0.6271435311328117,0.2104330292323715 +-0.813970779963734,-0.4259010109985125 +-0.23847782546541002,-0.07151373415473677 +-0.45437990238186454,1.8342414561885572 +-0.20893206306879286,-0.012241734173398772 +-1.0158558057196196,-0.36015685218347715 +1.5392491187905912,-0.38659785728874363 +1.2839465351827122,-1.7156572355567192 +0.6541784356798579,-0.4781137032861422 +-1.1402382933219435,-0.14205564956122096 +-0.8363817259236592,-0.19270194680983943 +1.0047120904018452,0.3371627965722278 +-0.5089728012538379,1.03043133425505 +0.6428078940268339,1.4446338310317666 +0.7084902031697193,-0.6280203603724627 +1.4243796775735102,-1.442996478185174 +0.31710751499544065,-0.3623979258203853 +-0.3943008011105113,-0.4573773999295598 +-0.6647600937530153,0.9633732101283191 +1.3046635104624826,-1.7881257526816188 +-0.15466869609129696,0.09240616338926744 +0.3990738307094435,1.800066795593854 +-0.15302388995843386,0.5967024005752449 +0.9535155984398926,0.5359496010729966 +0.042391003317187814,-0.19104074278833916 +-0.1889737700669042,0.1342042915801659 +1.6063200285036916,-0.7714974318869063 +-0.09748519279850038,-0.06887783493693693 +-0.5606196940586533,1.2890310429636118 +-0.15792656343370476,2.2339899614968237 +0.4802265817353262,1.478705716798209 +-0.813970779963734,-0.4259010109985125 +-0.23847782546541002,-0.07151373415473677 +-0.45437990238186454,1.8342414561885572 +-0.20893206306879286,-0.012241734173398772 +-1.0158558057196196,-0.36015685218347715 +1.5392491187905912,-0.38659785728874363 +1.2839465351827122,-1.7156572355567192 +-0.3430239972297233,0.7736540958845096 +1.4453966523658348,-0.26726408552186093 +1.13657962044155,-0.14846388195632754 +1.0047120904018452,0.3371627965722278 +-0.5089728012538379,1.03043133425505 +0.6428078940268339,1.4446338310317666 +0.7084902031697193,-0.6280203603724627 +0.7098208155304121,0.44142774655773953 +-0.9093225458115197,0.39164352121496915 +-0.3943008011105113,-0.4573773999295598 +-0.6647600937530153,0.9633732101283191 +-0.8483711720749372,0.33012833750700743 +-0.4113591384913133,0.32547075468071074 +0.4550981177296013,0.6089244054406073 +-0.5095101433082394,0.9794812739944244 +-1.0391036070769126,0.08579627128766054 +0.042391003317187814,-0.19104074278833916 +0.151890896749373,-0.41394915849867586 +1.6063200285036916,-0.7714974318869063 +-0.09748519279850038,-0.06887783493693693 +1.4079977505487344,-0.6748057322492271 +-0.15792656343370476,2.2339899614968237 +0.4802265817353262,1.478705716798209 +1.4878732371537342,-1.245619142413011 +1.4804121596497275,-0.9723504241296995 +-0.45437990238186454,1.8342414561885572 +-0.20893206306879286,-0.012241734173398772 +-1.0158558057196196,-0.36015685218347715 +0.04405499900436188,-0.036977385659243654 +1.2839465351827122,-1.7156572355567192 +0.2312224152968127,0.698120760314978 +1.4453966523658348,-0.26726408552186093 +0.4745920834536685,-0.026393066322377368 +-0.6487856129664076,0.54961909314238 +-0.5089728012538379,1.03043133425505 +0.6428078940268339,1.4446338310317666 +0.7084902031697193,-0.6280203603724627 +0.7098208155304121,0.44142774655773953 +-0.16192093751441483,0.9878094559070351 +-0.7766059698371737,-0.06753973896018153 +-0.6647600937530153,0.9633732101283191 +-0.16390870720062933,-0.07395612501434716 +-0.4113591384913133,0.32547075468071074 +0.4550981177296013,0.6089244054406073 +-0.5095101433082394,0.9794812739944244 +-1.0391036070769126,0.08579627128766054 +0.042391003317187814,-0.19104074278833916 +0.151890896749373,-0.41394915849867586 +0.08051798787141462,1.0546370177653646 +-0.09748519279850038,-0.06887783493693693 +1.4079977505487344,-0.6748057322492271 +-0.15792656343370476,2.2339899614968237 +0.4802265817353262,1.478705716798209 +1.4878732371537342,-1.245619142413011 +0.5325939384214351,-0.580267827519349 +-0.45437990238186454,1.8342414561885572 +-0.20893206306879286,-0.012241734173398772 +-1.0158558057196196,-0.36015685218347715 +0.04405499900436188,-0.036977385659243654 +0.5030771988426048,1.0518200595328882 +1.5471946154057121,-1.6417211029886944 +1.4453966523658348,-0.26726408552186093 +0.4745920834536685,-0.026393066322377368 +1.0057957541920994,0.8440707540220675 +-0.5089728012538379,1.03043133425505 +0.7246087742762607,-0.3703337560835316 +0.6634925500708032,0.012025408705223284 +-0.418444672060704,0.38054092688218666 +-0.8651495572477684,-1.7375034620169608e-05 +1.4342734593389683,-0.927291603918216 +-0.6647600937530153,0.9633732101283191 +-0.16390870720062933,-0.07395612501434716 +1.0749365424525648,-0.477881788476743 +0.529636463798165,1.415051657275616 +-0.5095101433082394,0.9794812739944244 +-1.0391036070769126,0.08579627128766054 +0.042391003317187814,-0.19104074278833916 +0.151890896749373,-0.41394915849867586 +1.7150227681460821,-1.5008401450687687 +1.1880482127439407,-0.7988448262221519 +-0.7979463592512397,-0.08582839366277062 +-0.15792656343370476,2.2339899614968237 +0.4802265817353262,1.478705716798209 +1.372145055458603,-0.31403504140867966 +-0.15990265080670446,0.6474977951420444 +-0.45437990238186454,1.8342414561885572 +0.45673311087677054,-0.46561048223161083 +-1.0158558057196196,-0.36015685218347715 +-0.7675331880622382,0.6315659717432592 +-0.3096919310770261,1.5572361410434739 +-0.7399845171057966,1.137319213771014 +0.6556513156017187,-0.29908348226411535 +0.4745920834536685,-0.026393066322377368 +1.0057957541920994,0.8440707540220675 +-0.5089728012538379,1.03043133425505 +0.9254097982109226,0.8397662701532447 +0.974188698812576,0.3763043581134954 +-0.418444672060704,0.38054092688218666 +1.4607232407463584,-1.354536395633251 +0.8104827607602787,1.173551459072093 +-0.6647600937530153,0.9633732101283191 +-0.13356180680507787,0.5327186423738675 +-0.5522683202912821,0.03321240906318634 +1.2578224591472764,-1.1598631651483082 +-0.5095101433082394,0.9794812739944244 +1.540945587246552,-1.8290013542438512 +0.042391003317187814,-0.19104074278833916 +0.12493621006633826,0.6369903435493316 +-0.4852053066201117,2.1103305670189387 +1.1397650546585272,-1.1703878149848626 +-0.7979463592512397,-0.08582839366277062 +-0.15792656343370476,2.2339899614968237 +-0.1677540072630604,0.5728895966445218 +1.372145055458603,-0.31403504140867966 +-0.4918805928763509,0.47686181293897045 +-0.45437990238186454,1.8342414561885572 +-0.6304876798591719,0.761141786471931 +1.6991286348147212,-1.3999990695072397 +-0.5610489023370748,0.5065884927191822 +-0.5077256981544337,1.6303409812087866 +-0.7399845171057966,1.137319213771014 +-0.5974579160530358,1.4398578966466369 +0.8422443628959959,-0.5026312028562858 +-0.38687361291362465,0.43118702820730115 +0.08070370914651881,0.1400039461901167 +0.9254097982109226,0.8397662701532447 +-0.6371375700699144,0.8430115495981927 +0.0143187319135019,1.4591032222424336 +1.4607232407463584,-1.354536395633251 +0.8104827607602787,1.173551459072093 +0.40629465035579837,-0.7196823492281152 +0.8430482041796458,1.2843141769183346 +-0.23488601673200044,0.14514101281573577 +1.2578224591472764,-1.1598631651483082 +-0.5095101433082394,0.9794812739944244 +1.540945587246552,-1.8290013542438512 +0.042391003317187814,-0.19104074278833916 +0.2828759517312587,1.0659597676359527 +-0.4852053066201117,2.1103305670189387 +1.1397650546585272,-1.1703878149848626 +-0.5132114971671871,0.15806736444174113 +-0.15792656343370476,2.2339899614968237 +-0.1677540072630604,0.5728895966445218 +1.372145055458603,-0.31403504140867966 +1.3351903866849664,-0.8033170270671047 +-0.5345830701018339,0.38031306072242343 +-0.6304876798591719,0.761141786471931 +1.1687104099878334,-0.3820325118387222 +0.7717851108072533,1.2517517816170822 +-0.5077256981544337,1.6303409812087866 +-0.7399845171057966,1.137319213771014 +1.0873440176586189,-1.360553542244313 +-0.8698525395339693,-0.07272590427443766 +-0.38687361291362465,0.43118702820730115 +0.7769950795034195,-0.795510777677288 +0.9254097982109226,0.8397662701532447 +0.012359662728215037,-0.32523457621404817 +1.45883785734306,-1.3591828547266176 +-0.6395310865190947,1.2229377376121742 +0.8104827607602787,1.173551459072093 +0.40629465035579837,-0.7196823492281152 +0.8430482041796458,1.2843141769183346 +0.05802248424756096,1.8980563868332836 +1.2578224591472764,-1.1598631651483082 +-0.5095101433082394,0.9794812739944244 +1.540945587246552,-1.8290013542438512 +0.44164113973260943,-0.4601679227169009 +0.2828759517312587,1.0659597676359527 +1.3500618859767568,-0.06617575793049868 +1.1397650546585272,-1.1703878149848626 +-0.5132114971671871,0.15806736444174113 +-0.007462890475764816,0.9580421389426187 +-0.1677540072630604,0.5728895966445218 +1.372145055458603,-0.31403504140867966 +0.9551692557507929,-0.7449125759312434 +-0.5345830701018339,0.38031306072242343 +-0.6304876798591719,0.761141786471931 +1.1687104099878334,-0.3820325118387222 +0.7717851108072533,1.2517517816170822 +-0.5077256981544337,1.6303409812087866 +-0.7399845171057966,1.137319213771014 +1.0422986183428526,0.21314445793244918 +-0.8698525395339693,-0.07272590427443766 +1.0206218739943846,-0.5271825703198489 +1.5505633873132227,-1.2933177640648537 +0.9254097982109226,0.8397662701532447 +1.2513802745983695,-1.0126921583495896 +1.8208850314969813,-2.409598927083083 +-0.441394375440495,1.8446861397545447 +0.8104827607602787,1.173551459072093 +-0.21589295458147423,1.4085582833810986 +0.8430482041796458,1.2843141769183346 +0.05802248424756096,1.8980563868332836 +1.2578224591472764,-1.1598631651483082 +1.095574575171249,-0.09526434292243513 +1.540945587246552,-1.8290013542438512 +-0.6749032772394734,-0.4523397324331202 +0.6947376602124334,0.45599271087892956 +1.3500618859767568,-0.06617575793049868 +1.1397650546585272,-1.1703878149848626 +-0.5132114971671871,0.15806736444174113 +0.5238042186204035,-0.027220517360686036 +-0.1677540072630604,0.5728895966445218 +0.8755832630330652,-0.6523017488532629 +0.7973879615911569,0.18909417174226328 +-0.5345830701018339,0.38031306072242343 +-0.3854021664618691,-0.005382651592998555 +0.8332309025927007,1.4810891259227874 +0.7717851108072533,1.2517517816170822 +1.5178704527626814,-1.7157460237437892 +0.8901860182358576,1.4690764792896736 +0.3817599892178357,1.9872029521604904 +-0.8698525395339693,-0.07272590427443766 +0.3143840918060805,1.0954745014290543 +0.20111544130900588,-0.26201294048755686 +0.48974034394234245,2.132210455826556 +-0.8913880123425606,0.417306948148924 +1.8208850314969813,-2.409598927083083 +-0.441394375440495,1.8446861397545447 +0.8104827607602787,1.173551459072093 +0.9041056289940604,0.5303210872902133 +-0.8305984531165621,0.1197272335613852 +0.43260849207729607,-0.11186201430389953 +0.198663611383005,0.02511655558339554 +-0.542814042172567,1.6887030101151133 +-0.23483888231654912,1.5579001165197872 +-0.6749032772394734,-0.4523397324331202 +-0.4548456944180962,0.7411968036580203 +0.5980176638800828,-0.42669471266804077 +1.1397650546585272,-1.1703878149848626 +-0.5132114971671871,0.15806736444174113 +0.5238042186204035,-0.027220517360686036 +-0.1677540072630604,0.5728895966445218 +0.8755832630330652,-0.6523017488532629 +0.7973879615911569,0.18909417174226328 +-0.5345830701018339,0.38031306072242343 +-0.739179308306271,0.42222847755771314 +0.8332309025927007,1.4810891259227874 +1.170659787279276,-0.7969273249194765 +1.5178704527626814,-1.7157460237437892 +0.8901860182358576,1.4690764792896736 +-0.3509587137663055,0.5397509249611434 +-0.8698525395339693,-0.07272590427443766 +1.1612155346160953,-1.4524159880416139 +0.9182576974761987,-0.6939601139962404 +0.48974034394234245,2.132210455826556 +-0.8913880123425606,0.417306948148924 +1.8208850314969813,-2.409598927083083 +-0.441394375440495,1.8446861397545447 +0.39894787731306514,1.2792082492484813 +0.9041056289940604,0.5303210872902133 +-0.8305984531165621,0.1197272335613852 +-0.43411504114841315,1.0530387487865855 +0.198663611383005,0.02511655558339554 +-0.542814042172567,1.6887030101151133 +0.00711292051988166,0.3968000472865904 +0.10882362200697787,1.049599994423121 +-0.4548456944180962,0.7411968036580203 +0.5980176638800828,-0.42669471266804077 +1.1397650546585272,-1.1703878149848626 +-0.5132114971671871,0.15806736444174113 +0.5238042186204035,-0.027220517360686036 +-0.1677540072630604,0.5728895966445218 +0.07901147620155506,0.8456652281660513 +-0.28349462905158657,1.1560021775306273 +0.5843215995756312,0.6183496551979941 +1.3787233361177091,-0.016941014183954328 +0.7328119559498943,-0.45701605058708716 +0.9796199969528747,-0.41136919980540976 +1.611045832089315,-1.8367424972556448 +0.8901860182358576,1.4690764792896736 +-0.3509587137663055,0.5397509249611434 +-0.8698525395339693,-0.07272590427443766 +1.1612155346160953,-1.4524159880416139 +0.754235913164502,-0.0314022578934679 +0.48974034394234245,2.132210455826556 +-0.8913880123425606,0.417306948148924 +1.8208850314969813,-2.409598927083083 +-0.441394375440495,1.8446861397545447 +-0.2681572630684024,0.11111407314632905 +0.9041056289940604,0.5303210872902133 +0.6294791183488833,1.0041886787632772 +1.6232451512266657,-1.1665642434594243 +0.198663611383005,0.02511655558339554 +-0.17381107281654035,1.3078190299526766 +0.00711292051988166,0.3968000472865904 +1.0245371268287278,-0.3348620621381837 +-0.4548456944180962,0.7411968036580203 +0.5980176638800828,-0.42669471266804077 +1.1397650546585272,-1.1703878149848626 +-0.5132114971671871,0.15806736444174113 +0.5238042186204035,-0.027220517360686036 +-0.6360383246758765,1.3010410542013844 +-0.09665376001108072,1.503557467387433 +0.5528002734993434,0.013614889954422171 +1.2686752550920928,0.5588386730331548 +1.3787233361177091,-0.016941014183954328 +0.13314372836108423,0.4685091167470413 +0.17244888309718986,0.7804451292594629 +1.611045832089315,-1.8367424972556448 +0.8901860182358576,1.4690764792896736 +-0.3509587137663055,0.5397509249611434 +-0.8698525395339693,-0.07272590427443766 +0.6011786602593875,1.5814637984937425 +1.240342533291465,-0.11564611735988164 +0.48974034394234245,2.132210455826556 +0.13641932540605645,1.0339402581413812 +1.8208850314969813,-2.409598927083083 +1.5531188740205084,-1.3529326205330576 +-0.2681572630684024,0.11111407314632905 +0.9041056289940604,0.5303210872902133 +0.6294791183488833,1.0041886787632772 +1.6232451512266657,-1.1665642434594243 +0.198663611383005,0.02511655558339554 +-0.3759029883742874,0.2448398303913312 +0.9360973230731985,-0.19965528014931927 +1.0245371268287278,-0.3348620621381837 +-0.7286498064445847,0.6821373444485765 +0.5980176638800828,-0.42669471266804077 +-0.2515262468481148,-0.3867265128787068 +-0.5132114971671871,0.15806736444174113 +-0.6711040297504144,1.068252208781043 +0.8629421136221204,-0.6993907378982605 +-0.09665376001108072,1.503557467387433 +-0.1989459203646342,1.5644763424217367 +-0.21215578189557374,1.0433695420540743 +-0.5625650149940262,-0.24842075048992163 +0.09292269116227223,0.9118109933491851 +-0.4965896846761327,2.1839066616414096 +1.611045832089315,-1.8367424972556448 +0.8248374794865363,0.6674807423724256 +0.769305529039561,0.8683758094948966 +-0.8698525395339693,-0.07272590427443766 +0.6011786602593875,1.5814637984937425 +1.240342533291465,-0.11564611735988164 +0.48974034394234245,2.132210455826556 +0.13641932540605645,1.0339402581413812 +1.8208850314969813,-2.409598927083083 +1.2115146308777605,0.21600742053507122 +-0.2681572630684024,0.11111407314632905 +0.19675167309361685,0.4219766825493653 +-0.48415154088313694,1.3930158847354732 +1.6232451512266657,-1.1665642434594243 +1.4805976566489607,-1.5872900389740554 +1.4725448937663725,-0.4049516126108841 +1.5067423874257375,-1.2247319528521732 +1.3194150108773774,-0.5036595011505847 +-0.7195022687131276,0.6658124514085464 +0.5980176638800828,-0.42669471266804077 +0.9109629657362166,-0.8200133854764833 +-0.5132114971671871,0.15806736444174113 +-0.6711040297504144,1.068252208781043 +-0.4189858891802561,0.08069766960255365 +0.8919171429443667,-0.5548662650993212 +-0.1989459203646342,1.5644763424217367 +-0.6422552479114564,1.9702117649072093 +1.4752936754467856,-1.5362387362347771 +0.09292269116227223,0.9118109933491851 +1.5088861784215513,-1.2930247498167573 +0.846481148970009,0.8098818414392489 +0.5545769565978778,1.352018774009567 +0.769305529039561,0.8683758094948966 +-0.8698525395339693,-0.07272590427443766 +0.6011786602593875,1.5814637984937425 +-0.07754380318927212,0.18846616825132484 +0.5876705695410813,1.5002495836417817 +-0.2932140414019141,1.2247096297474704 +-0.6292978557093248,1.5049728211143663 +-0.2390590892569292,-0.017365649446612764 +-0.2681572630684024,0.11111407314632905 +0.19675167309361685,0.4219766825493653 +-0.48415154088313694,1.3930158847354732 +1.6232451512266657,-1.1665642434594243 +-0.39929903550788015,0.318245048772811 +0.46389673521922825,0.00994661846367606 +-0.16913646690404271,1.6607455735494685 +1.3194150108773774,-0.5036595011505847 +1.630103156766126,-1.7601755701667883 +0.5980176638800828,-0.42669471266804077 +0.9109629657362166,-0.8200133854764833 +0.6872541793371152,-0.36355800032307434 +-0.6711040297504144,1.068252208781043 +-0.4189858891802561,0.08069766960255365 +0.6833475769383259,-1.0399781887929223 +-0.1989459203646342,1.5644763424217367 +-0.6422552479114564,1.9702117649072093 +1.4752936754467856,-1.5362387362347771 +0.478074985660273,1.8816913015797085 +1.5088861784215513,-1.2930247498167573 +-0.28722836828524156,0.27001266995903367 +0.015824466034106144,1.5075127222168834 +0.769305529039561,0.8683758094948966 +-0.5172186020142304,-0.2560325396369758 +0.6011786602593875,1.5814637984937425 +-0.07754380318927212,0.18846616825132484 +0.32296453436224243,2.078882486199162 +-0.21564733891037646,1.862042965116866 +-0.6292978557093248,1.5049728211143663 +0.004328846515930906,2.09134197506176 +-0.2681572630684024,0.11111407314632905 +0.4614225409624835,1.789240503275698 +-0.48415154088313694,1.3930158847354732 +0.1361975688364429,1.6541096547492775 +-0.39929903550788015,0.318245048772811 +0.46389673521922825,0.00994661846367606 +0.1391917177691629,1.7429397302168554 +0.8598679154363267,-0.3372097370218854 +-0.06545280346808907,0.591241579483473 +0.5980176638800828,-0.42669471266804077 +0.6824858403521702,-0.5023430952647088 +0.6872541793371152,-0.36355800032307434 +-0.6711040297504144,1.068252208781043 +-0.7281986361396089,0.7306544472565732 +0.6833475769383259,-1.0399781887929223 +-0.1989459203646342,1.5644763424217367 +-0.3004192641348772,1.3056826622177022 +1.4752936754467856,-1.5362387362347771 +-0.7653544600672385,-0.3521063136741687 +1.5088861784215513,-1.2930247498167573 +1.0693868081450735,-0.03882250374805074 +0.41699889413034164,0.4152599335128347 +0.769305529039561,0.8683758094948966 +-0.7201511037026225,1.4893464205430589 +0.6011786602593875,1.5814637984937425 +-0.07754380318927212,0.18846616825132484 +0.32296453436224243,2.078882486199162 +-0.21564733891037646,1.862042965116866 +-0.6292978557093248,1.5049728211143663 +0.004328846515930906,2.09134197506176 +-0.2681572630684024,0.11111407314632905 +0.4614225409624835,1.789240503275698 +-0.1740994872810404,2.121754210716446 +-0.6869631508345171,1.4723805647887749 +-0.39929903550788015,0.318245048772811 +0.7301873670890959,0.3104119059108838 +-0.03939109448670608,2.321394795864097 +0.8598679154363267,-0.3372097370218854 +-0.23699023442904976,2.074706369846509 +-0.771629923037905,0.9772884975844256 +0.7856619908481188,1.355814162859699 +0.6872541793371152,-0.36355800032307434 +0.2730127917135545,1.8003438098814786 +-0.29963892631906774,0.30824359006254043 +0.6833475769383259,-1.0399781887929223 +-0.1989459203646342,1.5644763424217367 +1.1211072753362692,-0.7573167429941635 +1.4752936754467856,-1.5362387362347771 +-0.7653544600672385,-0.3521063136741687 +1.5088861784215513,-1.2930247498167573 +1.284695900707864,-1.1150150438258182 +1.4879534416223097,-0.7347172894400703 +0.769305529039561,0.8683758094948966 +-0.7201511037026225,1.4893464205430589 +0.6011786602593875,1.5814637984937425 +-0.07754380318927212,0.18846616825132484 +1.7076794712628725,-1.9051577367624632 +-0.1895139536438628,0.12198505440413498 +-0.6292978557093248,1.5049728211143663 +1.235701276559453,-0.16425095126622058 +-0.8679801021566569,0.8662266254103925 +0.4614225409624835,1.789240503275698 +-0.1740994872810404,2.121754210716446 +-0.848101961301301,1.3617619529383698 +-0.6178953661385994,1.7384918548349668 +0.012569112682233152,1.8928959785700388 +1.7478654850071256,-2.3874986401375153 +0.8598679154363267,-0.3372097370218854 +-0.23699023442904976,2.074706369846509 +-0.771629923037905,0.9772884975844256 +0.7856619908481188,1.355814162859699 +1.596130480163475,-2.1326077769339147 +0.5765254571464801,-0.3364305011049853 +-0.29963892631906774,0.30824359006254043 +1.2718616582958413,-0.22806373469118835 +-0.1989459203646342,1.5644763424217367 +0.07253764540695828,1.6127518068444016 +1.4752936754467856,-1.5362387362347771 +-0.7653544600672385,-0.3521063136741687 +0.36760875391288633,-0.293647619570215 +0.10820621014065057,0.11928500955504695 +0.8474938262364154,-0.48610141323656875 +0.3693372039435698,0.2832138478974635 +1.8738550787104316,-2.7585459900581895 +0.6011786602593875,1.5814637984937425 +0.12403436562882719,2.058350860908136 +-0.5314094806391543,1.5967284942823923 +-0.6963836362900835,0.9168550108911603 +0.5977170614133925,-0.4745111452179862 +1.235701276559453,-0.16425095126622058 +-0.8679801021566569,0.8662266254103925 +-0.02856625238407756,0.16042243593001784 +-0.1740994872810404,2.121754210716446 +-0.848101961301301,1.3617619529383698 +-0.04787678642778492,-0.24307118716589715 +0.012569112682233152,1.8928959785700388 +1.7478654850071256,-2.3874986401375153 +0.10823202920757186,-0.01687155623250919 +-0.23699023442904976,2.074706369846509 +-0.771629923037905,0.9772884975844256 +0.7856619908481188,1.355814162859699 +1.596130480163475,-2.1326077769339147 +0.5765254571464801,-0.3364305011049853 +-0.29963892631906774,0.30824359006254043 +-0.6074851348477064,1.5038805328356033 +-0.1989459203646342,1.5644763424217367 +1.5344775532936936,-1.5796722408385722 +1.4752936754467856,-1.5362387362347771 +-0.7653544600672385,-0.3521063136741687 +0.6513655278153015,-0.32290995471918427 +0.10820621014065057,0.11928500955504695 +0.8474938262364154,-0.48610141323656875 +0.3693372039435698,0.2832138478974635 +0.06344674512530102,-0.3452004844966048 +1.3660481222541168,0.1574452618404868 +-0.4556973819681305,1.0689753143231786 +0.36247617619689304,0.14464032594019943 +0.9577567189699914,0.8031792774831145 +1.2586183850273762,0.2195835567898219 +1.235701276559453,-0.16425095126622058 +1.5242835078170418,-1.7053734607798836 +0.23785512790500077,-0.0006934060540908817 +1.775478171733375,-3.0323558355615874 +-0.5528233768389834,0.7132400161410578 +-0.04787678642778492,-0.24307118716589715 +0.012569112682233152,1.8928959785700388 +0.7733754007699801,-0.8050525163978471 +-0.32723632850163253,1.735928615646137 +0.26712093464952086,0.04855498031100415 +-0.3368297636156261,0.26844868927425036 +0.7856619908481188,1.355814162859699 +1.596130480163475,-2.1326077769339147 +0.5765254571464801,-0.3364305011049853 +1.394988835401801,-0.7815594167582955 +0.7607369684354911,1.1508966299111147 +-0.9484636185668951,0.7078758152566409 +1.5344775532936936,-1.5796722408385722 +0.0071075151777172385,1.5725249645520463 +1.5932180486587544,-0.7219877135317463 +0.6513655278153015,-0.32290995471918427 +0.10820621014065057,0.11928500955504695 +-0.6783331982817921,0.10229428986005373 +0.3152340482488998,-0.48078753385419215 +-0.5849616370951936,0.4355763840465402 +1.446711188465898,-0.6688144763192871 +-0.4556973819681305,1.0689753143231786 +-0.6554663413767396,1.0917457693977477 +-0.8060206006345343,0.78047886245266 +1.2586183850273762,0.2195835567898219 +1.235701276559453,-0.16425095126622058 +-0.009558454885570448,1.7523046488768121 +0.23785512790500077,-0.0006934060540908817 +1.775478171733375,-3.0323558355615874 +-0.2039484172152907,1.6224334687172635 +-0.20653832519029316,2.055830949339578 +0.5587782766332416,0.13780266129266325 +0.7733754007699801,-0.8050525163978471 +-0.32723632850163253,1.735928615646137 +0.5239013301975746,1.1842941021661897 +1.0668361086538012,0.5642764066587049 +0.7856619908481188,1.355814162859699 +1.606222991447206,-1.2301734571075111 +0.9783896219728125,0.01483949537060325 +-0.4607909668681044,1.4040555723135157 +0.24392525510606744,1.667329904381455 +1.5949602922952095,-0.9967023894380591 +1.5344775532936936,-1.5796722408385722 +-0.6934436703018675,0.3366198646923896 +0.7297760007659222,-0.12768416434953714 +0.6513655278153015,-0.32290995471918427 +0.10820621014065057,0.11928500955504695 +-0.6783331982817921,0.10229428986005373 +0.3152340482488998,-0.48078753385419215 +-0.5849616370951936,0.4355763840465402 +-0.035145325350629655,2.301209297373837 +0.40183027129087245,1.935236775722271 +-0.6554663413767396,1.0917457693977477 +0.941906744669736,1.062397215371869 +1.2586183850273762,0.2195835567898219 +0.09591752899900526,1.4826182742459888 +-0.15516261554685973,2.119868670896825 +0.5112465621192837,-0.26160312686988285 +1.775478171733375,-3.0323558355615874 +0.09383702584425378,2.251727191214885 +-0.20653832519029316,2.055830949339578 +0.5587782766332416,0.13780266129266325 +1.02055443763368,-1.4533516940485678 +0.7927890789345351,0.9793849714301195 +0.5239013301975746,1.1842941021661897 +1.318276543147908,-0.717533476760378 +0.7856619908481188,1.355814162859699 +1.606222991447206,-1.2301734571075111 +0.9783896219728125,0.01483949537060325 +-0.013312120876164624,1.9732268231275591 +0.24392525510606744,1.667329904381455 +0.055079968376442634,0.10639639346305574 +1.5344775532936936,-1.5796722408385722 +-0.06498299039182887,0.18991551720426414 +0.3631637767382192,0.3241663116433198 +-0.6637805565297221,1.2671150630190056 +0.10820621014065057,0.11928500955504695 +-0.6783331982817921,0.10229428986005373 +-1.0785507371078706,0.9519082820198472 +-0.5849616370951936,0.4355763840465402 +1.7584346103262825,-1.8220214365304441 +1.352723018885526,-1.2019126225917467 +-0.24855620046832794,1.1505916360281505 +0.941906744669736,1.062397215371869 +1.2586183850273762,0.2195835567898219 +-0.016820862538537595,0.06509145809253791 +-0.15516261554685973,2.119868670896825 +0.5112465621192837,-0.26160312686988285 +1.8626761909174134,-1.7836978578058018 +0.09383702584425378,2.251727191214885 +-0.3468183774710674,0.849451577653332 +-0.7255687479043382,0.18803627668348433 +1.2504923083308546,-0.05263496342657015 +-0.4704504098619544,2.1231677316520337 +0.5239013301975746,1.1842941021661897 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +0.8299622357773778,0.5972648043437465 +0.9783896219728125,0.01483949537060325 +-0.013312120876164624,1.9732268231275591 +0.6559583924331602,1.6766858226479382 +0.055079968376442634,0.10639639346305574 +0.6481524091644687,-0.27537014033182555 +-0.06498299039182887,0.18991551720426414 +1.1880687213750751,0.7196821598877788 +-0.6637805565297221,1.2671150630190056 +0.04005223784205114,1.0548124964811025 +-0.6187126791697293,0.6770837971114492 +-0.49502091557595845,1.7005065451945587 +0.8822661812593999,0.9552280621718634 +-0.12479116549825406,1.3273835140036483 +1.352723018885526,-1.2019126225917467 +-0.6269587041840223,-0.5353527390985107 +0.20872120593071564,1.2024039026502642 +1.2586183850273762,0.2195835567898219 +-0.016820862538537595,0.06509145809253791 +-0.1078145957265405,1.4533205720983828 +0.5112465621192837,-0.26160312686988285 +1.4655224383415024,-0.011510818563483544 +0.09383702584425378,2.251727191214885 +-0.3468183774710674,0.849451577653332 +-0.7255687479043382,0.18803627668348433 +-0.8673646633389034,-0.3371912566867542 +0.3675941447180763,2.078364482002739 +-0.32345807656951014,1.3397559753752197 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +0.8299622357773778,0.5972648043437465 +0.9783896219728125,0.01483949537060325 +-0.7469323303652122,0.7028499212897474 +0.6559583924331602,1.6766858226479382 +-0.3752646279217855,1.59223114048207 +0.6481524091644687,-0.27537014033182555 +-0.06498299039182887,0.18991551720426414 +1.1880687213750751,0.7196821598877788 +-0.6637805565297221,1.2671150630190056 +-0.25419064176865647,0.00510170093758322 +-0.6187126791697293,0.6770837971114492 +-0.49502091557595845,1.7005065451945587 +0.534067832733304,1.5594045464375257 +-0.17718853720407668,0.8070523030408963 +1.352723018885526,-1.2019126225917467 +0.8794346470694127,0.5642443385224507 +0.3084508006369237,1.917672319852015 +0.8312330778909947,0.02535845929554445 +-0.2491244449556727,1.4110820530536 +-1.0237568572948301,-0.12931154731294042 +0.5112465621192837,-0.26160312686988285 +0.8059282554408551,1.629396022484391 +-0.3271003932627143,1.8277112169737053 +-0.3468183774710674,0.849451577653332 +-0.7255687479043382,0.18803627668348433 +0.46275832621218577,0.7249715874345206 +0.3675941447180763,2.078364482002739 +-0.32345807656951014,1.3397559753752197 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +0.9783896219728125,0.01483949537060325 +0.10654171085817338,0.07191479727725025 +0.6559583924331602,1.6766858226479382 +0.8840860243767188,-0.7229534112131075 +0.6481524091644687,-0.27537014033182555 +0.2254162218816943,2.220808011782677 +1.395262033262247,-0.34539986318421 +1.44660310485942,0.04438379156721828 +0.0007076882380407656,0.01873380997307164 +-0.6187126791697293,0.6770837971114492 +1.1001710527928221,0.8187281489086278 +0.534067832733304,1.5594045464375257 +0.416024092659793,1.325591139453519 +0.28499511204853106,-0.15056572392595738 +1.4084203051465267,0.10623621921908977 +1.0893922946851662,-0.4693911070383303 +-0.6153652921700132,1.1095563201225613 +1.5902034105774185,-1.656146623253745 +-1.0237568572948301,-0.12931154731294042 +0.5112465621192837,-0.26160312686988285 +0.8059282554408551,1.629396022484391 +-0.3271003932627143,1.8277112169737053 +1.009162728635887,-0.27249266637872366 +-0.7255687479043382,0.18803627668348433 +0.46275832621218577,0.7249715874345206 +0.3675941447180763,2.078364482002739 +-0.32345807656951014,1.3397559753752197 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +0.934903955925113,0.7783115470891285 +0.10654171085817338,0.07191479727725025 +0.9477595915183821,0.9901381114127062 +0.8840860243767188,-0.7229534112131075 +0.6481524091644687,-0.27537014033182555 +0.2254162218816943,2.220808011782677 +-0.7645240647098537,1.074089126390235 +1.2591088393500507,-1.0441827179332261 +0.0007076882380407656,0.01873380997307164 +1.6199417148513806,-1.269869626408302 +1.1001710527928221,0.8187281489086278 +0.9633334552145053,0.7829803104284986 +0.416024092659793,1.325591139453519 +0.28499511204853106,-0.15056572392595738 +0.42664826352168195,1.4015245090167272 +0.4885052933296645,0.20389532261793764 +-0.6153652921700132,1.1095563201225613 +-0.4962005058302217,0.024401299159115812 +-1.0237568572948301,-0.12931154731294042 +0.5112465621192837,-0.26160312686988285 +1.073866797235382,-1.0762970783709649 +-0.3271003932627143,1.8277112169737053 +1.1594448657307237,0.5041213165937042 +-0.29079451575017234,2.2383011257498877 +1.444773167279991,-1.9423546048655287 +0.3675941447180763,2.078364482002739 +-0.299994371381823,0.16989678241834347 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +0.01368306537895747,2.0716774522083217 +0.10654171085817338,0.07191479727725025 +0.9477595915183821,0.9901381114127062 +0.8840860243767188,-0.7229534112131075 +0.7021142141128923,1.2738149818806428 +0.2254162218816943,2.220808011782677 +0.7177035082265463,1.47272078857989 +1.2591088393500507,-1.0441827179332261 +-0.6280905694217824,0.39898016084829746 +1.5125441847124463,-1.8061055070067997 +1.1001710527928221,0.8187281489086278 +0.9633334552145053,0.7829803104284986 +1.4367605742896274,-0.9703119956106068 +0.28499511204853106,-0.15056572392595738 +0.42664826352168195,1.4015245090167272 +-0.09467139196106433,-0.23559933634580377 +-0.6153652921700132,1.1095563201225613 +-0.4962005058302217,0.024401299159115812 +-1.0237568572948301,-0.12931154731294042 +0.5112465621192837,-0.26160312686988285 +1.073866797235382,-1.0762970783709649 +-0.3271003932627143,1.8277112169737053 +0.7867547727440594,0.18200639714485323 +-0.29079451575017234,2.2383011257498877 +-0.4511790402331486,-0.6490466576323419 +0.3675941447180763,2.078364482002739 +-0.299994371381823,0.16989678241834347 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +-0.6878489809877664,1.5341241286809706 +0.08428225368922371,2.3460348386194783 +-0.2831513856176035,0.624258589685659 +0.8840860243767188,-0.7229534112131075 +0.7021142141128923,1.2738149818806428 +-0.06816967164451226,1.834942355081092 +0.8761567362706144,-0.550941206798943 +0.23082938183333185,-0.15187397187154122 +-0.6280905694217824,0.39898016084829746 +1.5125441847124463,-1.8061055070067997 +-0.10375317495028974,0.1961621867920192 +0.9633334552145053,0.7829803104284986 +0.48871432117533253,1.6851385645423325 +0.28499511204853106,-0.15056572392595738 +0.42664826352168195,1.4015245090167272 +-0.09467139196106433,-0.23559933634580377 +1.2860310569536382,-0.29752532370806006 +-0.4962005058302217,0.024401299159115812 +-1.0237568572948301,-0.12931154731294042 +-0.5090570032827761,0.753764001055485 +1.0310141294600432,-1.0208411051177504 +-0.3271003932627143,1.8277112169737053 +0.7866094554487753,0.3476221809249631 +-0.07122953214512398,-0.2576134627249912 +1.5079265191935889,-0.5859669757108525 +0.3675941447180763,2.078364482002739 +-0.18849277142121362,1.631872849091707 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +-0.6878489809877664,1.5341241286809706 +-0.9357107682735001,0.632621150931653 +-0.2831513856176035,0.624258589685659 +0.8840860243767188,-0.7229534112131075 +-0.7305796854575342,0.8360011181807323 +-0.06816967164451226,1.834942355081092 +0.8761567362706144,-0.550941206798943 +0.685194754759311,1.3781130774900059 +-0.3133927942427147,0.4584899883003409 +0.9303478499777138,0.1766086782432097 +0.4709151810227632,-0.35625118249787047 +0.9633334552145053,0.7829803104284986 +0.48871432117533253,1.6851385645423325 +0.28499511204853106,-0.15056572392595738 +0.42664826352168195,1.4015245090167272 +-0.09467139196106433,-0.23559933634580377 +1.2860310569536382,-0.29752532370806006 +-0.4962005058302217,0.024401299159115812 +-0.13438790515747787,0.5140810357047537 +-0.5090570032827761,0.753764001055485 +1.0310141294600432,-1.0208411051177504 +-0.3271003932627143,1.8277112169737053 +-0.5380479562757876,0.889543249125974 +-0.07122953214512398,-0.2576134627249912 +1.5079265191935889,-0.5859669757108525 +0.22736248061659226,0.9328682554368566 +0.9778655984185451,-0.9483743089985259 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +-0.6878489809877664,1.5341241286809706 +-0.9357107682735001,0.632621150931653 +0.14214183077581422,0.08264725185796062 +1.23198684887045,0.3520649169222969 +-0.7305796854575342,0.8360011181807323 +0.9626847443486259,-0.18696612042555727 +0.8761567362706144,-0.550941206798943 +0.685194754759311,1.3781130774900059 +-0.3133927942427147,0.4584899883003409 +0.4432626679184344,1.2406921790016645 +0.4709151810227632,-0.35625118249787047 +0.9633334552145053,0.7829803104284986 +0.48871432117533253,1.6851385645423325 +0.7571791625134134,-0.8096741397265512 +-0.5678128442473387,0.7740789273697949 +-0.21392105343656265,1.6049977668621058 +1.2860310569536382,-0.29752532370806006 +-0.4962005058302217,0.024401299159115812 +0.5586160462019341,1.650532336394704 +-0.5090570032827761,0.753764001055485 +-0.4106644787174827,1.2189553170142469 +-0.3271003932627143,1.8277112169737053 +-0.5380479562757876,0.889543249125974 +-0.07122953214512398,-0.2576134627249912 +-0.7418925725083365,0.6201607385650565 +0.2540079450958108,0.296871893224107 +0.9778655984185451,-0.9483743089985259 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +0.7154398923198673,1.3670747674042982 +0.36561477687214783,0.2561245952544264 +0.14214183077581422,0.08264725185796062 +1.23198684887045,0.3520649169222969 +-0.7305796854575342,0.8360011181807323 +0.9626847443486259,-0.18696612042555727 +0.8890073247975023,1.0248541049723139 +0.685194754759311,1.3781130774900059 +-0.3133927942427147,0.4584899883003409 +0.4432626679184344,1.2406921790016645 +0.4709151810227632,-0.35625118249787047 +0.9633334552145053,0.7829803104284986 +0.8640957371921858,-0.9046943201326553 +0.7571791625134134,-0.8096741397265512 +-0.5678128442473387,0.7740789273697949 +0.9684341672612682,0.7108702475861146 +1.2860310569536382,-0.29752532370806006 +0.32842265860595693,-0.26925293414053836 +-0.596610640336354,0.1781800509499074 +-0.5090570032827761,0.753764001055485 +-0.4106644787174827,1.2189553170142469 +0.8841557700356694,-0.8821759468433281 +-0.7526444529612109,0.819880674858839 +-0.07122953214512398,-0.2576134627249912 +-0.7418925725083365,0.6201607385650565 +0.2540079450958108,0.296871893224107 +0.7404572286421902,-0.6085374242136432 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +-0.16671624896437903,1.6786451489931256 +0.7154398923198673,1.3670747674042982 +0.36561477687214783,0.2561245952544264 +-0.4776361758680415,0.9512952981988606 +-0.28087684314320227,1.0616377498086633 +-0.3508952750393083,-0.15559077790059733 +0.1253007628379037,0.81616918319388 +0.8890073247975023,1.0248541049723139 +0.5968274377141292,-0.40077911742669725 +-0.3133927942427147,0.4584899883003409 +1.3215823546171552,0.36116318052684726 +0.4709151810227632,-0.35625118249787047 +-0.7832783567589261,0.7060168821608546 +0.8640957371921858,-0.9046943201326553 +0.7571791625134134,-0.8096741397265512 +-0.5678128442473387,0.7740789273697949 +1.3725180240749846,-0.11865673599857163 +1.2860310569536382,-0.29752532370806006 +0.32842265860595693,-0.26925293414053836 +-0.3649631957457528,-0.11486871029051493 +0.18091959535528285,-0.15284829493372193 +-0.4106644787174827,1.2189553170142469 +-0.7626892101895165,1.1730220177549886 +-0.44524602174163735,0.12201692247036788 +-0.5474358896287804,2.1035858675679364 +-0.7418925725083365,0.6201607385650565 +-0.2539983721973088,1.6303991035665366 +0.7404572286421902,-0.6085374242136432 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +0.7407707744316077,-0.4110752546349267 +0.7154398923198673,1.3670747674042982 +-0.45354125784352517,0.6749696369506804 +0.34606566278474077,1.2823488906307843 +-0.28087684314320227,1.0616377498086633 +-0.3508952750393083,-0.15559077790059733 +-0.2855320145772172,0.9341202011035644 +-0.002659823536773742,0.3634383960033948 +0.5968274377141292,-0.40077911742669725 +0.7511356887192862,0.4696868836732774 +1.3215823546171552,0.36116318052684726 +0.4709151810227632,-0.35625118249787047 +-0.3664461480011983,1.3078634348639073 +0.8640957371921858,-0.9046943201326553 +1.6471337049184387,-0.681017276377657 +-0.5678128442473387,0.7740789273697949 +1.3725180240749846,-0.11865673599857163 +1.2860310569536382,-0.29752532370806006 +0.32842265860595693,-0.26925293414053836 +-0.3649631957457528,-0.11486871029051493 +1.190840080536386,0.5558687212673765 +0.9580750286095507,0.3207969386763615 +-0.7626892101895165,1.1730220177549886 +-0.44524602174163735,0.12201692247036788 +-0.5474358896287804,2.1035858675679364 +-0.7418925725083365,0.6201607385650565 +-0.2539983721973088,1.6303991035665366 +0.13542542926683127,0.06726933373267852 +1.651664512916681,-2.087141310807109 +0.7856619908481188,1.355814162859699 +0.7407707744316077,-0.4110752546349267 +0.7154398923198673,1.3670747674042982 +0.30551984402023347,0.4192732388628262 +0.2552683019671167,0.011969725704612522 +0.897774839854019,-0.9256618566736527 +-0.3508952750393083,-0.15559077790059733 +-0.6871060335093788,0.29229886325939697 +-0.908241260723994,0.5714243036201786 +0.1511994856864034,0.2460851128259643 +1.100532407923273,-0.5638963962548256 +1.3215823546171552,0.36116318052684726 +1.3505811234853136,-1.4268501635297919 +-0.3664461480011983,1.3078634348639073 +0.8640957371921858,-0.9046943201326553 +1.6471337049184387,-0.681017276377657 +0.5117417186908211,1.5157284587558408 +1.3725180240749846,-0.11865673599857163 +1.2860310569536382,-0.29752532370806006 +1.5441769528071174,-1.310534949552508 +0.6034613858987323,0.2633848973355195 +0.06481087445424549,1.5199180225619564 +-0.09752684778504833,0.11442274292732962 +-0.7626892101895165,1.1730220177549886 +-0.44524602174163735,0.12201692247036788 +0.6867366993163885,1.0175338660020508 +-0.7418925725083365,0.6201607385650565 +1.0585947320926647,1.0442415017008457 +0.13542542926683127,0.06726933373267852 +-0.9073265985000397,0.6214970689022079 +0.7856619908481188,1.355814162859699 +-0.021291985580359357,1.3992705074767677 +1.0808050318693205,0.8025772833071833 +0.8658759168474082,-1.081890389469822 +0.2552683019671167,0.011969725704612522 +0.897774839854019,-0.9256618566736527 +-0.3508952750393083,-0.15559077790059733 +-0.6871060335093788,0.29229886325939697 +1.115654429366101,0.29912515941044393 +0.3481472204946674,0.5493894008219489 +1.1733987759018132,0.1591941282639462 +1.3215823546171552,0.36116318052684726 +1.492375390553483,-1.17356723557715 +-0.3664461480011983,1.3078634348639073 +0.8640957371921858,-0.9046943201326553 +1.6471337049184387,-0.681017276377657 +0.5117417186908211,1.5157284587558408 +0.4575399561539518,2.1005786392838077 +0.9574048415199807,-0.23659294736399494 +1.5441769528071174,-1.310534949552508 +1.1931877308909133,-1.1447153527136265 +0.06481087445424549,1.5199180225619564 +1.2744089709481488,-1.5220726099042818 +-0.7626892101895165,1.1730220177549886 +-0.44524602174163735,0.12201692247036788 +-0.7852269702289711,0.4997151233373156 +1.0218784195549424,-0.930384450562354 +-0.5063496065473642,0.2488892701945019 +0.15792609840755634,0.10778935049855973 +-0.9073265985000397,0.6214970689022079 +-0.4071622112703898,0.6930920061554697 +-0.08428289132924943,1.0456162877347162 +1.0808050318693205,0.8025772833071833 +1.7532769664442998,-2.4024191000781903 +0.2552683019671167,0.011969725704612522 +0.897774839854019,-0.9256618566736527 +-0.3508952750393083,-0.15559077790059733 +0.7395640746102127,-0.7520986152587604 +1.115654429366101,0.29912515941044393 +-0.03812472633342075,1.5641076867378565 +1.1733987759018132,0.1591941282639462 +0.5581829203656999,-0.665639773364511 +1.183763012103882,0.5387620790077379 +0.006487328337923183,1.7392670072036929 +1.4361955736184542,-0.8176357027053089 +-0.4015881962544426,1.373383801195457 +0.5117417186908211,1.5157284587558408 +1.771071933996569,-1.3784056716579034 +1.1960631015034113,-0.46750781221624227 +1.5441769528071174,-1.310534949552508 +1.6275099426158404,-2.181096961438422 +0.06481087445424549,1.5199180225619564 +-0.5547100418792421,1.432221138570748 +0.8616931949729125,0.4238081293388737 +0.0809350298354119,1.9274676469053513 +-0.7852269702289711,0.4997151233373156 +0.35735981398663696,2.0345778821176133 +-0.5063496065473642,0.2488892701945019 +0.15792609840755634,0.10778935049855973 +-0.6694016324728286,1.4805853971527354 +-0.4071622112703898,0.6930920061554697 +-0.19356704534088776,-0.34235266318105495 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2552683019671167,0.011969725704612522 +-0.4807407277012229,0.5835243606362616 +-0.3508952750393083,-0.15559077790059733 +0.7395640746102127,-0.7520986152587604 +1.115654429366101,0.29912515941044393 +-0.5810934655574935,0.17951575319014768 +1.1733987759018132,0.1591941282639462 +0.04386694972516717,2.4747727329481957 +-0.9245414455015506,0.5569407777878861 +0.006487328337923183,1.7392670072036929 +-0.3129012277323896,1.220772001746654 +-0.4015881962544426,1.373383801195457 +0.5117417186908211,1.5157284587558408 +0.9982506841144995,0.04566608864747046 +1.1960631015034113,-0.46750781221624227 +1.5441769528071174,-1.310534949552508 +0.8480850115122526,1.753383315773295 +0.06481087445424549,1.5199180225619564 +-0.5547100418792421,1.432221138570748 +-0.5742073529269778,1.4308422008909636 +1.2835620546670505,0.02450563771436609 +-0.7852269702289711,0.4997151233373156 +0.35735981398663696,2.0345778821176133 +-0.5063496065473642,0.2488892701945019 +0.15792609840755634,0.10778935049855973 +-0.3829476222675736,0.6205969375348832 +-0.4071622112703898,0.6930920061554697 +0.7500533698642592,0.747680812837169 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2552683019671167,0.011969725704612522 +0.5659046662534418,1.9555574949773282 +-0.3508952750393083,-0.15559077790059733 +0.7395640746102127,-0.7520986152587604 +0.5133893054115743,0.06709927989667108 +0.08116277421840418,1.7553856110842632 +1.1733987759018132,0.1591941282639462 +-0.6749425182262331,1.1312689099227318 +-0.9245414455015506,0.5569407777878861 +0.4354639836570129,-0.49495180504037994 +-0.3129012277323896,1.220772001746654 +-0.02174845457325554,2.2514227605157897 +0.5117417186908211,1.5157284587558408 +0.9982506841144995,0.04566608864747046 +1.1960631015034113,-0.46750781221624227 +1.5441769528071174,-1.310534949552508 +-0.6001619963883786,-0.2019982213417435 +0.06481087445424549,1.5199180225619564 +-0.5547100418792421,1.432221138570748 +-0.14111350994830013,0.2735906286660382 +-0.9563481870963404,-0.4197813433455706 +-0.7852269702289711,0.4997151233373156 +0.35735981398663696,2.0345778821176133 +-0.5063496065473642,0.2488892701945019 +1.4134804191641481,-1.0760991077908797 +-0.3829476222675736,0.6205969375348832 +1.1547660795771746,-0.702541546374582 +1.1485659655711458,-0.2773157481670182 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2552683019671167,0.011969725704612522 +0.5659046662534418,1.9555574949773282 +-0.34997389616651786,0.7248574278212507 +0.7395640746102127,-0.7520986152587604 +0.5133893054115743,0.06709927989667108 +-0.22693266670880372,0.020933053304777127 +1.1733987759018132,0.1591941282639462 +-0.6749425182262331,1.1312689099227318 +0.9817217222814347,-0.4597690354630151 +0.4354639836570129,-0.49495180504037994 +-0.7077843469204352,1.1475080708142205 +0.2230958393480916,1.7039452415843608 +0.5117417186908211,1.5157284587558408 +-0.4957843470945084,0.685347135448073 +-0.5940136247594955,0.9488468107101408 +-0.33065321273342363,1.2854151378844993 +0.3947180399740887,-0.5471010803297622 +0.06481087445424549,1.5199180225619564 +-0.06459042854898803,1.6292792613480147 +1.1752336388402,0.6134580807514275 +-0.9563481870963404,-0.4197813433455706 +-0.7852269702289711,0.4997151233373156 +-0.685268459808086,0.7773654154349094 +1.0343423209954152,-0.528216527311828 +1.4134804191641481,-1.0760991077908797 +1.7325616505726738,-3.075263774647504 +1.4205907802871423,-1.333177576889011 +1.1485659655711458,-0.2773157481670182 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2517859729958757,-0.1006259512564397 +0.5659046662534418,1.9555574949773282 +-0.34997389616651786,0.7248574278212507 +0.7395640746102127,-0.7520986152587604 +0.6605491351394047,-0.691134401942035 +-0.22693266670880372,0.020933053304777127 +-0.7065950270542516,0.2649582636542859 +-0.6749425182262331,1.1312689099227318 +0.9817217222814347,-0.4597690354630151 +1.2696955634709277,-1.259909216091036 +-0.3286309573468276,0.7846595091171054 +-0.17169222974918674,0.04752037572384116 +0.5117417186908211,1.5157284587558408 +1.5807856725784344,-1.8706346521924107 +-0.5940136247594955,0.9488468107101408 +1.1176664568414463,-0.7027112307733163 +0.3947180399740887,-0.5471010803297622 +0.06481087445424549,1.5199180225619564 +-0.06459042854898803,1.6292792613480147 +1.1752336388402,0.6134580807514275 +0.5997745711027291,-0.4530762361485282 +-0.36348847483770724,0.2355586917538077 +-0.685268459808086,0.7773654154349094 +0.11915437948549168,1.9559685795534785 +-0.66434988194826,0.7556878636467641 +1.7325616505726738,-3.075263774647504 +1.1813842610192395,0.5694013545373857 +-0.12368880235065431,1.0128021574297756 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2517859729958757,-0.1006259512564397 +0.5659046662534418,1.9555574949773282 +-0.34997389616651786,0.7248574278212507 +0.7395640746102127,-0.7520986152587604 +0.6605491351394047,-0.691134401942035 +-0.22693266670880372,0.020933053304777127 +-0.7065950270542516,0.2649582636542859 +0.8443822416067573,-1.0411918511657736 +0.9817217222814347,-0.4597690354630151 +1.2696955634709277,-1.259909216091036 +-0.3286309573468276,0.7846595091171054 +-0.17169222974918674,0.04752037572384116 +0.5117417186908211,1.5157284587558408 +1.5807856725784344,-1.8706346521924107 +-0.2183121742399023,-0.040904488835026204 +-0.6237990072964628,-0.4037124082783161 +0.3947180399740887,-0.5471010803297622 +0.06481087445424549,1.5199180225619564 +-0.06459042854898803,1.6292792613480147 +1.1752336388402,0.6134580807514275 +0.5997745711027291,-0.4530762361485282 +0.30462247742445164,0.8360325459895231 +-0.685268459808086,0.7773654154349094 +0.11915437948549168,1.9559685795534785 +1.4702566081855843,-1.40192739013371 +0.6851793080638611,-0.04098546245077672 +1.049916181522013,-0.265748411783271 +1.8386876761732818,-2.2379382066106337 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2517859729958757,-0.1006259512564397 +1.1825975737318124,-0.9356199826437954 +-0.34997389616651786,0.7248574278212507 +-0.8055310297945519,0.4682278406349634 +0.6605491351394047,-0.691134401942035 +-0.5105745424863568,0.368769998303468 +-0.7065950270542516,0.2649582636542859 +0.8443822416067573,-1.0411918511657736 +0.9817217222814347,-0.4597690354630151 +1.2696955634709277,-1.259909216091036 +-0.3286309573468276,0.7846595091171054 +-0.17169222974918674,0.04752037572384116 +0.5117417186908211,1.5157284587558408 +0.19379393925766764,-0.028613789324960157 +-0.2183121742399023,-0.040904488835026204 +0.2728253973201449,-0.5132540208828378 +0.4059717525212966,1.7688283034050303 +0.5694246642480587,1.126367281013097 +-0.06459042854898803,1.6292792613480147 +1.1752336388402,0.6134580807514275 +0.5997745711027291,-0.4530762361485282 +0.30462247742445164,0.8360325459895231 +-0.685268459808086,0.7773654154349094 +-0.6853022557259605,1.404372628047919 +1.4702566081855843,-1.40192739013371 +0.6851793080638611,-0.04098546245077672 +0.7570774928679346,-0.6891972600578884 +1.8386876761732818,-2.2379382066106337 +-0.6158071185939938,-0.5004777797537969 +1.7532769664442998,-2.4024191000781903 +0.2517859729958757,-0.1006259512564397 +1.1825975737318124,-0.9356199826437954 +-0.34997389616651786,0.7248574278212507 +-0.8055310297945519,0.4682278406349634 +-0.5232409375731057,0.5291805356776706 +0.6645053763810054,0.9835489175561363 +0.025729833680048886,1.986906883811663 +-0.09134610787340952,1.655691583558201 +0.9817217222814347,-0.4597690354630151 +0.9907198501199602,1.0863810659419517 +0.5181735118102815,-0.7792510529937688 +-0.17169222974918674,0.04752037572384116 +-0.62293606972348,0.6810913777993548 +-0.7744681962623824,0.3425294922954614 +1.276741033121473,-1.4596936695635963 +0.2728253973201449,-0.5132540208828378 +1.661244426766285,-1.8012982340327708 +0.5694246642480587,1.126367281013097 +-0.06459042854898803,1.6292792613480147 +1.1752336388402,0.6134580807514275 +0.7546563798907724,-0.43048605781383575 +-0.15461732504206124,-0.172736760265038 +-0.685268459808086,0.7773654154349094 +-0.6853022557259605,1.404372628047919 +1.4702566081855843,-1.40192739013371 +0.6851793080638611,-0.04098546245077672 +0.7570774928679346,-0.6891972600578884 +-0.6630579421159407,-0.2788023032256984 +-0.6158071185939938,-0.5004777797537969 +0.7080840919156777,1.7906301701441358 +0.2517859729958757,-0.1006259512564397 +-0.7308385534197572,1.451479306177567 +0.5043794234331502,-0.8484597290914623 +-0.8055310297945519,0.4682278406349634 +0.27994109810919615,1.7024756167072368 +0.6645053763810054,0.9835489175561363 +0.025729833680048886,1.986906883811663 +1.116213291000399,1.0124243183186517 +-0.7059505365669024,0.8144681675895693 +0.5903999053488153,1.3551760101713892 +0.5181735118102815,-0.7792510529937688 +-0.17169222974918674,0.04752037572384116 +-0.12534403061735022,1.3685577231625645 +-0.7744681962623824,0.3425294922954614 +1.276741033121473,-1.4596936695635963 +0.2728253973201449,-0.5132540208828378 +-0.449746409978414,1.2676263465063693 +0.5694246642480587,1.126367281013097 +-0.3559558499917419,1.3138681959217995 +0.43832634350578514,-0.5867673902951023 +-0.8115400805676449,0.42326284646990486 +-0.7254401382501778,1.3651065420265458 +-0.12599797407967908,2.1753604903229506 +0.028964269452301128,1.8801861800009334 +1.4702566081855843,-1.40192739013371 +0.10253749020153063,-0.00010674164419080534 +0.7570774928679346,-0.6891972600578884 +-0.6630579421159407,-0.2788023032256984 +-0.5105519123721758,1.5568856119778607 +0.7253216192303162,-0.7250206207404036 +1.0543838010955953,0.5524282843094488 +-0.7308385534197572,1.451479306177567 +-0.2962729431456908,1.1363052395259574 +-0.8055310297945519,0.4682278406349634 +1.258384255218169,-0.6374217185638836 +0.6645053763810054,0.9835489175561363 +0.025729833680048886,1.986906883811663 +0.3874049359569885,0.5370472728362525 +0.0714227240041688,-0.08751557242541137 +0.5903999053488153,1.3551760101713892 +0.9877733421311344,0.8707196206914325 +-0.17169222974918674,0.04752037572384116 +-0.12534403061735022,1.3685577231625645 +-0.7744681962623824,0.3425294922954614 +1.276741033121473,-1.4596936695635963 +0.2728253973201449,-0.5132540208828378 +-0.3459991635865517,0.8928725869475707 +1.9147995660383499,-2.762758599878806 +0.9031406912961766,1.2042855820608604 +-0.11451022615260706,1.7510749200118136 +0.03331711204142865,0.22771785469832648 +-0.7254401382501778,1.3651065420265458 +0.04029601730865451,0.444908014122836 +0.028964269452301128,1.8801861800009334 +0.4706677581602972,0.09889654761711819 +1.6320010603614905,-1.6456951150711887 +-0.7099856742006236,0.02606864005199444 +-0.6630579421159407,-0.2788023032256984 +-0.7154005284399629,-0.0769458144141601 +0.7253216192303162,-0.7250206207404036 +0.5906889899259098,0.8962596655491472 +1.2227439677634355,-1.262649945690578 +-0.2962729431456908,1.1363052395259574 +0.8602339319544231,-0.5015741454746907 +1.258384255218169,-0.6374217185638836 +0.8282751181467296,0.3954321187402796 +0.025729833680048886,1.986906883811663 +0.8970859353474623,1.234794822458657 +0.0714227240041688,-0.08751557242541137 +-0.2658383106184654,-0.2394500500147864 +0.9877733421311344,0.8707196206914325 +-0.17169222974918674,0.04752037572384116 +-0.12534403061735022,1.3685577231625645 +-0.6481262288059824,-0.2091850027822504 +1.276741033121473,-1.4596936695635963 +1.2297427862617671,-1.2553200336451473 +-0.3459991635865517,0.8928725869475707 +1.9147995660383499,-2.762758599878806 +0.9031406912961766,1.2042855820608604 +-0.11451022615260706,1.7510749200118136 +0.03331711204142865,0.22771785469832648 +0.03648846069901546,0.31950490581136326 +0.04029601730865451,0.444908014122836 +0.6186445718397343,-0.43949067072610315 +0.4706677581602972,0.09889654761711819 +0.06432799247056653,0.3848737088098144 +-0.7099856742006236,0.02606864005199444 +0.8250344631269615,-0.8230559750768633 +-0.7154005284399629,-0.0769458144141601 +0.5455100531246877,-0.1829948363666405 +0.9920837438424777,0.8104464011985126 +0.9325014941340161,0.9274673320765217 +-0.2962729431456908,1.1363052395259574 +0.8602339319544231,-0.5015741454746907 +1.0413559527705654,-1.224777521042914 +0.8282751181467296,0.3954321187402796 +0.025729833680048886,1.986906883811663 +0.4419249120697729,-0.21099548314457836 +0.0714227240041688,-0.08751557242541137 +-0.2658383106184654,-0.2394500500147864 +0.9877733421311344,0.8707196206914325 +0.5338194530776719,-0.24701012752748264 +1.1752220501852788,-1.3721694356102443 +-0.4830524940382873,0.992985269638565 +-0.32515416706153794,1.429350265809171 +1.2297427862617671,-1.2553200336451473 +-0.3459991635865517,0.8928725869475707 +1.9147995660383499,-2.762758599878806 +0.9031406912961766,1.2042855820608604 +-0.11451022615260706,1.7510749200118136 +1.337283563073216,-1.458964855074196 +0.03648846069901546,0.31950490581136326 +0.04029601730865451,0.444908014122836 +0.6186445718397343,-0.43949067072610315 +0.4706677581602972,0.09889654761711819 +0.06432799247056653,0.3848737088098144 +-0.7099856742006236,0.02606864005199444 +-1.1085976421276655,0.01916800150340804 +-0.7154005284399629,-0.0769458144141601 +-0.6702619462240533,-0.4550499020773205 +0.9920837438424777,0.8104464011985126 +0.9325014941340161,0.9274673320765217 +-0.5306275698872102,1.0124596495405374 +0.5808149711208391,-0.7588617281933899 +1.0413559527705654,-1.224777521042914 +0.8282751181467296,0.3954321187402796 +0.025729833680048886,1.986906883811663 +0.4419249120697729,-0.21099548314457836 +0.0714227240041688,-0.08751557242541137 +-0.2658383106184654,-0.2394500500147864 +0.9877733421311344,0.8707196206914325 +-0.08610296857594482,1.4680585606469876 +0.3134637873237518,-0.3225146454526263 +-0.4507993434407451,0.21678775795559768 +0.9043315961177707,0.619832815927315 +1.2297427862617671,-1.2553200336451473 +-0.03304730941889358,-0.4984936449047772 +1.9147995660383499,-2.762758599878806 +0.9031406912961766,1.2042855820608604 +0.6604804298413306,-0.28563257583808954 +1.2823039250290353,-0.03277744675413791 +0.6809347165237261,0.6830526363476283 +0.6039634820186631,-0.795719096130866 +0.6186445718397343,-0.43949067072610315 +0.6737708921701934,-0.2574836277986384 +0.06432799247056653,0.3848737088098144 +-0.029207580723080023,0.5263126387926751 +0.7162568047126614,-0.5291138329332783 +-0.7154005284399629,-0.0769458144141601 +-0.23162236183994517,1.1547800463620694 +0.05711713410195329,1.4134036681564879 +0.9325014941340161,0.9274673320765217 +-0.5306275698872102,1.0124596495405374 +0.5808149711208391,-0.7588617281933899 +0.6775195363814697,1.6528500136591457 +-0.5267237078269192,0.5905548888786831 +0.025729833680048886,1.986906883811663 +0.3821146451053013,0.16109883793852842 +0.16478465084577176,0.0628579351428773 +-0.2658383106184654,-0.2394500500147864 +0.36967113075671126,-0.25207799326041397 +0.5006657183631231,-0.7627976787909811 +1.1123132970672684,-0.5309452186622989 +-0.4507993434407451,0.21678775795559768 +0.9043315961177707,0.619832815927315 +1.2297427862617671,-1.2553200336451473 +-0.03304730941889358,-0.4984936449047772 +1.9147995660383499,-2.762758599878806 +0.04320679168897483,0.492623218961124 +0.6604804298413306,-0.28563257583808954 +-0.33864938506155695,0.37524370042115185 +1.0382231286324175,-1.1400600383793194 +0.1528070136909545,-0.1261800793297681 +0.6186445718397343,-0.43949067072610315 +0.6737708921701934,-0.2574836277986384 +0.37495706782874627,-0.09069432010047207 +1.0597807417530685,-1.0765084280073052 +0.7162568047126614,-0.5291138329332783 +-0.7154005284399629,-0.0769458144141601 +-0.42484015565136835,1.328380063505369 +0.05711713410195329,1.4134036681564879 +0.4271726716145866,-0.17085318841097014 +0.9906566505521094,-0.8397269063643151 +1.156867413486057,-0.7554288501612183 +0.6775195363814697,1.6528500136591457 +1.000828131392995,0.8583213686836387 +0.025729833680048886,1.986906883811663 +-0.4487496990204597,0.02465798165745986 +0.5667209301243944,-0.1669409353859797 +0.01728541357638025,0.08764093825298863 +0.9641255138846524,-1.3855562407987008 +0.5006657183631231,-0.7627976787909811 +0.8909233466135804,-0.16988207196565086 +-0.4507993434407451,0.21678775795559768 +0.9043315961177707,0.619832815927315 +1.2297427862617671,-1.2553200336451473 +-0.38704822639093067,0.9510343664613023 +1.9147995660383499,-2.762758599878806 +1.0464544617877756,-1.3220376376136045 +-0.6544395767851875,1.375978606473412 +-0.33864938506155695,0.37524370042115185 +1.0382231286324175,-1.1400600383793194 +0.14303740183398067,-0.4791548458334477 +0.002740326051366433,2.443715661817333 +-0.8437804257455088,0.6261620884116941 +0.8808338717843772,-1.0409997686483394 +1.0597807417530685,-1.0765084280073052 +0.7162568047126614,-0.5291138329332783 +-0.7154005284399629,-0.0769458144141601 +-0.42484015565136835,1.328380063505369 +0.05711713410195329,1.4134036681564879 +0.4271726716145866,-0.17085318841097014 +0.9906566505521094,-0.8397269063643151 +1.156867413486057,-0.7554288501612183 +0.6775195363814697,1.6528500136591457 +1.000828131392995,0.8583213686836387 +0.025729833680048886,1.986906883811663 +-0.8703710358579517,0.6132249171011721 +0.5667209301243944,-0.1669409353859797 +1.5174906480278803,-2.084834269344597 +0.9641255138846524,-1.3855562407987008 +-0.4855807283451256,-0.4262357780369066 +-0.36583916353717577,1.953738359619571 +1.6202529967585508,-2.4964561559837644 +0.9043315961177707,0.619832815927315 +1.2297427862617671,-1.2553200336451473 +0.3258779287788571,0.17921351076126307 +1.9147995660383499,-2.762758599878806 +-0.519598316467292,0.6133553198696723 +-0.6544395767851875,1.375978606473412 +-0.5016050973095287,1.2250422825656146 +0.9157814229155525,-0.5549374572588 +0.14303740183398067,-0.4791548458334477 +0.002740326051366433,2.443715661817333 +-0.4061283822382279,2.013524711862506 +-0.09151296249097463,0.8409402502734983 +-0.8106373281768953,0.7783967036209434 +0.7162568047126614,-0.5291138329332783 +0.2414412621848795,-0.2417763208790552 +0.9599782846511168,0.4645990859524376 +0.32303960855304104,-0.044542391142212756 +0.4271726716145866,-0.17085318841097014 +0.9906566505521094,-0.8397269063643151 +1.156867413486057,-0.7554288501612183 +0.6775195363814697,1.6528500136591457 +1.000828131392995,0.8583213686836387 +0.025729833680048886,1.986906883811663 +-0.1650169270904465,1.4685434064057254 +-0.7041546287196268,0.40205019535475917 +1.5174906480278803,-2.084834269344597 +-0.27470203251675784,0.16492108497069458 +-0.4855807283451256,-0.4262357780369066 +-0.36583916353717577,1.953738359619571 +1.6202529967585508,-2.4964561559837644 +-0.9615098875144276,-0.14851471102212122 +1.2297427862617671,-1.2553200336451473 +0.3258779287788571,0.17921351076126307 +1.9147995660383499,-2.762758599878806 +0.9876708945177166,-0.9368742457262542 +-0.6544395767851875,1.375978606473412 +-0.5016050973095287,1.2250422825656146 +0.10301059811077745,-0.28996151751956717 +-0.3933776220017008,0.4953525487103607 +0.002740326051366433,2.443715661817333 +-0.4061283822382279,2.013524711862506 +0.008141419305818576,1.5596598647305093 +-0.7107858196387026,0.8713236431227518 +0.7162568047126614,-0.5291138329332783 +-0.3848156013771457,1.5886319052406077 +0.9599782846511168,0.4645990859524376 +1.0854946720265681,-0.5720959072047427 +0.4271726716145866,-0.17085318841097014 +0.9906566505521094,-0.8397269063643151 +-0.06344646898457024,2.0983808651856393 +0.6775195363814697,1.6528500136591457 +1.002769080623611,-0.30963035505160164 +0.025729833680048886,1.986906883811663 +-0.1650169270904465,1.4685434064057254 +0.5857938042322941,-0.10758098771858851 +1.5174906480278803,-2.084834269344597 +-0.27470203251675784,0.16492108497069458 +-0.6575162135760437,-0.3472860416000374 +-0.8077887712020317,1.023210819564808 +-0.5152567540196769,1.6929380309610478 +-0.9615098875144276,-0.14851471102212122 +1.2297427862617671,-1.2553200336451473 +0.05596119618648687,0.0775490074787033 +1.9147995660383499,-2.762758599878806 +1.4927210441981626,-1.768244285242506 +1.2584421178523033,-1.0872102958572918 +-0.5016050973095287,1.2250422825656146 +0.15299776257006192,0.119799673584015 +-0.3933776220017008,0.4953525487103607 +0.002740326051366433,2.443715661817333 +-0.4061283822382279,2.013524711862506 +0.008141419305818576,1.5596598647305093 +-0.7107858196387026,0.8713236431227518 +0.7162568047126614,-0.5291138329332783 +-0.3848156013771457,1.5886319052406077 +0.9599782846511168,0.4645990859524376 +1.0854946720265681,-0.5720959072047427 +0.4271726716145866,-0.17085318841097014 +0.8788589810214865,-0.02764112506104066 +-0.06344646898457024,2.0983808651856393 +0.6775195363814697,1.6528500136591457 +1.002769080623611,-0.30963035505160164 +0.025729833680048886,1.986906883811663 +1.8140461881591299,-1.7526669372999042 +0.5857938042322941,-0.10758098771858851 +0.7293703911636092,-0.6444825584826387 +-0.27470203251675784,0.16492108497069458 +-0.6575162135760437,-0.3472860416000374 +-0.8077887712020317,1.023210819564808 +-0.5152567540196769,1.6929380309610478 +-0.01856447661392613,1.5305488273808332 +1.2297427862617671,-1.2553200336451473 +0.6956069172015087,0.03603451188272011 +1.9147995660383499,-2.762758599878806 +1.5668312459305462,-1.0799696997537187 +1.027868761696139,-0.5301500504067809 +-0.5016050973095287,1.2250422825656146 +0.40319158356270013,-0.3554783310073605 +-0.3933776220017008,0.4953525487103607 +0.8484352804465844,0.21022679779198794 +-0.4061283822382279,2.013524711862506 +1.5947206915535312,-0.4679230561891538 +0.6204679681113145,-0.975768308133941 +0.7162568047126614,-0.5291138329332783 +-0.3848156013771457,1.5886319052406077 +0.6728596390822198,-1.0434449270765005 +1.0854946720265681,-0.5720959072047427 +0.4271726716145866,-0.17085318841097014 +-0.4099515930683826,2.0130499002138205 +-0.43624808890596545,1.1890236341129723 +0.6775195363814697,1.6528500136591457 +-0.9919627101979198,0.30825432220464843 +0.4941003821905792,-0.6241898646057922 +1.8140461881591299,-1.7526669372999042 +0.5857938042322941,-0.10758098771858851 +-0.08480034565681786,1.5678468138937636 +0.4424976315828224,0.13030086516981473 +-0.6575162135760437,-0.3472860416000374 +0.04507400776669118,-0.19743619738968682 +-0.5152567540196769,1.6929380309610478 +0.3210683779236455,0.11187771544450453 +0.9387264493246369,-0.31955793608112965 +-0.7160574906891843,1.722894955581744 +-0.45442344005206714,0.6303795536882477 +1.5668312459305462,-1.0799696997537187 +-0.027534488380019484,2.5792987567379533 +-0.5016050973095287,1.2250422825656146 +0.40319158356270013,-0.3554783310073605 +-0.3933776220017008,0.4953525487103607 +1.8738833507758808,-1.8064085343083232 +-0.4061283822382279,2.013524711862506 +1.5947206915535312,-0.4679230561891538 +0.8798106933816023,-0.3245027566314128 +0.9716211270978559,-0.28214693067023244 +-0.3848156013771457,1.5886319052406077 +0.6819730621323594,0.12460401528147103 +1.0105398904480882,-1.1976165092918623 +-0.76803891159292,1.0747737345597328 +-0.4099515930683826,2.0130499002138205 +-0.43624808890596545,1.1890236341129723 +0.6775195363814697,1.6528500136591457 +-0.9919627101979198,0.30825432220464843 +-0.03201019133431776,1.9728575005375217 +1.8140461881591299,-1.7526669372999042 +0.3163963342036775,0.24916905291721364 +1.4696837883897753,-1.905178104668282 +0.6807074505054672,-0.16652173045357216 +-0.3597424284110574,-0.45063111982524184 +-0.7442497524498444,0.7207767696228563 +-0.5152567540196769,1.6929380309610478 +0.3210683779236455,0.11187771544450453 +0.9387264493246369,-0.31955793608112965 +0.8106005754333956,-0.8322975459872366 +1.056360889568078,-0.6667797595860192 +0.8770810956161452,0.060597303220150556 +-0.027534488380019484,2.5792987567379533 +0.4840731795253029,0.7475421095700769 +0.40319158356270013,-0.3554783310073605 +-0.3933776220017008,0.4953525487103607 +1.8738833507758808,-1.8064085343083232 +-0.4061283822382279,2.013524711862506 +0.5235730556029803,0.5919701187427571 +-0.3420277221313962,0.4825433882528281 +0.43211266270581516,-0.5714570968152328 +-0.3848156013771457,1.5886319052406077 +0.6864107861353952,-0.42018014889556454 +1.0105398904480882,-1.1976165092918623 +1.4600047214561096,-2.1877760703792584 +-0.4099515930683826,2.0130499002138205 +-0.43624808890596545,1.1890236341129723 +-0.5967414872820569,0.015156157720752628 +-0.9919627101979198,0.30825432220464843 +-0.03201019133431776,1.9728575005375217 +-0.6692668762149655,1.7317351429195276 +1.221382959847122,0.7435723788584616 +1.602476136898845,-1.295860141250381 +0.7183676838791724,-0.06711737822102049 +-0.3597424284110574,-0.45063111982524184 +-0.7442497524498444,0.7207767696228563 +0.808476656192933,0.19305389469762277 +0.3210683779236455,0.11187771544450453 +0.1248412940604775,0.25280368312384227 +0.8106005754333956,-0.8322975459872366 +-0.10604725967043424,0.1613669391457181 +1.3328138548248012,-1.5299853557482173 +0.9418276622871788,-1.4357043254486213 +0.9723357689192441,-0.6609138258227023 +-0.0009016479361981244,0.41672689075981456 +-0.3933776220017008,0.4953525487103607 +1.8738833507758808,-1.8064085343083232 +-0.4061283822382279,2.013524711862506 +0.5001918099066531,-0.8279018145019856 +-0.3420277221313962,0.4825433882528281 +0.43211266270581516,-0.5714570968152328 +-0.3848156013771457,1.5886319052406077 +0.8118426885885268,0.8132173843171523 +0.03586734855975701,-0.12892314645316277 +1.4600047214561096,-2.1877760703792584 +-0.4099515930683826,2.0130499002138205 +-0.43624808890596545,1.1890236341129723 +-0.5967414872820569,0.015156157720752628 +0.061294615179108614,0.21341048926703016 +-0.03201019133431776,1.9728575005375217 +0.8811508371647627,-0.9946137998500504 +1.221382959847122,0.7435723788584616 +1.602476136898845,-1.295860141250381 +-0.29731429953632615,-0.07854294977443549 +1.3799779338142721,-1.0944984039931032 +1.6901328219822114,-0.7394623236677146 +0.48982536183007763,0.5702226827915431 +0.852002777312419,-0.748497252973731 +0.1248412940604775,0.25280368312384227 +-0.4234784873860531,0.05523598137683439 +-0.10604725967043424,0.1613669391457181 +0.31117116873224493,0.6947688727797763 +0.2224078413378842,-0.05252808510185333 +0.9723357689192441,-0.6609138258227023 +1.4129824937714837,-1.0578741218251442 +-0.3933776220017008,0.4953525487103607 +1.4206516235195399,-1.271822600207205 +1.3320111354044222,-0.8530479264906132 +0.5001918099066531,-0.8279018145019856 +-0.4425450966876885,-0.028391931605986083 +-0.5008288254349412,0.7006240008539795 +-0.3848156013771457,1.5886319052406077 +-0.6060292071167533,0.9944834056128344 +-0.20728254864437906,1.6742727833108102 +1.4600047214561096,-2.1877760703792584 +0.1117936530533463,0.9345673529177876 +-0.43624808890596545,1.1890236341129723 +0.8107371987958619,-0.4549324866320805 +0.061294615179108614,0.21341048926703016 +-0.6397316748889895,0.6913300539506448 +0.8811508371647627,-0.9946137998500504 +1.221382959847122,0.7435723788584616 +0.8582659710160577,0.10195141415773967 +-0.29731429953632615,-0.07854294977443549 +1.6058530750716025,-1.277914075498575 +0.6354977717461221,0.41624741586270453 +0.48982536183007763,0.5702226827915431 +0.852002777312419,-0.748497252973731 +0.1248412940604775,0.25280368312384227 +-0.4234784873860531,0.05523598137683439 +0.8869662766923759,-0.84168624757332 +0.5391281263441496,-0.626650664371439 +0.2224078413378842,-0.05252808510185333 +0.5135114155644002,-0.14643000602201828 +1.4129824937714837,-1.0578741218251442 +0.03859807807159629,-0.33805143087811157 +0.7641528800625704,-0.5020380470120454 +1.3320111354044222,-0.8530479264906132 +0.5335942312188809,-0.3221429442878915 +-0.4425450966876885,-0.028391931605986083 +0.9884763956462119,-1.0200360173731713 +-0.3848156013771457,1.5886319052406077 +1.117762281709411,-1.3431860384510108 +-0.20728254864437906,1.6742727833108102 +1.4600047214561096,-2.1877760703792584 +0.9129770148581722,-0.7252183138396474 +-0.43624808890596545,1.1890236341129723 +0.20352268446609917,-0.06192766600870225 +1.441627600860417,-1.0860086120009524 +0.10371507682831782,-0.12493993650317559 +-0.5355155898783965,1.1764162559027218 +1.221382959847122,0.7435723788584616 +0.8582659710160577,0.10195141415773967 +0.837980891277991,-0.15887228595230907 +1.1968256002105213,-1.1694659700523604 +0.6354977717461221,0.41624741586270453 +0.48982536183007763,0.5702226827915431 +0.852002777312419,-0.748497252973731 +0.1248412940604775,0.25280368312384227 +-0.4234784873860531,0.05523598137683439 +-0.6471149541004146,1.069706406246684 +0.3361835118885895,0.28050207597800786 +-0.5729839160292524,0.6791970230572326 +0.1562147247841717,0.23913695848674618 +0.43798692500477054,-0.10993118839690497 +0.03859807807159629,-0.33805143087811157 +-0.38422660329315284,0.2406215018049958 +1.3320111354044222,-0.8530479264906132 +0.5335942312188809,-0.3221429442878915 +-0.4425450966876885,-0.028391931605986083 +0.9884763956462119,-1.0200360173731713 +-0.3848156013771457,1.5886319052406077 +1.258915932322819,-1.428464182172747 +-0.20728254864437906,1.6742727833108102 +1.3581057626934518,-0.17206784214385562 +0.9129770148581722,-0.7252183138396474 +-0.30169193991546506,0.8080931775288152 +1.16392298033275,-0.976910827477879 +-0.6251087465303639,0.44602842392517816 +0.10371507682831782,-0.12493993650317559 +-0.5355155898783965,1.1764162559027218 +-0.7147538391685275,0.9036763373861405 +1.4773789973367575,-1.7507131320116847 +0.837980891277991,-0.15887228595230907 +1.1968256002105213,-1.1694659700523604 +0.17455212923206148,0.13666644348861917 +-0.08006856545755094,0.2197850741636615 +0.852002777312419,-0.748497252973731 +0.8000084854306724,-0.7005766359201666 +-0.4234784873860531,0.05523598137683439 +-0.6471149541004146,1.069706406246684 +0.7132171640925727,1.435558503857359 +-0.6054564920517859,0.9045876714347423 +0.18797991777621637,1.244633929231178 +1.1134315514208915,-1.2006030440174924 +0.03859807807159629,-0.33805143087811157 +-0.2583469313505161,2.034270950456886 +1.3320111354044222,-0.8530479264906132 +-0.4231520760380695,0.4729565184250412 +-0.4425450966876885,-0.028391931605986083 +0.6890401058664306,-0.8588048202065242 +0.8639015786596359,-0.7737322263642126 +1.258915932322819,-1.428464182172747 +1.346284102648693,-0.8110713696117473 +1.3581057626934518,-0.17206784214385562 +0.6341449448036962,1.1115272062253088 +-0.30169193991546506,0.8080931775288152 +-0.6013699771752394,-0.5899363099579062 +-0.6251087465303639,0.44602842392517816 +0.10371507682831782,-0.12493993650317559 +-0.5355155898783965,1.1764162559027218 +1.156876600693826,-0.6775208641761817 +1.4773789973367575,-1.7507131320116847 +0.5204135321126102,2.1504508005301943 +-0.6499692894715112,1.6680875616893673 +0.7768398636852498,-0.3762417662732849 +1.0532388681842346,-1.3757870859395753 +-0.2844018533944036,-0.27638288382136117 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +-0.09073225806853913,1.2774485708910706 +0.7132171640925727,1.435558503857359 +-0.6054564920517859,0.9045876714347423 +0.18797991777621637,1.244633929231178 +1.1134315514208915,-1.2006030440174924 +-0.16454154161654194,0.07511269339737081 +-0.2583469313505161,2.034270950456886 +1.3320111354044222,-0.8530479264906132 +-0.3015831036096229,1.839693752197661 +-0.4425450966876885,-0.028391931605986083 +-0.2932045748497669,1.4135369311789907 +0.8639015786596359,-0.7737322263642126 +0.019739021194706843,0.8666257444780048 +1.346284102648693,-0.8110713696117473 +1.3581057626934518,-0.17206784214385562 +0.5584051784311156,0.7255166930233397 +0.572845049213925,-0.25710945993512635 +-0.20892054103316182,0.8316273708576932 +-0.6251087465303639,0.44602842392517816 +0.10371507682831782,-0.12493993650317559 +1.4500265655278266,-1.9055601044463448 +1.156876600693826,-0.6775208641761817 +1.4773789973367575,-1.7507131320116847 +0.19497095622719152,0.026360452283654023 +-0.6966098455025723,1.0876786927431232 +0.7768398636852498,-0.3762417662732849 +-0.7478333575038474,1.3266588954151644 +0.8410707089475871,1.1692913765568334 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +-0.09073225806853913,1.2774485708910706 +0.7132171640925727,1.435558503857359 +-0.6054564920517859,0.9045876714347423 +0.6953730005076475,1.0203880307660413 +0.3151516948609374,1.2824756494657221 +-0.16454154161654194,0.07511269339737081 +0.25100254364172603,2.0296250530735196 +0.038349345213420954,1.6547833598215935 +0.18033698844187174,0.670983828430556 +-0.4425450966876885,-0.028391931605986083 +0.5770516076504413,-0.36453912195957305 +0.8639015786596359,-0.7737322263642126 +0.25360879651909823,-0.025219245697709516 +1.346284102648693,-0.8110713696117473 +1.3581057626934518,-0.17206784214385562 +0.5584051784311156,0.7255166930233397 +0.572845049213925,-0.25710945993512635 +-0.04082616877295642,-0.1247986132426051 +-0.08829748567607787,1.1141252496744853 +-0.8711058959603248,0.496468464696853 +1.985104454465197,-2.501271013091576 +1.156876600693826,-0.6775208641761817 +1.4773789973367575,-1.7507131320116847 +-0.10676105850695866,0.26833660301684814 +-0.08909376958910797,0.01750919038243482 +-0.4086651026416649,1.132566680758726 +1.0623758387753839,0.3800872612844546 +-0.40389984278842006,0.8747636088415288 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +-0.4611481691267813,0.0004825414590426541 +0.2813411995879867,-0.14428306175449834 +-0.6054564920517859,0.9045876714347423 +1.3158300156460156,-1.3749104982192106 +0.3151516948609374,1.2824756494657221 +0.7671022227737131,-0.28253722581775265 +0.25100254364172603,2.0296250530735196 +0.038349345213420954,1.6547833598215935 +1.0236639591474535,0.6351182286894461 +1.1980036584249962,-0.160855914918704 +0.5770516076504413,-0.36453912195957305 +-0.5659397781853654,-0.34142355290253024 +0.3828934054578351,0.12843453589090176 +1.346284102648693,-0.8110713696117473 +1.0446563040334884,-0.5458267954454367 +-0.2816896026314667,1.8671842783535122 +1.5815898193408215,-1.3508110770649058 +0.17151027403852456,2.1654618021731022 +-0.08829748567607787,1.1141252496744853 +-0.8711058959603248,0.496468464696853 +-0.014981354901024257,1.9963569310259284 +0.5692691711869307,0.8017935493482191 +1.4773789973367575,-1.7507131320116847 +-0.4967854410549867,0.043831924478202056 +-0.08909376958910797,0.01750919038243482 +-0.4086651026416649,1.132566680758726 +-0.36961363806353165,-0.004562881664649243 +1.1685351277859721,0.5027594036682602 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +-0.4611481691267813,0.0004825414590426541 +0.2813411995879867,-0.14428306175449834 +-0.6054564920517859,0.9045876714347423 +1.3158300156460156,-1.3749104982192106 +-0.5163123200153918,0.35610107986063066 +0.7671022227737131,-0.28253722581775265 +0.25100254364172603,2.0296250530735196 +1.483863937227767,-1.2765185090973046 +1.0236639591474535,0.6351182286894461 +1.1980036584249962,-0.160855914918704 +0.5770516076504413,-0.36453912195957305 +-0.5659397781853654,-0.34142355290253024 +-0.14092159839622465,0.18704807317297417 +1.346284102648693,-0.8110713696117473 +1.3334431937134852,-0.464642253400774 +-0.2816896026314667,1.8671842783535122 +1.3252783665142338,-1.5108568614245494 +0.17151027403852456,2.1654618021731022 +-0.9727290051116072,-0.38779460833212914 +1.6955332568616053,-1.9765194645280375 +-0.014981354901024257,1.9963569310259284 +0.5692691711869307,0.8017935493482191 +1.4773789973367575,-1.7507131320116847 +-0.4967854410549867,0.043831924478202056 +-0.08909376958910797,0.01750919038243482 +-0.4086651026416649,1.132566680758726 +-0.9329472788050229,-0.1706329099931863 +1.1685351277859721,0.5027594036682602 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +1.3379145059406796,-0.7321041242428288 +0.2813411995879867,-0.14428306175449834 +-0.6054564920517859,0.9045876714347423 +1.3158300156460156,-1.3749104982192106 +-0.5163123200153918,0.35610107986063066 +0.06549238930398593,1.9866280514698884 +0.25100254364172603,2.0296250530735196 +1.483863937227767,-1.2765185090973046 +1.0236639591474535,0.6351182286894461 +1.1980036584249962,-0.160855914918704 +0.5770516076504413,-0.36453912195957305 +0.2985474486198274,0.6084072512047896 +-0.45460280154396804,1.9990717989377074 +1.3454304440949731,-1.8908306185427255 +0.1975792666460321,0.023044233104634326 +-0.41279949760325263,-0.37832579830583735 +1.3252783665142338,-1.5108568614245494 +-0.6137159123918148,1.565377561172856 +-0.9727290051116072,-0.38779460833212914 +1.2813589621759922,-1.8007669287922465 +-0.014981354901024257,1.9963569310259284 +0.5692691711869307,0.8017935493482191 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +-0.08909376958910797,0.01750919038243482 +0.5978394394698106,-0.054545953150203046 +-0.9329472788050229,-0.1706329099931863 +1.1685351277859721,0.5027594036682602 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +0.17720076901756582,-0.08739789283367894 +-0.27858236442552486,0.1948175594262024 +-0.5152257778629157,0.12546624179305532 +0.9468289022241956,-0.9848413059466534 +-0.5163123200153918,0.35610107986063066 +0.06549238930398593,1.9866280514698884 +-0.19732885314129534,-0.09556082466526061 +-0.1457281079378005,0.7820795629426404 +0.29008759754216634,-0.6001105470705128 +1.2786288449920615,-0.6907369493898392 +0.5770516076504413,-0.36453912195957305 +1.2564785018346014,-0.3058795087913581 +-0.45460280154396804,1.9990717989377074 +0.5214216177794271,0.4576629097709777 +-0.7287059929594765,0.4254739350108019 +0.7250919931291162,-0.25030459765377755 +-0.4938742631295487,1.6853627084366947 +-0.6137159123918148,1.565377561172856 +-0.4148830854935964,1.032031752788209 +0.5236434872295637,1.0649040454712448 +-0.014981354901024257,1.9963569310259284 +1.0829630837242181,-1.169254633292987 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +-0.08909376958910797,0.01750919038243482 +0.5978394394698106,-0.054545953150203046 +1.0074237076240276,-0.7044542380524415 +1.1685351277859721,0.5027594036682602 +0.8121376568303514,1.4766060682196613 +-0.4234784873860531,0.05523598137683439 +0.17720076901756582,-0.08739789283367894 +0.7665291933986382,-1.0390365343985335 +-0.5152257778629157,0.12546624179305532 +-0.5319354526895067,0.05133712179578981 +-0.5163123200153918,0.35610107986063066 +0.06549238930398593,1.9866280514698884 +-0.19732885314129534,-0.09556082466526061 +0.7618072785844995,0.24415490969506115 +1.4095209887572357,-0.5543037031682427 +1.2786288449920615,-0.6907369493898392 +0.5770516076504413,-0.36453912195957305 +1.2564785018346014,-0.3058795087913581 +0.8302767902411458,1.1124548265326384 +0.5214216177794271,0.4576629097709777 +-0.8420322376373869,-0.38990758521714947 +0.7250919931291162,-0.25030459765377755 +-0.4938742631295487,1.6853627084366947 +-0.6137159123918148,1.565377561172856 +-0.8891006668087443,0.1234721712300248 +0.5236434872295637,1.0649040454712448 +-0.014981354901024257,1.9963569310259284 +1.0829630837242181,-1.169254633292987 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +-0.08909376958910797,0.01750919038243482 +-0.08589563760703722,1.5498857718720702 +1.0074237076240276,-0.7044542380524415 +1.1685351277859721,0.5027594036682602 +0.8747716694712798,0.5278587714103254 +-0.4234784873860531,0.05523598137683439 +0.43176352009571206,-0.18083140894587096 +0.7665291933986382,-1.0390365343985335 +-0.5152257778629157,0.12546624179305532 +-0.41398647048062004,-0.1354869230638116 +-0.38127457599567527,0.9690936580442033 +0.06549238930398593,1.9866280514698884 +-0.19732885314129534,-0.09556082466526061 +0.8087035919288161,-0.35774282035779426 +0.5264087100924477,-0.3392814955277549 +1.2786288449920615,-0.6907369493898392 +-0.3623552810020975,0.4282646852184283 +1.2564785018346014,-0.3058795087913581 +0.8302767902411458,1.1124548265326384 +-0.011241930869600777,-0.23089597703714443 +-0.8420322376373869,-0.38990758521714947 +0.9211518316015676,-0.8171705624287453 +-0.4938742631295487,1.6853627084366947 +-0.6137159123918148,1.565377561172856 +-0.8891006668087443,0.1234721712300248 +0.5236434872295637,1.0649040454712448 +-0.014981354901024257,1.9963569310259284 +1.0829630837242181,-1.169254633292987 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +-0.08909376958910797,0.01750919038243482 +-0.08589563760703722,1.5498857718720702 +0.6307267818754636,0.90400633506001 +1.1685351277859721,0.5027594036682602 +0.8747716694712798,0.5278587714103254 +-0.4234784873860531,0.05523598137683439 +0.43176352009571206,-0.18083140894587096 +0.7665291933986382,-1.0390365343985335 +-0.5152257778629157,0.12546624179305532 +1.0903486072105837,-0.5157662555083653 +-0.42775038727896836,-0.019286137853632646 +0.06549238930398593,1.9866280514698884 +-0.19732885314129534,-0.09556082466526061 +-0.45027695757508396,1.2745247521082639 +0.7597961988832689,-1.0502104458484278 +1.2786288449920615,-0.6907369493898392 +-0.039832591999700157,-0.29416357668844606 +1.2564785018346014,-0.3058795087913581 +0.8302767902411458,1.1124548265326384 +1.4196854072666447,-0.24787398051988185 +-0.8420322376373869,-0.38990758521714947 +0.9211518316015676,-0.8171705624287453 +-0.4938742631295487,1.6853627084366947 +-0.6137159123918148,1.565377561172856 +-0.8891006668087443,0.1234721712300248 +0.21643700303620728,-0.4877991644437148 +-0.014981354901024257,1.9963569310259284 +1.0829630837242181,-1.169254633292987 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +-0.08909376958910797,0.01750919038243482 +0.7886603498126182,0.6392359657213318 +-0.3872776614940838,0.6959672994143913 +1.1685351277859721,0.5027594036682602 +0.8747716694712798,0.5278587714103254 +-0.4234784873860531,0.05523598137683439 +-0.5972243113715976,1.4033709091805386 +0.5480674533191121,-0.22890137168755476 +0.25864971911653234,0.21261524313672558 +1.0903486072105837,-0.5157662555083653 +-0.42775038727896836,-0.019286137853632646 +0.06549238930398593,1.9866280514698884 +1.1178470509751985,-1.8479605390477667 +-0.45027695757508396,1.2745247521082639 +0.9162650958563293,-0.729722123706943 +0.03634603701450499,2.3128211783426766 +-0.221293460625758,0.9752621612121726 +1.0098941739239689,-0.4160953417421236 +0.8302767902411458,1.1124548265326384 +0.14972063369152674,2.404065601156384 +-0.32307158466533664,1.7519869380108735 +1.1065317334289009,0.4461203486741926 +-0.4018830590236899,1.5946881118481921 +0.6633372223113527,-0.19831990097570185 +-0.8891006668087443,0.1234721712300248 +0.21643700303620728,-0.4877991644437148 +0.4233453679490111,1.4878104801242549 +1.0829630837242181,-1.169254633292987 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +0.44338365042956673,-0.20186508546570092 +0.2816254467347983,-0.4523055538310447 +0.23444321073377128,0.9567082196898521 +1.1685351277859721,0.5027594036682602 +0.09270783641200694,1.5061894015491843 +-0.6446425078985574,-0.11894265184638397 +-0.5972243113715976,1.4033709091805386 +1.2790683104006024,-1.6424414499658146 +-0.4203244982078127,0.016476422755099668 +1.0903486072105837,-0.5157662555083653 +1.4879288608253272,-1.6469531440509966 +0.06549238930398593,1.9866280514698884 +-0.3276430661121169,2.4336783545381664 +-0.45027695757508396,1.2745247521082639 +0.9162650958563293,-0.729722123706943 +0.03634603701450499,2.3128211783426766 +-0.221293460625758,0.9752621612121726 +1.0098941739239689,-0.4160953417421236 +0.8302767902411458,1.1124548265326384 +0.14972063369152674,2.404065601156384 +1.4041819906011024,-0.22180892372875438 +-0.184661625533173,-0.15735704131720196 +-0.4018830590236899,1.5946881118481921 +0.3432094788144334,-0.5685993103957903 +-0.8891006668087443,0.1234721712300248 +0.2680484985816183,1.3093205366336376 +-0.4184083627354045,1.2417926672467534 +1.0829630837242181,-1.169254633292987 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +0.44338365042956673,-0.20186508546570092 +-0.018456752768006235,-0.0839803435114456 +0.3486978847948775,2.2044623679878894 +1.6405168078574353,-1.5653874582496892 +0.09270783641200694,1.5061894015491843 +-0.6446425078985574,-0.11894265184638397 +-0.5972243113715976,1.4033709091805386 +1.2790683104006024,-1.6424414499658146 +-0.4203244982078127,0.016476422755099668 +0.8255658892108602,-0.9431177126136984 +0.47835815305041574,1.6457003893578457 +0.06549238930398593,1.9866280514698884 +-0.3276430661121169,2.4336783545381664 +-0.45027695757508396,1.2745247521082639 +0.9162650958563293,-0.729722123706943 +0.03634603701450499,2.3128211783426766 +-0.221293460625758,0.9752621612121726 +1.0098941739239689,-0.4160953417421236 +0.8302767902411458,1.1124548265326384 +0.14972063369152674,2.404065601156384 +-0.12624614796881398,-0.25267491831569155 +-0.49787453010662097,1.2478379675488271 +0.7923631525712828,1.188816781137772 +0.3432094788144334,-0.5685993103957903 +-0.8891006668087443,0.1234721712300248 +0.3495735105387548,0.4796153833958837 +-0.4402941766746128,0.18031319217430064 +0.07780022688383487,-0.3280618702278184 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +-0.4348379242465097,-0.1674668972810589 +-0.018456752768006235,-0.0839803435114456 +0.7745366858227989,1.1504211296817608 +0.4597482599091104,0.3907352478015653 +1.634144229182924,-1.2459933708278708 +-0.6446425078985574,-0.11894265184638397 +-0.5972243113715976,1.4033709091805386 +0.442617106933708,-0.408531376544935 +0.549901426984402,-1.0400826639970968 +0.8255658892108602,-0.9431177126136984 +0.47835815305041574,1.6457003893578457 +0.9224632829223007,-0.38583586749595844 +0.021669230870766484,1.415627943517534 +-0.45027695757508396,1.2745247521082639 +0.9162650958563293,-0.729722123706943 +-0.5436737929095293,1.5465846492549418 +0.5792411287595365,1.4714789909362882 +-0.2685093074485986,1.126070526259222 +0.8302767902411458,1.1124548265326384 +0.152734328060951,1.2540614737427376 +-0.12624614796881398,-0.25267491831569155 +-0.49787453010662097,1.2478379675488271 +0.7923631525712828,1.188816781137772 +-0.10316785646604199,0.7210974927498275 +1.2328062856206288,-0.8920387723188867 +0.5723454331976623,1.2975783056003227 +-0.4402941766746128,0.18031319217430064 +1.0497011253271011,-0.6032912013296313 +1.4773789973367575,-1.7507131320116847 +-0.33881196360395116,1.8430601642195483 +0.16694592582993645,1.9526280313449909 +0.7077618232822855,0.945959552972164 +-0.4259864675121209,0.5344411611607494 +0.011572870116693446,1.3855023891095293 +1.634144229182924,-1.2459933708278708 +-0.6446425078985574,-0.11894265184638397 +0.7670556910262364,1.2967110300268676 +0.442617106933708,-0.408531376544935 +1.0891849184004099,-0.5909034879483545 +0.8255658892108602,-0.9431177126136984 +0.9757591549624565,-0.8932835543568913 +0.9224632829223007,-0.38583586749595844 +-0.41458126125359285,1.8077438620378088 +-0.7700659401116932,0.7689698633014473 +1.4869705376585127,-0.9341046460360405 +-0.5436737929095293,1.5465846492549418 +-0.5406153397909916,0.5589039829794418 +0.6560215910280672,1.1161861155930606 +1.539968808572783,-0.679641688554663 +-0.08416168602236229,1.9138317835669578 +1.6713760759222254,-1.321378659112193 +-0.49787453010662097,1.2478379675488271 +0.7923631525712828,1.188816781137772 +1.031364267854212,-0.8172707525451732 +1.2328062856206288,-0.8920387723188867 +0.9554131031156817,-0.4984102977250574 +-0.4402941766746128,0.18031319217430064 +-0.1295454965889251,0.1665649571468064 +-0.5397279212210566,-0.03120549248675769 +-0.33881196360395116,1.8430601642195483 +1.0211411251842089,0.907215626376682 +1.5613695347040082,-0.5756237386617733 +-0.4259864675121209,0.5344411611607494 +1.0097662594489514,0.57022644055546 +1.247805542292508,-1.42748960138467 +-0.6446425078985574,-0.11894265184638397 +0.06350276731212168,1.3876885887224266 +0.442617106933708,-0.408531376544935 +-0.02156944430245831,1.2801596583069326 +0.6091858489031149,0.1165851720251706 +0.9757591549624565,-0.8932835543568913 +1.2081600940248318,-0.9548319615676734 +-0.41458126125359285,1.8077438620378088 +1.6586891302565516,-1.8692055807737933 +1.4869705376585127,-0.9341046460360405 +-0.5436737929095293,1.5465846492549418 +-0.5406153397909916,0.5589039829794418 +-0.3804165259776259,0.026344881579961177 +1.539968808572783,-0.679641688554663 +-0.6514324958356958,1.2520212916142146 +1.631492319367944,-1.0646333810371231 +-0.49787453010662097,1.2478379675488271 +0.7923631525712828,1.188816781137772 +-0.7184353533110683,0.7624865345731373 +0.6936055113686489,-0.10288433686969056 +-0.6278059504178588,0.17344894990685214 +0.4149482452079273,1.6655635699833884 +-0.1295454965889251,0.1665649571468064 +-0.5397279212210566,-0.03120549248675769 +-0.33881196360395116,1.8430601642195483 +1.0211411251842089,0.907215626376682 +0.5846846294749138,0.9690326881081432 +0.7649879838565078,-0.4454366489889159 +1.0097662594489514,0.57022644055546 +1.8059916691629596,-2.122514997807558 +-0.6446425078985574,-0.11894265184638397 +0.5600986098910951,-0.6032379269272979 +-0.11426554298242408,1.3606706167794247 +0.5325695517485947,1.74162929237756 +0.5713310587558826,0.23811253326501958 +0.9757591549624565,-0.8932835543568913 +0.9938572799767682,0.15709096389903388 +-0.41458126125359285,1.8077438620378088 +1.6586891302565516,-1.8692055807737933 +-0.5823085043829469,0.727523912085021 +1.6363460166473625,-1.119088118063324 +-0.5406153397909916,0.5589039829794418 +-0.3833300522597898,2.035989244566828 +-0.3507401688918213,0.3859679142336978 +1.308781131262219,0.2518808838753317 +-0.4471487319724215,0.13737890543069517 +-0.49787453010662097,1.2478379675488271 +0.7923631525712828,1.188816781137772 +-0.36640203271006183,1.6230632494091535 +0.6936055113686489,-0.10288433686969056 +-0.6278059504178588,0.17344894990685214 +0.4149482452079273,1.6655635699833884 +-0.1295454965889251,0.1665649571468064 +-0.5397279212210566,-0.03120549248675769 +0.042252163844870266,0.07503828613902248 +1.0211411251842089,0.907215626376682 +-0.23741917804056623,-0.22965394551260976 +0.21257356058152654,0.6530340155487566 +1.0097662594489514,0.57022644055546 +1.8059916691629596,-2.122514997807558 +-0.014423908619973669,0.02737185311135018 +1.3690638273464653,-0.39829650571377195 +0.6633180209243252,-0.6247355923523145 +0.5325695517485947,1.74162929237756 +1.4219242849362166,-1.1590105454195447 +0.29510966936384325,1.783567165567434 +0.9938572799767682,0.15709096389903388 +-0.41458126125359285,1.8077438620378088 +1.6586891302565516,-1.8692055807737933 +-0.5823085043829469,0.727523912085021 +1.6363460166473625,-1.119088118063324 +-0.5406153397909916,0.5589039829794418 +-0.3833300522597898,2.035989244566828 +-0.3507401688918213,0.3859679142336978 +1.308781131262219,0.2518808838753317 +-0.4713339056649571,1.3179925862524566 +-0.49787453010662097,1.2478379675488271 +0.5391052756440501,0.12708256447569174 +0.39540479373818055,1.5745948620742756 +0.6936055113686489,-0.10288433686969056 +-0.6278059504178588,0.17344894990685214 +0.4149482452079273,1.6655635699833884 +-0.1295454965889251,0.1665649571468064 +-0.5397279212210566,-0.03120549248675769 +1.0140224869275403,-1.6918265013144982 +-0.6313311994498845,1.1329958772819253 +-0.23741917804056623,-0.22965394551260976 +0.7654196652150721,0.10287804456670047 +-0.6825952293615454,1.5432872863701197 +1.34641529403345,-0.15559210730597778 +-0.014423908619973669,0.02737185311135018 +-0.07740073827510408,-0.11836317795617368 +0.6633180209243252,-0.6247355923523145 +0.5325695517485947,1.74162929237756 +1.4219242849362166,-1.1590105454195447 +0.29510966936384325,1.783567165567434 +0.9938572799767682,0.15709096389903388 +-0.41458126125359285,1.8077438620378088 +1.6329118324716299,-1.4159763395100136 +-0.22207587927437383,0.2925006978294923 +0.2582922055381912,1.9487485928456987 +1.4472413749140247,-1.6460027862414233 +-0.3833300522597898,2.035989244566828 +0.2942326124673982,-0.263313566759687 +1.308781131262219,0.2518808838753317 +-0.4713339056649571,1.3179925862524566 +1.1149896870089404,-1.001927971982859 +0.8331427520561713,0.1049808086984243 +-0.36955602177417146,1.0575648138842644 +-0.3526707446501983,0.21397992856591866 +1.4144698431682334,-0.21400031061616298 +-0.505749262093363,1.197182869598248 +-0.009299275443455657,2.1774999339955388 +-0.15711196676803332,1.7532129022588088 +-0.47663411651706356,2.2204183139266687 +-0.5895401616292414,0.7034966808035825 +-0.5081387873517726,2.090123663961557 +1.2596640277757791,-0.6464532196827167 +0.4947112002261408,1.771065330210633 +1.34641529403345,-0.15559210730597778 +-0.014423908619973669,0.02737185311135018 +1.117083820346399,-0.9428819755226504 +0.19969512542676726,1.103196363947181 +0.5325695517485947,1.74162929237756 +-0.16904661263027632,-0.05553707962274572 +0.29510966936384325,1.783567165567434 +-0.22950069877960044,1.9577646924353695 +-0.41458126125359285,1.8077438620378088 +-0.8975679797965223,0.7127787592172883 +-0.07418688232659848,1.3042480793403528 +0.2582922055381912,1.9487485928456987 +1.4472413749140247,-1.6460027862414233 +-0.3833300522597898,2.035989244566828 +-0.3762658905065542,-0.01592241387402417 +1.0855194557293952,-0.3915536449280105 +-0.4569847456930641,0.5356376194839798 +1.1149896870089404,-1.001927971982859 +-0.7652154289629551,0.888420665566132 +-0.36955602177417146,1.0575648138842644 +-0.3526707446501983,0.21397992856591866 +0.6802798499886513,-0.18897828073194506 +1.1190767578418632,0.3210198009555102 +-0.009299275443455657,2.1774999339955388 +-0.15711196676803332,1.7532129022588088 +1.3717179960903234,-1.3128852147067576 +-0.5895401616292414,0.7034966808035825 +-0.6227870309176998,0.6797571401365132 +0.5147053746470145,-0.8201901567040351 +-0.4298777214275912,0.12844971573941355 +-0.071173604785929,2.2098404897969943 +0.6535421423924113,-0.038515636143764076 +1.117083820346399,-0.9428819755226504 +-0.6791031004652861,1.339876031334133 +0.5325695517485947,1.74162929237756 +-0.16904661263027632,-0.05553707962274572 +0.29510966936384325,1.783567165567434 +1.3174468122737932,-1.2126125416576221 +-0.41458126125359285,1.8077438620378088 +1.7059650575558591,-1.75473810256733 +1.162908545060792,0.6841989713916842 +0.2582922055381912,1.9487485928456987 +1.4472413749140247,-1.6460027862414233 +-0.3833300522597898,2.035989244566828 +-0.3762658905065542,-0.01592241387402417 +1.0855194557293952,-0.3915536449280105 +-0.12188716276338754,1.749680942243715 +1.1149896870089404,-1.001927971982859 +-0.7652154289629551,0.888420665566132 +-0.36955602177417146,1.0575648138842644 +-0.3526707446501983,0.21397992856591866 +0.30092355954172234,0.6854713768431995 +1.1190767578418632,0.3210198009555102 +-0.009299275443455657,2.1774999339955388 +-0.15711196676803332,1.7532129022588088 +1.3717179960903234,-1.3128852147067576 +-0.13209548732027077,2.0247389191147116 +-0.6227870309176998,0.6797571401365132 +1.3051993165137965,-0.567277382300303 +-0.4298777214275912,0.12844971573941355 +0.9711532573564674,0.042860383047289785 +0.2532841348638982,-0.6155673481861135 +1.117083820346399,-0.9428819755226504 +0.15777778258383363,0.7931458115996436 +1.5442657044033605,-0.3798045976992352 +-0.16904661263027632,-0.05553707962274572 +0.29510966936384325,1.783567165567434 +0.04971295370006726,-0.4529065307451171 +-0.7477457269405093,0.20010342354662664 +0.5033790908838478,1.4916826934950373 +-0.16040720734240063,1.733562077997591 +0.2582922055381912,1.9487485928456987 +1.4472413749140247,-1.6460027862414233 +-0.7650345588950478,1.2056616832645988 +-0.3762658905065542,-0.01592241387402417 +-0.47934777515436505,1.6737396855271913 +0.5038368234265416,0.7521554889138207 +1.1149896870089404,-1.001927971982859 +-0.7652154289629551,0.888420665566132 +-0.36955602177417146,1.0575648138842644 +-0.6120054958465104,1.4170112291273047 +-0.5747856342183221,-0.30285223199130595 +1.1190767578418632,0.3210198009555102 +-0.878259591805787,0.3453498856332562 +0.39777983708829157,-0.6803627324468722 +1.3717179960903234,-1.3128852147067576 +1.1677093903929254,-0.5391266764279087 +0.14341527831730017,-0.14601781493730587 +1.207228127441181,-1.0989617418764248 +-0.276296500672476,0.20344710835511493 +-0.1388229221236655,-0.3866192331863084 +0.09703642526165521,0.549930106012956 +1.117083820346399,-0.9428819755226504 +0.15777778258383363,0.7931458115996436 +1.5442657044033605,-0.3798045976992352 +-0.24375476943578714,1.906045419821746 +0.29510966936384325,1.783567165567434 +0.04971295370006726,-0.4529065307451171 +-0.7477457269405093,0.20010342354662664 +0.5033790908838478,1.4916826934950373 +-0.16040720734240063,1.733562077997591 +0.2582922055381912,1.9487485928456987 +1.4472413749140247,-1.6460027862414233 +-0.7650345588950478,1.2056616832645988 +0.3306993090845134,0.40776013409267675 +-0.49653059932986654,0.6223056788048678 +0.6741081121162094,-0.8758080189646288 +1.1149896870089404,-1.001927971982859 +0.18794052611218975,-0.24708970730331759 +-0.36955602177417146,1.0575648138842644 +-0.6120054958465104,1.4170112291273047 +0.5925748989411252,1.3172490344909147 +1.1190767578418632,0.3210198009555102 +-0.878259591805787,0.3453498856332562 +0.43330769150887993,1.6503806191257973 +1.3717179960903234,-1.3128852147067576 +-0.19104295201748922,1.907936113779514 +0.33224727913154883,1.4269381365018399 +-0.4306686134580012,0.24241933382589972 +-0.276296500672476,0.20344710835511493 +-0.1388229221236655,-0.3866192331863084 +0.09703642526165521,0.549930106012956 +0.7786214655743374,-0.9286134950511931 +0.15777778258383363,0.7931458115996436 +0.9743030954913786,0.3875024898154643 +-0.6976141863014294,0.38375992455469876 +0.29510966936384325,1.783567165567434 +0.04971295370006726,-0.4529065307451171 +-0.9833526200463076,0.2907805090600878 +-0.6123946154335642,-0.10673334335233182 +0.7920040573883816,-0.6244700795288558 +0.2582922055381912,1.9487485928456987 +1.4472413749140247,-1.6460027862414233 +-0.7650345588950478,1.2056616832645988 +0.3306993090845134,0.40776013409267675 +-0.7925173754295581,0.9372386613910284 +0.6741081121162094,-0.8758080189646288 +1.1149896870089404,-1.001927971982859 +-0.2682093281729897,0.38820849125191115 +1.723053031586352,-1.1747674448688175 +-0.5703990487585499,-0.10399353400426914 +-0.6830785675125678,0.8588197655222325 +1.1190767578418632,0.3210198009555102 +-0.4812463303926203,0.699496500438495 +-0.939200395531649,0.340641344328221 +1.3717179960903234,-1.3128852147067576 +-0.4379565400817136,1.9713341289827389 +0.1838193704863979,-0.24576953839400473 +-0.24577118295341596,1.1193888134984529 +-0.276296500672476,0.20344710835511493 +0.17815756196343957,-0.0009196696716419483 +0.43841826078652635,0.28234337677431565 +0.7786214655743374,-0.9286134950511931 +0.440603887023845,-0.6692043686333717 +0.9743030954913786,0.3875024898154643 +-0.6976141863014294,0.38375992455469876 +0.29510966936384325,1.783567165567434 +-0.7151771080897029,1.718089479703083 +-0.9833526200463076,0.2907805090600878 +-0.6123946154335642,-0.10673334335233182 +0.033229103013582506,1.6532616983445168 +0.2582922055381912,1.9487485928456987 +-0.517993623784005,0.8358359970104077 +-0.7650345588950478,1.2056616832645988 +0.3306993090845134,0.40776013409267675 +-0.7925173754295581,0.9372386613910284 +-0.5848264946330798,0.5702015331304496 +1.1149896870089404,-1.001927971982859 +-0.2682093281729897,0.38820849125191115 +1.1314825296741717,0.15291253300203614 +-0.5703990487585499,-0.10399353400426914 +-0.589099173396793,-0.19144857110903712 +1.1190767578418632,0.3210198009555102 +1.6288664146201783,-1.9693392634666105 +-0.6996782941867782,0.4835725612791837 +1.3717179960903234,-1.3128852147067576 +-0.4379565400817136,1.9713341289827389 +0.03508153763541583,0.293163902901874 +0.6767811885819981,-0.7568580860492847 +1.3479436096732211,-0.515487192599532 +0.17815756196343957,-0.0009196696716419483 +-0.5641675798692537,1.0425961392041414 +0.7786214655743374,-0.9286134950511931 +0.14781418728298498,-0.2712421368579423 +0.9743030954913786,0.3875024898154643 +-0.8754564813183823,-0.36560582709511735 +0.29510966936384325,1.783567165567434 +-0.2897282547530965,2.2857245845271663 +0.5862578015211588,-0.6534388479396572 +-0.6123946154335642,-0.10673334335233182 +0.033229103013582506,1.6532616983445168 +0.2582922055381912,1.9487485928456987 +1.050205239722049,-0.037442584183211836 +-0.7650345588950478,1.2056616832645988 +0.3306993090845134,0.40776013409267675 +-0.7925173754295581,0.9372386613910284 +-0.5783848410559067,-0.19212298823019766 +1.1149896870089404,-1.001927971982859 +0.9053768205604669,0.4832473939390153 +1.1314825296741717,0.15291253300203614 +0.38702330900833015,1.2766432705305677 +-0.589099173396793,-0.19144857110903712 +1.1190767578418632,0.3210198009555102 +1.6288664146201783,-1.9693392634666105 +0.46942167706501214,0.8858809373115615 +1.5923223895617946,-1.9668002398165887 +-0.4379565400817136,1.9713341289827389 +0.03508153763541583,0.293163902901874 +-0.2018726429437815,0.3635267744101872 +-0.4884643192847541,1.5425910994661745 +-0.17053038498753104,0.16759465673641114 +-0.5641675798692537,1.0425961392041414 +0.7786214655743374,-0.9286134950511931 +-0.5251911385339858,1.0701427958908956 +1.3683194529948834,-1.4639252713303867 +-0.8754564813183823,-0.36560582709511735 +-1.1334347827108888,-0.11683199583102477 +1.11287930048155,0.9421505683096739 +0.4073553712521823,-0.7020385231964351 +-0.6123946154335642,-0.10673334335233182 +0.033229103013582506,1.6532616983445168 +0.2582922055381912,1.9487485928456987 +-0.8049902341660878,1.1398032355549144 +-0.7650345588950478,1.2056616832645988 +0.3306993090845134,0.40776013409267675 +-0.7925173754295581,0.9372386613910284 +-0.5783848410559067,-0.19212298823019766 +1.1149896870089404,-1.001927971982859 +0.9053768205604669,0.4832473939390153 +-0.45196680418650254,2.133464521732502 +-0.5603708890775418,0.7154708926871223 +-0.8341972121851189,-0.10467007662288184 +1.1190767578418632,0.3210198009555102 +1.6288664146201783,-1.9693392634666105 +0.04860846061850016,1.4439336445744981 +1.5923223895617946,-1.9668002398165887 +1.4223996108888124,-0.9795894620786328 +0.0036178231597924215,1.0760755816246772 +-0.29584930312515495,0.5047618504352865 +-0.10497667586391046,-0.09733437148594426 +-0.17053038498753104,0.16759465673641114 +-0.5641675798692537,1.0425961392041414 +1.639409276495501,-0.31507813660329986 +-0.5251911385339858,1.0701427958908956 +1.3683194529948834,-1.4639252713303867 +-0.6026194800880129,0.6809617610000535 +-1.1334347827108888,-0.11683199583102477 +1.11287930048155,0.9421505683096739 +0.4073553712521823,-0.7020385231964351 +-0.6123946154335642,-0.10673334335233182 +0.033229103013582506,1.6532616983445168 +0.2582922055381912,1.9487485928456987 +-0.8049902341660878,1.1398032355549144 +-0.7650345588950478,1.2056616832645988 +1.7081863522785772,-2.38355118103169 +-0.7925173754295581,0.9372386613910284 +0.1653908579654585,0.08208067887684434 +1.1149896870089404,-1.001927971982859 +0.9053768205604669,0.4832473939390153 +-0.45196680418650254,2.133464521732502 +-0.07872202960175881,0.27577354243859964 +-0.8341972121851189,-0.10467007662288184 +1.1190767578418632,0.3210198009555102 +1.6288664146201783,-1.9693392634666105 +0.04860846061850016,1.4439336445744981 +1.5923223895617946,-1.9668002398165887 +1.4223996108888124,-0.9795894620786328 +0.0036178231597924215,1.0760755816246772 +0.6846687391046782,0.22393278385067578 +-0.5982693441151952,0.18541931483867985 +-0.17053038498753104,0.16759465673641114 +-0.5641675798692537,1.0425961392041414 +1.3701325987308675,-0.1372085094183726 +-0.5251911385339858,1.0701427958908956 +1.3683194529948834,-1.4639252713303867 +-0.4386170201135344,0.48161598774954284 +-1.1334347827108888,-0.11683199583102477 +1.11287930048155,0.9421505683096739 +-0.39728463612253795,1.6075385696450861 +-0.6123946154335642,-0.10673334335233182 +0.033229103013582506,1.6532616983445168 +0.2582922055381912,1.9487485928456987 +-0.8049902341660878,1.1398032355549144 +0.1173884208766226,-0.1546717791361305 +1.7081863522785772,-2.38355118103169 +-0.08049885727325023,0.32112502231527174 +0.1653908579654585,0.08208067887684434 +0.3030625038718005,1.1217670259366508 +0.947357140391351,-0.2939384149030059 +-0.45196680418650254,2.133464521732502 +-0.20462769955008644,1.209309915308573 +-0.4879403632411787,0.24706178727014694 +1.1190767578418632,0.3210198009555102 +1.6288664146201783,-1.9693392634666105 +-0.7602540348811371,0.9006364309474317 +1.5923223895617946,-1.9668002398165887 +1.4223996108888124,-0.9795894620786328 +0.0036178231597924215,1.0760755816246772 +1.3634937593937906,-0.6106526530412192 +-0.5982693441151952,0.18541931483867985 +-0.28369609341952273,-0.00023752857345027412 +-0.5641675798692537,1.0425961392041414 +1.3701325987308675,-0.1372085094183726 +-0.33788554133392734,2.1801826672314055 +0.5643593947181047,-0.4573291833547517 +-0.16759674744939523,0.15111729403093532 +0.6315637726434411,1.1759155878294103 +1.11287930048155,0.9421505683096739 +-0.3550468135137298,1.4675289053530873 +-0.6123946154335642,-0.10673334335233182 +0.033229103013582506,1.6532616983445168 +-0.47585578553875657,0.9324382342474026 +-0.8049902341660878,1.1398032355549144 +0.1173884208766226,-0.1546717791361305 +1.2387807412188825,-1.2443585806623338 +-0.08049885727325023,0.32112502231527174 +0.1653908579654585,0.08208067887684434 +-0.20438223904540676,1.7350801357463326 +0.6598582366256436,0.9093023158393226 +-0.6213078228154837,-0.38483903738560366 +0.210439660828586,1.9999359484243697 +-0.578762993963152,0.04774323227164079 +1.1190767578418632,0.3210198009555102 +1.6288664146201783,-1.9693392634666105 +-0.7602540348811371,0.9006364309474317 +0.6862210786647148,0.1371685577779873 +1.4223996108888124,-0.9795894620786328 +0.7079182336858237,-0.6872314427732541 +1.3634937593937906,-0.6106526530412192 +-0.5982693441151952,0.18541931483867985 +-0.28369609341952273,-0.00023752857345027412 +0.18827686832491353,-0.30986455343457864 +1.3701325987308675,-0.1372085094183726 +-0.33788554133392734,2.1801826672314055 +0.30266494007673983,1.6835829580967911 +0.2291692561479063,-0.09047669838235455 +0.6315637726434411,1.1759155878294103 +1.11287930048155,0.9421505683096739 +-0.3550468135137298,1.4675289053530873 +0.3667076037925187,1.9098819298078011 +0.033229103013582506,1.6532616983445168 +0.09252983511783608,1.6908461674593798 +-0.8049902341660878,1.1398032355549144 +0.1173884208766226,-0.1546717791361305 +1.2387807412188825,-1.2443585806623338 +-0.5620767270755028,-0.07863352623850783 +0.1653908579654585,0.08208067887684434 +-0.20438223904540676,1.7350801357463326 +0.4781315003973279,0.2956732995163832 +-0.6256494180283575,0.6960997669378933 +-0.5051489777111583,0.42188405221167846 +-0.578762993963152,0.04774323227164079 +0.5774818468817811,0.14409657881106042 +1.6288664146201783,-1.9693392634666105 +-0.7602540348811371,0.9006364309474317 +0.21816758964623484,0.5423688907673629 +1.4223996108888124,-0.9795894620786328 +-0.23299414931623036,-0.2810156978269138 +1.1198055021825506,-1.061884685446019 +-0.3753640965458461,0.12589420206980767 +-0.28369609341952273,-0.00023752857345027412 +0.056677995866301345,1.9688229831483819 +-0.18052291704269036,-0.28392152992069597 +-0.5310530506013516,-0.10888855599199368 +-0.5032931607999114,0.6699010185195243 +0.5963823384180964,1.1793297271971366 +0.7859665646620473,1.4464311835420534 +1.11287930048155,0.9421505683096739 +-0.3550468135137298,1.4675289053530873 +0.7246504904402121,1.2390121385123432 +-0.32195413317184784,0.46716229929722264 +0.09252983511783608,1.6908461674593798 +-0.8049902341660878,1.1398032355549144 +0.19441287443684682,1.474413455412281 +1.2387807412188825,-1.2443585806623338 +0.11105211046795936,1.2861109835199154 +0.1653908579654585,0.08208067887684434 +-0.20438223904540676,1.7350801357463326 +-0.12429669703323507,0.420999426769624 +-0.6256494180283575,0.6960997669378933 +-0.5748999723557049,0.9166251148951701 +-0.3317079127090857,-0.10700102641453679 +0.5774818468817811,0.14409657881106042 +1.6288664146201783,-1.9693392634666105 +0.46872841137451005,1.8635739195540515 +0.3712770153100479,1.2179389731738264 +-0.60750102428782,0.061038061784120634 +-0.566631211987118,0.5414742654059397 +1.1198055021825506,-1.061884685446019 +-0.3753640965458461,0.12589420206980767 +-0.37038267815825354,2.1692872320825636 +0.5141567020654958,1.3120125481759968 +-0.8392055555530622,0.8730082445275161 +-0.5310530506013516,-0.10888855599199368 +0.9187807356052811,-0.7991936842318578 +0.5963823384180964,1.1793297271971366 +0.7859665646620473,1.4464311835420534 +0.8725062660046543,0.9602397045083052 +-0.3550468135137298,1.4675289053530873 +0.7246504904402121,1.2390121385123432 +-0.32195413317184784,0.46716229929722264 +0.09252983511783608,1.6908461674593798 +-0.8049902341660878,1.1398032355549144 +0.09929841781343762,1.122672792226789 +1.2387807412188825,-1.2443585806623338 +0.5759042582891737,1.2593910362933312 +1.013999590986626,-1.0600947632891788 +-0.20438223904540676,1.7350801357463326 +-0.8066663136370751,0.782835007661122 +-0.35888770064443226,1.445479173787981 +-0.5748999723557049,0.9166251148951701 +-0.3317079127090857,-0.10700102641453679 +0.5774818468817811,0.14409657881106042 +1.6288664146201783,-1.9693392634666105 +0.46872841137451005,1.8635739195540515 +-0.06906405901710311,2.57473225661566 +-0.60750102428782,0.061038061784120634 +-0.566631211987118,0.5414742654059397 +0.03989377905947156,1.3976289070373682 +-0.01036930125667651,1.2691488817643006 +-0.37038267815825354,2.1692872320825636 +0.5141567020654958,1.3120125481759968 +-0.8392055555530622,0.8730082445275161 +-0.5310530506013516,-0.10888855599199368 +0.9187807356052811,-0.7991936842318578 +1.4863713264543432,-1.3298652395104251 +0.7859665646620473,1.4464311835420534 +0.8725062660046543,0.9602397045083052 +-0.027008044996951475,1.3905860833775427 +1.632184146588106,-0.9125899430053819 +-0.32195413317184784,0.46716229929722264 +1.3944126509407895,-0.43129740512186165 +-0.8049902341660878,1.1398032355549144 +0.09929841781343762,1.122672792226789 +1.2387807412188825,-1.2443585806623338 +0.5759042582891737,1.2593910362933312 +1.013999590986626,-1.0600947632891788 +-0.20438223904540676,1.7350801357463326 +-0.0857827106577109,-0.38607971752271464 +1.2916914022055932,0.3480660654206168 +-0.5748999723557049,0.9166251148951701 +-0.3317079127090857,-0.10700102641453679 +0.5774818468817811,0.14409657881106042 +1.6288664146201783,-1.9693392634666105 +0.46872841137451005,1.8635739195540515 +-0.06906405901710311,2.57473225661566 +-0.60750102428782,0.061038061784120634 +1.1550351132775774,0.6012230131873635 +0.03989377905947156,1.3976289070373682 +0.43519706911411726,0.6721249865667709 +-0.21667478859855696,0.9224474218951892 +-0.38356449284214367,1.0829085686757833 +-0.47997088148800465,1.3221748529055593 +1.4353372867163343,-0.2932304743551779 +0.9187807356052811,-0.7991936842318578 +0.47447551992050874,1.4769896290338638 +0.7859665646620473,1.4464311835420534 +0.8725062660046543,0.9602397045083052 +-0.027008044996951475,1.3905860833775427 +1.632184146588106,-0.9125899430053819 +-0.32195413317184784,0.46716229929722264 +1.3944126509407895,-0.43129740512186165 +0.644124522906089,1.3356895978155514 +1.076708470547805,-0.5124416368677096 +1.2387807412188825,-1.2443585806623338 +-0.3894263175759865,0.6789093342941466 +-0.40790681403827783,1.322244639433926 +-0.1311423870331822,1.954460835242931 +-0.0857827106577109,-0.38607971752271464 +0.28543272724113866,1.8183737936407165 +-0.23115087305188062,0.4281769454342952 +-0.5503503695641098,1.0841387168120329 +-0.7100337140542687,1.4608538869419987 +1.6288664146201783,-1.9693392634666105 +-0.5150092412287401,1.0691996074531533 +-0.06906405901710311,2.57473225661566 +-0.60750102428782,0.061038061784120634 +-0.5633644510497153,-0.5238302723477241 +0.3892627330652396,-0.5012423958907958 +0.7262044001664559,-0.30772629183863887 +-0.6180178892404179,1.4096089147249171 +-0.38356449284214367,1.0829085686757833 +-0.47997088148800465,1.3221748529055593 +-0.3957723222055409,2.2731353784148634 +0.9187807356052811,-0.7991936842318578 +0.47447551992050874,1.4769896290338638 +-0.5029918271344789,-0.4404944147176359 +0.023551141599012504,1.0884662583820794 +-0.027008044996951475,1.3905860833775427 +1.632184146588106,-0.9125899430053819 +-0.32195413317184784,0.46716229929722264 +1.3944126509407895,-0.43129740512186165 +-0.5405521520560659,1.2688536560366823 +0.39038005295365763,1.9075751357251334 +1.0723149137831598,-0.9615775446855326 +-0.10127953204133683,1.5905177570710334 +-0.40790681403827783,1.322244639433926 +-0.019919648773723382,0.5541598675116365 +-0.0857827106577109,-0.38607971752271464 +0.28543272724113866,1.8183737936407165 +1.2479200364925376,0.8028466417705196 +-0.5503503695641098,1.0841387168120329 +-0.7100337140542687,1.4608538869419987 +1.6288664146201783,-1.9693392634666105 +1.4560396177319403,-2.252566787227776 +0.520307604372154,0.3046443961568579 +-0.60750102428782,0.061038061784120634 +0.955991378923145,1.1017463882668548 +-0.9379171185077091,0.2923997418184808 +-0.8501013019343795,0.266354103703557 +-0.9705116045440708,0.3669516082828153 +-0.38356449284214367,1.0829085686757833 +-0.47997088148800465,1.3221748529055593 +-0.3957723222055409,2.2731353784148634 +1.0131435493123901,0.6316781000810257 +-0.9470701152697978,-0.10834417411050346 +-0.34744230542266763,1.7396476736464013 +0.3298444725891666,0.7725413960472656 +-0.10459692453234853,1.515738780629329 +1.2837879720742669,-1.7256787132707978 +-0.32195413317184784,0.46716229929722264 +0.07551498360112807,1.5351934421933766 +1.205173151276417,0.02958182564196471 +0.6922134399820377,-0.7959857126326487 +0.7803887342097245,1.6361092500933374 +0.018433164803544178,2.0066382749632137 +0.34284421339429494,1.2703625249745945 +0.2942919646541039,0.7508923110568332 +0.7059336392982658,1.2201851556049343 +0.20788536205653974,-0.33927888127324485 +-0.1507600751538749,0.4010677981746273 +-0.5503503695641098,1.0841387168120329 +-0.7100337140542687,1.4608538869419987 +1.6288664146201783,-1.9693392634666105 +0.1382693043610493,1.6503074483892854 +1.036280578122847,-1.1827450402939872 +-0.60750102428782,0.061038061784120634 +0.955991378923145,1.1017463882668548 +-0.9379171185077091,0.2923997418184808 +-0.8501013019343795,0.266354103703557 +-0.9705116045440708,0.3669516082828153 +-0.38356449284214367,1.0829085686757833 +0.7906728167961645,0.18385944740878202 +-0.3957723222055409,2.2731353784148634 +1.0131435493123901,0.6316781000810257 +-0.9470701152697978,-0.10834417411050346 +-0.34744230542266763,1.7396476736464013 +0.9890611252245817,1.3116073151485803 +-0.10459692453234853,1.515738780629329 +-0.5578554313844131,1.16128731336985 +-0.32195413317184784,0.46716229929722264 +0.9858919775778195,0.8509804232933758 +-0.042083608737277456,1.3097616293335976 +0.6922134399820377,-0.7959857126326487 +0.26041541860629064,1.033808842701879 +0.018433164803544178,2.0066382749632137 +0.03095230864401108,1.335304922201705 +0.2942919646541039,0.7508923110568332 +0.9010406568316787,1.048130659002777 +0.20788536205653974,-0.33927888127324485 +0.8932160271255369,1.1226992289574118 +-0.5503503695641098,1.0841387168120329 +0.47188261963122435,-0.0012027062801834854 +1.6288664146201783,-1.9693392634666105 +-0.1835161281213541,0.8119294533872964 +1.036280578122847,-1.1827450402939872 +0.5374572545243901,1.57034652888397 +0.955991378923145,1.1017463882668548 +-0.9379171185077091,0.2923997418184808 +-0.714724946506188,0.4902410733242274 +-0.06656460862490765,0.5590673778650677 +-0.38356449284214367,1.0829085686757833 +-0.2736197807379101,1.218133934244483 +-0.3957723222055409,2.2731353784148634 +1.0131435493123901,0.6316781000810257 +-0.9470701152697978,-0.10834417411050346 +0.13891345165636795,0.1783637682916014 +0.9890611252245817,1.3116073151485803 +-0.10459692453234853,1.515738780629329 +-0.5578554313844131,1.16128731336985 +-0.32195413317184784,0.46716229929722264 +0.9858919775778195,0.8509804232933758 +-0.2988052499346042,2.237439462445278 +0.6922134399820377,-0.7959857126326487 +0.7992674673808975,-0.8045650429691646 +0.018433164803544178,2.0066382749632137 +0.03095230864401108,1.335304922201705 +0.24686121177492304,0.21522093762310293 +0.9010406568316787,1.048130659002777 +-0.041190546403716555,1.994448508680785 +0.6910681322861445,-1.0991396216584686 +-0.5503503695641098,1.0841387168120329 +-0.021929118171270412,-0.47180259090287757 +1.6288664146201783,-1.9693392634666105 +-0.7636578766018749,1.2187543128493106 +1.036280578122847,-1.1827450402939872 +0.5374572545243901,1.57034652888397 +0.955991378923145,1.1017463882668548 +-0.9379171185077091,0.2923997418184808 +-0.714724946506188,0.4902410733242274 +1.1653590307020258,-0.6323673790287193 +-0.38356449284214367,1.0829085686757833 +0.16850209888169268,1.7069331356867397 +1.2003987173237674,-0.78821061252342 +1.0131435493123901,0.6316781000810257 +-0.9470701152697978,-0.10834417411050346 +0.5553578604839868,0.12315518357405722 +-0.10034153915311425,1.4449745692918734 +-0.577550814218532,0.48878500475788156 +-0.5578554313844131,1.16128731336985 +-0.32195413317184784,0.46716229929722264 +0.9858919775778195,0.8509804232933758 +-0.5767976744193168,0.11375107843128193 +0.6922134399820377,-0.7959857126326487 +-0.0907420790892062,0.7307023508788082 +0.018433164803544178,2.0066382749632137 +0.8405531596419864,0.3400445353755157 +0.7494076038807622,1.2661428044147955 +-0.5499121782140233,-0.023263638298980288 +-0.041190546403716555,1.994448508680785 +0.6910681322861445,-1.0991396216584686 +-0.88401608830967,-0.03794641757734052 +-0.021929118171270412,-0.47180259090287757 +1.6288664146201783,-1.9693392634666105 +-0.03624450725554251,0.21598274491120834 +1.036280578122847,-1.1827450402939872 +0.5374572545243901,1.57034652888397 +0.955991378923145,1.1017463882668548 +-0.9379171185077091,0.2923997418184808 +0.9425487178378658,-0.2021874045845895 +1.1653590307020258,-0.6323673790287193 +-0.38356449284214367,1.0829085686757833 +-0.3171881466053957,0.2539186855124067 +0.9616232195016055,0.7270158796143932 +1.3002108293223857,-0.9629378219396665 +-0.9470701152697978,-0.10834417411050346 +0.5553578604839868,0.12315518357405722 +-0.10034153915311425,1.4449745692918734 +-0.577550814218532,0.48878500475788156 +-0.5578554313844131,1.16128731336985 +-0.32195413317184784,0.46716229929722264 +0.9858919775778195,0.8509804232933758 +1.0137535528471555,-0.9174105719506003 +0.396439286639367,1.9198245933916271 +-0.0907420790892062,0.7307023508788082 +0.018433164803544178,2.0066382749632137 +-0.475424860803522,0.41756613547781063 +1.5299834972934059,-0.6655569133871244 +-0.5499121782140233,-0.023263638298980288 +-0.6136207516342609,0.5123883344457442 +0.7448304141708547,-0.7037831868397396 +0.6936128243262847,-0.21069700535886596 +0.546160130493983,1.3620944196351883 +0.8559043254596258,-0.36567665050523657 +-0.03624450725554251,0.21598274491120834 +1.036280578122847,-1.1827450402939872 +0.5374572545243901,1.57034652888397 +0.16000415606911753,1.720852138554482 +-0.9379171185077091,0.2923997418184808 +0.9425487178378658,-0.2021874045845895 +1.1653590307020258,-0.6323673790287193 +-0.25934333448411706,0.4021896076819933 +-0.22879266519192626,2.352960639253764 +0.9616232195016055,0.7270158796143932 +-0.28436210999447437,-0.2718939601701599 +-0.1853443185407443,0.5922386191501319 +0.9239542746643769,-0.5859432144020952 +-0.10034153915311425,1.4449745692918734 +-0.577550814218532,0.48878500475788156 +0.7023694059293023,1.8007570101251629 +0.2659143457374882,0.11813682235435101 +0.9858919775778195,0.8509804232933758 +1.0137535528471555,-0.9174105719506003 +0.396439286639367,1.9198245933916271 +-0.0907420790892062,0.7307023508788082 +0.018433164803544178,2.0066382749632137 +-0.475424860803522,0.41756613547781063 +1.5299834972934059,-0.6655569133871244 +-0.5499121782140233,-0.023263638298980288 +-0.6020288666792182,0.7041678890688355 +0.7448304141708547,-0.7037831868397396 +-0.6364107330815083,1.171685618643131 +1.215308820582259,-0.9297014056435728 +0.8559043254596258,-0.36567665050523657 +-0.11653743079589526,-0.3474635797464397 +1.460523077591365,-1.3947062512365833 +0.5374572545243901,1.57034652888397 +1.31526129405576,-1.2329086694272637 +-0.9379171185077091,0.2923997418184808 +-0.32185261819313693,0.7131308470635087 +0.9752176090639242,-0.3657729544192341 +0.3991826901390064,0.06480755358107004 +-0.22879266519192626,2.352960639253764 +0.3295246150971228,2.050063565817675 +-0.16846713043435824,0.15557502342010965 +-0.321409305422574,0.28928632122994924 +-0.45048701896543714,1.9765425706327344 +-0.10034153915311425,1.4449745692918734 +-0.577550814218532,0.48878500475788156 +0.05848940184773321,0.5010258343699665 +1.2775837205910432,-0.5931079550053172 +0.46567716419633676,1.931001216337703 +0.7932548362859749,-0.019734507932623768 +0.396439286639367,1.9198245933916271 +0.5186702415913692,1.0797621035524885 +0.018433164803544178,2.0066382749632137 +-0.07387146033209685,0.9528036577522645 +0.19400777487345933,2.3478942227583843 +-0.5499121782140233,-0.023263638298980288 +-0.2759278232321648,0.02543596446265417 +-0.17865851727645,1.000903421294374 +0.5506410322329726,1.658138140687854 +1.215308820582259,-0.9297014056435728 +-0.2507907799884695,0.12971893066799867 +-0.2752907935467609,0.9024393136934137 +1.460523077591365,-1.3947062512365833 +0.5374572545243901,1.57034652888397 +-0.18955829404094532,-0.09980565665138963 +0.8020827775165674,0.29217919225503086 +-0.32185261819313693,0.7131308470635087 +1.125162831836036,0.2638489445781562 +0.3431980162224032,0.25758150853761225 +0.07838180608487649,1.42399791310493 +-0.47741779749088475,0.6181727607512785 +-0.16846713043435824,0.15557502342010965 +-0.321409305422574,0.28928632122994924 +-0.45048701896543714,1.9765425706327344 +0.7708511754720051,1.1790249672844286 +-0.577550814218532,0.48878500475788156 +0.05848940184773321,0.5010258343699665 +1.2775837205910432,-0.5931079550053172 +0.46567716419633676,1.931001216337703 +-0.30101182923720493,0.443387528118603 +0.15313853832376517,-0.35623182353165594 +0.5186702415913692,1.0797621035524885 +0.018433164803544178,2.0066382749632137 +-0.4504967750859114,0.559752406458067 +0.6257707639322041,1.8310401025528824 +-0.5499121782140233,-0.023263638298980288 +0.3514579371203439,1.665659252396494 +-0.004482375784605197,2.377808292970849 +0.5506410322329726,1.658138140687854 +1.215308820582259,-0.9297014056435728 +-0.2507907799884695,0.12971893066799867 +-0.2752907935467609,0.9024393136934137 +1.6607220653334673,-1.5511666783829716 +0.5450741207881111,2.160870749799658 +0.7584099044682684,0.010404172702318248 +0.4397033957498425,1.3432132877036251 +-0.0025659587181940946,-0.2576458035408995 +1.618994834723882,-1.1017836505624072 +0.7348173514192068,0.5339731116992759 +0.07838180608487649,1.42399791310493 +0.032015201830465176,0.3465358112982866 +-0.16846713043435824,0.15557502342010965 +-0.4120307027486301,0.5413285675830133 +-0.45048701896543714,1.9765425706327344 +-0.3762837652629126,0.35928342019372095 +-0.577550814218532,0.48878500475788156 +0.5290910168041238,1.8747393926521614 +1.2775837205910432,-0.5931079550053172 +-0.25081842114036373,-0.3665989021534494 +-0.30101182923720493,0.443387528118603 +0.15313853832376517,-0.35623182353165594 +0.4865763091069928,2.223325634185268 +0.018433164803544178,2.0066382749632137 +-0.32315179364431923,0.5477406797789202 +-0.4045560442342112,1.1826927801459852 +-0.5499121782140233,-0.023263638298980288 +-0.436838647151103,-0.04159256169871678 +-0.7772909894077391,0.9012431724209145 +0.8786554430309136,0.15269021941960909 +1.215308820582259,-0.9297014056435728 +-1.0083151900249747,0.4280779286677941 +-0.0665382029128323,1.2227659899743308 +1.6607220653334673,-1.5511666783829716 +0.8010531357952975,0.614006839363973 +0.7584099044682684,0.010404172702318248 +0.47714556375181627,1.512672713879173 +-0.0025659587181940946,-0.2576458035408995 +1.618994834723882,-1.1017836505624072 +0.43709724168320185,1.6210224846098649 +1.2929623523149525,-0.3121442595124736 +0.555451210478212,1.445365039520834 +0.8847051440831235,-0.8043694087004819 +-0.4120307027486301,0.5413285675830133 +-0.45048701896543714,1.9765425706327344 +0.21853905877647328,-0.37916780101102215 +0.9453886353944062,-0.8401558511909583 +0.5290910168041238,1.8747393926521614 +-0.37220579650564206,0.4559974356310401 +-0.6220618772652192,1.080972281170107 +0.3149042891332458,-0.18542062950495994 +1.4472657268470301,-1.593348131567993 +0.4865763091069928,2.223325634185268 +-0.7103081673753502,0.5933507523238427 +-0.7429462779315241,-0.33384467063842027 +-0.619372110248976,1.2396959966376935 +-0.7095045506695435,-0.40799417469346644 +-0.436838647151103,-0.04159256169871678 +0.035119964920441865,0.20856929425458803 +0.4597097301261448,0.21942376882195713 +-0.4254922925742793,0.0013178547914916017 +-1.0083151900249747,0.4280779286677941 +-0.0665382029128323,1.2227659899743308 +1.6607220653334673,-1.5511666783829716 +1.4236738636761115,-1.200232926318888 +0.26446902383417403,-0.5985078732618165 +1.3099743158966979,-1.334797549847216 +-0.23223486130714546,-0.12688570313020597 +-0.929062986964466,0.41943404164282755 +0.7089195704516145,-0.40848355266284814 +-0.583409122549227,-0.4165831072082894 +0.555451210478212,1.445365039520834 +0.8847051440831235,-0.8043694087004819 +-0.4120307027486301,0.5413285675830133 +-0.45048701896543714,1.9765425706327344 +0.21853905877647328,-0.37916780101102215 +0.08541565218617686,-0.11239949572323392 +-0.3386036867446948,-0.031385992821681696 +-0.37220579650564206,0.4559974356310401 +-0.6220618772652192,1.080972281170107 +-0.7281211753845716,0.2619374287002388 +-0.758494431953396,0.5800830099280944 +0.4865763091069928,2.223325634185268 +-0.7103081673753502,0.5933507523238427 +1.8697380688441474,-2.0863345046196957 +-0.619372110248976,1.2396959966376935 +-0.6535095984844087,0.1822946886583322 +-0.436838647151103,-0.04159256169871678 +-0.541497509353285,0.9545805935995204 +0.4597097301261448,0.21942376882195713 +0.32465139643339197,2.0473327248846265 +0.19032549603169818,-0.17770436042941917 +-0.0665382029128323,1.2227659899743308 +-0.8035560604391857,0.5179862172364282 +1.4236738636761115,-1.200232926318888 +0.580820334563338,1.0230738627075697 +1.3099743158966979,-1.334797549847216 +-0.23223486130714546,-0.12688570313020597 +-0.929062986964466,0.41943404164282755 +0.7089195704516145,-0.40848355266284814 +0.9302444250129553,0.55916841416549 +0.555451210478212,1.445365039520834 +0.8847051440831235,-0.8043694087004819 +-0.4120307027486301,0.5413285675830133 +-0.45048701896543714,1.9765425706327344 +0.21853905877647328,-0.37916780101102215 +-0.40340912322955075,-0.2889029913827586 +-0.3386036867446948,-0.031385992821681696 +-0.37220579650564206,0.4559974356310401 +-0.8987295799969586,-0.32517408971187794 +-0.21806344382691845,-0.39384224793991446 +-0.3005403815236962,-0.1495269698140466 +1.2549396572972535,-0.4603838634524767 +-0.7103081673753502,0.5933507523238427 +1.8697380688441474,-2.0863345046196957 +-0.619372110248976,1.2396959966376935 +1.0649066396975697,0.6801762096932675 +-0.436838647151103,-0.04159256169871678 +-0.211744993397386,1.7461396001973337 +0.7709522207900101,-0.5419290544599096 +0.32465139643339197,2.0473327248846265 +0.19032549603169818,-0.17770436042941917 +-0.0665382029128323,1.2227659899743308 +-0.24535748616557118,1.5431551082386306 +1.4236738636761115,-1.200232926318888 +0.580820334563338,1.0230738627075697 +-0.9365460940188814,0.4959088814936989 +0.4486642307891466,2.067119701102314 +-0.929062986964466,0.41943404164282755 +0.5041253519824964,1.654763118734455 +-1.016641614246116,0.2593502653857524 +0.555451210478212,1.445365039520834 +0.8847051440831235,-0.8043694087004819 +-0.4120307027486301,0.5413285675830133 +-0.45048701896543714,1.9765425706327344 +0.649269443856388,0.07220198647771359 +-0.4975089832577262,0.6769176517474675 +0.46340439704483977,-0.32690403334241847 +-0.8176959080337842,-0.287925684059866 +-0.8987295799969586,-0.32517408971187794 +0.2891080651875344,-0.3774333744623396 +-0.4656178686891862,0.8711508553944722 +1.2549396572972535,-0.4603838634524767 +-0.7103081673753502,0.5933507523238427 +0.08921157187307588,1.0521745781871634 +0.42105824447096,1.144343687910275 +1.1561427221466896,0.28333803854982587 +-0.7289018999585815,0.8655242952100131 +-0.211744993397386,1.7461396001973337 +0.7709522207900101,-0.5419290544599096 +0.32465139643339197,2.0473327248846265 +0.19032549603169818,-0.17770436042941917 +0.6539715390285227,0.6462292223868878 +-0.24348529877669817,0.9330404142492303 +1.4236738636761115,-1.200232926318888 +0.580820334563338,1.0230738627075697 +0.4944502147874235,0.050178362678068356 +1.01027231178876,0.16278136346544736 +1.350751416490891,-0.8322956811428204 +-0.21628613882972736,-0.4068512557627039 +-0.52177122568082,0.3124910255226349 +0.555451210478212,1.445365039520834 +-0.5330714063092592,-0.012878817076524385 +-0.08915561587111648,1.6035391971480042 +-0.45048701896543714,1.9765425706327344 +0.649269443856388,0.07220198647771359 +-0.4975089832577262,0.6769176517474675 +0.46340439704483977,-0.32690403334241847 +-0.1854062029536242,1.1335422826308 +-0.8987295799969586,-0.32517408971187794 +1.2907234811041368,-1.4120876179648194 +-0.4656178686891862,0.8711508553944722 +1.2549396572972535,-0.4603838634524767 +-0.7103081673753502,0.5933507523238427 +1.0997952743560722,-0.019119158193081187 +0.995921412778936,-0.20997332728850399 +0.6344096778254256,1.0416118787523017 +0.9409710844590213,0.6308707462859334 +-0.211744993397386,1.7461396001973337 +0.7709522207900101,-0.5419290544599096 +0.32465139643339197,2.0473327248846265 +-0.03187116653508029,1.8752834913003555 +1.1636313228796873,-0.2826368471172245 +0.49260028462329936,2.050049545936956 +-0.8503253323969957,0.8235556535032414 +0.11229622288333618,-0.593140075713994 +0.8577782118705723,0.7648878150902492 +-0.1899012708931032,1.9860563246121075 +1.350751416490891,-0.8322956811428204 +0.6732404471437314,1.86298422486482 +0.13179426336023908,2.237129918652383 +-0.31117665967057934,2.1398999873307973 +-0.5330714063092592,-0.012878817076524385 +0.5936627325643546,-0.27834671889919005 +0.9623850511502743,0.5827911309964953 +0.649269443856388,0.07220198647771359 +-0.4975089832577262,0.6769176517474675 +0.46340439704483977,-0.32690403334241847 +-0.24468168987368216,0.6761094846318312 +-0.8987295799969586,-0.32517408971187794 +1.2907234811041368,-1.4120876179648194 +-0.1491572084400109,1.819649146702421 +-0.33595329507041416,-0.18889681524975221 +-0.7103081673753502,0.5933507523238427 +0.06623389251158135,1.277231720839641 +0.995921412778936,-0.20997332728850399 +0.6344096778254256,1.0416118787523017 +0.9409710844590213,0.6308707462859334 +0.5919164784428349,0.8159293893836079 +0.24475869747614976,0.2852450307945644 +0.7013433514256519,-0.10126943160513685 +-0.03187116653508029,1.8752834913003555 +0.34571239807351317,-0.28132584220191537 +-0.28649251427140304,0.04233979980870006 +-0.8503253323969957,0.8235556535032414 +-0.08103942004964501,1.6193500630676825 +-0.278503964401513,1.5686764869459435 +0.1947484970506928,1.555056294233278 +1.350751416490891,-0.8322956811428204 +0.6732404471437314,1.86298422486482 +0.13179426336023908,2.237129918652383 +-0.43047900866517214,1.0506326541314361 +-0.5330714063092592,-0.012878817076524385 +0.15410254066017387,2.273748124684401 +0.7477181294883632,-0.6901503088295502 +0.649269443856388,0.07220198647771359 +-0.4975089832577262,0.6769176517474675 +0.46340439704483977,-0.32690403334241847 +-0.24468168987368216,0.6761094846318312 +-0.8987295799969586,-0.32517408971187794 +1.2907234811041368,-1.4120876179648194 +-0.5340607611637729,1.7030511895437817 +-0.33595329507041416,-0.18889681524975221 +0.8097137378786335,-0.1459072082545731 +0.06623389251158135,1.277231720839641 +1.1951279174461802,-0.9322643265861063 +0.15700855234776548,1.3968000059845591 +1.657374547279998,-1.9623302387260404 +0.5858422192957389,0.744139652176332 +0.24475869747614976,0.2852450307945644 +1.3914216095179983,-0.14828082660975717 +-0.03187116653508029,1.8752834913003555 +1.4927910236758781,-0.7894798107736947 +-0.28649251427140304,0.04233979980870006 +0.8997357778062453,-0.06937430611540307 +0.5919433774898025,1.1390398752485693 +-0.278503964401513,1.5686764869459435 +-0.5569282444623226,1.514945623607672 +1.350751416490891,-0.8322956811428204 +0.6732404471437314,1.86298422486482 +0.13179426336023908,2.237129918652383 +-0.43047900866517214,1.0506326541314361 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +0.5322805318375653,0.031999003437353346 +0.6200508407235213,0.06657920563483166 +0.13764884891655693,0.04451315947404297 +0.46340439704483977,-0.32690403334241847 +-0.24468168987368216,0.6761094846318312 +0.028440601762813156,1.3359397452217916 +-1.0205572058370893,0.26406429715609653 +-0.683020361813268,0.9791155348836428 +-0.33595329507041416,-0.18889681524975221 +-0.27176208699729876,0.23307025597445527 +0.7148926298484637,-0.7590469591249084 +1.1951279174461802,-0.9322643265861063 +0.15700855234776548,1.3968000059845591 +1.657374547279998,-1.9623302387260404 +-0.5888662788123254,1.1857751420703027 +0.24475869747614976,0.2852450307945644 +1.3914216095179983,-0.14828082660975717 +-0.03187116653508029,1.8752834913003555 +1.4927910236758781,-0.7894798107736947 +0.6403982774084016,-0.351200361011332 +1.410856965036488,-0.7117853675694654 +0.0725930719612985,0.32677866883410217 +-0.278503964401513,1.5686764869459435 +0.4539841145095479,0.15734040522366463 +1.350751416490891,-0.8322956811428204 +0.6732404471437314,1.86298422486482 +-0.7590166825297946,0.7625721574492597 +-0.43047900866517214,1.0506326541314361 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +0.5322805318375653,0.031999003437353346 +1.5221188921308997,-0.7569359432488831 +0.13764884891655693,0.04451315947404297 +-0.1455088046086092,0.2275504790597893 +-0.7291473830101012,-0.33460418875323367 +0.028440601762813156,1.3359397452217916 +-1.0205572058370893,0.26406429715609653 +0.5562932889509501,-0.5076618805431505 +-0.33595329507041416,-0.18889681524975221 +-0.27176208699729876,0.23307025597445527 +1.4486377337635952,-2.119534612443845 +1.1951279174461802,-0.9322643265861063 +0.15700855234776548,1.3968000059845591 +1.657374547279998,-1.9623302387260404 +-0.5888662788123254,1.1857751420703027 +0.24475869747614976,0.2852450307945644 +1.3914216095179983,-0.14828082660975717 +-0.03187116653508029,1.8752834913003555 +1.4927910236758781,-0.7894798107736947 +0.7511457667576491,-0.9023915986771971 +1.410856965036488,-0.7117853675694654 +-0.6515710585187902,0.49728500019679894 +-0.278503964401513,1.5686764869459435 +-0.7027723289066858,0.6968781647696313 +-0.6442256653914356,-0.4475908774642252 +0.6732404471437314,1.86298422486482 +-0.7590166825297946,0.7625721574492597 +0.5612246459658633,0.17986413867326811 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +-0.09237132826100014,0.13262534224362726 +1.5221188921308997,-0.7569359432488831 +-1.0497895863809075,-0.45032616413260596 +0.41190472278129575,-0.6649093780742599 +-0.7291473830101012,-0.33460418875323367 +1.2608249568840213,-0.20337952683258675 +-1.0205572058370893,0.26406429715609653 +-0.33232935682931686,0.29225204234902136 +0.41851724638550675,0.8471581515552008 +0.8566152739836517,-0.9335286628547133 +1.4486377337635952,-2.119534612443845 +-0.5279426628873668,-0.15896629801808676 +-0.4438128754338474,0.3311915350852881 +1.657374547279998,-1.9623302387260404 +-0.7203294078777933,-0.09659839541215892 +0.24475869747614976,0.2852450307945644 +0.9685544404478821,0.7956404645121591 +-0.03187116653508029,1.8752834913003555 +1.4927910236758781,-0.7894798107736947 +0.6224336941337543,1.265910938602277 +-0.7222995134478437,0.4977769538977269 +-0.031288575096114296,0.7177939335861518 +0.549163677554577,1.7530888903961994 +0.5935973576259754,1.1866956255738328 +-0.5628576245105013,-0.011951624382502635 +0.17777753642629757,0.604160903164399 +-0.7590166825297946,0.7625721574492597 +-0.9831140529341572,0.4547382355390276 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +-0.09237132826100014,0.13262534224362726 +1.5221188921308997,-0.7569359432488831 +0.43833712074468784,1.2181195219621004 +0.41190472278129575,-0.6649093780742599 +-0.5741637133072701,1.4776532131937765 +1.2608249568840213,-0.20337952683258675 +0.4751863130013323,2.0136859694970273 +-0.33232935682931686,0.29225204234902136 +0.41851724638550675,0.8471581515552008 +-0.4342438447029414,-0.01826697362641616 +1.4486377337635952,-2.119534612443845 +-0.5279426628873668,-0.15896629801808676 +0.8874537608092703,-0.47403708926939964 +1.1047783128366109,0.48119504784169703 +-0.7203294078777933,-0.09659839541215892 +0.9707786106363764,0.5538998093564842 +-0.44549984962358324,0.1756915693137985 +-0.03187116653508029,1.8752834913003555 +1.4927910236758781,-0.7894798107736947 +0.8323940842631332,0.9662834432189255 +-0.7222995134478437,0.4977769538977269 +-0.13122924803319702,1.1927636848660177 +0.549163677554577,1.7530888903961994 +0.5935973576259754,1.1866956255738328 +-0.8565130127854574,1.012045886114959 +-0.46494954002700317,1.4814458342068764 +-0.1590163476432943,-0.3590655925288051 +-0.9831140529341572,0.4547382355390276 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +0.4737559246361558,1.0809140909373078 +1.5221188921308997,-0.7569359432488831 +-0.24563574128169574,-0.2881987873342766 +0.41190472278129575,-0.6649093780742599 +0.25320758194971116,-0.15149869120228787 +1.2608249568840213,-0.20337952683258675 +0.4751863130013323,2.0136859694970273 +-0.33232935682931686,0.29225204234902136 +0.41851724638550675,0.8471581515552008 +-0.4342438447029414,-0.01826697362641616 +1.4486377337635952,-2.119534612443845 +-0.006833206596626257,1.1887096780474506 +0.8874537608092703,-0.47403708926939964 +0.7961598270480219,-0.36887188786240405 +-0.7203294078777933,-0.09659839541215892 +0.9613635386675095,0.5807984544368263 +-0.44549984962358324,0.1756915693137985 +-0.03187116653508029,1.8752834913003555 +1.4927910236758781,-0.7894798107736947 +-0.6721255681252015,0.5131619998964005 +-0.7222995134478437,0.4977769538977269 +-0.13122924803319702,1.1927636848660177 +0.549163677554577,1.7530888903961994 +0.5935973576259754,1.1866956255738328 +-0.8565130127854574,1.012045886114959 +-0.46494954002700317,1.4814458342068764 +-0.46509313574972844,0.0950574490547467 +-0.6796449449964759,0.6578681332371996 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +0.6780848396539659,-0.5641750130944488 +1.5221188921308997,-0.7569359432488831 +-0.696535221116253,0.798857802487787 +0.6365082771424149,-0.3657950790765885 +0.5562442948098854,-0.06196774824707346 +1.2608249568840213,-0.20337952683258675 +0.8336621779672001,-0.27984605794743334 +-0.6155824390994118,0.6850168489730278 +0.41851724638550675,0.8471581515552008 +-0.27998100464766323,0.14382989260482265 +1.4486377337635952,-2.119534612443845 +1.6547058811358841,-1.6273523232651887 +-0.16794015048416183,0.4346107102821788 +1.2756993957596967,-1.099170549723929 +-0.10667582831432487,1.5951023927198733 +0.9613635386675095,0.5807984544368263 +-0.44549984962358324,0.1756915693137985 +-0.03187116653508029,1.8752834913003555 +1.1805279475097168,-0.11489152487477858 +-0.38665549270439387,1.7484334870977352 +-0.7222995134478437,0.4977769538977269 +0.7335818774653549,1.531102195392405 +0.549163677554577,1.7530888903961994 +1.0850825317017088,0.27576407265962355 +0.6661745830460802,-0.11775374028425373 +-0.46494954002700317,1.4814458342068764 +0.7316102369049284,-0.950216360364542 +-0.6796449449964759,0.6578681332371996 +0.7779807250417363,-0.5803268597852882 +0.15410254066017387,2.273748124684401 +0.6780848396539659,-0.5641750130944488 +1.5221188921308997,-0.7569359432488831 +-0.696535221116253,0.798857802487787 +0.27140417164221253,-0.16274070111053202 +0.002542160562828466,1.388245837632165 +1.2608249568840213,-0.20337952683258675 +1.5237021105140036,-2.547231374395446 +1.02945292407831,0.1400615850493612 +0.41851724638550675,0.8471581515552008 +-0.27998100464766323,0.14382989260482265 +-0.6549653075323583,1.326357758959122 +1.6547058811358841,-1.6273523232651887 +0.3140152119215684,-0.13599812760319904 +0.34275666940828564,1.385607399750153 +0.42494437113804295,1.8479986504854966 +-0.6110644222676087,0.21560368803214508 +-0.44549984962358324,0.1756915693137985 +-0.03187116653508029,1.8752834913003555 +1.1805279475097168,-0.11489152487477858 +-0.38665549270439387,1.7484334870977352 +-0.7222995134478437,0.4977769538977269 +0.7335818774653549,1.531102195392405 +0.549163677554577,1.7530888903961994 +1.0850825317017088,0.27576407265962355 +-0.7753646229991417,0.39993647356203904 +-0.46494954002700317,1.4814458342068764 +0.7316102369049284,-0.950216360364542 +-0.6796449449964759,0.6578681332371996 +-0.2759782689386732,1.2776241883474966 +0.15410254066017387,2.273748124684401 +0.6780848396539659,-0.5641750130944488 +-0.618392932224704,1.0669023859730988 +1.554355545026568,-1.3270946424596786 +0.8210305326542591,0.11768508887973955 +1.330631104614104,-0.4390472959795276 +1.2608249568840213,-0.20337952683258675 +1.5237021105140036,-2.547231374395446 +1.02945292407831,0.1400615850493612 +-0.36563276714574444,1.152246384751542 +1.1646405411063634,-0.7364931032901075 +-0.6549653075323583,1.326357758959122 +-0.06640867944577095,2.1680155882744394 +0.3140152119215684,-0.13599812760319904 +1.0939586386448825,-0.9232864808939747 +0.42494437113804295,1.8479986504854966 +-0.6110644222676087,0.21560368803214508 +-0.44549984962358324,0.1756915693137985 +-0.03187116653508029,1.8752834913003555 +1.1805279475097168,-0.11489152487477858 +-0.38665549270439387,1.7484334870977352 +-0.7222995134478437,0.4977769538977269 +0.7335818774653549,1.531102195392405 +1.9749847038473425,-3.302787755820022 +-0.654313252707105,0.22851100593669743 +0.00098471605268724,2.028344798366845 +-0.46494954002700317,1.4814458342068764 +0.7316102369049284,-0.950216360364542 +-0.6796449449964759,0.6578681332371996 +-0.2759782689386732,1.2776241883474966 +-0.8212020412178143,0.05178174759402346 +0.6780848396539659,-0.5641750130944488 +1.4077420112058996,-1.1704361302411008 +1.554355545026568,-1.3270946424596786 +0.7471294596363028,-0.604444970422166 +1.330631104614104,-0.4390472959795276 +1.2608249568840213,-0.20337952683258675 +-0.16240807869647778,0.0902970435058188 +0.5877854353809409,1.2071224761268942 +-0.2556496393411486,1.745917563023712 +1.0307197230683691,0.016645883957576935 +-0.6549653075323583,1.326357758959122 +-0.06640867944577095,2.1680155882744394 +-0.44524396524548354,2.286180642788967 +0.1772535454704176,1.0116804703519917 +0.8904343686869878,-1.0633296192372683 +-0.13726508804390664,1.8901527613319289 +-0.44549984962358324,0.1756915693137985 +0.7335218908611311,1.6240698182841935 +1.1805279475097168,-0.11489152487477858 +-0.38665549270439387,1.7484334870977352 +-0.0026623198928450442,-0.12635368019156468 +0.7335818774653549,1.531102195392405 +1.9749847038473425,-3.302787755820022 +0.7849340729921774,1.1878758435232624 +0.00098471605268724,2.028344798366845 +-0.44995640763705624,1.8022799982895952 +0.7316102369049284,-0.950216360364542 +-0.321347063564389,2.0523048381719877 +1.0867661746630983,-0.9971337985546059 +-0.3577369456655477,0.9574736195519279 +-0.7767388503225071,1.0521054595308859 +0.29064374061095927,2.0510267092626706 +1.554355545026568,-1.3270946424596786 +0.7471294596363028,-0.604444970422166 +1.330631104614104,-0.4390472959795276 +1.2608249568840213,-0.20337952683258675 +-0.16240807869647778,0.0902970435058188 +0.5877854353809409,1.2071224761268942 +1.2475663021322614,-1.2000258001563824 +1.6686707257233968,-1.9185657394997915 +-0.6549653075323583,1.326357758959122 +-0.06640867944577095,2.1680155882744394 +2.0985664493740672,-3.2461646631468146 +-0.6756245096643564,0.7261745483525062 +0.8407576579525472,-0.9991761462910703 +1.5836618077778477,-1.6048061305876304 +-0.1877697209363161,-0.5190919553551083 +0.7335218908611311,1.6240698182841935 +1.5160911550415825,-1.3610676187971689 +-0.38665549270439387,1.7484334870977352 +-0.0026623198928450442,-0.12635368019156468 +0.12924293943563125,1.917010332572886 +1.9749847038473425,-3.302787755820022 +0.7849340729921774,1.1878758435232624 +0.00098471605268724,2.028344798366845 +-0.44995640763705624,1.8022799982895952 +-0.7698267141326471,1.3368712563381873 +-0.321347063564389,2.0523048381719877 +1.0867661746630983,-0.9971337985546059 +1.2737730182416382,-1.5349456271047006 +0.9507387915048633,1.2478677392705428 +0.701281041309047,1.7252971032324087 +1.554355545026568,-1.3270946424596786 +0.7471294596363028,-0.604444970422166 +1.7943386110340065,-1.6650030874225155 +1.2608249568840213,-0.20337952683258675 +-0.16240807869647778,0.0902970435058188 +1.4450806686172968,-2.3572341694531644 +1.2475663021322614,-1.2000258001563824 +1.6686707257233968,-1.9185657394997915 +0.03836529039300704,1.630959845534624 +-0.06640867944577095,2.1680155882744394 +2.0985664493740672,-3.2461646631468146 +-0.6756245096643564,0.7261745483525062 +1.2679423187539698,-1.579270678359245 +1.5836618077778477,-1.6048061305876304 +-0.1877697209363161,-0.5190919553551083 +0.7335218908611311,1.6240698182841935 +1.5160911550415825,-1.3610676187971689 +-0.5336221406817557,1.2314703135215126 +-0.0026623198928450442,-0.12635368019156468 +0.12924293943563125,1.917010332572886 +1.9749847038473425,-3.302787755820022 +0.8136841892224844,-0.5542366605212348 +0.00098471605268724,2.028344798366845 +0.7941377450782197,1.2940570147806307 +0.8016129498533925,1.6875419842285624 +1.164145144517698,-1.0518161559982737 +0.9423987451809951,1.0969750933224516 +1.2737730182416382,-1.5349456271047006 +1.0414169910216642,0.7465792249608507 +0.8278927846669535,1.2186347660461196 +1.213486775330221,-1.7303068237410852 +0.7471294596363028,-0.604444970422166 +1.7943386110340065,-1.6650030874225155 +1.2608249568840213,-0.20337952683258675 +0.16383627280784102,0.9564275377596912 +0.07727960709243042,1.6287924496900288 +-0.2224935767786659,1.8880025914096796 +-0.2631464276290066,1.4599778027498425 +0.48411894606621053,-0.6199013931929276 +-0.06640867944577095,2.1680155882744394 +0.45778497451320255,1.8905474283792738 +-0.6756245096643564,0.7261745483525062 +1.2418794778212487,-1.381017190303555 +1.4716955322579013,-1.0145169963155392 +-0.1877697209363161,-0.5190919553551083 +0.7335218908611311,1.6240698182841935 +1.1194864608578705,-0.7761161397762135 +-0.5336221406817557,1.2314703135215126 +-0.0026623198928450442,-0.12635368019156468 +0.12924293943563125,1.917010332572886 +1.9749847038473425,-3.302787755820022 +0.8136841892224844,-0.5542366605212348 +0.07024878152616809,1.7165321702591854 +0.7941377450782197,1.2940570147806307 +0.8016129498533925,1.6875419842285624 +0.2466923757592423,-0.5527125678412086 +1.1613087909241064,0.5126556018270854 +1.2737730182416382,-1.5349456271047006 +0.3509555160470564,-0.33653608604220386 +0.8278927846669535,1.2186347660461196 +-0.07249226728414171,2.565642105273821 +0.7471294596363028,-0.604444970422166 +0.060436673129211166,-0.505143993489486 +0.3262931253280439,1.2767396390949446 +0.16383627280784102,0.9564275377596912 +0.07727960709243042,1.6287924496900288 +-0.2224935767786659,1.8880025914096796 +-0.2631464276290066,1.4599778027498425 +0.07543896005817025,1.6959183843382535 +1.4688073069378587,-0.3557077500978554 +0.45778497451320255,1.8905474283792738 +-0.6756245096643564,0.7261745483525062 +0.42559462723728625,1.3986102959216042 +1.4716955322579013,-1.0145169963155392 +-0.1877697209363161,-0.5190919553551083 +0.9537421085247029,1.240184845777399 +0.8247271811007315,1.6670455981648835 +-0.5336221406817557,1.2314703135215126 +1.2424534727069603,-0.9811795320861971 +0.025868070583538127,2.1859129163587907 +0.48250617167421805,1.3867279945280149 +0.6415291260346041,-0.2859530179102526 +0.34956727215843086,0.013686689991201595 +0.7941377450782197,1.2940570147806307 +0.8016129498533925,1.6875419842285624 +-0.13528418585705293,1.4820706659497425 +1.1613087909241064,0.5126556018270854 +1.2737730182416382,-1.5349456271047006 +0.3509555160470564,-0.33653608604220386 +0.7078359131282913,-0.3996594235095776 +0.08918510194599594,2.136858593462571 +0.7471294596363028,-0.604444970422166 +0.060436673129211166,-0.505143993489486 +0.7492633958168167,-0.17188678436250726 +0.5315107839529222,-0.5206757138488604 +1.5642364924072565,-0.8630161917582968 +0.21011053692825563,1.9383725182694378 +-0.2631464276290066,1.4599778027498425 +0.07543896005817025,1.6959183843382535 +-0.028519133852043965,-0.03100470914220116 +0.45778497451320255,1.8905474283792738 +-0.6756245096643564,0.7261745483525062 +0.09834773607470959,1.06866040472062 +1.4716955322579013,-1.0145169963155392 +-0.1877697209363161,-0.5190919553551083 +0.03233791409871212,1.9183313985658077 +0.6168827427647527,-0.23272903046244492 +-0.24754676158809727,1.906185866095835 +1.9490175088962771,-2.5632891784408334 +0.025868070583538127,2.1859129163587907 +0.48250617167421805,1.3867279945280149 +0.12221510354514253,0.13143892644102484 +0.34956727215843086,0.013686689991201595 +0.8720023633958289,-0.10042115213590252 +0.8016129498533925,1.6875419842285624 +-0.13528418585705293,1.4820706659497425 +1.1613087909241064,0.5126556018270854 +1.2737730182416382,-1.5349456271047006 +0.6655024837671607,-0.5359914207125741 +1.3391815056005534,-0.9580762743677345 +0.017717903187900313,-0.4272621557409192 +0.7471294596363028,-0.604444970422166 +0.060436673129211166,-0.505143993489486 +0.729008491451632,0.8122258625306542 +0.5315107839529222,-0.5206757138488604 +1.5642364924072565,-0.8630161917582968 +0.21011053692825563,1.9383725182694378 +0.06911140335268967,0.958065467427464 +0.41048389644079947,0.1895801373647621 +1.4640463966465505,-2.4444678405080604 +-0.2066367876047867,-0.5173058180559453 +-0.6756245096643564,0.7261745483525062 +0.2185400198977811,0.41838984452182887 +0.3530579098641619,0.2312376468208952 +0.05734403401380456,-0.2642010153216927 +1.3708335804506668,-0.7339557092179863 +0.6168827427647527,-0.23272903046244492 +-0.24754676158809727,1.906185866095835 +1.9490175088962771,-2.5632891784408334 +0.025868070583538127,2.1859129163587907 +0.16917664445945724,0.5367444270217486 +-0.3203930978795086,0.05655471515378835 +1.2501256957408093,-0.7373882894107826 +0.8720023633958289,-0.10042115213590252 +0.8016129498533925,1.6875419842285624 +-0.13528418585705293,1.4820706659497425 +1.1613087909241064,0.5126556018270854 +1.2737730182416382,-1.5349456271047006 +0.6655024837671607,-0.5359914207125741 +0.20539581038163257,0.18908546284400762 +-0.20506598224144645,1.7132713977757876 +0.8112677011648698,0.7882212766320622 +1.438530106804081,0.005277727187581127 +0.729008491451632,0.8122258625306542 +0.5315107839529222,-0.5206757138488604 +-0.5162145286776467,1.3546766917270416 +0.21011053692825563,1.9383725182694378 +-0.061466164700842624,1.5500583680615234 +0.41048389644079947,0.1895801373647621 +1.4640463966465505,-2.4444678405080604 +-0.2066367876047867,-0.5173058180559453 +-0.6756245096643564,0.7261745483525062 +-0.2775220878128133,1.661733073851928 +0.7091088365848087,0.5362284381063875 +0.05734403401380456,-0.2642010153216927 +-0.08395601040421827,-0.35313123847682387 +0.6168827427647527,-0.23272903046244492 +0.6749926653383925,-0.08327643672532659 +1.9490175088962771,-2.5632891784408334 +0.025868070583538127,2.1859129163587907 +0.8304084799992801,-0.1674946937043364 +-0.3203930978795086,0.05655471515378835 +0.5292308336073339,1.2161939628626182 +1.5624458666495786,-1.7985127299093029 +0.8016129498533925,1.6875419842285624 +-0.13528418585705293,1.4820706659497425 +-0.42558674957968945,1.4055954530523647 +1.2737730182416382,-1.5349456271047006 +0.8310975119790305,-0.3810381561111855 +1.488091778353866,-0.19409384329776858 +1.4461662688565093,-1.0450530276338366 +0.4266654177614964,1.7705162237260437 +0.40361428138010785,-0.5691760046047758 +1.3275496693894255,-0.7379479781503316 +-0.23029210618305646,1.3117627337635267 +1.5381865063937386,-2.56315326696064 +0.21011053692825563,1.9383725182694378 +0.3179729778998387,1.7841583631829103 +0.22816356514473063,-0.010497610964486837 +0.9406844492339591,-0.8940850662963293 +0.4026681627228774,-0.51908265120213 +-0.6756245096643564,0.7261745483525062 +-0.2775220878128133,1.661733073851928 +1.0680364935129973,-1.5913060752608674 +0.033975349350585604,1.1432571594655054 +-0.08395601040421827,-0.35313123847682387 +0.5212926081754361,1.8577798866877195 +1.7190332995786974,-1.5361855108967857 +0.9964878745221393,0.8388119518844706 +0.025868070583538127,2.1859129163587907 +0.5157095738736307,-0.016974486586660564 +-0.3203930978795086,0.05655471515378835 +0.45433889821741086,-0.59103648400135 +-0.5682038840771955,1.7958496934748536 +0.0447152847496346,-0.01574819167382402 +-0.13528418585705293,1.4820706659497425 +-0.42558674957968945,1.4055954530523647 +1.2737730182416382,-1.5349456271047006 +0.8310975119790305,-0.3810381561111855 +1.488091778353866,-0.19409384329776858 +1.4461662688565093,-1.0450530276338366 +0.4266654177614964,1.7705162237260437 +0.40361428138010785,-0.5691760046047758 +1.3275496693894255,-0.7379479781503316 +-0.23029210618305646,1.3117627337635267 +1.5381865063937386,-2.56315326696064 +0.21011053692825563,1.9383725182694378 +0.3179729778998387,1.7841583631829103 +0.5627217081087597,1.8565429414294765 +-0.10763929575432296,0.3793679891954481 +0.19199467382055402,1.9259399220784463 +-0.6756245096643564,0.7261745483525062 +0.2670147885678944,1.035504856861125 +0.9445048359353467,1.2283795288286563 +0.033975349350585604,1.1432571594655054 +-0.08395601040421827,-0.35313123847682387 +0.029302563191694553,2.0546945664299128 +1.7190332995786974,-1.5361855108967857 +0.3042232460336109,1.843711015164943 +0.10201404805283462,-0.01491015423507036 +0.5157095738736307,-0.016974486586660564 +1.09197154489162,-0.44319046135761897 +-0.7496578335328536,0.11468937267383894 +0.26633577723519614,1.5248028641099014 +0.0447152847496346,-0.01574819167382402 +-0.13528418585705293,1.4820706659497425 +-0.42558674957968945,1.4055954530523647 +1.2737730182416382,-1.5349456271047006 +0.43450294567211123,1.8809119405720927 +1.488091778353866,-0.19409384329776858 +1.4461662688565093,-1.0450530276338366 +0.4266654177614964,1.7705162237260437 +0.40361428138010785,-0.5691760046047758 +1.3275496693894255,-0.7379479781503316 +0.7679508875230497,0.4098307126434222 +1.5381865063937386,-2.56315326696064 +0.21011053692825563,1.9383725182694378 +0.5108484887378737,0.10160319545818997 +0.5627217081087597,1.8565429414294765 +0.971706343089014,-0.40514629378670963 +0.19199467382055402,1.9259399220784463 +-0.6756245096643564,0.7261745483525062 +0.2670147885678944,1.035504856861125 +0.9445048359353467,1.2283795288286563 +0.033975349350585604,1.1432571594655054 +-0.08395601040421827,-0.35313123847682387 +0.3565525882386855,1.686892703773142 +1.1683918569193137,-0.2215300692040281 +0.3042232460336109,1.843711015164943 +0.10201404805283462,-0.01491015423507036 +0.9746266692489101,-1.2328104542139615 +1.09197154489162,-0.44319046135761897 +-0.7496578335328536,0.11468937267383894 +0.26633577723519614,1.5248028641099014 +1.1478986628346992,-0.12233744444344986 +1.5979988906933495,-1.5730279464323484 +-0.42558674957968945,1.4055954530523647 +1.2737730182416382,-1.5349456271047006 +1.24076668777484,-1.4426635351647397 +-0.7970407289374221,0.05313036525397605 +1.4461662688565093,-1.0450530276338366 +-0.6249372577490473,0.7020449813673051 +0.40361428138010785,-0.5691760046047758 +-0.5398513684291377,-0.058733859016793066 +0.11832854211413218,0.35636035977085584 +-0.29825846157128966,2.197873914426695 +-0.4017760025094532,1.0157490962145586 +0.5108484887378737,0.10160319545818997 +1.498867365190862,-1.059698107419857 +0.971706343089014,-0.40514629378670963 +0.19199467382055402,1.9259399220784463 +-0.6756245096643564,0.7261745483525062 +0.04582231932346581,1.341837762226167 +0.48006958986755277,1.1621092982771382 +-0.09515518201119372,0.8123775080316196 +-0.04808312501702941,0.7270637927551052 +-0.6215931375394737,1.1208667876645821 +-0.2822505269843996,1.8322573606716899 +0.3042232460336109,1.843711015164943 +0.7922506008012571,1.244684945855036 +-0.36229881637638894,1.7297510080045533 +0.2870250578332558,0.1577728035186272 +-0.025588130577039514,2.005963689471 +0.26633577723519614,1.5248028641099014 +1.1478986628346992,-0.12233744444344986 +1.5979988906933495,-1.5730279464323484 +-0.42558674957968945,1.4055954530523647 +0.6231240186634873,1.5409678971106682 +1.24076668777484,-1.4426635351647397 +-0.7970407289374221,0.05313036525397605 +1.4461662688565093,-1.0450530276338366 +0.20042030601258531,1.2947688860978233 +-0.8072240404087141,0.3992158321922684 +-0.5398513684291377,-0.058733859016793066 +1.2503004865611462,0.6082757577225197 +-0.041743335407166904,0.8744605231110578 +-0.4325018664278719,0.21810735708554618 +0.503563565964633,1.0707070621558517 +1.498867365190862,-1.059698107419857 +0.971706343089014,-0.40514629378670963 +-0.11616032583613661,2.1046511421136844 +-0.6756245096643564,0.7261745483525062 +0.04582231932346581,1.341837762226167 +0.52130344521401,1.0449249804402077 +-0.09515518201119372,0.8123775080316196 +-0.48975308306288834,0.45891199475927047 +-0.6215931375394737,1.1208667876645821 +-0.2822505269843996,1.8322573606716899 +0.3042232460336109,1.843711015164943 +0.7922506008012571,1.244684945855036 +-0.5193921996720066,0.6725414575620801 +-0.3212631997931049,2.33753706078012 +1.0016997872015905,0.412437774519519 +0.26633577723519614,1.5248028641099014 +1.1478986628346992,-0.12233744444344986 +1.5979988906933495,-1.5730279464323484 +-0.42558674957968945,1.4055954530523647 +0.6231240186634873,1.5409678971106682 +1.24076668777484,-1.4426635351647397 +-0.7970407289374221,0.05313036525397605 +0.49434011214108886,0.6020471395920757 +0.20042030601258531,1.2947688860978233 +-0.8072240404087141,0.3992158321922684 +-0.5398513684291377,-0.058733859016793066 +1.6174115332994443,-1.8036790947249208 +-0.041743335407166904,0.8744605231110578 +-0.24477503530831685,0.018358607344611255 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +0.971706343089014,-0.40514629378670963 +-0.11616032583613661,2.1046511421136844 +-0.6756245096643564,0.7261745483525062 +-0.2536441962108027,-0.16624265348286682 +0.5396974884493648,0.9921612675304778 +-0.04892240688356103,1.874378248636096 +-0.5671638799136667,1.6537809843219877 +-0.6215931375394737,1.1208667876645821 +-0.13600732993618603,1.358922637198896 +0.3042232460336109,1.843711015164943 +0.7922506008012571,1.244684945855036 +-0.5193921996720066,0.6725414575620801 +-0.8172153491384526,0.7124409706352892 +1.0016997872015905,0.412437774519519 +-0.28775953066454263,2.210275598522293 +1.1478986628346992,-0.12233744444344986 +1.5979988906933495,-1.5730279464323484 +-0.42558674957968945,1.4055954530523647 +0.6231240186634873,1.5409678971106682 +1.6924800958386441,-1.5863290469170253 +-0.7970407289374221,0.05313036525397605 +1.7036287390142908,-3.1033473150626425 +0.20042030601258531,1.2947688860978233 +-0.8072240404087141,0.3992158321922684 +-0.647596069455912,-0.24599444467716758 +0.6782778285464064,1.2117533970230225 +-0.22081951115123555,0.6839716916848338 +0.5812474880843056,1.5215817060671695 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +0.23815244667825447,1.7658391955847876 +-0.11616032583613661,2.1046511421136844 +-0.03287187628652016,1.941531298192185 +-0.5320082693857269,1.8247631655415546 +0.5396974884493648,0.9921612675304778 +-0.3130880116982178,1.3891255314343554 +-0.46849323761648815,0.12250683899909498 +-0.6215931375394737,1.1208667876645821 +-0.5157397025394674,0.4250656108643706 +0.3042232460336109,1.843711015164943 +0.20840758508373425,2.2897505194466596 +-0.31398491916223836,1.6572997430770222 +-0.8172153491384526,0.7124409706352892 +1.385833332930012,-1.1431156176673976 +-0.28775953066454263,2.210275598522293 +1.1478986628346992,-0.12233744444344986 +1.5979988906933495,-1.5730279464323484 +0.13738164226545813,-0.13092138768344053 +0.6231240186634873,1.5409678971106682 +-0.5798097941427282,1.6077283533066427 +-0.7970407289374221,0.05313036525397605 +1.7036287390142908,-3.1033473150626425 +0.20042030601258531,1.2947688860978233 +-0.8072240404087141,0.3992158321922684 +-0.647596069455912,-0.24599444467716758 +0.6782778285464064,1.2117533970230225 +-0.22081951115123555,0.6839716916848338 +-0.6220667636183035,0.31858363489356967 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +-0.6554926879521564,0.20180588544804753 +-0.11616032583613661,2.1046511421136844 +-0.03287187628652016,1.941531298192185 +-0.011310748366509249,-0.29526912200344924 +0.5396974884493648,0.9921612675304778 +0.14119311904465975,-0.27538579129127116 +-0.46849323761648815,0.12250683899909498 +-0.33732539191092553,0.4603901254685255 +-0.5157397025394674,0.4250656108643706 +0.7441815255723647,1.8081901761016288 +0.4507804019435732,1.6179406866987132 +-0.49970069682119256,1.7213654287360511 +-0.08326181636244095,0.11977129029277228 +1.3417811646441082,-1.738841007798048 +1.3973235961555899,-0.19128243123803304 +1.1478986628346992,-0.12233744444344986 +1.5979988906933495,-1.5730279464323484 +0.13738164226545813,-0.13092138768344053 +-0.5539408513059649,1.8809855920740712 +-0.3230915584852102,-0.051702977372847625 +-1.1910877960957125,-0.5944502969316077 +1.7036287390142908,-3.1033473150626425 +-0.009573921119461426,0.7247457801232862 +-0.8072240404087141,0.3992158321922684 +-0.5995053986550991,-0.11027714345847903 +0.6782778285464064,1.2117533970230225 +-0.6216010746143209,0.775237421117519 +1.6860120976456987,-1.3804317223462685 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +0.8328316484090521,0.7400090260117392 +-0.11616032583613661,2.1046511421136844 +-0.03287187628652016,1.941531298192185 +-0.216381294665202,1.7291179931718068 +0.5396974884493648,0.9921612675304778 +-0.8565753305350596,0.43994190565141733 +1.431847575899824,-0.48162600871858674 +-0.16239460165051406,-0.3016610787209051 +0.8109882011136587,-0.4658772102174219 +0.7441815255723647,1.8081901761016288 +0.63453537386509,1.3103215150094116 +-0.43368317242218096,1.04051848592485 +-0.08326181636244095,0.11977129029277228 +1.3417811646441082,-1.738841007798048 +1.3973235961555899,-0.19128243123803304 +1.1478986628346992,-0.12233744444344986 +-0.28856670509935944,1.3765657524322035 +0.04296425060174114,1.6880755156555014 +-0.31893963904139677,2.0985849554471514 +-0.3230915584852102,-0.051702977372847625 +-0.35326515158964245,2.113462734015473 +-0.020092017712041936,2.3962182664713 +-0.009573921119461426,0.7247457801232862 +-0.8072240404087141,0.3992158321922684 +-0.5995053986550991,-0.11027714345847903 +0.6782778285464064,1.2117533970230225 +-0.6216010746143209,0.775237421117519 +1.6860120976456987,-1.3804317223462685 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +0.8328316484090521,0.7400090260117392 +-0.2921519022260332,0.44788060453685097 +-0.03287187628652016,1.941531298192185 +-1.0128420559751201,0.48796468202035614 +0.5396974884493648,0.9921612675304778 +0.6108600989963406,1.59140922891058 +-0.6057067587045754,1.2769639736070033 +0.9195101383449334,-0.9733817801874609 +-0.06709388150774598,2.091166791067054 +0.7441815255723647,1.8081901761016288 +0.557608670433919,1.0722216625884897 +-0.43368317242218096,1.04051848592485 +1.6204634267202094,-0.9947229651683882 +1.3417811646441082,-1.738841007798048 +1.3973235961555899,-0.19128243123803304 +1.1478986628346992,-0.12233744444344986 +-0.28856670509935944,1.3765657524322035 +0.684126738581993,1.1212295936602048 +-0.31893963904139677,2.0985849554471514 +-0.3230915584852102,-0.051702977372847625 +-0.35326515158964245,2.113462734015473 +-0.020092017712041936,2.3962182664713 +-0.4229857534199546,-0.15399430184770502 +-0.7939766872012306,-0.4668396045725637 +-0.5995053986550991,-0.11027714345847903 +-0.3500734383032143,1.5523131935232382 +0.9541013402654587,-0.4674216969058823 +1.6860120976456987,-1.3804317223462685 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +0.8328316484090521,0.7400090260117392 +-0.2921519022260332,0.44788060453685097 +-0.03287187628652016,1.941531298192185 +-0.9809393258063972,0.3617182156801374 +0.5396974884493648,0.9921612675304778 +0.6108600989963406,1.59140922891058 +-0.6057067587045754,1.2769639736070033 +0.9195101383449334,-0.9733817801874609 +1.6229086734327494,-1.8632261717227392 +1.182102304668745,0.07600858833756018 +0.3905528388952648,0.2843686824105985 +-0.43368317242218096,1.04051848592485 +-0.17201155853384587,0.6048095025507659 +1.3417811646441082,-1.738841007798048 +1.3973235961555899,-0.19128243123803304 +1.1478986628346992,-0.12233744444344986 +-0.7249568374858737,1.1945243441632745 +0.684126738581993,1.1212295936602048 +0.26012021335947216,1.832515429710612 +0.12959281141334633,0.004976282183912495 +1.0242246897344525,-0.6294180872056033 +-0.9468423396165794,-0.051165691195900864 +-0.598271963776351,1.754561004856287 +0.4286715398108718,-0.17815973167704258 +-0.5995053986550991,-0.11027714345847903 +-0.3500734383032143,1.5523131935232382 +-0.5369946010507447,1.3543600988473115 +-0.04788933758154623,0.7539871212214033 +-0.5210603522050952,1.5755532049843701 +1.498867365190862,-1.059698107419857 +0.04827266468642122,1.2163877045008311 +0.5792413705363799,-0.8627340635836589 +-0.03287187628652016,1.941531298192185 +-0.9809393258063972,0.3617182156801374 +0.5396974884493648,0.9921612675304778 +-0.746280895781118,1.0799557153236745 +-0.6057067587045754,1.2769639736070033 +0.9195101383449334,-0.9733817801874609 +1.6229086734327494,-1.8632261717227392 +0.08957935397715056,-0.13666630368564292 +0.40533320266849615,1.7338823521574784 +-0.4917640154511187,-0.01801264816519907 +-0.8983278501287013,0.11732331612560379 +1.3417811646441082,-1.738841007798048 +1.3973235961555899,-0.19128243123803304 +1.1478986628346992,-0.12233744444344986 +-0.7249568374858737,1.1945243441632745 +0.684126738581993,1.1212295936602048 +0.2985803504610981,1.5819774439878778 +0.12959281141334633,0.004976282183912495 +0.45576816137030807,-0.796287517093682 +-0.9468423396165794,-0.051165691195900864 +-0.26071651336952895,-0.11795278626410294 +0.4286715398108718,-0.17815973167704258 +-0.5995053986550991,-0.11027714345847903 +-0.3500734383032143,1.5523131935232382 +0.7842560988199263,-0.7641358494446029 +-0.04788933758154623,0.7539871212214033 +-0.5210603522050952,1.5755532049843701 +0.15532865530122952,1.350489650267718 +1.5940738045023226,-1.772434038227321 +0.7163377804111357,-0.22429643836159385 +-0.03287187628652016,1.941531298192185 +-0.9809393258063972,0.3617182156801374 +0.5396974884493648,0.9921612675304778 +0.8713127003988725,0.22890214045402657 +-0.6057067587045754,1.2769639736070033 +0.9195101383449334,-0.9733817801874609 +0.9073489644604291,-0.5937786210611604 +1.1916979230412394,-1.391884519911375 +-0.343753162191497,1.624795501592215 +-0.4917640154511187,-0.01801264816519907 +-0.8983278501287013,0.11732331612560379 +1.3417811646441082,-1.738841007798048 +1.3973235961555899,-0.19128243123803304 +1.1478986628346992,-0.12233744444344986 +-0.0019614149393560876,1.4134692482339806 +-0.9265686343682575,-0.5864143412508741 +1.6970619096509258,-2.1459497065628073 +-0.3649371286929459,1.202601001538203 +0.45576816137030807,-0.796287517093682 +-0.9468423396165794,-0.051165691195900864 +-0.26071651336952895,-0.11795278626410294 +0.4286715398108718,-0.17815973167704258 +1.7472517635494822,-2.6194746476922037 +-0.3500734383032143,1.5523131935232382 +0.7842560988199263,-0.7641358494446029 +1.3316709191021654,-0.708067629051565 +-0.5210603522050952,1.5755532049843701 +-0.0934878686141,2.1381174109745453 +1.4028158404290654,-1.3590119139151287 +1.7288468606927945,-2.55831596059513 +-0.03287187628652016,1.941531298192185 +0.7804574397316134,0.06809905749984835 +0.5396974884493648,0.9921612675304778 +-0.23284987327843348,0.205159513614795 +-0.6057067587045754,1.2769639736070033 +0.5938557189951839,-0.5638210298598054 +1.5813428014327537,-2.053345442563199 +1.1916979230412394,-1.391884519911375 +-0.343753162191497,1.624795501592215 +0.4043071234452301,1.6960042961885802 +0.2731791871370249,0.5846855790504262 +0.1808494264148286,1.4458310157385128 +1.3973235961555899,-0.19128243123803304 +1.6178316588252935,-0.9417992179309981 +1.1594030164410516,-1.4976334686899966 +-0.5585460947825441,0.6263377188676045 +1.6970619096509258,-2.1459497065628073 +1.3331413646013228,-1.1373412030930932 +0.45576816137030807,-0.796287517093682 +-0.9468423396165794,-0.051165691195900864 +-0.385826774203745,0.7002204224586706 +0.4286715398108718,-0.17815973167704258 +1.349714520177023,-2.0763431593350323 +-0.3500734383032143,1.5523131935232382 +0.43136094232602074,-0.6448277750377249 +0.9100361570640864,-0.9152732515028179 +-0.5210603522050952,1.5755532049843701 +-0.0934878686141,2.1381174109745453 +0.988090388411874,0.050103671949279116 +1.7288468606927945,-2.55831596059513 +-0.03287187628652016,1.941531298192185 +1.0646387247161595,0.5516927844176314 +-0.005183479367272259,-0.003568948260702781 +0.06549831073617896,0.5078762344323513 +-0.6057067587045754,1.2769639736070033 +0.9680541493216774,0.6089844921821187 +1.894460067391323,-3.0533765232290495 +0.20340703466597418,2.4249036054406545 +1.1580999190847725,-0.21574832617810547 +0.4043071234452301,1.6960042961885802 +1.6476298489735468,-1.4001096270510194 +0.1808494264148286,1.4458310157385128 +1.3973235961555899,-0.19128243123803304 +1.6178316588252935,-0.9417992179309981 +1.1594030164410516,-1.4976334686899966 +-0.5585460947825441,0.6263377188676045 +0.671459897817404,0.8100947221141193 +0.32530924111904874,0.05757663577391825 +0.08669874185845784,-0.18234241211649657 +-0.9468423396165794,-0.051165691195900864 +-0.385826774203745,0.7002204224586706 +0.4286715398108718,-0.17815973167704258 +1.349714520177023,-2.0763431593350323 +-0.47676181696111253,1.8752897652766247 +0.43136094232602074,-0.6448277750377249 +0.29174221341538875,-0.6548574491188774 +-0.5210603522050952,1.5755532049843701 +-0.1567388173299129,-0.37574503465236236 +-0.26174393566201504,2.472376886337879 +0.15081451624584652,0.5196424586169198 +-0.03287187628652016,1.941531298192185 +1.0646387247161595,0.5516927844176314 +-0.29412203199961917,-0.1641946613428445 +0.49669463672927927,1.109677711648694 +1.02872562517402,0.07884399534204112 +0.9680541493216774,0.6089844921821187 +1.894460067391323,-3.0533765232290495 +-0.18382949157459832,0.29423474762358875 +0.7510133404415686,-0.4947010360877463 +0.45021384154865396,1.5266542015454845 +1.6476298489735468,-1.4001096270510194 +0.20781512517336784,1.25586067299411 +0.547631501008365,1.1476878047724663 +1.6178316588252935,-0.9417992179309981 +0.02906673152923027,0.5021516928625076 +-0.9012961556150507,0.9714136036578966 +0.17039267486617302,0.11315536530114552 +-0.5650456785285842,1.6638913876932524 +0.08669874185845784,-0.18234241211649657 +-0.9468423396165794,-0.051165691195900864 +-0.3391678899292642,0.24561113662322548 +0.4286715398108718,-0.17815973167704258 +1.349714520177023,-2.0763431593350323 +0.9681035763920188,0.43596790741754765 +0.9697338167987516,0.03861203319132411 +-0.23343300091165112,0.9099947470297917 +-0.5210603522050952,1.5755532049843701 +0.0024802715048601043,0.42324576417435883 +-0.26174393566201504,2.472376886337879 +-0.7044146751074701,-0.22703861011658016 +-0.5027088069939679,0.463696222487132 +1.0646387247161595,0.5516927844176314 +-0.8224511773509638,0.48432993094526816 +-0.5654491911623751,0.6802170856474126 +-0.09296985886850728,0.38929750061894774 +-0.6126527390681189,-0.3368382895828492 +1.894460067391323,-3.0533765232290495 +-0.18382949157459832,0.29423474762358875 +0.7246587325697659,1.2700306375752144 +0.45021384154865396,1.5266542015454845 +-0.20823758841057366,0.47150642579806135 +0.20781512517336784,1.25586067299411 +0.547631501008365,1.1476878047724663 +1.6178316588252935,-0.9417992179309981 +1.1022797758353373,0.4385570283265244 +-0.9012961556150507,0.9714136036578966 +-0.56770759947395,-0.25741193821734204 +-0.6437192031741852,1.5076488781651498 +-0.6244739577330832,-0.23616497174892254 +-0.6684956907882482,0.2048727788602578 +-0.3391678899292642,0.24561113662322548 +0.4286715398108718,-0.17815973167704258 +1.349714520177023,-2.0763431593350323 +1.1456954680212896,0.38488029602081236 +-0.9387443311519178,0.17582736275305588 +0.5184200743462981,1.6866989716143068 +-1.1341351634781636,-0.14952507584306873 +0.31222429473977975,1.4644813701483506 +-0.26174393566201504,2.472376886337879 +-0.7044146751074701,-0.22703861011658016 +0.44342016861431854,0.13376146015254853 +1.0646387247161595,0.5516927844176314 +-0.8224511773509638,0.48432993094526816 +-0.5654491911623751,0.6802170856474126 +-0.40596795118573614,0.37261726979662146 +-0.6126527390681189,-0.3368382895828492 +1.894460067391323,-3.0533765232290495 +-0.18382949157459832,0.29423474762358875 +0.07638521503393825,1.7623933219071524 +1.2633254836988719,0.24259053486770563 +0.06416917975499031,1.016766940806015 +0.8854517973285182,-0.02946609326849467 +0.547631501008365,1.1476878047724663 +0.5002433728701252,1.983846975344442 +-0.14405139478044682,0.1135969887573523 +-0.45051880827462387,1.7028227624753272 +1.128667543449237,-0.05065128578348871 +0.7363559354935875,-1.075001355167312 +-0.6244739577330832,-0.23616497174892254 +0.1318399388555374,1.3682848682522706 +-0.9338698745679822,0.09236182189706788 +-0.9131264229106385,-0.013989799936713315 +1.349714520177023,-2.0763431593350323 +1.1456954680212896,0.38488029602081236 +0.8100499987982117,-0.5268130741135907 +-0.03386732365816428,2.3990119135281227 +-0.629368393876558,0.09237779144400932 +0.31222429473977975,1.4644813701483506 +-0.1299040345792405,2.327457791516533 +-0.6514397798441426,0.6941184010319148 +0.6788379646234888,0.7167961254624011 +1.20856628848858,-1.4186395954374127 +0.8974969385594882,1.4960647942435226 +-0.5654491911623751,0.6802170856474126 +-0.40596795118573614,0.37261726979662146 +0.5308744651766744,0.21998043554184044 +1.894460067391323,-3.0533765232290495 +0.948734163327209,0.007963747768557572 +0.07638521503393825,1.7623933219071524 +1.2633254836988719,0.24259053486770563 +0.46549621693048293,0.7331149331465519 +-0.8006072500391768,0.4247631919877683 +0.547631501008365,1.1476878047724663 +0.45649528091465497,-0.4660112645012804 +-0.6748636515327935,0.4683511385619208 +-0.45051880827462387,1.7028227624753272 +1.128667543449237,-0.05065128578348871 +0.7363559354935875,-1.075001355167312 +0.9384563430891818,-1.1354594604705155 +-0.4473353033405385,1.2211134976933893 +-0.9338698745679822,0.09236182189706788 +-0.9131264229106385,-0.013989799936713315 +1.349714520177023,-2.0763431593350323 +1.1456954680212896,0.38488029602081236 +0.8100499987982117,-0.5268130741135907 +-0.03386732365816428,2.3990119135281227 +0.45236393107504536,1.9459854518283881 +0.31222429473977975,1.4644813701483506 +-0.1299040345792405,2.327457791516533 +0.5555921491749485,1.6832351634260576 +1.5597199963209034,-2.32790442102406 +1.3670715745223014,-1.7161914668842306 +1.1652040595229978,0.9117580675662827 +-0.5654491911623751,0.6802170856474126 +-0.40596795118573614,0.37261726979662146 +0.5308744651766744,0.21998043554184044 +1.894460067391323,-3.0533765232290495 +0.31604388606428513,1.7327152185728318 +1.2127874028730232,-0.7895993132352437 +1.2633254836988719,0.24259053486770563 +-0.5495527677079364,2.068906715129394 +-0.8006072500391768,0.4247631919877683 +0.547631501008365,1.1476878047724663 +0.45649528091465497,-0.4660112645012804 +-0.6748636515327935,0.4683511385619208 +1.0081334459396587,1.0907577363481793 +1.128667543449237,-0.05065128578348871 +-0.29288953059678224,0.567379931340255 +1.4013901223898317,-0.3363149488316521 +-0.4473353033405385,1.2211134976933893 +-0.9338698745679822,0.09236182189706788 +-0.9131264229106385,-0.013989799936713315 +1.5654667174375165,-1.7977875052562127 +-0.9035130506417903,0.37772576786998197 +0.8100499987982117,-0.5268130741135907 +1.4774297110733359,-0.6454731409613621 +1.2326905761198552,-1.0303059340845486 +0.31222429473977975,1.4644813701483506 +-0.1299040345792405,2.327457791516533 +0.5555921491749485,1.6832351634260576 +-0.2509454955051975,1.9109114558758322 +1.3670715745223014,-1.7161914668842306 +1.1652040595229978,0.9117580675662827 +-0.5654491911623751,0.6802170856474126 +-0.40596795118573614,0.37261726979662146 +0.5308744651766744,0.21998043554184044 +0.7503843857762829,-0.7647640532264215 +-0.1047791361448428,1.1614181017902112 +0.6075425979087907,0.9234482566550155 +1.2633254836988719,0.24259053486770563 +0.9743209791743211,0.8105370068966932 +-0.8006072500391768,0.4247631919877683 +0.547631501008365,1.1476878047724663 +0.45649528091465497,-0.4660112645012804 +-0.6748636515327935,0.4683511385619208 +1.0081334459396587,1.0907577363481793 +0.6341006606922605,0.6216495656591087 +-0.29288953059678224,0.567379931340255 +1.4013901223898317,-0.3363149488316521 +1.0091798975630257,0.3708406430726362 +-0.21051054074292672,-0.11118939440670655 +-0.9131264229106385,-0.013989799936713315 +1.5654667174375165,-1.7977875052562127 +-0.8181647483051833,0.26415326149466034 +0.8100499987982117,-0.5268130741135907 +1.4774297110733359,-0.6454731409613621 +1.2326905761198552,-1.0303059340845486 +0.31222429473977975,1.4644813701483506 +-0.1299040345792405,2.327457791516533 +-0.2113015093350189,0.3213088228003216 +-0.2509454955051975,1.9109114558758322 +0.6167666382446377,1.4716962314815896 +0.535121210210102,0.6511121080489558 +-0.5654491911623751,0.6802170856474126 +-0.13315519411652457,1.479304690812937 +0.03725188038930771,-0.22472808138815453 +0.7503843857762829,-0.7647640532264215 +0.07544657887975831,2.034884468286415 +-0.6646217112443651,-0.2628851451633596 +1.130366836403214,-1.312318696184559 +0.01987989160814127,0.07974203697243323 +-0.11068594204436724,0.20174939578701062 +-0.8352467043537702,0.4400485785900761 +0.45649528091465497,-0.4660112645012804 +-0.6748636515327935,0.4683511385619208 +1.0081334459396587,1.0907577363481793 +0.6341006606922605,0.6216495656591087 +-0.29288953059678224,0.567379931340255 +1.4013901223898317,-0.3363149488316521 +1.0091798975630257,0.3708406430726362 +-0.21051054074292672,-0.11118939440670655 +1.3564850344850874,-1.433169417346538 +1.5654667174375165,-1.7977875052562127 +-0.8181647483051833,0.26415326149466034 +0.8100499987982117,-0.5268130741135907 +1.4774297110733359,-0.6454731409613621 +1.2326905761198552,-1.0303059340845486 +0.31222429473977975,1.4644813701483506 +-0.5879201692936913,1.830905903726526 +-0.11096463452923178,1.0385557591003225 +-0.2509454955051975,1.9109114558758322 +0.6167666382446377,1.4716962314815896 +0.058060550184620724,1.0421506214608767 +-0.5654491911623751,0.6802170856474126 +-0.13315519411652457,1.479304690812937 +0.03725188038930771,-0.22472808138815453 +0.7503843857762829,-0.7647640532264215 +0.07544657887975831,2.034884468286415 +-0.6646217112443651,-0.2628851451633596 +0.08719422375100237,-0.33194961469831163 +1.7488918955733217,-1.8473774703771904 +-0.11068594204436724,0.20174939578701062 +1.7008234005278928,-2.667292439982092 +0.18516597365691967,0.435990374782694 +-0.6748636515327935,0.4683511385619208 +0.3088704809956415,0.17184607919571532 +0.8044522874892769,0.2859634041610315 +0.3840750630928207,-0.24487719379570638 +1.2699746193458872,-0.951995150208296 +1.0091798975630257,0.3708406430726362 +-0.47489443033580714,0.9703110353146362 +1.3564850344850874,-1.433169417346538 +1.5654667174375165,-1.7977875052562127 +-0.29581453134908775,0.32428648960265616 +0.8100499987982117,-0.5268130741135907 +1.4774297110733359,-0.6454731409613621 +1.2326905761198552,-1.0303059340845486 +0.31222429473977975,1.4644813701483506 +-0.5879201692936913,1.830905903726526 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +0.6167666382446377,1.4716962314815896 +0.058060550184620724,1.0421506214608767 +-0.5654491911623751,0.6802170856474126 +-0.13315519411652457,1.479304690812937 +0.03725188038930771,-0.22472808138815453 +0.8730392793552239,-0.49895100612740495 +0.07544657887975831,2.034884468286415 +-0.6646217112443651,-0.2628851451633596 +1.316742819964597,-0.12768421755171055 +1.7488918955733217,-1.8473774703771904 +-0.11068594204436724,0.20174939578701062 +-0.2628095399173944,1.9251201638492796 +0.18516597365691967,0.435990374782694 +-0.6748636515327935,0.4683511385619208 +-0.49593534789057425,0.11612432507738547 +0.8044522874892769,0.2859634041610315 +0.3840750630928207,-0.24487719379570638 +0.5514723503086968,-0.44876520016260835 +1.0091798975630257,0.3708406430726362 +1.234766832544969,0.05224225615943251 +1.3564850344850874,-1.433169417346538 +1.3548430420482718,-0.10789696700953355 +-0.29581453134908775,0.32428648960265616 +0.8100499987982117,-0.5268130741135907 +1.4774297110733359,-0.6454731409613621 +1.0258024688655074,-0.859077926980836 +-0.22456822481570796,1.6312268416617761 +-0.5879201692936913,1.830905903726526 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +0.6167666382446377,1.4716962314815896 +-0.20996828527581518,-0.15294466773291637 +-0.5654491911623751,0.6802170856474126 +0.5797992549752338,-0.707792936411166 +0.03725188038930771,-0.22472808138815453 +0.9265628259804359,-1.2032369718199263 +0.07544657887975831,2.034884468286415 +-0.6646217112443651,-0.2628851451633596 +1.316742819964597,-0.12768421755171055 +1.230761667458845,0.4866566062600431 +-0.11068594204436724,0.20174939578701062 +-0.2628095399173944,1.9251201638492796 +0.41827090769147407,-0.48844499450136325 +-0.6748636515327935,0.4683511385619208 +-0.11376491295689012,2.435308339805766 +0.08279491568795733,2.1619265270584234 +0.3840750630928207,-0.24487719379570638 +0.2563635770198347,0.7575673226095502 +-0.25201910947970074,1.3458025161488205 +1.234766832544969,0.05224225615943251 +1.3564850344850874,-1.433169417346538 +1.3548430420482718,-0.10789696700953355 +0.6150822036551866,1.4830417840538526 +0.8100499987982117,-0.5268130741135907 +0.252897917919505,1.57244523540297 +0.02789972226681256,2.2254765272431936 +0.14959730949548494,0.2575382808287464 +1.5932330343377001,-0.7235634684892349 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +1.6101474930291948,-0.9045353190317349 +-0.20996828527581518,-0.15294466773291637 +-0.5654491911623751,0.6802170856474126 +0.4604363114973121,-0.31574974576062154 +0.9300730569872662,-0.9455132501848847 +0.9577330226448433,1.1511123095793194 +0.6757307208249395,0.15833825200125656 +-0.6646217112443651,-0.2628851451633596 +1.316742819964597,-0.12768421755171055 +0.870885446091114,-0.9311152602230601 +1.725942249345154,-1.4402925019719153 +-0.2628095399173944,1.9251201638492796 +1.179718871661899,-1.1481736737999593 +0.31273271763709987,0.5417502231341557 +0.4633834922429983,0.4632553091808903 +1.3782277481447092,-1.5828528685683114 +0.3840750630928207,-0.24487719379570638 +0.2563635770198347,0.7575673226095502 +-0.25201910947970074,1.3458025161488205 +1.234766832544969,0.05224225615943251 +1.281286872510619,-0.29380723231202754 +1.3548430420482718,-0.10789696700953355 +0.6150822036551866,1.4830417840538526 +0.8100499987982117,-0.5268130741135907 +1.0270902489205755,0.648214800079008 +1.3599427194618634,-0.37563437061919935 +-0.20193095567369673,1.807976597075576 +1.3510453000528213,-1.5821479549934536 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +0.9189019715924446,0.8537201130828417 +-0.20996828527581518,-0.15294466773291637 +-0.5654491911623751,0.6802170856474126 +0.4604363114973121,-0.31574974576062154 +0.49026706341340487,1.684885968950855 +0.9577330226448433,1.1511123095793194 +-0.1291203000510247,-0.01438862403927263 +-0.6646217112443651,-0.2628851451633596 +1.316742819964597,-0.12768421755171055 +0.1721854423781202,-0.06139861425356413 +-0.17352731919781728,1.6556099965170537 +-0.2628095399173944,1.9251201638492796 +1.179718871661899,-1.1481736737999593 +1.144245559107198,-1.2679341751600308 +0.4633834922429983,0.4632553091808903 +-0.24343498839100444,2.054631599796968 +0.5939083315058138,0.49370160711540223 +-0.4764234319331444,2.158402544278988 +-0.25201910947970074,1.3458025161488205 +0.034602789406729895,1.8190499785672904 +1.281286872510619,-0.29380723231202754 +0.5401905594403229,-0.588377558718249 +0.6150822036551866,1.4830417840538526 +-0.6813373752989305,0.5477121169246078 +0.8966728048904131,0.3105101122667785 +1.3599427194618634,-0.37563437061919935 +-0.20193095567369673,1.807976597075576 +1.3510453000528213,-1.5821479549934536 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +0.9189019715924446,0.8537201130828417 +-0.20996828527581518,-0.15294466773291637 +-0.5654491911623751,0.6802170856474126 +0.4604363114973121,-0.31574974576062154 +0.49026706341340487,1.684885968950855 +0.9577330226448433,1.1511123095793194 +0.013012530524336902,1.892745669478854 +-0.6646217112443651,-0.2628851451633596 +1.316742819964597,-0.12768421755171055 +0.0051671440364097765,0.27223038858143156 +-0.17352731919781728,1.6556099965170537 +1.4685622680731016,-0.7859099658930561 +-0.17256828864086338,0.18552458285910706 +1.144245559107198,-1.2679341751600308 +-0.3110409280514573,-0.2369841792274247 +-0.24343498839100444,2.054631599796968 +0.8440631368838488,1.678776574375409 +0.32655477184675463,-0.5961261261497515 +-0.25201910947970074,1.3458025161488205 +0.7075265222155804,0.8635592763394824 +0.42630218986270807,1.9921279371349576 +0.5401905594403229,-0.588377558718249 +0.6150822036551866,1.4830417840538526 +-0.7818493123744832,1.12366388565102 +1.266911286262741,-1.3939234464443389 +1.3599427194618634,-0.37563437061919935 +-0.8563556245549533,-0.01207101063654989 +1.3510453000528213,-1.5821479549934536 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +-0.5914998805669713,-0.23918104658197825 +0.664662528583518,-0.19290712459211368 +0.016981732071819966,2.2927054719479862 +0.4604363114973121,-0.31574974576062154 +0.20018602383431278,0.46402649283715924 +0.9577330226448433,1.1511123095793194 +0.013012530524336902,1.892745669478854 +0.19074624490780645,1.737941434535275 +-0.5256029156925768,0.7083719132581848 +0.15017628180962495,2.326431074489738 +0.5944896838666238,-0.5617323490016894 +1.4685622680731016,-0.7859099658930561 +-0.17256828864086338,0.18552458285910706 +1.144245559107198,-1.2679341751600308 +-0.3984486442853291,0.6067290327330521 +-0.24343498839100444,2.054631599796968 +1.409743440864417,-1.5027728687840138 +0.19593476589999936,-0.21304849407053045 +1.3030911409687806,-0.927533605862577 +-0.11587356363133644,0.9493905250240492 +0.42630218986270807,1.9921279371349576 +-0.0990365207753359,1.7411314020242599 +0.6150822036551866,1.4830417840538526 +-0.45476615503423995,0.7131571243700299 +1.266911286262741,-1.3939234464443389 +1.3599427194618634,-0.37563437061919935 +-0.8563556245549533,-0.01207101063654989 +0.22537141857371268,-0.18395569384310267 +0.46727592531673956,-0.39891814033501694 +-0.2509454955051975,1.9109114558758322 +-0.5914998805669713,-0.23918104658197825 +0.7182756337042167,-0.3730306153715699 +-0.09095897347270232,0.7702078347873449 +0.5073815996770656,1.6692672365085426 +0.6030486139712155,1.522534678611752 +0.9577330226448433,1.1511123095793194 +0.013012530524336902,1.892745669478854 +-0.16347979934392834,1.054709777422285 +0.8431577042636527,-0.6859172564557945 +0.15017628180962495,2.326431074489738 +0.5944896838666238,-0.5617323490016894 +0.8335190546107024,0.9415702453353586 +1.281462510867263,-1.4582378792483857 +1.144245559107198,-1.2679341751600308 +-0.5220731920977418,1.621849025431918 +-0.5426033070617904,1.62924622793816 +1.3811884717853005,-0.9388514889582427 +0.19593476589999936,-0.21304849407053045 +1.3030911409687806,-0.927533605862577 +1.4070538612962906,-0.80836849405188 +1.7124233067122412,-1.9779307159588466 +-0.0990365207753359,1.7411314020242599 +0.4357223527551332,1.9976309906992766 +-0.45476615503423995,0.7131571243700299 +1.266911286262741,-1.3939234464443389 +-0.8144481586170256,0.8867339011952781 +-0.8563556245549533,-0.01207101063654989 +-0.10239459310773821,2.206885895885195 +-0.3166182199968658,1.9376322848555376 +0.16322597165860248,1.9753394301911062 +1.0703960158401893,-0.6677256531660511 +0.7182756337042167,-0.3730306153715699 +1.3354140308341342,-1.1152363482870946 +0.5073815996770656,1.6692672365085426 +0.6030486139712155,1.522534678611752 +-0.29602851984069206,0.22196837472405817 +0.6520714052101417,1.073975458797608 +1.1465352482865447,-0.9915410446451501 +0.9108246661305275,-0.07498373594449248 +0.8020933413107296,-0.9255998738553444 +0.5944896838666238,-0.5617323490016894 +-0.16213747869649353,1.2621186070253474 +1.336029591398861,-1.8210623108958395 +1.144245559107198,-1.2679341751600308 +1.8490660488731883,-2.066559991536337 +-0.5426033070617904,1.62924622793816 +1.3683561225313894,-0.2906936253442135 +1.4419045258432641,-1.3577458711916335 +1.61246115528993,-0.989490467859101 +1.0879401723155278,-0.7247690697798114 +-0.38923172064464134,0.6822643057303986 +-0.07992949037653024,0.6411457974590402 +0.4357223527551332,1.9976309906992766 +1.5826269648626177,-2.371974895773103 +1.6444849323110466,-2.1740934667434177 +-0.8144481586170256,0.8867339011952781 +-0.8563556245549533,-0.01207101063654989 +-0.409644044191553,1.3732175513773883 +-0.3166182199968658,1.9376322848555376 +0.16322597165860248,1.9753394301911062 +0.9841098613732537,-0.6407403822573234 +-0.351984482094881,0.7504875665616746 +1.3354140308341342,-1.1152363482870946 +0.4598800712059249,0.5982251199648501 +0.6030486139712155,1.522534678611752 +-0.29602851984069206,0.22196837472405817 +0.6520714052101417,1.073975458797608 +1.1465352482865447,-0.9915410446451501 +0.9108246661305275,-0.07498373594449248 +0.8020933413107296,-0.9255998738553444 +-0.37987130258538965,0.5738784634893288 +-0.16213747869649353,1.2621186070253474 +1.1881067839656834,0.021752733394033497 +1.144245559107198,-1.2679341751600308 +1.8490660488731883,-2.066559991536337 +-0.5426033070617904,1.62924622793816 +-0.1057744411353965,2.318943391521577 +-0.5444908044969188,0.5263605205731798 +-0.2244264697570179,0.8707071598066866 +-0.038044156167674814,0.25340457326289834 +1.0297229474205043,1.0466025218767947 +-0.20871246679340916,1.702052602314103 +0.4357223527551332,1.9976309906992766 +0.02271052747558555,1.7294627910981255 +1.8035647118394342,-1.7212724237337853 +-0.8144481586170256,0.8867339011952781 +-0.8563556245549533,-0.01207101063654989 +-0.7125475336703334,1.2724531990928278 +0.44456004461949206,1.954981991267006 +0.16322597165860248,1.9753394301911062 +0.9841098613732537,-0.6407403822573234 +-0.351984482094881,0.7504875665616746 +1.3354140308341342,-1.1152363482870946 +-0.1954184956007794,0.4962327519018799 +0.6030486139712155,1.522534678611752 +0.18794022976430275,1.9282421464557604 +0.6520714052101417,1.073975458797608 +1.284073473174256,-1.6608294801494332 +-0.5763886678797879,1.0356798852396925 +0.9351744420159167,0.9605542531970264 +-0.37987130258538965,0.5738784634893288 +-0.8470132651999085,0.332484931302402 +1.1881067839656834,0.021752733394033497 +1.144245559107198,-1.2679341751600308 +0.45421641097018495,-0.00040860004807175 +1.4344894036390599,-0.3992228815608235 +-0.4402650139339345,1.5438443885260233 +-0.5444908044969188,0.5263605205731798 +-0.2244264697570179,0.8707071598066866 +0.0517104754925207,1.4642972945711885 +1.0297229474205043,1.0466025218767947 +-0.20871246679340916,1.702052602314103 +0.4357223527551332,1.9976309906992766 +0.02271052747558555,1.7294627910981255 +0.22313655745445252,-0.4230431937714515 +-0.6413753601843469,-0.2701621785195515 +-0.8563556245549533,-0.01207101063654989 +-0.7125475336703334,1.2724531990928278 +0.44456004461949206,1.954981991267006 +0.16322597165860248,1.9753394301911062 +-0.5262315269928899,0.9879727130671676 +-0.351984482094881,0.7504875665616746 +1.3354140308341342,-1.1152363482870946 +-0.5521969021536289,0.33097335517688403 +0.6030486139712155,1.522534678611752 +0.18794022976430275,1.9282421464557604 +0.7253306339053499,0.9999581534661991 +0.05781987552767709,0.9107561426821875 +0.4867598986287458,1.119866678072237 +1.5764801647960125,-1.1719766221667087 +-0.5903164512182902,-0.3224530835479048 +-0.8470132651999085,0.332484931302402 +1.1881067839656834,0.021752733394033497 +1.144245559107198,-1.2679341751600308 +0.45421641097018495,-0.00040860004807175 +0.9767890704576838,-0.2711308946148827 +-0.4402650139339345,1.5438443885260233 +-0.025635785449540704,2.058340068850073 +-0.2244264697570179,0.8707071598066866 +0.2559583430209902,2.11779842585426 +1.0297229474205043,1.0466025218767947 +-0.20871246679340916,1.702052602314103 +0.4357223527551332,1.9976309906992766 +1.5658268955957066,-0.723935742793102 +0.22313655745445252,-0.4230431937714515 +-0.6413753601843469,-0.2701621785195515 +-0.8563556245549533,-0.01207101063654989 +-0.7125475336703334,1.2724531990928278 +0.44456004461949206,1.954981991267006 +-0.4953612712248654,1.1487964838634515 +-0.5262315269928899,0.9879727130671676 +0.6938035858785137,0.9885993197071185 +1.3354140308341342,-1.1152363482870946 +-0.5521969021536289,0.33097335517688403 +-0.7668971855116272,1.6430892900133407 +0.18794022976430275,1.9282421464557604 +-0.7253790363700436,1.1254475509180553 +1.0500135298354658,-0.8450450058221037 +-0.6908746019623454,0.4036508743161793 +1.5764801647960125,-1.1719766221667087 +-0.4914060192319184,-0.180311939096318 +-0.8470132651999085,0.332484931302402 +0.15092326854129984,-0.1430232464949157 +1.144245559107198,-1.2679341751600308 +0.45421641097018495,-0.00040860004807175 +0.9767890704576838,-0.2711308946148827 +-0.4402650139339345,1.5438443885260233 +-0.23881929647065736,0.4583017779755124 +0.6380403181062437,0.8418263354828599 +-0.4812813315019433,-0.46696089955953424 +1.0297229474205043,1.0466025218767947 +0.33506680170513015,1.5429185153145464 +0.4357223527551332,1.9976309906992766 +-0.7142486035386441,0.8026447015325023 +-0.35308588651726064,0.5402048196446148 +0.47826070961169903,0.8048733011430612 +-0.9898039108224623,0.5021503434367328 +-0.7125475336703334,1.2724531990928278 +-0.6720122872124518,1.6592401001148354 +-0.4953612712248654,1.1487964838634515 +0.4556084189751731,-0.4637465264673234 +-0.10277825660183293,0.5326288356941392 +-0.5058233441167022,0.684719701873072 +0.22995606676678582,0.12632051938870825 +-0.7668971855116272,1.6430892900133407 +0.18794022976430275,1.9282421464557604 +-0.37749198745649815,0.5517148930792577 +1.0500135298354658,-0.8450450058221037 +-0.6908746019623454,0.4036508743161793 +1.5764801647960125,-1.1719766221667087 +-0.4914060192319184,-0.180311939096318 +-0.04716035011539588,1.6126009998730264 +1.0201762778946109,-1.474956643646735 +1.144245559107198,-1.2679341751600308 +0.45421641097018495,-0.00040860004807175 +-1.0642213974843846,-0.36652206972473267 +-0.9004207750492548,0.3262236081547162 +-0.23881929647065736,0.4583017779755124 +0.6380403181062437,0.8418263354828599 +-0.9920771196312985,0.14670575328449997 +0.19951737851786566,0.21457323847211307 +0.33506680170513015,1.5429185153145464 +0.4357223527551332,1.9976309906992766 +-0.789749508057014,0.1724125370697019 +1.2562041312580006,-1.712853943930795 +0.7544812039462467,1.6774132730813143 +0.833626692337759,1.4320250750457875 +-0.28931716852493194,1.1909875515851267 +-0.6720122872124518,1.6592401001148354 +-0.08469036948578124,0.3452521923889773 +0.4556084189751731,-0.4637465264673234 +-0.10277825660183293,0.5326288356941392 +0.8567767746158577,1.4740812073908969 +0.22995606676678582,0.12632051938870825 +-0.7668971855116272,1.6430892900133407 +0.18794022976430275,1.9282421464557604 +-0.37749198745649815,0.5517148930792577 +1.0500135298354658,-0.8450450058221037 +-0.6908746019623454,0.4036508743161793 +1.5764801647960125,-1.1719766221667087 +-0.4914060192319184,-0.180311939096318 +1.5743418232114956,-2.3548504474583813 +0.5080519901296775,-0.35393763818333546 +1.144245559107198,-1.2679341751600308 +0.3919527092401135,1.132777551640431 +1.1051701111342842,-0.6320430476158025 +0.8031844855995995,0.1306386409041176 +-0.23881929647065736,0.4583017779755124 +0.8027623738631094,0.7452002756499907 +-0.9920771196312985,0.14670575328449997 +0.19951737851786566,0.21457323847211307 +0.8699049686842105,0.8080012140446409 +0.4357223527551332,1.9976309906992766 +-0.789749508057014,0.1724125370697019 +0.6530349941816652,-0.838810936978184 +0.7544812039462467,1.6774132730813143 +0.628959583827636,1.9123250149910773 +-0.045963161386905566,1.059861866038938 +-0.6720122872124518,1.6592401001148354 +-0.08469036948578124,0.3452521923889773 +0.7367338524634905,1.308754121622509 +0.47415001935523826,1.4355927534920634 +0.8567767746158577,1.4740812073908969 +0.22995606676678582,0.12632051938870825 +-0.7668971855116272,1.6430892900133407 +0.18794022976430275,1.9282421464557604 +0.30042754071832956,1.8177307052046134 +1.0500135298354658,-0.8450450058221037 +-0.6908746019623454,0.4036508743161793 +1.1521860483148083,-0.8742578144785558 +0.3869387822779445,2.000440306524884 +0.8710776234696704,1.1756201118094058 +0.5080519901296775,-0.35393763818333546 +1.144245559107198,-1.2679341751600308 +0.3919527092401135,1.132777551640431 +1.1051701111342842,-0.6320430476158025 +0.8031844855995995,0.1306386409041176 +-0.23881929647065736,0.4583017779755124 +0.717871048621308,-0.775977857780407 +-0.9920771196312985,0.14670575328449997 +-0.3953301316897943,0.7721040382804656 +-0.013277745890499681,2.0984413293864024 +0.4357223527551332,1.9976309906992766 +-0.6389819380439727,1.455286708165021 +0.6530349941816652,-0.838810936978184 +0.4423837393876533,1.6137804994236302 +0.628959583827636,1.9123250149910773 +0.267225611279276,0.5188766853994863 +0.06801647186694709,0.3979581056155149 +-0.08469036948578124,0.3452521923889773 +0.9715174337668709,-0.10445129662312716 +1.2226936859362239,-1.0828401201056137 +-0.24250383825569555,0.17887467468432244 +0.22995606676678582,0.12632051938870825 +1.519648042095278,-0.9578115811273243 +0.18794022976430275,1.9282421464557604 +0.028156629385991686,1.0644001290769791 +1.0500135298354658,-0.8450450058221037 +-0.2843108904599606,0.9775781193711003 +1.1521860483148083,-0.8742578144785558 +0.3869387822779445,2.000440306524884 +0.13506139729688157,1.5638766384442402 +0.5080519901296775,-0.35393763818333546 +1.144245559107198,-1.2679341751600308 +0.13080597331907967,0.8174782168724579 +1.1051701111342842,-0.6320430476158025 +0.6100233854945964,-0.40115708512254633 +0.44706022323759537,1.1737036308517028 +-0.8670603394793923,-0.12332649885238595 +-0.9920771196312985,0.14670575328449997 +-0.3953301316897943,0.7721040382804656 +1.1292319437551273,-0.9812420764086682 +0.097525319480906,2.162821663171164 +0.21257131627824,-0.08499228301095252 +-0.5302804435036874,0.9630837954075118 +-0.27255813299058795,0.7044947282126077 +0.8475929149775854,-0.8669696261397015 +1.1123922614914972,-1.0019321775650352 +0.7791053480145304,-0.9750144906132842 +1.476853255518527,-1.7003613282867847 +0.9715174337668709,-0.10445129662312716 +1.240000156231843,-0.11893329923446318 +-0.24250383825569555,0.17887467468432244 +1.1125521007236765,-0.9891557587261979 +1.519648042095278,-0.9578115811273243 +0.18794022976430275,1.9282421464557604 +0.028156629385991686,1.0644001290769791 +1.0500135298354658,-0.8450450058221037 +0.8856612197217462,0.8352460656200015 +-0.7244311483059285,1.104571953342719 +-0.6562440208297586,0.4653266190088354 +0.8588440689846485,0.42319961911610093 +0.5080519901296775,-0.35393763818333546 +1.144245559107198,-1.2679341751600308 +0.07728420463283729,1.9370238373673025 +0.6518802153583129,1.4582486272570119 +0.6100233854945964,-0.40115708512254633 +0.44706022323759537,1.1737036308517028 +-0.8670603394793923,-0.12332649885238595 +-0.9920771196312985,0.14670575328449997 +-0.3953301316897943,0.7721040382804656 +1.1292319437551273,-0.9812420764086682 +0.4281067286145762,1.6700227023246523 +0.5298273943197245,-0.5493369031738692 +-0.5302804435036874,0.9630837954075118 +-0.7228065137795314,0.09561662546993663 +0.8475929149775854,-0.8669696261397015 +1.1123922614914972,-1.0019321775650352 +0.35177283898388567,-0.003954518779295951 +1.3255775308986821,-0.72012730753872 +0.9715174337668709,-0.10445129662312716 +1.240000156231843,-0.11893329923446318 +1.171994566656522,-1.1353225327314638 +1.1125521007236765,-0.9891557587261979 +-0.414758442151839,0.22582653451639711 +0.18794022976430275,1.9282421464557604 +0.20953525081702123,0.4000680060781908 +0.1622263635825355,0.008614479457651009 +0.8856612197217462,0.8352460656200015 +-0.7244311483059285,1.104571953342719 +-0.4752767415341318,0.6665758379884648 +-0.2392518693118597,-0.3635131476481446 +-0.41912647610844184,1.5966224751416722 +0.5311346222408759,-0.14408445861578784 +0.07728420463283729,1.9370238373673025 +0.6492875144474118,-0.15564258729746228 +0.6100233854945964,-0.40115708512254633 +0.31199625522641516,1.6619977524949139 +-0.8670603394793923,-0.12332649885238595 +-0.9920771196312985,0.14670575328449997 +-0.22415360249880742,1.0932821260282906 +0.700578897406956,0.5528251560738675 +0.09389256942195978,-0.1834158308330992 +0.5298273943197245,-0.5493369031738692 +-0.5302804435036874,0.9630837954075118 +-0.7228065137795314,0.09561662546993663 +1.5822916106422298,-1.269543715416467 +1.1123922614914972,-1.0019321775650352 +0.35177283898388567,-0.003954518779295951 +-0.20886505162453867,0.8414514000700422 +0.1317397952124273,-0.2920308942707609 +1.240000156231843,-0.11893329923446318 +1.171994566656522,-1.1353225327314638 +-0.7050927463161665,0.2948567483232851 +1.2856087506549125,0.41135671361637327 +0.18794022976430275,1.9282421464557604 +0.15455460932461584,-0.24949111205137348 +0.14922122682708366,0.2816402460807589 +0.8856612197217462,0.8352460656200015 +-0.7244311483059285,1.104571953342719 +-0.4752767415341318,0.6665758379884648 +-0.2392518693118597,-0.3635131476481446 +-0.41912647610844184,1.5966224751416722 +0.5311346222408759,-0.14408445861578784 +0.07728420463283729,1.9370238373673025 +-0.5968938392014485,0.7247024425902062 +0.6100233854945964,-0.40115708512254633 +0.31199625522641516,1.6619977524949139 +-0.8670603394793923,-0.12332649885238595 +-0.9920771196312985,0.14670575328449997 +-0.13042219583051845,0.740081018660178 +1.54222275478028,-1.0094735573359808 +0.09389256942195978,-0.1834158308330992 +-0.24799146881733458,2.373534156110849 +-0.6028680360167121,0.7677443444205908 +-0.7228065137795314,0.09561662546993663 +1.5822916106422298,-1.269543715416467 +1.1123922614914972,-1.0019321775650352 +0.35177283898388567,-0.003954518779295951 +-0.3187867785494492,2.1027532400889988 +0.5577360096019945,-0.19305415619402655 +1.240000156231843,-0.11893329923446318 +1.171994566656522,-1.1353225327314638 +-0.7050927463161665,0.2948567483232851 +-0.773962230752628,-0.22079268575608063 +0.18794022976430275,1.9282421464557604 +-0.8080813656546044,0.8021396441579223 +1.1978442829805576,0.588431184514203 +0.8856612197217462,0.8352460656200015 +-0.7244311483059285,1.104571953342719 +0.06278020266352147,1.773607784433203 +-0.2392518693118597,-0.3635131476481446 +0.7809288164832782,1.2747464089572278 +0.5311346222408759,-0.14408445861578784 +0.07728420463283729,1.9370238373673025 +-0.5968938392014485,0.7247024425902062 +0.6100233854945964,-0.40115708512254633 +0.6068583513354793,-0.5021233342566628 +-0.24442093772003198,1.3032485496201716 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +1.54222275478028,-1.0094735573359808 +-0.6386622243118097,0.3630706656086178 +-0.24799146881733458,2.373534156110849 +-0.6028680360167121,0.7677443444205908 +0.7523196294125698,-0.42982768381304665 +1.5822916106422298,-1.269543715416467 +1.1123922614914972,-1.0019321775650352 +0.4950744919347486,0.338269706346352 +-0.3187867785494492,2.1027532400889988 +0.5577360096019945,-0.19305415619402655 +1.240000156231843,-0.11893329923446318 +1.171994566656522,-1.1353225327314638 +-0.7050927463161665,0.2948567483232851 +0.2609819544774813,1.4832090364601775 +0.18794022976430275,1.9282421464557604 +-0.8080813656546044,0.8021396441579223 +1.1978442829805576,0.588431184514203 +0.148778924901651,0.5192382900114314 +0.5874454892789595,1.0053836013172452 +-0.09592927185802845,2.1947015600041353 +-0.5716056697766833,0.5404962969865572 +0.04569787895697824,2.4181391222524504 +0.5311346222408759,-0.14408445861578784 +0.07728420463283729,1.9370238373673025 +-0.5968938392014485,0.7247024425902062 +0.18314656005180652,2.223992639118866 +0.8991754075302805,0.5920738731998141 +-0.24442093772003198,1.3032485496201716 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +1.54222275478028,-1.0094735573359808 +-0.6386622243118097,0.3630706656086178 +-0.24799146881733458,2.373534156110849 +1.5605523365446534,-1.2957941116890372 +0.7523196294125698,-0.42982768381304665 +0.47254887659908673,-0.43825566071200694 +1.1123922614914972,-1.0019321775650352 +-0.034239834556616,0.6645351508559902 +-0.3187867785494492,2.1027532400889988 +0.5577360096019945,-0.19305415619402655 +0.7115838672799583,1.856220024609073 +0.8127520515531794,-0.35093315623942134 +0.32234665147986347,2.1895884351864146 +0.2609819544774813,1.4832090364601775 +0.18794022976430275,1.9282421464557604 +-0.8080813656546044,0.8021396441579223 +1.1978442829805576,0.588431184514203 +0.7155821151493388,-0.8186906946165516 +0.21965851029983136,0.32767229587438496 +0.6477661851073373,-0.3247959139994937 +-0.5716056697766833,0.5404962969865572 +1.8413392463742453,-1.911256458496693 +0.5311346222408759,-0.14408445861578784 +1.2824228977708225,-1.2800401766046472 +0.8144808866876565,-0.0373719870368005 +-0.35748883276981047,2.0174716958070342 +1.1748563484891426,-1.4261883902727845 +0.40998054891440905,-0.1898141137190107 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.2091588401355094,1.03552579894326 +-0.6386622243118097,0.3630706656086178 +-0.24799146881733458,2.373534156110849 +1.5605523365446534,-1.2957941116890372 +0.0480986511863577,0.879803004106372 +-0.014031528005575167,0.02413066895949112 +1.1123922614914972,-1.0019321775650352 +-0.034239834556616,0.6645351508559902 +-0.3187867785494492,2.1027532400889988 +0.5577360096019945,-0.19305415619402655 +0.7115838672799583,1.856220024609073 +0.3730152552407219,-0.11629263249425326 +0.6259351265757349,1.9519105393727116 +0.24223970743192244,-0.5347934790374034 +0.8818484420115702,-0.8076009462871163 +1.292185046965874,-1.5996344299356253 +1.1978442829805576,0.588431184514203 +0.7155821151493388,-0.8186906946165516 +1.0209568532979298,-0.986793971575225 +0.6477661851073373,-0.3247959139994937 +-0.5716056697766833,0.5404962969865572 +1.8413392463742453,-1.911256458496693 +0.5311346222408759,-0.14408445861578784 +-0.021489460853293063,-0.02475438011055564 +1.601140115992574,-1.2953502516207989 +-0.35748883276981047,2.0174716958070342 +1.0898613520856617,0.15831915019791826 +0.9736255882690481,-0.658421955590184 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.4700670192125471,-0.052446262105768304 +0.5747388115759138,0.12106074782499365 +-0.24799146881733458,2.373534156110849 +1.5605523365446534,-1.2957941116890372 +1.325709449038993,0.41121678226253955 +1.4151747903873408,-1.3301876255973677 +1.1123922614914972,-1.0019321775650352 +0.25610115288842783,-0.5392181596488338 +-0.3187867785494492,2.1027532400889988 +0.4637149124481171,0.3251263206652023 +0.7115838672799583,1.856220024609073 +0.10851295129732261,0.40062482575482905 +0.6259351265757349,1.9519105393727116 +1.399065942618738,-2.008608811571875 +-0.2651354289332696,0.9193570990380553 +1.292185046965874,-1.5996344299356253 +1.1978442829805576,0.588431184514203 +0.7155821151493388,-0.8186906946165516 +1.0209568532979298,-0.986793971575225 +0.5819122744048801,1.6965776890746698 +-0.5716056697766833,0.5404962969865572 +1.6925560225350025,-1.7824510777405016 +0.6955429890296069,-0.407644987058437 +-0.021489460853293063,-0.02475438011055564 +0.774352369665605,-0.8724498809215729 +-0.35748883276981047,2.0174716958070342 +1.9189232903799498,-2.8447881691793304 +0.9736255882690481,-0.658421955590184 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.2562438769507599,1.1648743892507019 +0.5747388115759138,0.12106074782499365 +-0.3274746042903124,-0.3894059718593588 +1.5605523365446534,-1.2957941116890372 +2.1044727106158216,-4.120755689198509 +1.4151747903873408,-1.3301876255973677 +1.1123922614914972,-1.0019321775650352 +0.25610115288842783,-0.5392181596488338 +-0.3187867785494492,2.1027532400889988 +0.4637149124481171,0.3251263206652023 +1.249932939103577,-1.4582782588756962 +0.19911009153233825,0.3451490750709406 +1.0757387050857277,-1.0333855442296984 +1.399065942618738,-2.008608811571875 +-0.2651354289332696,0.9193570990380553 +1.292185046965874,-1.5996344299356253 +1.1978442829805576,0.588431184514203 +0.7155821151493388,-0.8186906946165516 +-0.2009399185697588,0.2382380107677603 +1.6816983100280796,-2.055083952974513 +-0.5716056697766833,0.5404962969865572 +0.3158707231654774,-0.5037104992154144 +0.6955429890296069,-0.407644987058437 +-0.021489460853293063,-0.02475438011055564 +0.774352369665605,-0.8724498809215729 +1.2693623587832268,-0.38313373432864617 +1.9189232903799498,-2.8447881691793304 +-0.10260929279248104,0.9869428619430627 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.2562438769507599,1.1648743892507019 +1.069326359810908,-0.825568897583187 +-0.3307160131578577,1.208927670196069 +1.5605523365446534,-1.2957941116890372 +2.1044727106158216,-4.120755689198509 +-0.4137819683981374,0.1717109213726737 +0.27446758607508087,1.219638012251412 +-0.368503357282152,0.9343605721760465 +-0.3187867785494492,2.1027532400889988 +0.7672263919085909,-0.1766648125398984 +1.2831067344976468,-2.1387647360738113 +0.19911009153233825,0.3451490750709406 +0.46586005792683305,-0.17640807854572726 +1.3677257272761218,-0.6290478727875887 +-0.2651354289332696,0.9193570990380553 +0.8836241530359914,-0.5796245907659192 +1.1949566387328725,0.040330195481795617 +0.5205068888991775,-0.6091102072605774 +-0.2009399185697588,0.2382380107677603 +0.6975683969570659,0.18267786985719514 +-0.5716056697766833,0.5404962969865572 +1.0191891986611412,-0.7894056659113761 +0.6955429890296069,-0.407644987058437 +-0.021489460853293063,-0.02475438011055564 +0.774352369665605,-0.8724498809215729 +1.2693623587832268,-0.38313373432864617 +1.9189232903799498,-2.8447881691793304 +0.3828702759372721,0.7263317277828149 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.2562438769507599,1.1648743892507019 +0.337052517848806,1.509404992113552 +-0.3307160131578577,1.208927670196069 +0.8171098762253972,-0.19442647134001723 +0.22234275393380074,-0.08826798497373146 +-0.4137819683981374,0.1717109213726737 +-0.010593031100403022,0.13056166660206012 +-0.368503357282152,0.9343605721760465 +-0.3187867785494492,2.1027532400889988 +0.7672263919085909,-0.1766648125398984 +1.7318870122383658,-1.0183891051062641 +0.19911009153233825,0.3451490750709406 +0.46586005792683305,-0.17640807854572726 +1.4699797944405788,-1.2619078613790746 +-0.20684006087546705,0.4961026965243164 +0.8046102845543186,-0.9021531316631494 +1.1949566387328725,0.040330195481795617 +-0.25032605578275474,-0.04360546245413055 +-0.12772870838872377,0.3127414996189393 +0.07695187763726502,0.009688830107089985 +-0.5716056697766833,0.5404962969865572 +-0.18569813226403648,1.9239157212850482 +0.6955429890296069,-0.407644987058437 +-0.021489460853293063,-0.02475438011055564 +0.5303434422949729,-0.683002381647995 +-0.031746789962585224,-0.6160417071003197 +1.9189232903799498,-2.8447881691793304 +-0.39501468286709096,1.3100266721257623 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.32043590511012565,-0.10333313748610462 +0.337052517848806,1.509404992113552 +0.9720243128074735,1.1526112475722752 +0.8171098762253972,-0.19442647134001723 +-0.2745149159969174,1.6194903401413323 +0.08668025835316279,-0.08444751956642726 +-0.1372779596858658,0.08985995255814905 +-0.09445445805656741,1.15409904819522 +-0.3187867785494492,2.1027532400889988 +0.7672263919085909,-0.1766648125398984 +-0.4218142571422082,0.8786098933212961 +-0.009625130536865145,-0.21088200231079085 +-0.01955567156775337,1.6069399643528308 +1.4033361106155657,-0.5286578137220295 +-0.20684006087546705,0.4961026965243164 +-0.03783443694033002,0.09508070260200388 +-0.01801013796625918,1.1153115033338397 +-0.5715147763680255,1.3582096406451567 +-0.12772870838872377,0.3127414996189393 +0.07695187763726502,0.009688830107089985 +-0.5716056697766833,0.5404962969865572 +-0.18569813226403648,1.9239157212850482 +0.6955429890296069,-0.407644987058437 +-0.06439883281535178,-0.24290033103011333 +1.239634292714152,-0.2171058540769614 +0.12911056261327072,-0.21544130348278936 +1.9189232903799498,-2.8447881691793304 +-0.39501468286709096,1.3100266721257623 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.8833547339558796,0.9204629119282379 +0.337052517848806,1.509404992113552 +0.9720243128074735,1.1526112475722752 +-0.37478639665816077,0.140938447031409 +-0.2745149159969174,1.6194903401413323 +0.08668025835316279,-0.08444751956642726 +-0.21751181558882576,0.5177264829609622 +0.23496222215021445,-0.10898426105590353 +-0.3187867785494492,2.1027532400889988 +0.15987885141196478,0.1234279362878864 +-0.030768000554620395,0.12781260429027902 +1.0330357098827854,0.5685503739877935 +0.3573959945315641,-0.4881291577332939 +1.4033361106155657,-0.5286578137220295 +-0.3902646883455373,0.34963984217666993 +-0.6061889511116348,0.1990000420111925 +-0.01801013796625918,1.1153115033338397 +1.0717298316130754,0.581360177563603 +-0.6295565073961142,0.05965564784440744 +0.07695187763726502,0.009688830107089985 +-0.5424464509222044,-0.10023514749473095 +-0.6514292170147102,1.0517663890015942 +1.2185852796065675,0.23421578550987598 +-0.07955803312433725,1.5774327095571588 +0.35539317550757143,0.8831073626772686 +0.12911056261327072,-0.21544130348278936 +1.9189232903799498,-2.8447881691793304 +0.0007794831075410777,0.8728586110819675 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +-0.8833547339558796,0.9204629119282379 +0.337052517848806,1.509404992113552 +0.9720243128074735,1.1526112475722752 +-0.37478639665816077,0.140938447031409 +0.10980872968811192,0.16885590925198146 +0.26292535197057043,0.017527824663501813 +-0.21751181558882576,0.5177264829609622 +1.488911789757878,-0.43824245002129314 +0.3909492765036241,0.8421936644241821 +0.39159877037606966,1.8665102159759095 +0.7228538877991956,1.0999012913397066 +1.0330357098827854,0.5685503739877935 +0.4774717654488964,1.973310302053368 +1.4033361106155657,-0.5286578137220295 +0.3630570634130864,1.7088132155161124 +-0.6061889511116348,0.1990000420111925 +0.674954998464049,1.6739456953666065 +0.7325810278793142,-0.6155534903609329 +-0.6295565073961142,0.05965564784440744 +0.07695187763726502,0.009688830107089985 +-0.5424464509222044,-0.10023514749473095 +-0.6514292170147102,1.0517663890015942 +-0.7257130332143167,0.6158910756353423 +-0.07955803312433725,1.5774327095571588 +0.35539317550757143,0.8831073626772686 +-0.30602420704312916,-0.1366947223897788 +1.9189232903799498,-2.8447881691793304 +0.42931409911779156,0.022559384673503935 +1.2242133478195996,0.21944831622214223 +0.5401617334271481,1.6621033676081136 +0.32231856375315604,-0.11218793313404785 +1.4161765051835256,0.009792731632913138 +0.9720243128074735,1.1526112475722752 +0.6818348436723456,0.2636643275867618 +0.10980872968811192,0.16885590925198146 +0.7254273472342105,1.6164410638370441 +1.5786226716901042,-0.9535317111738567 +-0.3842997289875579,0.38482794623245503 +0.3909492765036241,0.8421936644241821 +0.8929633667636966,0.39842071149077907 +0.2354971696564468,1.1157077005036569 +1.0330357098827854,0.5685503739877935 +0.4774717654488964,1.973310302053368 +0.28435344104306964,-0.32175237377439764 +0.3630570634130864,1.7088132155161124 +0.09110688432706227,1.902235660464991 +-0.4707296581613149,0.30420948204643744 +0.7325810278793142,-0.6155534903609329 +-0.38600631538030566,1.6718293824626385 +0.05893371130477837,2.5287571756777396 +-0.5424464509222044,-0.10023514749473095 +0.49447572166221904,1.58674730559781 +-0.7257130332143167,0.6158910756353423 +-0.3289562202755613,0.2006381215415889 +0.7742695996931312,0.738173880151976 +-0.30602420704312916,-0.1366947223897788 +1.9189232903799498,-2.8447881691793304 +-0.4956298856945775,-0.024794104782045856 +-0.454541512842514,1.7425300611590937 +0.5401617334271481,1.6621033676081136 +0.32231856375315604,-0.11218793313404785 +-0.6861452798343406,0.44176595163020266 +0.9720243128074735,1.1526112475722752 +0.33110288359458084,1.0304286393230786 +0.10980872968811192,0.16885590925198146 +0.7254273472342105,1.6164410638370441 +1.5786226716901042,-0.9535317111738567 +-0.3842997289875579,0.38482794623245503 +0.3909492765036241,0.8421936644241821 +-0.6920314149585183,-0.4033521496423946 +0.8917497300798795,-0.9899937539256838 +1.0330357098827854,0.5685503739877935 +0.4774717654488964,1.973310302053368 +0.28435344104306964,-0.32175237377439764 +1.0365547283581034,-1.1872668561758124 +0.09110688432706227,1.902235660464991 +-0.4707296581613149,0.30420948204643744 +0.7325810278793142,-0.6155534903609329 +-0.38600631538030566,1.6718293824626385 +-0.5155411115790196,2.0959016543843143 +-0.5424464509222044,-0.10023514749473095 +-0.383047545645512,2.299033992885642 +-0.7257130332143167,0.6158910756353423 +-0.4196833631288471,1.0972162869599598 +0.7399672208869644,0.2070842097773741 +1.0054926076530448,0.6613534030123576 +1.9189232903799498,-2.8447881691793304 +-0.9069619337168747,0.8390160531940081 +0.6965893959831392,1.7599132660827168 +0.7415057023413055,0.8155008204399428 +0.32231856375315604,-0.11218793313404785 +0.43095792573050146,-0.2361235533882488 +0.9720243128074735,1.1526112475722752 +0.33110288359458084,1.0304286393230786 +0.10980872968811192,0.16885590925198146 +0.06823985699233959,1.9655671196317153 +1.5786226716901042,-0.9535317111738567 +-0.3842997289875579,0.38482794623245503 +-0.19959198894089647,2.24139319534564 +-0.6920314149585183,-0.4033521496423946 +0.6435167523376812,-0.601024730860332 +1.0330357098827854,0.5685503739877935 +0.4774717654488964,1.973310302053368 +0.28435344104306964,-0.32175237377439764 +0.8325970529793458,-0.7336663179477567 +0.09110688432706227,1.902235660464991 +0.7744179022330031,-0.6038504632938249 +0.2016300793482783,1.3108185637373038 +-0.38600631538030566,1.6718293824626385 +0.6711087931019692,1.1901511954313313 +1.4784801485053325,-1.7169120294953517 +0.7560040547400564,-0.055953775832546904 +-0.7257130332143167,0.6158910756353423 +0.17305515601794252,1.7319856778898446 +1.177977856365027,-1.048064452965492 +1.0054926076530448,0.6613534030123576 +1.9189232903799498,-2.8447881691793304 +-0.9069619337168747,0.8390160531940081 +0.6557300331089154,1.3111238457032472 +0.6183172995005327,-0.2764294658078663 +0.32231856375315604,-0.11218793313404785 +0.8774237824041221,-0.1081263299187688 +0.9720243128074735,1.1526112475722752 +-1.0518366172689217,-0.4910248558139485 +0.10980872968811192,0.16885590925198146 +0.06823985699233959,1.9655671196317153 +-0.3962675639401452,-0.1374042486794706 +-0.3842997289875579,0.38482794623245503 +-0.19959198894089647,2.24139319534564 +-0.6920314149585183,-0.4033521496423946 +0.5654665566600098,0.16461470012189372 +1.3991824984603545,-0.9612461756327418 +-0.08938190538228119,2.2830303151099067 +0.28435344104306964,-0.32175237377439764 +0.4212667832695135,-0.38611493822609 +0.09110688432706227,1.902235660464991 +0.7744179022330031,-0.6038504632938249 +0.2016300793482783,1.3108185637373038 +0.3979334562496379,1.8129856104549957 +0.6711087931019692,1.1901511954313313 +1.4784801485053325,-1.7169120294953517 +1.5917318708242225,-1.8866369444040827 +-0.7257130332143167,0.6158910756353423 +0.17305515601794252,1.7319856778898446 +1.177977856365027,-1.048064452965492 +1.0054926076530448,0.6613534030123576 +1.9189232903799498,-2.8447881691793304 +0.8187524835816111,-0.38285952057061134 +0.6557300331089154,1.3111238457032472 +-0.25893573501778955,-0.08295066288610531 +1.4841146569882007,-1.0976655279827292 +0.8774237824041221,-0.1081263299187688 +0.9720243128074735,1.1526112475722752 +-1.0518366172689217,-0.4910248558139485 +0.10980872968811192,0.16885590925198146 +0.06823985699233959,1.9655671196317153 +-0.3962675639401452,-0.1374042486794706 +-0.3842997289875579,0.38482794623245503 +1.34666915938756,-1.8723253969427003 +0.8916927665416753,-0.758861885663868 +0.8549084545193024,1.3702891485774156 +1.3991824984603545,-0.9612461756327418 +-0.08938190538228119,2.2830303151099067 +0.4813576739062555,-0.2234832384072889 +0.4212667832695135,-0.38611493822609 +0.09110688432706227,1.902235660464991 +0.04856423863611534,1.0377822022676912 +0.16791967076038816,0.7691131154972757 +0.3979334562496379,1.8129856104549957 +0.6711087931019692,1.1901511954313313 +0.7155468764672271,-0.8391270941627127 +1.5917318708242225,-1.8866369444040827 +0.47522106914855,0.13644123522709584 +0.17305515601794252,1.7319856778898446 +1.177977856365027,-1.048064452965492 +-0.7945702586581502,0.5469320185025506 +-0.20117102017380548,1.2888945901550173 +0.8187524835816111,-0.38285952057061134 +0.6557300331089154,1.3111238457032472 +-0.25893573501778955,-0.08295066288610531 +-0.9363259676015274,0.4762395483212571 +-0.057740477246507355,-0.35885677923151643 +0.9720243128074735,1.1526112475722752 +1.0552650957743914,-0.9243040998249991 +-0.6890376365814945,-0.3221166988234308 +1.4141892386910273,-0.45610497048112303 +-0.3962675639401452,-0.1374042486794706 +-0.3187140975682694,-0.15636436916582855 +-0.3234483688809472,0.2714326716033463 +0.8916927665416753,-0.758861885663868 +-0.5232804930857466,1.500984424670635 +1.3991824984603545,-0.9612461756327418 +0.5123357053900215,1.3595912088660882 +0.4813576739062555,-0.2234832384072889 +0.4212667832695135,-0.38611493822609 +0.09110688432706227,1.902235660464991 +-0.012696030870237685,0.2747135312883651 +-0.6798904042266558,0.5112166505637166 +0.3979334562496379,1.8129856104549957 +0.8341421823439513,0.172938753659303 +0.29019332073207005,1.272054544010613 +1.5917318708242225,-1.8866369444040827 +0.47522106914855,0.13644123522709584 +0.7553015385973738,1.1204208032505159 +0.8763036681074134,-0.39004819970019255 +-0.7945702586581502,0.5469320185025506 +-0.20117102017380548,1.2888945901550173 +0.8187524835816111,-0.38285952057061134 +0.6557300331089154,1.3111238457032472 +-0.5511250068837434,0.07341829681065937 +-0.513524008314511,0.70722704175163 +0.6860986362062393,-0.8939322355168774 +-0.23922058279857927,0.08439050426365341 +1.0552650957743914,-0.9243040998249991 +1.1440018031681616,-1.3012811396442094 +1.4141892386910273,-0.45610497048112303 +-0.3962675639401452,-0.1374042486794706 +-0.23535538712667203,0.11429466803573812 +0.3110955224427844,1.9393746888492098 +0.8916927665416753,-0.758861885663868 +-0.5232804930857466,1.500984424670635 +1.3991824984603545,-0.9612461756327418 +1.7102669166032072,-1.8489104622413546 +1.7869667536481575,-2.1626722947697257 +0.4082896163433207,1.7539293169769556 +0.008647698067531795,0.14810551427500152 +-0.012696030870237685,0.2747135312883651 +-0.7525357384753707,1.53643071470771 +0.3979334562496379,1.8129856104549957 +0.8341421823439513,0.172938753659303 +-0.09516002819393837,0.3972051740892245 +1.5917318708242225,-1.8866369444040827 +1.2288745202927822,-1.5541028461461606 +0.7553015385973738,1.1204208032505159 +0.8959292162734492,-0.8376770450435997 +-0.3312690484395425,2.3184297324454874 +0.36974117884660684,1.616737353859176 +-0.2052791531086583,1.5829011145099985 +0.3084267796174873,0.5156749608064017 +-0.5511250068837434,0.07341829681065937 +-0.513524008314511,0.70722704175163 +0.6860986362062393,-0.8939322355168774 +1.8426753669055689,-1.6242687427084568 +-0.22290863367844915,0.9197270900431707 +-0.5524735823898184,0.12683270584848272 +1.4141892386910273,-0.45610497048112303 +-0.3962675639401452,-0.1374042486794706 +-0.45012947364816863,0.8718605969507416 +0.3110955224427844,1.9393746888492098 +0.8916927665416753,-0.758861885663868 +-0.5232804930857466,1.500984424670635 +1.3991824984603545,-0.9612461756327418 +1.7102669166032072,-1.8489104622413546 +1.692228432410481,-2.645507538332108 +0.7456280710115523,0.07735092969894691 +-0.1922523455833085,1.0323983661128424 +-0.012696030870237685,0.2747135312883651 +-0.7525357384753707,1.53643071470771 +0.3979334562496379,1.8129856104549957 +0.8341421823439513,0.172938753659303 +0.17543816458977946,0.4280498067711231 +1.5917318708242225,-1.8866369444040827 +0.21285227972352627,0.07327244382684187 +-0.7001512421868696,0.6415871641387656 +0.8959292162734492,-0.8376770450435997 +-0.3312690484395425,2.3184297324454874 +1.506622453050058,-2.0307599767302555 +-0.2052791531086583,1.5829011145099985 +0.3084267796174873,0.5156749608064017 +-0.5511250068837434,0.07341829681065937 +-0.45244780447382377,-0.47543618353939726 +0.6860986362062393,-0.8939322355168774 +0.5184924882729383,-0.6691904225943003 +-0.26108304098456786,-0.29303460861854846 +-0.5524735823898184,0.12683270584848272 +0.1238942931662328,-0.1756921603155387 +-0.6168784385655337,0.3780508460233284 +0.03210643366346427,1.7626543748033867 +1.267480299982617,-0.9168460971879865 +0.35563950400332867,-0.43094083979904374 +0.42363802242150905,1.6038129182925929 +1.3991824984603545,-0.9612461756327418 +0.1815523946532105,1.3406018453767687 +1.692228432410481,-2.645507538332108 +0.7456280710115523,0.07735092969894691 +-0.1922523455833085,1.0323983661128424 +-0.012696030870237685,0.2747135312883651 +-0.7525357384753707,1.53643071470771 +-0.9298794944484585,0.774376932783131 +1.361330300223673,-0.7507517123795381 +0.5217061467866931,1.269082630574512 +1.5917318708242225,-1.8866369444040827 +-0.361908836328584,0.19280166531263987 +1.7089538351535036,-1.8131987481151344 +0.8959292162734492,-0.8376770450435997 +-0.3312690484395425,2.3184297324454874 +0.8171187002602329,-0.5966544762853803 +-0.2052791531086583,1.5829011145099985 +0.5872756700894652,-0.8468179517475909 +-0.2303483584901171,0.9244674743945736 +0.2420458694196811,1.651262352782904 +0.5989231717916887,-0.52464066713193 +-0.40236050992938965,0.22075021811144907 +-0.26108304098456786,-0.29303460861854846 +1.5209507110854055,-1.4481283483666854 +0.6383883445143055,0.8950852569503861 +-0.6168784385655337,0.3780508460233284 +0.03210643366346427,1.7626543748033867 +-0.8459139419188918,0.5382221345407727 +0.35563950400332867,-0.43094083979904374 +-0.5152153114181806,2.033407364476588 +1.3991824984603545,-0.9612461756327418 +1.5336374625309803,-0.8770191087832824 +0.9956665353907242,0.10630065025847402 +0.7456280710115523,0.07735092969894691 +-0.1922523455833085,1.0323983661128424 +-0.012696030870237685,0.2747135312883651 +-0.4060012685041491,0.04110486013947595 +-0.9298794944484585,0.774376932783131 +1.361330300223673,-0.7507517123795381 +0.8214149214037393,-0.047106518018782365 +1.5917318708242225,-1.8866369444040827 +0.8973106759052446,0.9130143167933975 +0.183198978915299,2.1709311583001156 +1.1423196314998052,0.08541688859388656 +1.2688978045414316,-0.25097030391692154 +0.8673532715445214,-0.49907675043687033 +0.5013656531829618,-0.01281956739052792 +0.28736387441646893,1.2195073430119618 +-0.2303483584901171,0.9244674743945736 +0.2420458694196811,1.651262352782904 +0.17633033103455287,0.149114401845157 +-0.40236050992938965,0.22075021811144907 +-0.26108304098456786,-0.29303460861854846 +1.5209507110854055,-1.4481283483666854 +-0.22475873933972879,1.9931579430035824 +-0.6168784385655337,0.3780508460233284 +1.3685446303324111,0.32083256623669343 +-0.8459139419188918,0.5382221345407727 +-0.12279844281834931,2.0504776882340834 +-0.5152153114181806,2.033407364476588 +0.1635058917437408,1.6982391351776118 +1.3885959990788854,-0.5807400857150007 +1.2718722766926,-0.39474319931216506 +0.7456280710115523,0.07735092969894691 +-0.0174589324603186,0.4322819765740823 +0.3028820970255866,1.4692416579938645 +-0.4060012685041491,0.04110486013947595 +-0.9298794944484585,0.774376932783131 +1.361330300223673,-0.7507517123795381 +0.7601355884350989,0.7139419389689508 +-0.23145376686130456,1.905864426584621 +0.8973106759052446,0.9130143167933975 +0.183198978915299,2.1709311583001156 +1.1423196314998052,0.08541688859388656 +1.2688978045414316,-0.25097030391692154 +-0.23034148329965773,1.9634617323419352 +0.6571606370812999,0.7420750567328102 +0.23816088375396127,0.34804497590707806 +-0.2303483584901171,0.9244674743945736 +0.2420458694196811,1.651262352782904 +0.17633033103455287,0.149114401845157 +0.007255032811246065,0.9727325488312356 +-0.26108304098456786,-0.29303460861854846 +1.168668427157107,-0.4097183901381224 +-0.7105884080023241,0.03816186672644184 +-0.3896192627902732,2.022928738768945 +1.3685446303324111,0.32083256623669343 +-0.8459139419188918,0.5382221345407727 +-0.12279844281834931,2.0504776882340834 +1.4698443439173399,-1.2592934404332656 +0.1635058917437408,1.6982391351776118 +0.05868862829636401,-0.18179623690908278 +1.1616277791465055,0.3778932596717482 +-0.6971415875993032,1.8446854749047468 +-0.0174589324603186,0.4322819765740823 +0.3028820970255866,1.4692416579938645 +-0.4060012685041491,0.04110486013947595 +1.3981584221141383,-0.4234480819847709 +1.361330300223673,-0.7507517123795381 +0.6396321871458248,1.8158754399514363 +0.42043515224254124,-0.045481822537780145 +0.8973106759052446,0.9130143167933975 +0.183198978915299,2.1709311583001156 +0.20474836272831265,0.06316621491794783 +1.2688978045414316,-0.25097030391692154 +-0.23034148329965773,1.9634617323419352 +0.0888989178282625,0.5223135547803595 +0.23816088375396127,0.34804497590707806 +0.8655062975972021,-0.27206857162978526 +0.24914616797401212,0.8822993645402344 +0.17633033103455287,0.149114401845157 +0.30420365211325207,0.8661094543021961 +1.613841306126257,-1.0860686796231658 +1.168668427157107,-0.4097183901381224 +0.3037269602272161,2.075349670875984 +-0.3896192627902732,2.022928738768945 +1.207638880767871,-1.2875972760941128 +-0.6511339627363033,0.487665529939549 +-0.12279844281834931,2.0504776882340834 +1.4698443439173399,-1.2592934404332656 +0.1635058917437408,1.6982391351776118 +0.05868862829636401,-0.18179623690908278 +-0.4023559123753765,1.51295990741552 +-0.17936295985202252,-0.015915975666955594 +-0.0174589324603186,0.4322819765740823 +0.3028820970255866,1.4692416579938645 +1.432051161429719,-1.049440145570835 +1.3981584221141383,-0.4234480819847709 +1.361330300223673,-0.7507517123795381 +0.6396321871458248,1.8158754399514363 +0.42043515224254124,-0.045481822537780145 +0.8973106759052446,0.9130143167933975 +-0.5259272103836963,-0.06384064187434503 +0.20474836272831265,0.06316621491794783 +-0.2403109361232419,-0.1535488672546022 +-0.23034148329965773,1.9634617323419352 +-0.11370700607502862,0.42716214493747856 +0.5772475522874589,0.8249734266599862 +0.531553185779351,1.333091609668221 +0.24914616797401212,0.8822993645402344 +0.5526360654042879,1.1964856049501396 +-0.36628999780578475,0.2801811302427275 +1.613841306126257,-1.0860686796231658 +0.19927646218762995,0.11638452099144153 +0.3037269602272161,2.075349670875984 +0.022121204222145474,-0.2931142505341513 +1.207638880767871,-1.2875972760941128 +0.9454727361082769,0.7672793464127563 +-0.12279844281834931,2.0504776882340834 +0.45618608158127105,1.2266454031170526 +-0.13745805153110163,1.8897183463582463 +1.0062818667398483,-0.7583136014960783 +0.7581618864573721,-0.24952291798655124 +-0.04605751401318944,2.26576245631132 +-0.7064714794231368,1.7082604667202743 +0.36457182259266385,-0.11183440148315085 +1.432051161429719,-1.049440145570835 +0.17736223033980747,-0.2208821925610549 +1.0262806634924135,0.17952545057047536 +0.6396321871458248,1.8158754399514363 +0.42043515224254124,-0.045481822537780145 +0.8973106759052446,0.9130143167933975 +-0.5259272103836963,-0.06384064187434503 +-0.549780916171878,1.6844616386646558 +0.3762734481114097,1.7444614153426639 +1.2205139325998016,-1.5131537362625858 +-0.11370700607502862,0.42716214493747856 +0.5772475522874589,0.8249734266599862 +-0.11068307290641544,1.6539011342059315 +-1.0527496548892983,0.3638993336890138 +-0.8238176247442284,1.635095289726013 +-0.36628999780578475,0.2801811302427275 +-0.40704532529340776,2.365356874999213 +-0.1872929053475224,0.8879176489634011 +0.3037269602272161,2.075349670875984 +0.022121204222145474,-0.2931142505341513 +1.2218191489019277,-1.6000818158128967 +0.6006730182006632,0.4455219166166276 +-0.12279844281834931,2.0504776882340834 +0.45618608158127105,1.2266454031170526 +1.013289904662015,0.9849610215880622 +1.0062818667398483,-0.7583136014960783 +0.24005144433565326,-0.2198643383369655 +0.19309284228511542,1.4498411499835777 +1.0466241364297537,-1.2658703067053998 +0.8542226129957893,0.08971447109359376 +1.432051161429719,-1.049440145570835 +0.17736223033980747,-0.2208821925610549 +-0.38021726472736184,2.1120269587786393 +0.6396321871458248,1.8158754399514363 +-0.10333006852174687,2.165708141139229 +0.8973106759052446,0.9130143167933975 +-0.5259272103836963,-0.06384064187434503 +-0.549780916171878,1.6844616386646558 +0.3762734481114097,1.7444614153426639 +1.2205139325998016,-1.5131537362625858 +-0.11370700607502862,0.42716214493747856 +0.360569225923531,1.906665243567234 +-0.11068307290641544,1.6539011342059315 +-1.0527496548892983,0.3638993336890138 +-0.8238176247442284,1.635095289726013 +-0.36628999780578475,0.2801811302427275 +0.1525777308454651,0.11680202993922473 +0.10248073344541504,1.2742038094287396 +0.3037269602272161,2.075349670875984 +0.022121204222145474,-0.2931142505341513 +1.2218191489019277,-1.6000818158128967 +0.126629034691999,2.5240942936227895 +-0.1828966288062494,1.5266907125392286 +0.6608484969386271,1.13077633952347 +1.013289904662015,0.9849610215880622 +0.5694725272120942,-0.6094359230295049 +0.24005144433565326,-0.2198643383369655 +-0.5889829238044734,1.0818954886131318 +1.0466241364297537,-1.2658703067053998 +0.8542226129957893,0.08971447109359376 +0.33892600379782756,0.277284273559086 +0.17736223033980747,-0.2208821925610549 +-0.38021726472736184,2.1120269587786393 +0.6396321871458248,1.8158754399514363 +0.8340938581278019,1.373104493593252 +0.8973106759052446,0.9130143167933975 +-0.5259272103836963,-0.06384064187434503 +-0.65634980512076,-0.004707088241589774 +-0.3280920332530515,0.3660978982062522 +1.2205139325998016,-1.5131537362625858 +-0.11370700607502862,0.42716214493747856 +0.360569225923531,1.906665243567234 +0.1534785184641438,2.2339718755515956 +0.6348226618907938,0.5334419574508058 +1.7629497773861154,-2.8666313117409117 +-0.36628999780578475,0.2801811302427275 +0.1525777308454651,0.11680202993922473 +1.643325509522382,-0.6785207537422336 +0.3037269602272161,2.075349670875984 +-0.8178404471976439,-0.6350206831722878 +0.513727575532583,-0.3967752691581101 +0.126629034691999,2.5240942936227895 +-0.1828966288062494,1.5266907125392286 +0.6608484969386271,1.13077633952347 +-0.3522274109931895,1.0860998846143333 +-0.4528753458667777,1.2382589516832212 +0.24005144433565326,-0.2198643383369655 +-0.5889829238044734,1.0818954886131318 +1.0466241364297537,-1.2658703067053998 +0.8542226129957893,0.08971447109359376 +0.33892600379782756,0.277284273559086 +0.17736223033980747,-0.2208821925610549 +-0.41846717412263923,1.5731302389968842 +-0.08356385600692906,-0.029579954320922378 +0.8340938581278019,1.373104493593252 +0.8973106759052446,0.9130143167933975 +-0.2649175360777722,0.18767854809467222 +-0.65634980512076,-0.004707088241589774 +0.8466517420741053,1.0354417045712667 +1.2205139325998016,-1.5131537362625858 +-0.11370700607502862,0.42716214493747856 +0.360569225923531,1.906665243567234 +0.1534785184641438,2.2339718755515956 +0.6348226618907938,0.5334419574508058 +1.7629497773861154,-2.8666313117409117 +1.636631132474323,-1.445836162919346 +-0.4426276880672608,0.1376238475488181 +1.643325509522382,-0.6785207537422336 +0.3037269602272161,2.075349670875984 +0.8665856629727996,-0.5293020019541266 +0.21183493155072664,-0.40254492636696837 +-0.28134369964570394,0.9316971834209069 +-0.764830412138427,0.4629489585545934 +0.6608484969386271,1.13077633952347 +0.6027332851259197,-0.16838677901234655 +-0.4528753458667777,1.2382589516832212 +0.24005144433565326,-0.2198643383369655 +1.1922201462547737,0.18995709630459673 +1.0466241364297537,-1.2658703067053998 +0.8542226129957893,0.08971447109359376 +0.33892600379782756,0.277284273559086 +-0.6971432850696786,0.7903662181553489 +-0.41846717412263923,1.5731302389968842 +0.8316436234208828,0.18260287754316729 +0.8340938581278019,1.373104493593252 +0.8973106759052446,0.9130143167933975 +-0.2649175360777722,0.18767854809467222 +-0.65634980512076,-0.004707088241589774 +0.8466517420741053,1.0354417045712667 +1.2205139325998016,-1.5131537362625858 +0.9549989007128762,-1.1482131206919373 +0.750758445416513,1.256255272246288 +0.1534785184641438,2.2339718755515956 +0.24249838341878593,0.591776924592299 +1.7629497773861154,-2.8666313117409117 +1.636631132474323,-1.445836162919346 +-0.4426276880672608,0.1376238475488181 +1.643325509522382,-0.6785207537422336 +0.3037269602272161,2.075349670875984 +0.8665856629727996,-0.5293020019541266 +1.2090038489288868,0.2054279355720552 +0.7966595745485655,-0.5419698483693239 +-0.764830412138427,0.4629489585545934 +0.5829370833888567,0.9598245285265705 +0.9968171836870054,0.7328772662645349 +-0.4528753458667777,1.2382589516832212 +0.37635754995529025,1.6523711487973731 +1.8837626030507737,-2.613387405510413 +0.5918546445347086,0.2673443849129604 +0.05087381900620863,1.2696532381018228 +0.3134771785573481,1.501717958165347 +0.5256321560788496,1.3404379265743471 +-0.41846717412263923,1.5731302389968842 +0.8316436234208828,0.18260287754316729 +0.8340938581278019,1.373104493593252 +-0.07261754169759238,1.8697149229260583 +0.30600343833504917,0.04344409674506988 +-0.65634980512076,-0.004707088241589774 +0.8466517420741053,1.0354417045712667 +1.2205139325998016,-1.5131537362625858 +0.9549989007128762,-1.1482131206919373 +0.5854158511597525,0.005461692706610788 +-0.5914957574062258,0.1847111482767685 +0.24249838341878593,0.591776924592299 +0.9651300605660695,-0.8673333065318038 +1.636631132474323,-1.445836162919346 +-0.4426276880672608,0.1376238475488181 +-0.40046082365466257,-0.5040073495850371 +0.46735067476414144,0.07370874442093078 +0.8665856629727996,-0.5293020019541266 +1.2090038489288868,0.2054279355720552 +0.7966595745485655,-0.5419698483693239 +-0.764830412138427,0.4629489585545934 +0.5829370833888567,0.9598245285265705 +-0.778210850909743,0.35055810328771897 +-0.4528753458667777,1.2382589516832212 +0.37635754995529025,1.6523711487973731 +1.8837626030507737,-2.613387405510413 +0.5918546445347086,0.2673443849129604 +-0.7366569803399438,1.5136270870566704 +0.3134771785573481,1.501717958165347 +0.5256321560788496,1.3404379265743471 +1.31060446831714,-0.12600240662016127 +1.4372382893746338,-1.0254406395993139 +0.4094305653834532,1.1522221898935934 +-0.07261754169759238,1.8697149229260583 +0.30600343833504917,0.04344409674506988 +-0.6871001135706275,-0.19116489123799552 +0.8466517420741053,1.0354417045712667 +1.2205139325998016,-1.5131537362625858 +-0.518546367589582,0.10291220253449061 +0.5854158511597525,0.005461692706610788 +-0.5914957574062258,0.1847111482767685 +0.24249838341878593,0.591776924592299 +0.8515171795262735,-0.5768989342801522 +1.636631132474323,-1.445836162919346 +-0.4426276880672608,0.1376238475488181 +-0.2604205937969315,0.9278494404441382 +0.46735067476414144,0.07370874442093078 +1.786496325822496,-2.2179697890545014 +1.2090038489288868,0.2054279355720552 +0.7966595745485655,-0.5419698483693239 +-0.764830412138427,0.4629489585545934 +1.307268476110759,0.3360008129544585 +-0.778210850909743,0.35055810328771897 +-0.4528753458667777,1.2382589516832212 +0.8335789978307604,0.6382584839328599 +-0.8391473403471071,0.344720355667136 +-0.40058582484241756,-0.4564617058701449 +-0.030771511409894425,1.0646143303328683 +0.972403940905836,-0.06681688551034197 +-0.8257516247804115,-0.22111068756294194 +-0.4972454613962945,1.0423911261184302 +0.029314434708966275,0.2460152147008709 +1.3490807010774493,-1.1345582879297398 +-0.07261754169759238,1.8697149229260583 +-0.5918724339013464,0.25677951843308094 +-0.6871001135706275,-0.19116489123799552 +0.998075246474073,0.5967686436968765 +1.2205139325998016,-1.5131537362625858 +-0.518546367589582,0.10291220253449061 +0.5847507975008884,-0.49252604472088 +-0.545607405491664,0.048185969310337994 +0.8207410448384842,-0.8462863444001285 +-0.6571211920946347,-0.12983388565096937 +-0.11563343472113363,1.339768947430672 +-0.4426276880672608,0.1376238475488181 +-0.2604205937969315,0.9278494404441382 +0.46735067476414144,0.07370874442093078 +1.786496325822496,-2.2179697890545014 +1.2090038489288868,0.2054279355720552 +1.3700062690298327,-1.3033262137602413 +-0.764830412138427,0.4629489585545934 +-0.685500717435734,-0.0693876549369587 +-0.778210850909743,0.35055810328771897 +-0.4528753458667777,1.2382589516832212 +0.8335789978307604,0.6382584839328599 +-0.4106464446014623,-0.28202563739072206 +-0.4436196260773645,-0.0642080491069339 +-0.030771511409894425,1.0646143303328683 +0.12207112846346468,1.2356404243404138 +-0.8257516247804115,-0.22111068756294194 +-0.008210004859726339,1.0701835669127422 +-0.25230885633680644,0.22880293245503738 +0.5810220525983003,0.5667397004452622 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +-0.8401464961398492,0.4251964038382032 +0.998075246474073,0.5967686436968765 +1.2205139325998016,-1.5131537362625858 +-0.518546367589582,0.10291220253449061 +0.26746535124088766,0.7205627949506991 +-0.7662716061892697,1.1223916292348763 +0.8207410448384842,-0.8462863444001285 +-0.6571211920946347,-0.12983388565096937 +-0.11563343472113363,1.339768947430672 +-0.4426276880672608,0.1376238475488181 +-0.6522457689728173,0.32444334271970937 +0.46735067476414144,0.07370874442093078 +1.786496325822496,-2.2179697890545014 +1.2090038489288868,0.2054279355720552 +-0.6079745509966662,-0.0642583391149536 +-0.764830412138427,0.4629489585545934 +-0.685500717435734,-0.0693876549369587 +-0.778210850909743,0.35055810328771897 +-0.4528753458667777,1.2382589516832212 +0.9074387939088493,-0.7881674830591914 +-0.21831759581774263,0.0009531959554412717 +1.676737119795267,-2.06704166245094 +-0.6297005509978746,1.1374005647429868 +-0.9414975118909631,0.40512992986222746 +-0.4148059453460421,0.3842881701642853 +-0.8998060091010479,-0.44897355473104444 +-0.25230885633680644,0.22880293245503738 +-0.796692800007684,0.5868026933795196 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +-0.6458947706714482,0.7921878946696197 +0.998075246474073,0.5967686436968765 +1.2205139325998016,-1.5131537362625858 +-0.7174180687355172,1.3331694449108062 +0.27568505463236737,0.28438310182501003 +-0.27093216498562833,0.30534717015360946 +1.6489600590053932,-1.5665783090521739 +-0.3237988587894088,0.49030654442268395 +-0.11563343472113363,1.339768947430672 +-0.4426276880672608,0.1376238475488181 +-0.6522457689728173,0.32444334271970937 +0.10235209640689263,-0.20604927505432413 +1.786496325822496,-2.2179697890545014 +-0.749516353290934,0.15708914261999773 +-0.46492296877556427,-0.1535018111897199 +0.6899297818855187,1.2692696044559737 +0.7605192043768989,0.9399187027557916 +-0.6892094008591562,0.4068185856773986 +-0.4528753458667777,1.2382589516832212 +0.9074387939088493,-0.7881674830591914 +-0.21831759581774263,0.0009531959554412717 +1.676737119795267,-2.06704166245094 +-0.4281189275576453,-0.23108294994140732 +-0.4274614576084525,1.2434099069045035 +-0.4148059453460421,0.3842881701642853 +-0.8998060091010479,-0.44897355473104444 +-0.14536713913201688,0.3562167946503596 +-0.687306631667642,1.4894160392960722 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +-0.9323679311213344,0.31135855136241797 +0.998075246474073,0.5967686436968765 +0.548743025023204,0.21637868459788 +-0.7174180687355172,1.3331694449108062 +0.9494609467744837,0.6982482458658239 +-1.0297110600912116,-0.12205329563146622 +0.579024260103356,-0.6487239343795882 +-0.3237988587894088,0.49030654442268395 +-0.11563343472113363,1.339768947430672 +-0.4426276880672608,0.1376238475488181 +-0.6522457689728173,0.32444334271970937 +-0.2491356146405621,1.6960723109168654 +1.786496325822496,-2.2179697890545014 +-0.749516353290934,0.15708914261999773 +-0.6227343165935366,0.7217332886817263 +0.6899297818855187,1.2692696044559737 +0.7605192043768989,0.9399187027557916 +-0.521787919516054,-0.5903815809805866 +0.5078532737118806,1.703800319103269 +0.9074387939088493,-0.7881674830591914 +-0.21831759581774263,0.0009531959554412717 +1.676737119795267,-2.06704166245094 +-0.043497447235686715,1.938484216238092 +-0.4274614576084525,1.2434099069045035 +0.012336831912906687,0.004683952106533884 +0.9890640043159207,0.5930779784460737 +-0.14536713913201688,0.3562167946503596 +-0.687306631667642,1.4894160392960722 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +-0.06732410685102069,1.037561486759391 +0.998075246474073,0.5967686436968765 +1.4861432101167116,-2.350912231256654 +-0.861623842964617,-0.5845132474997582 +1.345326860994715,-0.9804522258240008 +1.376000243737363,-1.764542000985237 +0.4468734902010882,-0.13182780202772132 +0.7532118050303401,0.48921580244810037 +0.09934322575558652,0.4240801846335913 +-0.4426276880672608,0.1376238475488181 +-0.6522457689728173,0.32444334271970937 +-0.2491356146405621,1.6960723109168654 +1.786496325822496,-2.2179697890545014 +-0.749516353290934,0.15708914261999773 +-0.6227343165935366,0.7217332886817263 +0.6899297818855187,1.2692696044559737 +0.7605192043768989,0.9399187027557916 +-0.521787919516054,-0.5903815809805866 +0.5078532737118806,1.703800319103269 +0.9074387939088493,-0.7881674830591914 +-0.21831759581774263,0.0009531959554412717 +1.676737119795267,-2.06704166245094 +-0.043497447235686715,1.938484216238092 +-0.4274614576084525,1.2434099069045035 +-0.9672612907600509,-0.2917239823371988 +0.9890640043159207,0.5930779784460737 +-0.14536713913201688,0.3562167946503596 +-0.687306631667642,1.4894160392960722 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +-0.06732410685102069,1.037561486759391 +0.998075246474073,0.5967686436968765 +-0.591480130979712,-0.3056833441594104 +-0.724873089428332,1.302016523348071 +1.345326860994715,-0.9804522258240008 +1.376000243737363,-1.764542000985237 +0.4468734902010882,-0.13182780202772132 +1.5091230182711606,-1.0202220505476298 +0.06183649162421728,2.486908127824319 +-0.4426276880672608,0.1376238475488181 +1.7239230911498304,-2.3889838184599523 +-0.9109882612350068,-0.006155341827990046 +0.7309188370320887,1.5707004189352118 +-0.4096412982106955,-0.13745412489451939 +-0.6227343165935366,0.7217332886817263 +0.627656156144317,0.8516840451197634 +0.4510062009085377,1.1595839765340545 +-0.521787919516054,-0.5903815809805866 +0.5078532737118806,1.703800319103269 +0.9074387939088493,-0.7881674830591914 +-0.25292599325610426,1.9923083062960263 +1.423557697893242,-1.4299695802153352 +1.603863376957526,-2.4936302914058524 +-0.4274614576084525,1.2434099069045035 +-0.9672612907600509,-0.2917239823371988 +-0.372942311858289,2.0787383182150108 +0.5524287322567051,1.0776505541229728 +-0.5652739902985191,0.38504298269418036 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +0.0054191598587287615,-0.3890114056871229 +0.998075246474073,0.5967686436968765 +1.7699342280432506,-2.218102757355452 +-0.019639742139087923,0.6386149960922933 +1.4652546807004971,-2.037469401096258 +1.376000243737363,-1.764542000985237 +0.4468734902010882,-0.13182780202772132 +1.5091230182711606,-1.0202220505476298 +-0.2630307472037064,1.0015430542909878 +2.137569268591293,-3.7572072092967006 +1.7239230911498304,-2.3889838184599523 +1.3093039609005013,-0.4140701689129873 +1.087356743800824,-1.2627927243239165 +1.1770803549149778,0.5423809077429419 +-0.6227343165935366,0.7217332886817263 +0.627656156144317,0.8516840451197634 +0.4510062009085377,1.1595839765340545 +0.6788559315289804,0.9710057957135534 +0.5078532737118806,1.703800319103269 +0.9074387939088493,-0.7881674830591914 +-0.5725851029738143,0.6081904899920141 +1.423557697893242,-1.4299695802153352 +1.603863376957526,-2.4936302914058524 +-0.4274614576084525,1.2434099069045035 +-0.9672612907600509,-0.2917239823371988 +-0.9056264464640107,-0.5653550312250951 +0.46069424912602347,1.6718530110295764 +0.9477341219776814,0.8897031203423093 +-0.07261754169759238,1.8697149229260583 +1.5461788229620606,-1.6631738639101994 +0.0054191598587287615,-0.3890114056871229 +0.998075246474073,0.5967686436968765 +1.7699342280432506,-2.218102757355452 +-0.019639742139087923,0.6386149960922933 +-1.1462904498589306,-0.00995986798008841 +-0.7678832990564775,0.041056871363260417 +-0.8259542698708247,0.6983325766535138 +1.5091230182711606,-1.0202220505476298 +1.5030656867158398,-0.8779782124538802 +1.6776833999296203,-1.6389018116491392 +1.7239230911498304,-2.3889838184599523 +0.7364660891800149,-0.23783399901642 +1.087356743800824,-1.2627927243239165 +0.8289379515486283,1.0065710078668026 +-0.6227343165935366,0.7217332886817263 +0.10367091398970002,0.5083767156320601 +0.2732786285849125,0.40875317793764765 +0.6788559315289804,0.9710057957135534 +0.5078532737118806,1.703800319103269 +0.6230382624658133,-0.5197315057209979 +-0.5725851029738143,0.6081904899920141 +1.423557697893242,-1.4299695802153352 +-0.38046720286656516,-0.5268622038049704 +1.249497600033644,-1.014572972639645 +-0.4640730152497774,0.7871066135276202 +0.23273962420825295,0.6537625014791937 +0.46069424912602347,1.6718530110295764 +0.45472844008123386,-0.3316654219666352 +0.2723696049006076,-0.13649788959718556 +-0.2982867647840848,1.775502783453174 +0.0054191598587287615,-0.3890114056871229 +0.998075246474073,0.5967686436968765 +1.3368151882149273,-1.7625637154636142 +-0.019639742139087923,0.6386149960922933 +0.9123565928066787,1.1778715607964774 +-0.7678832990564775,0.041056871363260417 +-0.8259542698708247,0.6983325766535138 +1.5091230182711606,-1.0202220505476298 +1.5030656867158398,-0.8779782124538802 +1.6776833999296203,-1.6389018116491392 +1.7239230911498304,-2.3889838184599523 +0.7364660891800149,-0.23783399901642 +-0.3850361200184419,1.2208980812164953 +0.8289379515486283,1.0065710078668026 +-0.6227343165935366,0.7217332886817263 +1.407642964823763,-1.3307768907418085 +0.28085737020626567,0.1603885780241716 +0.6788559315289804,0.9710057957135534 +0.5078532737118806,1.703800319103269 +-0.09295983943227326,-0.13788115115803093 +-0.5725851029738143,0.6081904899920141 +1.423557697893242,-1.4299695802153352 +1.6921981426474182,-2.3909942762242458 +1.249497600033644,-1.014572972639645 +-0.4640730152497774,0.7871066135276202 +-0.5806957697730322,-0.7037787454882587 +0.46069424912602347,1.6718530110295764 +-0.2989728227849846,-0.11449946119135185 +0.2723696049006076,-0.13649788959718556 +-0.2982867647840848,1.775502783453174 +0.3978431431884601,-0.24173593020741546 +0.998075246474073,0.5967686436968765 +1.3368151882149273,-1.7625637154636142 +-0.8925709547714825,-0.14311114726915208 +0.9123565928066787,1.1778715607964774 +-0.7678832990564775,0.041056871363260417 +-0.8259542698708247,0.6983325766535138 +1.1705857267155915,-0.7137226860584274 +1.496318611405665,-1.6640204426377325 +0.9629203259762952,-0.451628997728033 +-0.14089342158878687,0.6404947023822429 +0.7364660891800149,-0.23783399901642 +-0.3850361200184419,1.2208980812164953 +0.8289379515486283,1.0065710078668026 +-0.6227343165935366,0.7217332886817263 +1.407642964823763,-1.3307768907418085 +0.28085737020626567,0.1603885780241716 +0.6788559315289804,0.9710057957135534 +0.5078532737118806,1.703800319103269 +0.6771908152951487,-0.4021878691595387 +-0.5725851029738143,0.6081904899920141 +1.423557697893242,-1.4299695802153352 +1.6921981426474182,-2.3909942762242458 +-0.8950240686857242,0.749496216056634 +1.558599834859295,-1.1159344686609762 +-0.5806957697730322,-0.7037787454882587 +-0.9604852961133356,-0.4606284370116086 +-0.2989728227849846,-0.11449946119135185 +0.2723696049006076,-0.13649788959718556 +-0.6147319159632958,0.245427788315627 +0.8420211327567869,1.391600087689959 +0.998075246474073,0.5967686436968765 +1.3368151882149273,-1.7625637154636142 +-0.8925709547714825,-0.14311114726915208 +0.9123565928066787,1.1778715607964774 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +1.1705857267155915,-0.7137226860584274 +-0.5592176124140766,1.5967504764009792 +0.9629203259762952,-0.451628997728033 +-0.14089342158878687,0.6404947023822429 +0.7364660891800149,-0.23783399901642 +-0.3850361200184419,1.2208980812164953 +0.6030389174719639,0.3802231696257179 +0.9979715137982468,-0.350642178969488 +1.407642964823763,-1.3307768907418085 +1.1920970412639178,0.25546076615824004 +0.6788559315289804,0.9710057957135534 +0.5078532737118806,1.703800319103269 +0.6771908152951487,-0.4021878691595387 +-0.5725851029738143,0.6081904899920141 +1.423557697893242,-1.4299695802153352 +1.6921981426474182,-2.3909942762242458 +1.2717605821305624,0.08769556450319645 +1.558599834859295,-1.1159344686609762 +1.127300262604713,0.1541824454179454 +-0.9604852961133356,-0.4606284370116086 +-0.2989728227849846,-0.11449946119135185 +0.2723696049006076,-0.13649788959718556 +1.1344340770663113,0.15733811883317717 +0.8420211327567869,1.391600087689959 +1.2750443319430596,-1.4179818258104837 +1.3368151882149273,-1.7625637154636142 +-0.8925709547714825,-0.14311114726915208 +0.9123565928066787,1.1778715607964774 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +1.1705857267155915,-0.7137226860584274 +-0.5592176124140766,1.5967504764009792 +-0.7272087776944633,1.5579749878179698 +-0.14089342158878687,0.6404947023822429 +0.7364660891800149,-0.23783399901642 +-0.3850361200184419,1.2208980812164953 +1.2984398888519122,-1.2339515575276103 +0.9979715137982468,-0.350642178969488 +0.4053783758622999,1.989854322793359 +0.9265503493648651,1.0252006707602896 +0.03573882666739103,2.049445882510178 +0.5078532737118806,1.703800319103269 +0.7356671957896422,-0.5286754036477581 +0.7172789686076849,-0.8977814509695415 +1.423557697893242,-1.4299695802153352 +1.6921981426474182,-2.3909942762242458 +1.2717605821305624,0.08769556450319645 +0.9312969044561991,-0.9882886767693675 +-0.5477667547033408,1.9224600249715031 +-0.9604852961133356,-0.4606284370116086 +-0.2989728227849846,-0.11449946119135185 +0.2723696049006076,-0.13649788959718556 +1.1344340770663113,0.15733811883317717 +0.8420211327567869,1.391600087689959 +0.2239810864358166,-0.2772693214922307 +-0.24261623247394326,1.277432298645924 +-0.8925709547714825,-0.14311114726915208 +-0.23966990715591718,0.32628417753735295 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +-0.15887762062727576,0.7164468541663507 +0.6433299549291229,1.6880397172508992 +0.5106179886473574,-0.4286564462621649 +0.9578089076639796,-1.008105258628515 +-0.17920682768294302,1.3295228508763 +0.0052728888243388505,-0.20880250199027114 +-0.32908779097792534,2.214109623223252 +-0.6876097239159815,-0.10060031408247888 +0.4053783758622999,1.989854322793359 +-0.10286972536803418,1.2184206542886824 +0.03573882666739103,2.049445882510178 +0.5078532737118806,1.703800319103269 +1.4498322117551012,-1.7324513634049579 +0.22438581882293887,2.192136955283646 +-0.8805325845627637,-0.024659532156883338 +1.6921981426474182,-2.3909942762242458 +1.2717605821305624,0.08769556450319645 +0.9312969044561991,-0.9882886767693675 +0.4702493614248761,-0.21319876486218975 +0.09931244961693209,1.132984118401825 +-0.2994398966301223,0.4053817641952641 +0.2723696049006076,-0.13649788959718556 +1.1344340770663113,0.15733811883317717 +1.3859047197038454,-1.014735908988421 +-0.7347501291843539,-0.1029458749327648 +-0.12117889974659796,0.028300985676250445 +0.7874085511061941,1.333934443120606 +-0.23966990715591718,0.32628417753735295 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +-0.572423503995731,0.6541473872279877 +0.6433299549291229,1.6880397172508992 +-1.0490890738004803,-0.8013460338277192 +0.9578089076639796,-1.008105258628515 +-0.10397851890075965,2.2454901834925027 +0.0052728888243388505,-0.20880250199027114 +-0.32908779097792534,2.214109623223252 +-0.7271540503875529,0.46243433341963847 +0.4053783758622999,1.989854322793359 +-0.10286972536803418,1.2184206542886824 +0.03573882666739103,2.049445882510178 +0.5078532737118806,1.703800319103269 +1.4498322117551012,-1.7324513634049579 +-0.3829758748970512,0.5469867034670924 +-0.8805325845627637,-0.024659532156883338 +1.6921981426474182,-2.3909942762242458 +0.8240284185812069,0.4665654753169871 +0.9312969044561991,-0.9882886767693675 +1.0541223185009319,-1.1958061928774546 +0.09931244961693209,1.132984118401825 +0.6032081902738018,-0.6796297431424546 +0.2723696049006076,-0.13649788959718556 +1.1344340770663113,0.15733811883317717 +1.3859047197038454,-1.014735908988421 +-0.7347501291843539,-0.1029458749327648 +1.1042594032838262,0.6548254666505451 +0.7874085511061941,1.333934443120606 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +-0.572423503995731,0.6541473872279877 +0.49037947942514604,-0.12819514241428004 +-1.0490890738004803,-0.8013460338277192 +0.9578089076639796,-1.008105258628515 +-0.10397851890075965,2.2454901834925027 +1.0067815138076486,-0.6906390823044528 +-0.32908779097792534,2.214109623223252 +0.9167039775355806,-0.7371039758786101 +-0.08310606364233109,0.26252818549179036 +-0.10286972536803418,1.2184206542886824 +0.03573882666739103,2.049445882510178 +0.41223040176366976,0.3597621098307813 +-0.26353449439067045,0.10652778425832227 +-0.3829758748970512,0.5469867034670924 +0.8568020065765062,-0.9809386841883827 +1.6921981426474182,-2.3909942762242458 +0.8240284185812069,0.4665654753169871 +0.2522522414394358,-0.3728353277068682 +0.4682493616485439,0.1654410804175666 +-0.057492227301752616,1.4040005458319849 +0.3293565287028895,0.9652541833663981 +0.2723696049006076,-0.13649788959718556 +1.1344340770663113,0.15733811883317717 +1.3859047197038454,-1.014735908988421 +-0.0127782192471122,0.21469733185029116 +1.1042594032838262,0.6548254666505451 +0.7874085511061941,1.333934443120606 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +1.6980953686892177,-1.3411609082751421 +1.5783554525498635,-1.6758625007194583 +-1.0490890738004803,-0.8013460338277192 +1.3885975845495515,-1.2028146018962373 +0.49591493035186973,-0.025449935338721863 +1.0067815138076486,-0.6906390823044528 +-0.8042211486039329,0.45288081312158135 +0.9167039775355806,-0.7371039758786101 +-0.08310606364233109,0.26252818549179036 +-0.10286972536803418,1.2184206542886824 +0.03573882666739103,2.049445882510178 +-0.7539722456809452,1.595794185749405 +-0.26353449439067045,0.10652778425832227 +0.7889571202667596,1.3847651703185198 +0.8568020065765062,-0.9809386841883827 +1.6921981426474182,-2.3909942762242458 +0.8240284185812069,0.4665654753169871 +0.2522522414394358,-0.3728353277068682 +-1.112093884928954,-0.3004015394505398 +-0.9232246941975261,-0.44342697588060737 +0.3293565287028895,0.9652541833663981 +-0.3076690056059008,2.0119143675500584 +0.05367611045056647,1.805570590435459 +1.3859047197038454,-1.014735908988421 +-0.0127782192471122,0.21469733185029116 +1.1042594032838262,0.6548254666505451 +0.22044560252543977,0.05980055460564926 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +-0.6526884373593234,1.2122100583219173 +1.5783554525498635,-1.6758625007194583 +-1.0490890738004803,-0.8013460338277192 +0.13106928896979975,-0.09622348762775251 +0.8143785147027375,1.0557455487274074 +1.0067815138076486,-0.6906390823044528 +0.861929646228021,1.0576876969438447 +1.1884212717139597,-0.8741895555832545 +-0.08310606364233109,0.26252818549179036 +-0.8392900601124702,0.9544740170062721 +1.1160626263826614,0.8823644392104741 +-0.7539722456809452,1.595794185749405 +-0.17317503625569752,0.17348660558352869 +0.7889571202667596,1.3847651703185198 +0.8568020065765062,-0.9809386841883827 +1.6921981426474182,-2.3909942762242458 +1.2878481733145606,-0.37347538636911576 +0.2522522414394358,-0.3728353277068682 +-1.112093884928954,-0.3004015394505398 +-0.9232246941975261,-0.44342697588060737 +0.3293565287028895,0.9652541833663981 +-0.3076690056059008,2.0119143675500584 +0.05367611045056647,1.805570590435459 +1.3859047197038454,-1.014735908988421 +-0.0127782192471122,0.21469733185029116 +1.1042594032838262,0.6548254666505451 +0.22044560252543977,0.05980055460564926 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +-0.6526884373593234,1.2122100583219173 +1.5783554525498635,-1.6758625007194583 +-1.0490890738004803,-0.8013460338277192 +0.13106928896979975,-0.09622348762775251 +0.5034756534624699,1.992293539891883 +0.9453283445069784,-0.9661433657272067 +0.8852378368718221,0.5000984528726915 +1.3645758623558815,-0.6146719748184639 +-0.08310606364233109,0.26252818549179036 +-0.8392900601124702,0.9544740170062721 +0.4037033298318768,1.7678798276617294 +-0.7539722456809452,1.595794185749405 +-0.17317503625569752,0.17348660558352869 +0.7889571202667596,1.3847651703185198 +0.8568020065765062,-0.9809386841883827 +1.6921981426474182,-2.3909942762242458 +1.2878481733145606,-0.37347538636911576 +0.2474011925440122,1.756124769079228 +0.515121721395766,1.3239544493915816 +-0.7087503137275043,-0.04051394886364719 +-0.31968268182572224,0.4343928451878006 +-0.3076690056059008,2.0119143675500584 +0.05367611045056647,1.805570590435459 +-0.4055117231054068,1.0379696305628028 +-0.0127782192471122,0.21469733185029116 +1.1042594032838262,0.6548254666505451 +0.23068881237120586,2.5754142571948693 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.6576064066261911,1.2902210176427957 +-0.8011233755663137,0.7119934184826997 +1.5783554525498635,-1.6758625007194583 +-1.0490890738004803,-0.8013460338277192 +-0.5710160760624794,1.3735895356837342 +0.5034756534624699,1.992293539891883 +0.29789705455884546,-0.026238540443812797 +-0.6611878317128076,0.9322722466246931 +1.3645758623558815,-0.6146719748184639 +0.4446692763657934,1.5712737040395113 +-0.8392900601124702,0.9544740170062721 +0.12768991503437005,1.9809590275000466 +0.3867846248070477,0.16062004245612632 +-0.17317503625569752,0.17348660558352869 +0.648439234234687,0.3063728762522399 +0.8568020065765062,-0.9809386841883827 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.2474011925440122,1.756124769079228 +0.515121721395766,1.3239544493915816 +-0.7087503137275043,-0.04051394886364719 +0.22833924792016336,1.0447898626655454 +0.396671890261756,2.3841147431767715 +0.05367611045056647,1.805570590435459 +-0.4055117231054068,1.0379696305628028 +1.3199644543895799,-0.31065250464079597 +1.1042594032838262,0.6548254666505451 +0.7317781140866173,-0.9686660796958798 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.7305848076131176,1.4316031782872354 +0.12631517247227053,1.0834210041541295 +1.5783554525498635,-1.6758625007194583 +-0.9855130663970088,1.0703333138857618 +-0.5710160760624794,1.3735895356837342 +-0.42718919001631317,-0.41113757861404454 +0.29789705455884546,-0.026238540443812797 +-0.6611878317128076,0.9322722466246931 +1.3645758623558815,-0.6146719748184639 +0.4446692763657934,1.5712737040395113 +1.5456816305034669,-0.595167781802902 +0.11614386544280747,1.4498917463969017 +0.3731015330439523,0.05363790614495012 +0.7401810770295387,1.4316956572783368 +0.648439234234687,0.3063728762522399 +-0.37330109174373866,0.7863305407870061 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.2474011925440122,1.756124769079228 +-0.01838792831545416,0.4029297309865851 +-0.5670521832228059,0.5356248521485744 +0.04976910603153356,0.24326207638675365 +-0.5988232931979987,0.719607187264732 +-0.9025040390373272,-0.12874173950838907 +-0.6763391121607498,-0.20790051908203855 +-0.2637083466158442,0.8250136242351479 +1.1042594032838262,0.6548254666505451 +-0.2265293827393985,0.3599575436967516 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +1.7179834804944734,-0.9078317585915906 +0.12631517247227053,1.0834210041541295 +1.5783554525498635,-1.6758625007194583 +-0.12265883125463464,-0.24215789395057805 +-0.5710160760624794,1.3735895356837342 +0.35139126595542675,-0.04775769395336049 +0.29789705455884546,-0.026238540443812797 +0.40562456587382145,0.05562926494418702 +-0.2044459465626357,0.8285224632415417 +0.19139024137774205,0.22365558746873432 +1.5456816305034669,-0.595167781802902 +-0.4326785501720017,-0.07583707719085092 +-0.6129383378314222,1.0506817331021154 +0.7401810770295387,1.4316956572783368 +1.3576046017782981,-1.2454486291225155 +-0.37330109174373866,0.7863305407870061 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.2474011925440122,1.756124769079228 +-0.01838792831545416,0.4029297309865851 +-0.5670521832228059,0.5356248521485744 +-0.925063992531501,0.5665500700978984 +-0.9726715986493706,-0.8530843499136793 +-0.9025040390373272,-0.12874173950838907 +-0.7969065156917619,0.5311781366682082 +1.051969310259973,0.7979302265786623 +1.1042594032838262,0.6548254666505451 +1.4907167538567072,-1.8507632773328666 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +0.38729177978109747,-0.7749490096530001 +0.5932518123547262,1.2861609547869062 +0.5422543209204918,-0.556761543639856 +0.42279716531713935,1.9310772670156926 +-0.5710160760624794,1.3735895356837342 +0.35139126595542675,-0.04775769395336049 +0.5178151861706259,1.9909379083447072 +0.5065382590389501,1.3385645452673223 +-0.7153818335551163,0.6066345458973469 +-0.614161269856689,0.8745556001936852 +1.5456816305034669,-0.595167781802902 +-0.4326785501720017,-0.07583707719085092 +-0.6129383378314222,1.0506817331021154 +1.4128551639416131,-2.2761488868321518 +1.3576046017782981,-1.2454486291225155 +0.3837926052021395,-0.4935005346811421 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.6830930676161676,-0.8054926697555916 +-0.01838792831545416,0.4029297309865851 +-0.5670521832228059,0.5356248521485744 +0.3242331954894834,0.47953233875142465 +0.888363889952363,-0.03701908263772036 +-0.9025040390373272,-0.12874173950838907 +0.41955074976882606,1.7699636652551256 +1.051969310259973,0.7979302265786623 +1.6319383150215456,-1.715482403477185 +-0.018998051171529307,0.552050874179753 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +1.7171280680845027,-1.1554760820356471 +0.6425975412473179,-0.424992557532722 +0.5422543209204918,-0.556761543639856 +0.42279716531713935,1.9310772670156926 +-0.5710160760624794,1.3735895356837342 +0.35139126595542675,-0.04775769395336049 +0.5178151861706259,1.9909379083447072 +0.7423823008295882,0.5542479147653961 +-0.7153818335551163,0.6066345458973469 +-0.614161269856689,0.8745556001936852 +1.5456816305034669,-0.595167781802902 +-0.4326785501720017,-0.07583707719085092 +-0.6129383378314222,1.0506817331021154 +1.4128551639416131,-2.2761488868321518 +1.3576046017782981,-1.2454486291225155 +1.2559868424859566,-1.3357729325826164 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.6830930676161676,-0.8054926697555916 +-0.01838792831545416,0.4029297309865851 +-0.5670521832228059,0.5356248521485744 +1.2743961678787792,-0.4370878778187772 +1.2810682397367055,0.43526443537011106 +-0.9025040390373272,-0.12874173950838907 +0.8023663734513657,-1.081098360391922 +1.051969310259973,0.7979302265786623 +1.6319383150215456,-1.715482403477185 +0.5075477745461836,-0.6808394906098207 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.7496628293432094,1.2095844773730198 +0.6425975412473179,-0.424992557532722 +0.5422543209204918,-0.556761543639856 +0.42279716531713935,1.9310772670156926 +0.5098539671428743,1.4937692332529955 +-0.7576445075871775,0.6388327980680798 +-0.5292841495027562,1.9984929622894159 +-0.9658433041771761,-0.2282410883302522 +-0.5864085918427528,0.12053955692886625 +-0.614161269856689,0.8745556001936852 +1.5456816305034669,-0.595167781802902 +0.5084535925373614,0.3924154879676591 +-0.6129383378314222,1.0506817331021154 +1.4128551639416131,-2.2761488868321518 +-0.6754564329812506,0.7962468915428111 +1.3273413783510213,-1.976762974758714 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.6830930676161676,-0.8054926697555916 +-0.01838792831545416,0.4029297309865851 +0.8554776979831094,-0.20621908142834816 +1.2743961678787792,-0.4370878778187772 +0.06523477657402121,-0.0883930799051571 +-0.9025040390373272,-0.12874173950838907 +0.8023663734513657,-1.081098360391922 +1.051969310259973,0.7979302265786623 +1.6319383150215456,-1.715482403477185 +0.5075477745461836,-0.6808394906098207 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +-0.15365957888099868,-0.073426359628686 +0.6425975412473179,-0.424992557532722 +0.5422543209204918,-0.556761543639856 +0.42279716531713935,1.9310772670156926 +-0.23679919014218725,-0.05759415124436984 +-0.7576445075871775,0.6388327980680798 +-0.5292841495027562,1.9984929622894159 +-0.29767658994417134,-0.35076948574055167 +-0.5864085918427528,0.12053955692886625 +0.2552243035272738,0.44469395473188617 +1.5456816305034669,-0.595167781802902 +0.5084535925373614,0.3924154879676591 +-0.6129383378314222,1.0506817331021154 +1.4128551639416131,-2.2761488868321518 +-0.6754564329812506,0.7962468915428111 +1.3273413783510213,-1.976762974758714 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.6830930676161676,-0.8054926697555916 +0.16400088727333512,1.8287047843697988 +-0.2849316135894179,1.3206969621174842 +0.11584637640021767,0.13109401799213527 +0.06523477657402121,-0.0883930799051571 +-0.9025040390373272,-0.12874173950838907 +0.8411136785967264,0.3363705481420984 +-0.892216370414931,0.4020129655643974 +1.6319383150215456,-1.715482403477185 +0.5075477745461836,-0.6808394906098207 +0.43671338370852464,1.8180624629704405 +-0.7678832990564775,0.041056871363260417 +1.58663316635235,-0.37151135896904863 +-0.6187745098824541,1.1455550724432009 +0.5422543209204918,-0.556761543639856 +-0.7769415398816131,0.6551076577812195 +0.39989447461217253,-0.27699810859447016 +-0.7576445075871775,0.6388327980680798 +1.0156017836708235,-1.1862061106561406 +1.3170663942837917,-1.3513831712750282 +-0.5864085918427528,0.12053955692886625 +0.2552243035272738,0.44469395473188617 +1.5456816305034669,-0.595167781802902 +-0.5027184083548136,0.45851022402941694 +1.382023038809956,-1.0311471190161234 +-0.1628381170249656,1.791589881176621 +-0.6754564329812506,0.7962468915428111 +-0.5924245445900443,0.1329086416881634 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.6830930676161676,-0.8054926697555916 +0.16400088727333512,1.8287047843697988 +0.3609927240942492,-0.5549963402393968 +0.11584637640021767,0.13109401799213527 +1.140853096271259,-1.5401850181853889 +-0.9025040390373272,-0.12874173950838907 +0.8411136785967264,0.3363705481420984 +-0.892216370414931,0.4020129655643974 +1.6319383150215456,-1.715482403477185 +-0.03050196917558301,1.0753076719257366 +0.8555261847691218,-0.10559171533345302 +-0.7678832990564775,0.041056871363260417 +-0.1174898980842634,1.1513639436154575 +-0.6187745098824541,1.1455550724432009 +0.5422543209204918,-0.556761543639856 +0.8749371886670136,0.6675263333701369 +-0.4743887384115908,1.3396708934233421 +1.2712261319023659,-0.05743383563906351 +0.38991905207677663,-0.3932307487497089 +1.3170663942837917,-1.3513831712750282 +0.8545421515778981,-0.26000341128464954 +0.6522824670031695,1.3885788548735827 +1.5456816305034669,-0.595167781802902 +0.7643929151602793,0.6783760892755251 +1.4686052430892444,-0.9124228130803584 +-0.1628381170249656,1.791589881176621 +-0.6754564329812506,0.7962468915428111 +-0.5924245445900443,0.1329086416881634 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.06161234978928376,0.2988479734954857 +0.16400088727333512,1.8287047843697988 +0.7610482612684635,1.6232149358654244 +1.0288517632274006,0.7729120403530196 +1.140853096271259,-1.5401850181853889 +-0.9025040390373272,-0.12874173950838907 +0.520392516520895,1.2078725163454953 +-0.892216370414931,0.4020129655643974 +1.6319383150215456,-1.715482403477185 +-0.6042377143669772,0.570567364682371 +0.8555261847691218,-0.10559171533345302 +-0.7678832990564775,0.041056871363260417 +0.9700426654782338,-0.556519901228089 +-0.6187745098824541,1.1455550724432009 +0.5422543209204918,-0.556761543639856 +0.8749371886670136,0.6675263333701369 +-0.4743887384115908,1.3396708934233421 +-0.3040801932371507,0.8128666136006424 +1.305794751157706,-0.12705096139938143 +1.3170663942837917,-1.3513831712750282 +0.8545421515778981,-0.26000341128464954 +0.6522824670031695,1.3885788548735827 +0.35043095737842933,1.4548593866492185 +0.7643929151602793,0.6783760892755251 +0.9452048403356876,1.147742912362877 +1.3179258679173302,-0.6312378283802006 +-0.6754564329812506,0.7962468915428111 +0.5678490044026416,-0.4284181128607282 +1.6921981426474182,-2.3909942762242458 +0.7118606664452553,1.2254822204638922 +0.06161234978928376,0.2988479734954857 +0.9865925287786532,0.439174154403263 +-0.8054605861761304,1.5251782196372239 +0.09715973096528185,2.476582534298336 +1.140853096271259,-1.5401850181853889 +-0.9025040390373272,-0.12874173950838907 +0.7784808881303428,-0.40532426298360447 +-0.892216370414931,0.4020129655643974 +1.6319383150215456,-1.715482403477185 +1.1776887865725023,-0.5577939356291424 +1.873161856637595,-2.543387639658394 +0.9397368455139836,0.6590734624980721 +1.2458753580872113,-1.528862419145387 +-0.6187745098824541,1.1455550724432009 +-0.9456923507767738,-0.1292491946135998 +0.8749371886670136,0.6675263333701369 +-0.4743887384115908,1.3396708934233421 +0.6112917487463988,-0.512304001706546 +1.305794751157706,-0.12705096139938143 +1.3170663942837917,-1.3513831712750282 +1.6291521163507585,-1.0671588737162394 +0.6522824670031695,1.3885788548735827 +0.35043095737842933,1.4548593866492185 +0.7499062294882777,0.4950452548799703 +-0.8337783997966631,0.0861490216047952 +1.3179258679173302,-0.6312378283802006 +-0.6540573672028126,0.4333519031386551 +0.5678490044026416,-0.4284181128607282 +1.5581851189220848,-0.8875858612481531 +0.934523576422888,0.0857557861556022 +0.7232593442250856,-0.8814096679569378 +0.9865925287786532,0.439174154403263 +0.16614583597755994,2.320119184730582 +0.09715973096528185,2.476582534298336 +1.9583472722053548,-3.665707861595992 +-0.9025040390373272,-0.12874173950838907 +0.0008466725181743573,2.2484175436907146 +-0.892216370414931,0.4020129655643974 +-0.9403871201395427,0.014652692110375051 +1.1776887865725023,-0.5577939356291424 +1.873161856637595,-2.543387639658394 +-0.41791865792587457,1.9628473185013726 +0.41931819426783123,-0.4411779872087762 +-0.6187745098824541,1.1455550724432009 +1.6391067019487353,-1.16405694065247 +-0.2143393580330285,-0.09647235538766316 +-0.4743887384115908,1.3396708934233421 +0.6112917487463988,-0.512304001706546 +-0.7472107598385387,-0.14192797514494265 +1.3170663942837917,-1.3513831712750282 +-0.11920646160550619,0.014011737910249122 +0.6522824670031695,1.3885788548735827 +0.35043095737842933,1.4548593866492185 +-0.8078609810420586,-0.2838547609967768 +-0.8337783997966631,0.0861490216047952 +-0.4932884039626826,1.0470051814348478 +-0.6540573672028126,0.4333519031386551 +0.5678490044026416,-0.4284181128607282 +-0.442330406985872,1.6851781667143344 +0.934523576422888,0.0857557861556022 +0.7232593442250856,-0.8814096679569378 +0.9865925287786532,0.439174154403263 +-0.16503513536129688,0.16446763018114452 +0.09715973096528185,2.476582534298336 +1.6239559298685193,-0.6227792380900891 +1.3387940490056072,-1.413552055988859 +0.0008466725181743573,2.2484175436907146 +-0.3955374386932869,0.7041180697457597 +-0.9403871201395427,0.014652692110375051 +1.1776887865725023,-0.5577939356291424 +1.873161856637595,-2.543387639658394 +-0.5321194030450367,0.8478136066207997 +-0.4290719670163625,0.439655687408861 +-0.6187745098824541,1.1455550724432009 +1.6391067019487353,-1.16405694065247 +-0.2143393580330285,-0.09647235538766316 +-0.4743887384115908,1.3396708934233421 +-0.7045680478049454,0.5578282614483349 +-0.7472107598385387,-0.14192797514494265 +-0.5706615040158372,1.0265047616643037 +-0.11920646160550619,0.014011737910249122 +0.6522824670031695,1.3885788548735827 +0.35043095737842933,1.4548593866492185 +-0.5066822945630611,0.6301100715099289 +-0.8337783997966631,0.0861490216047952 +-0.4932884039626826,1.0470051814348478 +0.7626034743896319,0.15165012746997447 +-0.8342619256400788,-0.2755877315194837 +-0.442330406985872,1.6851781667143344 +0.934523576422888,0.0857557861556022 +-0.05792499864173456,0.029483496053440916 +0.1330989772478503,-0.366401739327073 +-0.16503513536129688,0.16446763018114452 +0.09715973096528185,2.476582534298336 +1.6239559298685193,-0.6227792380900891 +1.3387940490056072,-1.413552055988859 +-0.5207496516442903,-0.24220379733233188 +-0.2634350960238815,0.7201109863341406 +-0.00861387149045012,1.3631866088404836 +1.5168255601083518,-2.166803608205088 +1.873161856637595,-2.543387639658394 +-0.5321194030450367,0.8478136066207997 +-0.4290719670163625,0.439655687408861 +-0.4540410346064814,1.8096121429051801 +-0.35284483700141667,0.41201882788428207 +-0.43706637060035747,1.9617192879011296 +1.155995970252476,-0.5526622117945361 +-0.30128941420646493,-0.14715534766118166 +0.7986568733802232,-0.39334201724033563 +1.5379976027425701,-1.087211749959514 +-0.11920646160550619,0.014011737910249122 +0.6522824670031695,1.3885788548735827 +1.2632320375607937,-1.0067475090293088 +0.630547229485114,0.2597218182060704 +-0.06511917997647232,1.9363051293547517 +-0.5891720556123774,0.1484888440575814 +1.745927348373678,-1.7753318183790816 +-0.8342619256400788,-0.2755877315194837 +-0.442330406985872,1.6851781667143344 +-0.9189786909870485,0.1771952394680235 +-0.05792499864173456,0.029483496053440916 +0.1330989772478503,-0.366401739327073 +-0.16503513536129688,0.16446763018114452 +0.26616465276976753,-0.27960612996343887 +-0.6019495372783785,1.7090615849040356 +1.3387940490056072,-1.413552055988859 +-0.05566987608143853,0.3084276014622065 +1.3779547361289126,-0.9279378695244 +-0.7022485976431345,0.5225530589685828 +1.5168255601083518,-2.166803608205088 +1.873161856637595,-2.543387639658394 +-0.9218842219433149,0.2738829972281545 +-0.36780494162727395,-0.2673992284342459 +-0.7023303330135009,0.869630930336831 +-0.35284483700141667,0.41201882788428207 +-0.43706637060035747,1.9617192879011296 +0.4711383965829826,0.22153333051692542 +0.038957494899431344,-0.058339705888535265 +0.7986568733802232,-0.39334201724033563 +0.792937177521237,-0.4152133134776602 +-0.11920646160550619,0.014011737910249122 +0.6522824670031695,1.3885788548735827 +1.2632320375607937,-1.0067475090293088 +0.6815238581518794,1.5415702621529441 +-0.06511917997647232,1.9363051293547517 +-0.5891720556123774,0.1484888440575814 +1.745927348373678,-1.7753318183790816 +-0.8342619256400788,-0.2755877315194837 +-0.09005449036855614,0.5296651692401879 +-0.9189786909870485,0.1771952394680235 +-0.05792499864173456,0.029483496053440916 +0.9928023201771945,-0.8339076503850146 +1.203537024940574,-1.2288331086286497 +-0.9349151247792165,-0.5222415885655808 +-0.6019495372783785,1.7090615849040356 +0.7164415335349685,1.0906174283075698 +-0.05566987608143853,0.3084276014622065 +1.4053949581858238,-1.1525334960893747 +-0.7022485976431345,0.5225530589685828 +1.5168255601083518,-2.166803608205088 +1.873161856637595,-2.543387639658394 +-0.9218842219433149,0.2738829972281545 +-0.36780494162727395,-0.2673992284342459 +-0.5575274608665217,1.292167516239095 +1.4623470453398781,-0.44642283381820236 +-0.43706637060035747,1.9617192879011296 +0.4711383965829826,0.22153333051692542 +0.038957494899431344,-0.058339705888535265 +0.7986568733802232,-0.39334201724033563 +0.6687805836753359,-0.8315988664232583 +1.248189985975462,-1.110377820034368 +0.6522824670031695,1.3885788548735827 +1.2632320375607937,-1.0067475090293088 +0.6815238581518794,1.5415702621529441 +-0.06511917997647232,1.9363051293547517 +-0.5891720556123774,0.1484888440575814 +1.745927348373678,-1.7753318183790816 +-0.8342619256400788,-0.2755877315194837 +-0.09005449036855614,0.5296651692401879 +-0.9189786909870485,0.1771952394680235 +-0.05792499864173456,0.029483496053440916 +-0.35319506906407944,1.3864659909817656 +1.203537024940574,-1.2288331086286497 +-0.9349151247792165,-0.5222415885655808 +1.0821637301608453,1.013242259534372 +0.7164415335349685,1.0906174283075698 +-0.05566987608143853,0.3084276014622065 +1.1908857511944562,-1.1772429269778188 +-0.7022485976431345,0.5225530589685828 +1.5168255601083518,-2.166803608205088 +1.873161856637595,-2.543387639658394 +-0.9218842219433149,0.2738829972281545 +-0.36780494162727395,-0.2673992284342459 +-0.5575274608665217,1.292167516239095 +1.0129598538621205,0.08627840890169625 +-0.43706637060035747,1.9617192879011296 +1.9972488218472084,-2.5513020452184927 +0.038957494899431344,-0.058339705888535265 +0.7986568733802232,-0.39334201724033563 +0.6839094447529329,0.007480623596098301 +1.248189985975462,-1.110377820034368 +0.6522824670031695,1.3885788548735827 +1.2632320375607937,-1.0067475090293088 +0.6815238581518794,1.5415702621529441 +-0.06511917997647232,1.9363051293547517 +-0.5891720556123774,0.1484888440575814 +1.745927348373678,-1.7753318183790816 +0.9646291558224072,-1.1323750382923587 +0.34736133389534535,1.4662188129561842 +-0.9189786909870485,0.1771952394680235 +1.235989489747933,-0.5409401610088544 +-0.11765740560511229,1.7539880145510311 +0.9014094637266266,-0.625681051775121 +-0.9349151247792165,-0.5222415885655808 +1.0821637301608453,1.013242259534372 +0.7164415335349685,1.0906174283075698 +-0.05566987608143853,0.3084276014622065 +-0.89916748725617,-0.28018352429025645 +1.2830472969209115,0.13968641642433116 +1.5168255601083518,-2.166803608205088 +-0.04348342961391203,0.4657137348615427 +-0.9218842219433149,0.2738829972281545 +-0.36780494162727395,-0.2673992284342459 +0.43460290323642403,1.9913431592429571 +1.0129598538621205,0.08627840890169625 +0.06508991815568993,1.958605887897993 +-0.7351977840062169,1.249783902947206 +0.038957494899431344,-0.058339705888535265 +1.2591935375234695,-0.14019269690470465 +1.2881799823583562,-0.35685667918608077 +1.248189985975462,-1.110377820034368 +0.6152521695091372,1.6150750734106287 +1.2632320375607937,-1.0067475090293088 +-0.2939322471010432,0.8888333374067676 +-0.06511917997647232,1.9363051293547517 +-0.5891720556123774,0.1484888440575814 +1.745927348373678,-1.7753318183790816 +-0.11716742249044065,0.15637182258741003 +0.34736133389534535,1.4662188129561842 +-0.9189786909870485,0.1771952394680235 +1.235989489747933,-0.5409401610088544 +-0.11765740560511229,1.7539880145510311 +0.6591899899550253,-0.15799918815022995 +-0.32878880897244545,1.705643531618426 +1.0821637301608453,1.013242259534372 +0.7164415335349685,1.0906174283075698 +-0.05566987608143853,0.3084276014622065 +-0.89916748725617,-0.28018352429025645 +1.2830472969209115,0.13968641642433116 +-0.32968014320619854,1.5009582166784896 +0.3977688546503678,0.3470209963681204 +-0.9218842219433149,0.2738829972281545 +-0.18033742580842982,1.4412421939978797 +0.43460290323642403,1.9913431592429571 +0.6266540127191546,1.5618323658530568 +0.06508991815568993,1.958605887897993 +-0.7351977840062169,1.249783902947206 +0.12315671883753032,0.003600615265664242 +1.2591935375234695,-0.14019269690470465 +1.2881799823583562,-0.35685667918608077 +-0.5084524633646652,1.4744756146866558 +-0.012261120582326646,0.09429485154701472 +1.2632320375607937,-1.0067475090293088 +-0.5386027950756618,1.5122119504029534 +1.2623303888865993,0.017081637724359958 +-0.5891720556123774,0.1484888440575814 +-0.07282629614993918,-0.09442039626579839 +0.6554307968099222,-0.22680685529107153 +0.6738227253364097,-0.04401043623642428 +0.5222083125299763,-0.6043674070810361 +-0.24154124617936,1.7538029064717109 +-0.11765740560511229,1.7539880145510311 +0.8332578050540891,-1.0020471008010143 +-0.32878880897244545,1.705643531618426 +1.0821637301608453,1.013242259534372 +-0.7253651842311298,1.0932310639753917 +0.8491786120874453,1.2097504753760913 +-0.89916748725617,-0.28018352429025645 +1.1347904200537786,0.125978570263228 +1.0284402646528121,-0.4583313052785892 +0.5129039206393189,-0.5124666139102757 +-0.9218842219433149,0.2738829972281545 +-0.13113749812845105,1.2008163484532524 +0.43460290323642403,1.9913431592429571 +0.6266540127191546,1.5618323658530568 +1.0957936132980537,-0.8143998620160487 +-0.7351977840062169,1.249783902947206 +0.12315671883753032,0.003600615265664242 +1.2591935375234695,-0.14019269690470465 +1.2881799823583562,-0.35685667918608077 +-0.5084524633646652,1.4744756146866558 +0.10726437613465481,1.3306446072716407 +0.9278955005227536,0.5307238381645141 +1.102644653274761,-0.09131325362182968 +1.2623303888865993,0.017081637724359958 +-0.5891720556123774,0.1484888440575814 +-0.07282629614993918,-0.09442039626579839 +0.7661968661697199,-0.7789935798787755 +0.9756032578174116,0.5748214833683913 +0.16610865836918248,2.1074128989444274 +-0.24154124617936,1.7538029064717109 +-0.11765740560511229,1.7539880145510311 +0.396347968769962,2.2731513903038763 +1.6364170689111777,-1.2345126932427952 +1.0821637301608453,1.013242259534372 +0.8828094209489076,1.1273536225914884 +1.0995789178714561,-0.7113043495793694 +-0.89916748725617,-0.28018352429025645 +0.5488455969468201,-0.007674219315597419 +-0.6705537367210234,0.3014997443504562 +0.5129039206393189,-0.5124666139102757 +-0.9218842219433149,0.2738829972281545 +-0.13113749812845105,1.2008163484532524 +-0.46643255823208485,1.1455442657696273 +0.7135939479365812,1.6091074465338275 +-0.20672797649478825,1.0291777719331636 +-0.7351977840062169,1.249783902947206 +0.12315671883753032,0.003600615265664242 +1.2591935375234695,-0.14019269690470465 +1.4601019879728185,-1.4135565557991008 +-0.5084524633646652,1.4744756146866558 +0.10726437613465481,1.3306446072716407 +-0.5745675152204924,0.04214519113109941 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +-0.5891720556123774,0.1484888440575814 +1.4860065300276437,-0.5223950309597009 +0.6798802847188113,0.7302902979300712 +1.6902915960485592,-1.7047805617951783 +0.16610865836918248,2.1074128989444274 +0.43073498148624323,1.898358320577258 +-0.6000945347149695,0.970235254318038 +0.28354526394252677,-0.7147129162374902 +1.6364170689111777,-1.2345126932427952 +1.2333268674243554,-1.57780300183141 +0.8828094209489076,1.1273536225914884 +-0.6850554801976264,-0.3343050234680519 +-0.89916748725617,-0.28018352429025645 +-0.6053337224385842,1.1620476616827493 +-0.6705537367210234,0.3014997443504562 +0.5129039206393189,-0.5124666139102757 +0.41742405887246437,1.8841318104121059 +-0.7116204167181565,-0.2795327553358692 +0.2344815681639842,2.1258362164146223 +0.7135939479365812,1.6091074465338275 +-0.4798704398165694,1.377874743866482 +-0.7351977840062169,1.249783902947206 +1.1339215993584633,-1.1133811526625355 +1.2591935375234695,-0.14019269690470465 +1.4601019879728185,-1.4135565557991008 +-0.5084524633646652,1.4744756146866558 +0.10726437613465481,1.3306446072716407 +-0.5745675152204924,0.04214519113109941 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +0.03804847815148982,-0.24928257528964531 +1.4860065300276437,-0.5223950309597009 +0.6798802847188113,0.7302902979300712 +1.0070233363814758,-1.278301650121819 +0.05812983459188237,0.3743665698526538 +0.43073498148624323,1.898358320577258 +1.0705013559029446,0.21609605919632952 +0.28354526394252677,-0.7147129162374902 +1.236011914500596,-0.4669674464089072 +0.07060072410502632,0.27565025199868576 +0.8828094209489076,1.1273536225914884 +0.03138518440414467,0.3768299772721848 +-0.89916748725617,-0.28018352429025645 +1.4378066507478937,-0.15453609378542832 +-0.40828895655813435,1.5806826337018072 +1.7350565697349478,-1.9345284645315952 +0.23780657819512213,1.7274741472233495 +-0.7116204167181565,-0.2795327553358692 +-0.2610661662217798,0.8169958595150966 +0.7135939479365812,1.6091074465338275 +-0.2665893920238629,1.4266267409629396 +-0.7351977840062169,1.249783902947206 +0.22509666920773586,0.5904561741072627 +0.19613447512635945,0.7812531997409964 +1.4601019879728185,-1.4135565557991008 +-0.5084524633646652,1.4744756146866558 +0.10726437613465481,1.3306446072716407 +-0.5745675152204924,0.04214519113109941 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +1.237863141126378,-0.9631816659570469 +1.4860065300276437,-0.5223950309597009 +-0.3095166347056878,1.0348090808094033 +1.764855240897379,-1.7017333797382244 +0.05812983459188237,0.3743665698526538 +0.25989191156272995,2.3726291308200067 +0.4415916937476648,-0.2607529676057663 +-0.2002877160291906,1.4692250382507142 +1.236011914500596,-0.4669674464089072 +0.8986131980343584,0.4650941874515505 +0.8828094209489076,1.1273536225914884 +0.6438609249573249,0.866892344203554 +-0.89916748725617,-0.28018352429025645 +1.4378066507478937,-0.15453609378542832 +1.409272959555957,-0.7602342422118407 +1.7350565697349478,-1.9345284645315952 +1.3837286447200692,-1.127803796880518 +0.6475974554976915,-0.4914067234547381 +0.8854697303463303,-0.7331762675174007 +0.7135939479365812,1.6091074465338275 +0.4673861765769847,-0.3883252004475205 +0.6708218605359911,-0.6150953512881027 +0.8089386307411454,-1.1101248454966055 +0.314208344786356,0.43091940952166274 +1.4601019879728185,-1.4135565557991008 +-0.5084524633646652,1.4744756146866558 +-0.6464261686170202,1.0642977620918965 +0.021462618967469704,1.208434635416011 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +1.237863141126378,-0.9631816659570469 +0.06296223867147668,0.18904597748524712 +1.141407132713989,-0.5343600482193032 +0.40129115678967714,-0.20431307655007958 +-0.3004318173452014,1.7575789773505082 +1.811799717561572,-1.8271434992137803 +0.4415916937476648,-0.2607529676057663 +-0.003069574335942793,0.43870470118141436 +-0.6717597760272204,1.1113903307534936 +0.8986131980343584,0.4650941874515505 +0.5376295957159511,0.24053553384054532 +0.5499401767506634,1.653070031550368 +0.9743255503449937,0.9743558587691573 +1.4378066507478937,-0.15453609378542832 +1.409272959555957,-0.7602342422118407 +0.895371121942475,-0.18369480871679988 +1.1280338625127424,-1.294686084465764 +-0.09209254943092292,2.0694544737036518 +0.8854697303463303,-0.7331762675174007 +0.7135939479365812,1.6091074465338275 +0.4673861765769847,-0.3883252004475205 +1.0894202202559773,-0.7677773919848161 +0.8089386307411454,-1.1101248454966055 +0.9238250611733212,0.3912960337685186 +1.4601019879728185,-1.4135565557991008 +-0.5084524633646652,1.4744756146866558 +-0.08734774769520348,1.2538979701063324 +1.41607724996195,-1.4108714080039424 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +1.237863141126378,-0.9631816659570469 +0.06296223867147668,0.18904597748524712 +0.4686819987146583,1.5258866166631222 +0.40129115678967714,-0.20431307655007958 +-0.3004318173452014,1.7575789773505082 +1.811799717561572,-1.8271434992137803 +0.05012772541749305,1.3418420985357873 +0.6436978076676203,1.1386500156639499 +-0.6717597760272204,1.1113903307534936 +0.8986131980343584,0.4650941874515505 +0.6418295804968446,-0.4764874935753659 +0.5499401767506634,1.653070031550368 +0.9743255503449937,0.9743558587691573 +0.5669302987727959,0.6627029706182341 +1.409272959555957,-0.7602342422118407 +1.4039000327639954,-1.4601689971129863 +0.08215116711900744,1.9462509846572673 +-0.09209254943092292,2.0694544737036518 +0.5649921016996077,0.6055703017034015 +0.15692102753536563,-0.6141897934436584 +0.9397980356641081,1.1734820888171487 +1.1564851830909522,-0.7051109478531201 +0.8089386307411454,-1.1101248454966055 +0.9238250611733212,0.3912960337685186 +1.3761147926328454,-0.16180546257547912 +-0.5084524633646652,1.4744756146866558 +-0.08734774769520348,1.2538979701063324 +-0.45052756127374144,0.8142348304314239 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +1.237863141126378,-0.9631816659570469 +0.06296223867147668,0.18904597748524712 +-0.10477816062005778,1.639295085210199 +1.1515040771965626,-1.6472948992017715 +-0.3004318173452014,1.7575789773505082 +-0.0325077098659163,0.8170372604094975 +-0.037477486761426704,0.45641033918680096 +0.5735317122199511,-0.45304689231195994 +-0.05378899216859359,0.5672429395968068 +-0.5420519897372738,1.2917299019711956 +0.021933326383159646,-0.42483097586163054 +0.5499401767506634,1.653070031550368 +0.23784652704361614,0.4760034596770917 +0.3073141366721029,0.3665873450831597 +-0.2304720112237877,1.7791719267001092 +-0.331767321462706,1.7171435897877543 +0.08215116711900744,1.9462509846572673 +-0.09209254943092292,2.0694544737036518 +0.47319166858243,1.5996950086460442 +1.1186976814335308,-0.861043430324188 +-0.5832887724011735,0.2567021374286612 +0.2747936342334297,0.6606320700421872 +0.7541575935201539,-0.9755322294489722 +-0.39172236128082055,0.3231357253776365 +1.3761147926328454,-0.16180546257547912 +1.1645423132226593,-1.3323193202058232 +-0.44586356661169424,1.004883152425449 +-0.45052756127374144,0.8142348304314239 +0.6236744220251315,-0.3715706105285459 +-0.5902913522478578,-0.38765006084090137 +1.237863141126378,-0.9631816659570469 +0.06296223867147668,0.18904597748524712 +0.6539797137187093,-0.5084153206548737 +0.2934474664095792,-0.6038669343939082 +-0.023505402551546636,-0.30682879964364396 +-0.42821353352510105,1.1201154972621095 +-0.037477486761426704,0.45641033918680096 +0.5735317122199511,-0.45304689231195994 +1.379051895641249,-0.6113766378707859 +1.3289429972785343,0.6754925058350086 +0.0879476644202879,0.9491097612789002 +0.0802401528604686,-0.22756013005840117 +-0.16266571306313032,1.4420509080180137 +0.3073141366721029,0.3665873450831597 +-0.2304720112237877,1.7791719267001092 +-0.2816541450549899,1.4682245950075794 +0.5308253357376274,-0.5434983894523213 +-0.33577357976768674,0.05765676411462403 +0.47319166858243,1.5996950086460442 +1.1186976814335308,-0.861043430324188 +-0.10541908201203798,0.39184816827610175 +-0.44924056980647586,0.8617644467886778 +-0.38811606146422406,1.9801729104019805 +-0.39172236128082055,0.3231357253776365 +1.3761147926328454,-0.16180546257547912 +0.13608774788392908,1.9272684235646111 +-0.44586356661169424,1.004883152425449 +0.34299638495432083,1.2871042701038347 +-0.0903864951124845,0.3206950187795873 +0.26790217746322637,-0.09019103769302372 +-0.5393887434248248,0.6693074475855949 +0.06296223867147668,0.18904597748524712 +-0.4473275647257351,1.1044841149314446 +-0.01429894323474723,-0.1601644850695405 +0.39343967590165124,2.0296164798990226 +-0.42821353352510105,1.1201154972621095 +0.18817026303741358,0.4494671851168689 +0.543524307752688,-0.331167608241672 +0.19643613141696492,1.591179283074152 +0.060243675168895165,0.22917506196495316 +0.0879476644202879,0.9491097612789002 +0.30981186023407825,0.5667677188687834 +-0.6017869030975751,0.984151870728346 +0.32301935992303354,0.06260747718184197 +0.1751041859314135,2.1202884946025264 +-0.2816541450549899,1.4682245950075794 +1.1005997238470113,-1.3231236994329842 +-0.46767078799993306,-0.09100379829387106 +-0.5921313817752618,1.0817096656979563 +1.1186976814335308,-0.861043430324188 +-0.10541908201203798,0.39184816827610175 +1.4098013084070649,-1.5506127408412385 +-0.38811606146422406,1.9801729104019805 +-0.4762243953176847,1.6402136999297938 +1.3761147926328454,-0.16180546257547912 +0.30263821065111496,1.7915939169375483 +-0.44586356661169424,1.004883152425449 +0.34299638495432083,1.2871042701038347 +-0.22755439104441494,0.6278311052098295 +0.26790217746322637,-0.09019103769302372 +1.3710122184113165,0.052203485752536416 +0.06296223867147668,0.18904597748524712 +0.6292595373392067,-0.09384326631029428 +-0.11151126003206922,1.7910607661062103 +0.27798656867560834,1.9767994738664205 +-0.34810943639109976,0.6219905680701352 +-0.4572899404375226,2.1381685518415723 +0.37127034469578807,2.0901882397241267 +0.31511375255649277,1.9368864702808488 +-0.13304832838824265,0.6553665699946142 +-0.09386104376314064,1.971445135374369 +-0.6148758972418868,1.5710493998290769 +0.2503595081512474,0.7956430322835213 +1.1675560473806126,-1.3973078643909755 +0.1751041859314135,2.1202884946025264 +-0.2816541450549899,1.4682245950075794 +1.1005997238470113,-1.3231236994329842 +1.0961197306015544,-1.045273104756119 +-0.2925062617552531,-0.031334215931068055 +1.1186976814335308,-0.861043430324188 +-0.10541908201203798,0.39184816827610175 +1.4098013084070649,-1.5506127408412385 +0.378691279263358,2.321809747227545 +-0.8418393230332326,0.9975130324468666 +1.3761147926328454,-0.16180546257547912 +0.30263821065111496,1.7915939169375483 +-0.44586356661169424,1.004883152425449 +1.4571425516055243,-0.6626157982455064 +0.290349047180698,2.0822484131540704 +0.26790217746322637,-0.09019103769302372 +1.3710122184113165,0.052203485752536416 +1.3269432091015578,-1.4258429262317422 +0.4214385132778257,1.5879916287992202 +-0.11151126003206922,1.7910607661062103 +0.27798656867560834,1.9767994738664205 +0.11841671885577576,0.14604886870697392 +-0.4572899404375226,2.1381685518415723 +0.37127034469578807,2.0901882397241267 +0.31511375255649277,1.9368864702808488 +0.23371642738737228,0.17844863888418494 +-0.09386104376314064,1.971445135374369 +0.9799189177161215,-1.080358027062745 +-0.19256505217202347,1.7111480261689278 +-0.3979494701482672,2.1864563422793455 +0.3847088275727433,0.7041603574875017 +0.012870161428850613,0.4335041470146197 +1.6686941009463157,-1.8656434188919184 +1.115497471814453,-1.6134401794699764 +-0.2925062617552531,-0.031334215931068055 +-0.3095983263645621,0.7531726939028117 +-0.025746903756590583,0.04913448737422338 +0.21103613861708598,-0.1274440378810619 +-0.4420430147632973,1.2551982356891713 +-0.07160884207042514,0.788469956086391 +1.3761147926328454,-0.16180546257547912 +1.4481020654261128,-0.8281544629006902 +-0.23754578721427141,0.7847067855229851 +1.4571425516055243,-0.6626157982455064 +0.290349047180698,2.0822484131540704 +0.26790217746322637,-0.09019103769302372 +0.24533005529379748,0.26083598790482876 +1.3269432091015578,-1.4258429262317422 +0.6273660968880195,0.24884166521076695 +-0.098009385488561,0.4791826983305937 +0.27798656867560834,1.9767994738664205 +0.11841671885577576,0.14604886870697392 +-0.4572899404375226,2.1381685518415723 +0.37127034469578807,2.0901882397241267 +0.31511375255649277,1.9368864702808488 +0.23371642738737228,0.17844863888418494 +-0.09386104376314064,1.971445135374369 +-0.06514816325358724,1.8441770229366745 +0.3541594921019359,0.5815690480379347 +-0.3979494701482672,2.1864563422793455 +0.029939991019187207,0.8038716076698201 +-0.4175934935665892,0.5313337984698947 +0.21683865074687622,0.9867361269732942 +1.115497471814453,-1.6134401794699764 +-0.2925062617552531,-0.031334215931068055 +-0.3095983263645621,0.7531726939028117 +0.6695657263101039,-0.6790241317375156 +-0.030802880995262294,2.3247172294067946 +0.03103192279185929,1.9125856418415408 +-0.07160884207042514,0.788469956086391 +1.3761147926328454,-0.16180546257547912 +0.6105465169348864,1.2509764682470084 +-0.23754578721427141,0.7847067855229851 +1.4571425516055243,-0.6626157982455064 +0.290349047180698,2.0822484131540704 +0.046797154457501544,0.23034200673912256 +-0.18083952378248996,0.04715412689336951 +1.3269432091015578,-1.4258429262317422 +0.46586114175828675,2.269836566494029 +0.432782450010287,0.21312699256903123 +1.0695125953793845,0.9502711193939406 +0.11841671885577576,0.14604886870697392 +-0.28833185116765747,1.7847189149941984 +0.37127034469578807,2.0901882397241267 +0.48720367720898483,0.1634743160456481 +0.9992169833686286,-0.9816509904766446 +-0.09386104376314064,1.971445135374369 +-0.06514816325358724,1.8441770229366745 +0.3541594921019359,0.5815690480379347 +-0.70029397764126,1.234868807113687 +-0.203544463972864,1.2977995658997532 +-0.014772077070736814,0.6331526140317205 +0.7907803293574333,0.47662625544066906 +1.115497471814453,-1.6134401794699764 +-0.2925062617552531,-0.031334215931068055 +0.10741978103993016,2.3381640230454024 +-0.38224869139050555,0.5708039513116603 +-0.030802880995262294,2.3247172294067946 +0.03103192279185929,1.9125856418415408 +-0.5986569604223969,0.27428164594319326 +1.3761147926328454,-0.16180546257547912 +0.6105465169348864,1.2509764682470084 +-0.23754578721427141,0.7847067855229851 +0.22043277080402804,0.7975217923322786 +1.2578816649093398,-1.227227918735512 +-0.26320753811564,1.3651299073019465 +-0.18083952378248996,0.04715412689336951 +1.3269432091015578,-1.4258429262317422 +0.9516765909289137,-0.32993291072327796 +-0.24365003069671243,0.7272438409465737 +-0.43526451516293563,0.168969003935586 +0.11841671885577576,0.14604886870697392 +-0.18049058405956675,2.3907188495730107 +0.37127034469578807,2.0901882397241267 +0.48720367720898483,0.1634743160456481 +0.953290260710572,0.2730243176348398 +0.7107377140511228,-0.8294980913563629 +0.53269023316157,1.9545364598232964 +0.694566310000758,0.38185692381397585 +0.28241451005006213,-0.05819106930094353 +-0.5858318964721039,-0.42734987167902483 +0.5202441536757063,-0.30773946163482 +-0.7851622394219611,0.16407624826281914 +1.115497471814453,-1.6134401794699764 +0.5560642583485158,1.7767556393150081 +0.10741978103993016,2.3381640230454024 +-0.38224869139050555,0.5708039513116603 +-0.030802880995262294,2.3247172294067946 +0.7148719108984288,1.4228020269115425 +0.9218307418954835,0.6765618147699588 +1.3761147926328454,-0.16180546257547912 +-0.6780339794982709,0.9615507609649574 +-0.23510030943661858,1.9851165523108116 +0.22043277080402804,0.7975217923322786 +1.2578816649093398,-1.227227918735512 +-0.26320753811564,1.3651299073019465 +-0.24819772983760782,-0.4705542822715652 +1.3269432091015578,-1.4258429262317422 +-0.8551124518578123,-0.11938275322436531 +-0.24365003069671243,0.7272438409465737 +-0.43526451516293563,0.168969003935586 +-0.716866160397136,0.2899352639701364 +-0.35137234578202897,1.6295707586905634 +0.37127034469578807,2.0901882397241267 +-0.006475959898337574,1.1819994940250707 +-0.5211269695890611,0.5000201491106193 +0.7107377140511228,-0.8294980913563629 +0.53269023316157,1.9545364598232964 +-0.6198929532867392,-0.2089137663401714 +0.28241451005006213,-0.05819106930094353 +-0.5858318964721039,-0.42734987167902483 +0.5202441536757063,-0.30773946163482 +-0.7851622394219611,0.16407624826281914 +-0.03648371710422216,1.9716884761975484 +0.5560642583485158,1.7767556393150081 +-0.06938024614540944,0.018511948223220887 +-0.38224869139050555,0.5708039513116603 +-0.10670498995232734,1.7622971456133387 +0.26853936767338743,-0.16251089799856655 +0.4326655838125496,2.0847106514044667 +1.3761147926328454,-0.16180546257547912 +-0.6780339794982709,0.9615507609649574 +-1.0638930327430791,-0.050098011466587045 +-0.3207199725577167,2.149398053798279 +1.2578816649093398,-1.227227918735512 +-0.26320753811564,1.3651299073019465 +-0.9331154037893676,-0.26431683916783766 +1.3269432091015578,-1.4258429262317422 +-0.8551124518578123,-0.11938275322436531 +1.117610430267375,-0.10861743167261377 +-0.43526451516293563,0.168969003935586 +0.5659821842619136,2.283419481275046 +-0.6841578022122661,1.6359731895557412 +0.1263287840668082,0.34288733323791365 +-0.006475959898337574,1.1819994940250707 +0.2659066729599622,0.4247991096828493 +0.7107377140511228,-0.8294980913563629 +0.53269023316157,1.9545364598232964 +-0.6198929532867392,-0.2089137663401714 +0.28241451005006213,-0.05819106930094353 +-0.5858318964721039,-0.42734987167902483 +0.6457611003308606,-0.15467066029132975 +-0.7851622394219611,0.16407624826281914 +-0.03648371710422216,1.9716884761975484 +0.5560642583485158,1.7767556393150081 +-0.008782544280929033,0.40516131684457285 +-1.0046277229907556,1.3643145075525906 +0.08891691262918991,1.0635492003483058 +-0.5093362450500942,0.5478947548442041 +0.4326655838125496,2.0847106514044667 +1.3761147926328454,-0.16180546257547912 +-0.6780339794982709,0.9615507609649574 +1.449376640044044,-0.6767271937464503 +-0.3207199725577167,2.149398053798279 +1.2578816649093398,-1.227227918735512 +-0.26320753811564,1.3651299073019465 +-0.8532281627548591,-0.3057528944426161 +1.3269432091015578,-1.4258429262317422 +-0.5551980243823733,0.8549488529451313 +1.117610430267375,-0.10861743167261377 +-0.43526451516293563,0.168969003935586 +0.1429266297680308,1.659202502452458 +-0.769184633691084,1.5061456954067838 +0.1263287840668082,0.34288733323791365 +1.7270629004610156,-2.814725820786233 +0.5451249439017362,0.20883736174260203 +0.7107377140511228,-0.8294980913563629 +0.53269023316157,1.9545364598232964 +-0.6198929532867392,-0.2089137663401714 +-0.0554256114748094,1.0450659522731336 +-0.5858318964721039,-0.42734987167902483 +0.5253972498504522,-0.05267236418857879 +-0.7851622394219611,0.16407624826281914 +-0.03648371710422216,1.9716884761975484 +0.5560642583485158,1.7767556393150081 +1.2769084007713976,-0.28079958739367866 +-1.0046277229907556,1.3643145075525906 +-0.2018610929513423,1.8584945709213507 +-0.24670864612676535,-0.26924345823116036 +-0.127304468408181,0.025536547423795547 +1.3761147926328454,-0.16180546257547912 +-0.6780339794982709,0.9615507609649574 +1.449376640044044,-0.6767271937464503 +0.991695841793483,0.40358894562946596 +1.2578816649093398,-1.227227918735512 +-0.26320753811564,1.3651299073019465 +-0.8532281627548591,-0.3057528944426161 +1.3269432091015578,-1.4258429262317422 +-0.5551980243823733,0.8549488529451313 +1.117610430267375,-0.10861743167261377 +0.8319297612524532,0.06917381981723317 +0.1429266297680308,1.659202502452458 +-0.769184633691084,1.5061456954067838 +0.1263287840668082,0.34288733323791365 +1.7270629004610156,-2.814725820786233 +-0.25041120799931604,0.6410467245205613 +0.5642182292387263,1.3058156299436272 +-0.39557264860734676,1.2031064499435797 +0.6428293738228722,-0.7482567735733167 +-0.7670948736074239,-0.505012937471618 +1.1461446725770126,-0.9444693868731762 +1.3810653493726903,-0.8464511385732041 +-0.7851622394219611,0.16407624826281914 +-0.03648371710422216,1.9716884761975484 +-0.3589208103645295,0.3645399193509533 +1.2769084007713976,-0.28079958739367866 +1.1533489047362062,-1.2110032445583112 +-0.2018610929513423,1.8584945709213507 +-0.24670864612676535,-0.26924345823116036 +1.0605724574340565,-0.7144134206013768 +1.3761147926328454,-0.16180546257547912 +0.7250289881831044,-0.6266043889336157 +0.7094750765629494,0.16898583509262333 +0.991695841793483,0.40358894562946596 +1.0153900173110153,0.04398062550086407 +-0.26320753811564,1.3651299073019465 +-0.8532281627548591,-0.3057528944426161 +0.13199717680465706,0.6612114695889276 +-0.5551980243823733,0.8549488529451313 +1.117610430267375,-0.10861743167261377 +1.288443978276687,-0.05718980204577151 +1.1763923315154792,-1.3312870116010505 +-0.769184633691084,1.5061456954067838 +0.1263287840668082,0.34288733323791365 +1.7270629004610156,-2.814725820786233 +-0.25041120799931604,0.6410467245205613 +1.1353100627669979,-1.623638538674811 +-0.39557264860734676,1.2031064499435797 +0.0860823076508237,0.03687549749149921 +-0.6121761378477608,0.2141340836619413 +1.1461446725770126,-0.9444693868731762 +1.3810653493726903,-0.8464511385732041 +1.5208108000890688,-2.294479665396001 +-0.03648371710422216,1.9716884761975484 +-0.3589208103645295,0.3645399193509533 +1.2769084007713976,-0.28079958739367866 +1.1533489047362062,-1.2110032445583112 +-0.727798251979173,0.9770443995861168 +0.192861425981676,0.8888517925722741 +1.170453650560779,-0.5602813554802095 +1.3761147926328454,-0.16180546257547912 +-0.15557740346040017,1.4801649597980566 +0.12216257521938345,1.7103931826373762 +1.4066425806708747,-1.4635627077426658 +1.0153900173110153,0.04398062550086407 +-0.26320753811564,1.3651299073019465 +0.343262270056107,-0.45398055378011715 +-0.5074482992413525,0.69223547600357 +-0.1869141493493175,-0.19935900990861466 +-0.8465054037962272,-0.8052918149483925 +0.7337914656022427,-0.7309292095352736 +-0.774272881797387,1.0580302575235634 +1.288506580996631,-1.8230395682755347 +-1.0082352827371983,-0.4947075801881614 +1.0777059365177046,-0.9924337227202218 +-0.25041120799931604,0.6410467245205613 +-0.3314045976972815,1.912051530501299 +1.5653325908030333,-1.939328494114974 +0.0860823076508237,0.03687549749149921 +-0.6121761378477608,0.2141340836619413 +-0.8614133057533601,-0.7309137991035086 +0.27351007070605354,0.41745299700744243 +1.5208108000890688,-2.294479665396001 +0.008315453621464464,-0.010931095640383193 +0.28822172027199594,-0.27107895286556316 +0.1224820980333888,-0.21517759950956494 +1.1533489047362062,-1.2110032445583112 +0.14532506442498658,0.9784224990808942 +-1.0141146181405596,0.5573244693283836 +0.7950571037651541,-0.6563043116568341 +1.1698578764440992,0.6956753600393548 +0.07513068841404615,-0.13309056008085407 +-1.139175274989265,-0.7437054860133807 +-0.49707793833443437,0.012735050999614334 +1.0153900173110153,0.04398062550086407 +0.6436094967902752,-0.6128595583139439 +-0.26955396348875343,-0.145448067025377 +-0.5074482992413525,0.69223547600357 +-0.6806941760197682,0.84197106481838 +-1.0427260363338122,1.0219936823642397 +0.7337914656022427,-0.7309292095352736 +-0.774272881797387,1.0580302575235634 +-0.025555014729594427,1.0813983157146487 +0.5965330133910766,0.03644642876030635 +1.0777059365177046,-0.9924337227202218 +-0.04139692293258618,1.502137640916396 +0.02406110881364726,0.31019174747158906 +1.5653325908030333,-1.939328494114974 +-0.43353641349771443,1.618680654564794 +-0.2066149141161041,-0.20214383504555397 +-0.8395733192947675,-0.3839491755111903 +0.7124901555498542,-0.482458208433832 +-0.29675110078929623,1.3700206094689653 +1.1357154587255662,0.009762990697922636 +0.28822172027199594,-0.27107895286556316 +0.12586431470614073,1.089693004588403 +-0.07258853203444045,-0.3388837943416393 +1.2103301265516906,-0.3235902345356564 +0.6756091354469496,0.9531147321984232 +0.6917204003540052,-0.11598999971396298 +1.1698578764440992,0.6956753600393548 +1.1283059674041134,-0.43597361879689955 +0.3191042715929018,0.4825047884576712 +1.1007295417948812,-0.7747877133278618 +1.0153900173110153,0.04398062550086407 +-0.37293382760803906,1.1805921203133012 +0.6026430685950337,-0.1543764045878186 +-0.5074482992413525,0.69223547600357 +0.09821766708871638,0.3378657829760476 +0.5039089646420445,-0.3950112369249969 +0.7337914656022427,-0.7309292095352736 +-0.774272881797387,1.0580302575235634 +0.13612961264301549,1.218601445609933 +0.5190514319294096,-0.1341180256379656 +1.0777059365177046,-0.9924337227202218 +-0.04139692293258618,1.502137640916396 +-0.43610049295281134,1.1735366310292605 +1.5653325908030333,-1.939328494114974 +-0.43353641349771443,1.618680654564794 +-0.2066149141161041,-0.20214383504555397 +-0.8395733192947675,-0.3839491755111903 +-0.04108288273530791,0.006791592519775791 +-0.46084378884569005,0.2857459274305727 +-0.36105114744581235,1.3592370193279542 +0.28822172027199594,-0.27107895286556316 +1.5384775449464554,-1.7570457848185441 +0.3924324229216851,0.6158439197663121 +0.6785613684149159,-0.21029994027491739 +0.14807574389305245,-0.08516883152051799 +0.6917204003540052,-0.11598999971396298 +1.1698578764440992,0.6956753600393548 +0.6682849940378494,0.21796501863404705 +0.3191042715929018,0.4825047884576712 +0.5166474929802625,-0.04555628759636886 +-0.22805994078565217,1.2397371884952935 +0.1252669667196668,-0.3995935844584757 +0.02910754785663544,1.055754567131571 +0.2087947226693393,1.5695824580428097 +0.15831354136789522,0.8291128294785695 +-0.39859995031614337,-0.11059088040670428 +0.7337914656022427,-0.7309292095352736 +0.7506393450610837,-0.34332634918340893 +-0.1200825127084465,1.0831455717977065 +1.2397556960392615,-0.8359315442108064 +0.37183769548665735,-0.6028892608273664 +-0.04139692293258618,1.502137640916396 +1.487334891387257,-0.23436023711242782 +1.5653325908030333,-1.939328494114974 +-0.43353641349771443,1.618680654564794 +-0.2066149141161041,-0.20214383504555397 +-0.8395733192947675,-0.3839491755111903 +1.0564398158890147,-0.6201732001908737 +-0.46084378884569005,0.2857459274305727 +-0.36105114744581235,1.3592370193279542 +0.28822172027199594,-0.27107895286556316 +1.5384775449464554,-1.7570457848185441 +1.3982147365786397,-0.7276929854917297 +1.5228849546919634,-0.5540017195212887 +0.1881683177453019,0.08563126524240558 +-0.3453292099887642,1.654886119870711 +1.1698578764440992,0.6956753600393548 +-0.36961000712567105,0.608021585771375 +1.0464095243965685,1.1719178352875779 +0.8440937385683389,1.5801050067889224 +-0.22805994078565217,1.2397371884952935 +0.05346298379643005,0.11854276929852728 +-0.029250025751393023,-0.2917810499967618 +0.2087947226693393,1.5695824580428097 +1.4922739878378866,-0.9310010341335215 +1.0324077524501805,-0.25299027874952346 +0.2917939077272128,0.14606158387242396 +0.7506393450610837,-0.34332634918340893 +-0.1200825127084465,1.0831455717977065 +0.3611814867141955,-0.5328772274861857 +0.261810281656831,1.5810288679509332 +-0.17271472490768777,0.07370434464241207 +-0.10094253083545235,-0.2865327472288445 +-0.5759159567736906,-0.2810373699675901 +-0.8039610959141366,0.0987261432169288 +-0.8999566926769386,0.7071767077318389 +-0.21892977826270238,1.8713526564631866 +-0.5993982870163641,-0.1578365363901585 +-0.942563709860823,-0.21347599336251089 +-0.36105114744581235,1.3592370193279542 +0.28822172027199594,-0.27107895286556316 +1.5384775449464554,-1.7570457848185441 +0.7648612979474565,0.47892929558374603 +1.5228849546919634,-0.5540017195212887 +-0.16229718147467598,1.8643150972107232 +-0.3453292099887642,1.654886119870711 +1.1698578764440992,0.6956753600393548 +-0.6373449600778548,0.3277888972772489 +1.0464095243965685,1.1719178352875779 +0.8440937385683389,1.5801050067889224 +-0.22805994078565217,1.2397371884952935 +0.10626013314530362,0.3413255452587308 +-0.10176980829248339,0.32116856082651485 +0.2087947226693393,1.5695824580428097 +-0.01951383704818832,0.7709980422650266 +-0.9106273205295066,0.4348505753342018 +0.2917939077272128,0.14606158387242396 +0.7506393450610837,-0.34332634918340893 +1.1993204462775153,-0.27087958429679176 +-0.3730489021020842,0.8298695895437589 +0.261810281656831,1.5810288679509332 +-0.22868845169086371,0.349238952772409 +-0.10094253083545235,-0.2865327472288445 +-0.5759159567736906,-0.2810373699675901 +-0.8039610959141366,0.0987261432169288 +-0.8999566926769386,0.7071767077318389 +-0.21892977826270238,1.8713526564631866 +-0.5993982870163641,-0.1578365363901585 +-0.31639714741313085,-0.019498703683823115 +1.6471631682000358,-1.026470285621761 +0.28822172027199594,-0.27107895286556316 +1.5384775449464554,-1.7570457848185441 +-0.4281577747457384,1.0686467301895222 +1.5228849546919634,-0.5540017195212887 +0.05159102068194554,1.9664602245686345 +0.8477620470824905,-0.48876419211750344 +-0.5290968658477423,0.030501871848537532 +-0.3929368660623921,0.13391964220866337 +0.5353105387312002,-0.3935739316086715 +0.8440937385683389,1.5801050067889224 +-0.7596937136716191,0.8944443008495592 +-0.8795772325528073,0.35625220178343575 +-0.10176980829248339,0.32116856082651485 +1.4380288009698459,-0.6237688103321901 +-0.01951383704818832,0.7709980422650266 +-0.5470269393136694,0.9799146571607531 +0.2917939077272128,0.14606158387242396 +-0.6161680018722998,0.5814102389134684 +1.1993204462775153,-0.27087958429679176 +-0.3730489021020842,0.8298695895437589 +0.2132059147996324,1.98191881448954 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +-0.5759159567736906,-0.2810373699675901 +-0.3694134548307399,-0.049258371816703936 +0.6695797878287328,-0.36255688491572213 +-0.21892977826270238,1.8713526564631866 +0.7614038056377503,-0.4292522243865242 +-0.31639714741313085,-0.019498703683823115 +-0.8997041776080947,1.2442275916151184 +0.1715517448776337,0.670949213179735 +1.5384775449464554,-1.7570457848185441 +-0.5910668337580279,-0.6940822061870711 +0.4313967231200908,-0.05739775816855042 +0.05159102068194554,1.9664602245686345 +0.8477620470824905,-0.48876419211750344 +-0.5290968658477423,0.030501871848537532 +1.6425478858062454,-2.0162944634567204 +0.5353105387312002,-0.3935739316086715 +1.1489532592098786,0.8243023055024981 +-0.7596937136716191,0.8944443008495592 +1.2300549895320645,-0.015243793681924023 +-0.5396198639898508,0.3790551017242315 +0.3287852833682121,-0.5956951007401345 +0.08002478965290313,1.9236774121907174 +0.5663984021935138,-0.4496151037032069 +0.2917939077272128,0.14606158387242396 +-0.4297222986561715,0.2737472773698435 +1.1993204462775153,-0.27087958429679176 +0.7422275337958637,0.9457503329775913 +0.2132059147996324,1.98191881448954 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +-0.5759159567736906,-0.2810373699675901 +0.33393557641085053,-0.37083226903966404 +-0.02116040629015875,1.5984825205798598 +-0.21892977826270238,1.8713526564631866 +0.948447524348025,1.1193174806323487 +-0.31639714741313085,-0.019498703683823115 +-0.8997041776080947,1.2442275916151184 +0.21653335642989302,0.31237746409223976 +1.5384775449464554,-1.7570457848185441 +0.41755724172755815,1.0169102994438568 +-0.5259301205537434,-0.13470221680694267 +0.05159102068194554,1.9664602245686345 +0.0781841335207025,2.095133861089093 +0.5174310646740266,-0.260876113685576 +1.6425478858062454,-2.0162944634567204 +0.25255984912903007,1.8282621584300818 +1.1489532592098786,0.8243023055024981 +-0.8293353637620688,-0.5750826862827872 +1.2300549895320645,-0.015243793681924023 +-0.0022868814807255333,2.0808478944563644 +0.15145793980117683,-0.509290650183855 +-0.3770045807032038,0.13035774886123594 +0.589163377576227,1.6369267706557498 +1.4884245964806118,-0.18111201909283348 +-0.4297222986561715,0.2737472773698435 +0.24172068792019796,1.515800280933223 +1.7045326750122758,-1.8283924948622488 +0.2132059147996324,1.98191881448954 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +0.84443782984847,-0.8630051892768013 +0.33393557641085053,-0.37083226903966404 +0.20954129461085658,0.32407296456553675 +-0.21892977826270238,1.8713526564631866 +-0.472629850625842,0.8018864443356745 +-0.31639714741313085,-0.019498703683823115 +-0.8997041776080947,1.2442275916151184 +0.21653335642989302,0.31237746409223976 +1.5384775449464554,-1.7570457848185441 +0.6652890507216495,1.8532702820582538 +-0.5259301205537434,-0.13470221680694267 +0.8224430848429866,1.48607416770788 +0.0781841335207025,2.095133861089093 +0.5174310646740266,-0.260876113685576 +0.3850173165394105,1.5361046149189672 +0.2795840772676531,1.9129425281420878 +-0.18521119199870345,1.5952710183701264 +-0.8293353637620688,-0.5750826862827872 +1.2300549895320645,-0.015243793681924023 +-0.0022868814807255333,2.0808478944563644 +0.15145793980117683,-0.509290650183855 +-0.3770045807032038,0.13035774886123594 +0.589163377576227,1.6369267706557498 +-0.48678394068405134,0.5724008247519365 +-0.13206692097265407,1.1120887574206453 +-0.04128588954611545,0.8367747891234941 +1.7045326750122758,-1.8283924948622488 +0.2132059147996324,1.98191881448954 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +0.84443782984847,-0.8630051892768013 +-0.536474630365175,0.7240091769968121 +-0.26351067617155843,-0.27303575231088495 +-0.21892977826270238,1.8713526564631866 +-0.472629850625842,0.8018864443356745 +1.4997608507519966,-1.679669873046991 +0.6767502888856702,-0.052161702771608365 +0.5750926588227462,-0.8578837687004583 +1.5384775449464554,-1.7570457848185441 +0.9360235422212395,-1.246078133177251 +0.19664801134086402,-0.2653980898566511 +-0.1889621307196945,-0.053165623532791306 +0.0781841335207025,2.095133861089093 +1.2598539185018165,-0.9810548424434313 +0.3850173165394105,1.5361046149189672 +-0.7052616517068275,-0.06027005881053582 +-0.18521119199870345,1.5952710183701264 +0.2987138347553349,-0.6012684101994934 +1.2300549895320645,-0.015243793681924023 +-0.0022868814807255333,2.0808478944563644 +-0.6755810912453613,0.6801629671218461 +-0.3770045807032038,0.13035774886123594 +0.589163377576227,1.6369267706557498 +-0.48678394068405134,0.5724008247519365 +-0.3462966019608895,0.6869343770444246 +-0.1446863788874025,0.42199975865961753 +-0.5516990919887683,-0.04662486116410458 +0.2132059147996324,1.98191881448954 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +0.84443782984847,-0.8630051892768013 +1.2907922974856718,-0.4010438337064963 +0.6676158973697679,1.5959443348649205 +-0.21892977826270238,1.8713526564631866 +1.030663610675854,-0.3152327600846656 +-0.15333293811235166,1.754062698663659 +0.6767502888856702,-0.052161702771608365 +0.5750926588227462,-0.8578837687004583 +1.5384775449464554,-1.7570457848185441 +0.9360235422212395,-1.246078133177251 +0.19664801134086402,-0.2653980898566511 +-0.1889621307196945,-0.053165623532791306 +0.0781841335207025,2.095133861089093 +1.2598539185018165,-0.9810548424434313 +0.3850173165394105,1.5361046149189672 +-0.7052616517068275,-0.06027005881053582 +-0.18521119199870345,1.5952710183701264 +-0.44274923737934996,-0.4338631426677932 +1.2300549895320645,-0.015243793681924023 +-0.0022868814807255333,2.0808478944563644 +-0.6755810912453613,0.6801629671218461 +0.15260601135433982,1.7525326475903287 +0.589163377576227,1.6369267706557498 +-0.48678394068405134,0.5724008247519365 +0.23443176562980259,0.4310008019529524 +-0.43415131961866416,-0.5713831949748507 +-0.5516990919887683,-0.04662486116410458 +0.2132059147996324,1.98191881448954 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +-0.5530542790374176,0.7764282147786166 +1.2907922974856718,-0.4010438337064963 +-0.02972494959857816,0.6999970924591906 +-0.2749140155396069,1.933888894091801 +1.030663610675854,-0.3152327600846656 +-0.15333293811235166,1.754062698663659 +0.6767502888856702,-0.052161702771608365 +-0.2776244072384581,1.6448509407708618 +0.5528945168042158,1.846683300058006 +0.9360235422212395,-1.246078133177251 +-0.1977190595754653,2.0792870453011973 +-0.1889621307196945,-0.053165623532791306 +0.0781841335207025,2.095133861089093 +1.2598539185018165,-0.9810548424434313 +0.3850173165394105,1.5361046149189672 +-0.7052616517068275,-0.06027005881053582 +-0.18521119199870345,1.5952710183701264 +0.8969010168074507,1.4594942696354458 +0.179775025722132,-0.09055832351701298 +-0.0022868814807255333,2.0808478944563644 +0.5123696577666177,-0.7483415294476928 +0.15260601135433982,1.7525326475903287 +0.10952943444907001,-0.2696225915818789 +-0.48678394068405134,0.5724008247519365 +0.33471624144518786,1.3155304461239072 +0.618351259451056,0.49465701720334787 +-0.4985186070277551,0.1409549792764937 +-0.2726968008118097,0.6676697029995163 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +-0.5530542790374176,0.7764282147786166 +0.13150444966595304,1.074218320349781 +0.5252756312256018,0.31103634231047084 +-0.9076951891510696,0.4237179830432455 +-0.6301884089361598,1.0994943814447455 +-0.15333293811235166,1.754062698663659 +-0.07456962432357524,1.2447430917814006 +0.11628756394782473,1.478703617811267 +0.5528945168042158,1.846683300058006 +-0.9193602658925926,0.18236728070704888 +0.3442462751089216,-0.2375310170066267 +-0.31854350022313077,0.3496839754915526 +0.0781841335207025,2.095133861089093 +1.2598539185018165,-0.9810548424434313 +-0.28488960460379964,0.49948040289580103 +-0.7052616517068275,-0.06027005881053582 +-0.01138743957119659,2.2114568967896218 +0.8969010168074507,1.4594942696354458 +0.39664888865636916,0.7804218034703525 +-0.6196564600787794,1.165246051931652 +0.5123696577666177,-0.7483415294476928 +0.15260601135433982,1.7525326475903287 +0.10952943444907001,-0.2696225915818789 +1.1553688979119943,0.35804997441551056 +-0.18857900972298738,0.13950875583656974 +0.19357112334628548,1.9159043075285114 +-0.4985186070277551,0.1409549792764937 +-0.2726968008118097,0.6676697029995163 +0.7990404429990294,1.4140133898835212 +1.505441043619403,-1.7499694728877406 +-0.5530542790374176,0.7764282147786166 +-0.1881705219942627,-0.00445120877349503 +-0.45567050206334886,1.4275260691762237 +-0.9076951891510696,0.4237179830432455 +-0.6301884089361598,1.0994943814447455 +0.3596699988141616,0.6462173095239648 +0.35306369676882254,2.0582829032996006 +0.11628756394782473,1.478703617811267 +1.4421969838771622,-0.6196894877464278 +1.0642911198615335,-0.17613823650352423 +0.035592970593008644,-0.14215041979332943 +-0.31854350022313077,0.3496839754915526 +0.0781841335207025,2.095133861089093 +1.2598539185018165,-0.9810548424434313 +-0.29809053160463317,0.8239393574850146 +-0.7052616517068275,-0.06027005881053582 +-0.01138743957119659,2.2114568967896218 +1.4734967395181486,-1.2035627927968309 +0.39664888865636916,0.7804218034703525 +-0.6196564600787794,1.165246051931652 +-0.6272231572525881,-0.0008374437732196205 +0.06331711401156498,0.15845757367929936 +0.47630276800195104,-0.07781675312876454 +1.1553688979119943,0.35804997441551056 +0.21467657185282893,0.990198333048653 +-0.6355024531666861,-0.27930574628529703 +-0.4985186070277551,0.1409549792764937 +0.4084891903827357,1.4904711657372811 +0.6822869996231338,-0.7705206989863075 +1.505441043619403,-1.7499694728877406 +-0.4421510734859663,0.24914027813516304 +-0.1881705219942627,-0.00445120877349503 +-0.45567050206334886,1.4275260691762237 +-0.24031016442363545,-0.2693025788008178 +-0.6301884089361598,1.0994943814447455 +0.8308687676885287,-0.06608925768523721 +0.35306369676882254,2.0582829032996006 +0.11628756394782473,1.478703617811267 +1.4421969838771622,-0.6196894877464278 +1.0642911198615335,-0.17613823650352423 +-0.7358503224996833,1.6477855267070283 +-0.31854350022313077,0.3496839754915526 +-0.8706017520377549,0.7800583244340903 +1.2598539185018165,-0.9810548424434313 +0.04770380431956234,1.1905839008881394 +-0.7052616517068275,-0.06027005881053582 +-0.01138743957119659,2.2114568967896218 +1.4734967395181486,-1.2035627927968309 +0.39664888865636916,0.7804218034703525 +0.351454169610907,0.7594787135626051 +-0.6272231572525881,-0.0008374437732196205 +0.06331711401156498,0.15845757367929936 +1.1837122443596546,-0.1257349425110661 +1.1553688979119943,0.35804997441551056 +0.2638709679236697,-0.25260096705049895 +-0.6355024531666861,-0.27930574628529703 +1.453367920790972,-0.7500478273969496 +0.4084891903827357,1.4904711657372811 +0.6822869996231338,-0.7705206989863075 +-0.23690420148018215,0.6472278513526137 +1.0285365445044918,-1.0295900456257392 +0.9456606300032014,0.5674571885801132 +-0.45567050206334886,1.4275260691762237 +-0.9784006960387471,0.38749037136137887 +1.1103539067287258,0.7780658838537198 +0.10281521280904626,-0.4033823106803808 +0.963161294920728,0.46774003461998664 +0.11628756394782473,1.478703617811267 +1.069626190932353,0.0667162408597235 +1.0642911198615335,-0.17613823650352423 +1.0422425144411758,-0.5690070327100695 +-0.31854350022313077,0.3496839754915526 +0.3932488304654058,-0.02830149226705536 +0.9211815422263359,-0.766694331471013 +-0.5628043215374543,1.1798886981995924 +-0.7052616517068275,-0.06027005881053582 +-0.01138743957119659,2.2114568967896218 +1.5183683100514709,-1.3494295653155493 +1.3832813904363008,-0.4025676871263226 +0.3894348700346435,0.21392211423225194 +-0.6272231572525881,-0.0008374437732196205 +0.06331711401156498,0.15845757367929936 +-0.68309187167379,-0.12351490839084629 +-0.12113342667124369,0.2674024038580934 +0.2638709679236697,-0.25260096705049895 +-0.6355024531666861,-0.27930574628529703 +-0.4159230689378024,0.4958851775586625 +-0.0794140854266497,2.490681709067074 +0.6822869996231338,-0.7705206989863075 +-0.074841891510764,0.5150330230417928 +1.0285365445044918,-1.0295900456257392 +0.9456606300032014,0.5674571885801132 +-0.45567050206334886,1.4275260691762237 +-1.2073903580157372,0.08002669621020206 +1.1103539067287258,0.7780658838537198 +0.10281521280904626,-0.4033823106803808 +0.963161294920728,0.46774003461998664 +0.11628756394782473,1.478703617811267 +1.069626190932353,0.0667162408597235 +1.0642911198615335,-0.17613823650352423 +1.0422425144411758,-0.5690070327100695 +-0.24165816381070637,0.6233289564386751 +0.3932488304654058,-0.02830149226705536 +0.9211815422263359,-0.766694331471013 +-0.5628043215374543,1.1798886981995924 +-0.7052616517068275,-0.06027005881053582 +-0.01138743957119659,2.2114568967896218 +1.5183683100514709,-1.3494295653155493 +0.05267969256994423,0.013388197573154459 +-0.4638628048697925,0.5188424653888748 +-0.6272231572525881,-0.0008374437732196205 +0.019503078297155363,0.1860924686669314 +-0.68309187167379,-0.12351490839084629 +-0.6970988082988421,-0.24271096987926716 +0.2638709679236697,-0.25260096705049895 +1.0994327209981263,-0.5221210133407771 +-0.36365551245472205,-0.48009578827663746 +-0.0794140854266497,2.490681709067074 +0.6822869996231338,-0.7705206989863075 +-0.074841891510764,0.5150330230417928 +-0.014113879068140434,0.8456404714847991 +0.7486492160356533,-0.4246046869896805 +-0.45567050206334886,1.4275260691762237 +-0.13094378774875362,0.16160291595049725 +-0.05408440137432735,-0.10923358929315666 +0.9207057415627968,-0.8610492467278266 +-0.09689057786915269,2.3196777562125157 +0.11628756394782473,1.478703617811267 +0.6966961419823828,0.4518483039647095 +1.2078943438890308,0.6977016881462431 +1.0422425144411758,-0.5690070327100695 +0.2795967648943421,0.6904153451875621 +0.47167384853034183,-0.005514182647034183 +1.103070973147871,0.2966215702654392 +1.2998088140336448,-1.1836570203204144 +-0.7052616517068275,-0.06027005881053582 +-0.256832740358897,0.1887458615209618 +1.5183683100514709,-1.3494295653155493 +0.05267969256994423,0.013388197573154459 +-0.096872950100673,1.732840828069146 +-0.6272231572525881,-0.0008374437732196205 +0.6702411911952887,-0.3275025446494712 +1.0970708374560072,0.8203754219725065 +-0.6970988082988421,-0.24271096987926716 +0.2638709679236697,-0.25260096705049895 +1.0994327209981263,-0.5221210133407771 +-0.36365551245472205,-0.48009578827663746 +-0.0794140854266497,2.490681709067074 +1.1217099894874711,-0.7052659671988344 +1.277578921942807,-0.0012366246003737702 +-0.7388694498091768,1.6494919996497415 +0.7486492160356533,-0.4246046869896805 +-0.38688726088457515,1.6623492884315878 +-0.7587069890744722,0.09463182238672221 +-0.05408440137432735,-0.10923358929315666 +-0.14774771595557568,1.2889408502249957 +-0.09689057786915269,2.3196777562125157 +1.2297614211376848,0.019235918369437055 +-0.1347977724513174,1.2886970316496777 +1.2078943438890308,0.6977016881462431 +1.0422425144411758,-0.5690070327100695 +-0.4486922911819146,1.4259354149535661 +0.47167384853034183,-0.005514182647034183 +-0.1702438276285873,1.8816678263727218 +1.2998088140336448,-1.1836570203204144 +-0.464150708464649,0.29744094505051166 +-0.256832740358897,0.1887458615209618 +-0.9014466688486602,-0.07735129351156356 +0.05267969256994423,0.013388197573154459 +-0.1586683113997674,1.1865511446924968 +-0.6272231572525881,-0.0008374437732196205 +0.6702411911952887,-0.3275025446494712 +1.0970708374560072,0.8203754219725065 +-0.6970988082988421,-0.24271096987926716 +0.2638709679236697,-0.25260096705049895 +1.0994327209981263,-0.5221210133407771 +-0.5024069919831937,-0.2809460513756151 +-0.0794140854266497,2.490681709067074 +0.28147325853486277,0.4353873131883791 +1.277578921942807,-0.0012366246003737702 +-0.7388694498091768,1.6494919996497415 +1.4992006377264948,-0.8432603932060312 +-0.38688726088457515,1.6623492884315878 +-0.7587069890744722,0.09463182238672221 +-0.05408440137432735,-0.10923358929315666 +0.07284557796194557,0.727504459239762 +-1.061065735636507,-0.2739257993747184 +1.2297614211376848,0.019235918369437055 +1.034587783432058,0.9986787303067776 +1.2078943438890308,0.6977016881462431 +-0.2690489241387751,1.9195431808276868 +-0.4486922911819146,1.4259354149535661 +-0.35749263572641765,0.2033861579997831 +-0.5183312572017341,1.9304218349612707 +1.2998088140336448,-1.1836570203204144 +-0.464150708464649,0.29744094505051166 +-0.681965535005304,0.38204718689256734 +0.7283482006559283,0.9917268905387563 +1.0260777113989898,-0.13014610685144556 +0.01585031379097579,-0.22664669290282896 +-0.5588087603644326,-0.053440761294585803 +0.6702411911952887,-0.3275025446494712 +0.2623651817054151,-0.24648786143116588 +0.534028209238911,-0.7678346038877518 +1.2199574686647947,0.3371805659248868 +-0.7000973668160424,0.3234117914468645 +-0.5024069919831937,-0.2809460513756151 +-0.13322547360719378,0.26212998802987725 +0.28147325853486277,0.4353873131883791 +1.277578921942807,-0.0012366246003737702 +0.33420070761649634,-0.5068590490776362 +1.4992006377264948,-0.8432603932060312 +-0.38688726088457515,1.6623492884315878 +-0.7587069890744722,0.09463182238672221 +-0.0351829441183672,1.8325289445854414 +1.2962314350643276,-0.2974350156731337 +-1.061065735636507,-0.2739257993747184 +0.23842660215801043,1.6131238419109855 +0.6148946297458329,-0.368281370453284 +0.8429677837377515,1.1206401104822108 +-0.2690489241387751,1.9195431808276868 +0.9515521272728624,1.1965261479593874 +-0.35749263572641765,0.2033861579997831 +-0.5183312572017341,1.9304218349612707 +1.2998088140336448,-1.1836570203204144 +-0.11341254027315635,0.22259437268183402 +0.9112938172959529,0.24256883499585372 +-0.30748597057575655,0.178688116853695 +0.6813923807433948,0.26193560633272517 +0.01585031379097579,-0.22664669290282896 +-0.5588087603644326,-0.053440761294585803 +0.49917909836508434,0.31080323800013043 +0.9535900759614238,0.576257720648619 +0.7912821464797538,0.754673183958006 +1.2199574686647947,0.3371805659248868 +0.026082869302141654,0.3294741236160654 +-0.5024069919831937,-0.2809460513756151 +1.3605932367848674,-0.9476528288947614 +0.28147325853486277,0.4353873131883791 +1.277578921942807,-0.0012366246003737702 +-0.7277606234009797,1.4172205598469505 +1.4992006377264948,-0.8432603932060312 +-0.38688726088457515,1.6623492884315878 +1.4118405994835248,-0.8001902675326229 +-0.0351829441183672,1.8325289445854414 +0.23853414803349626,1.8521512781643958 +-1.061065735636507,-0.2739257993747184 +0.23842660215801043,1.6131238419109855 +-0.9040561724540381,0.7447412262852691 +0.8429677837377515,1.1206401104822108 +-0.2690489241387751,1.9195431808276868 +0.9515521272728624,1.1965261479593874 +1.2396374381305866,0.6017004598766014 +-0.5183312572017341,1.9304218349612707 +1.2998088140336448,-1.1836570203204144 +-0.11341254027315635,0.22259437268183402 +-0.3021216766611312,0.9495544211562037 +-0.30748597057575655,0.178688116853695 +0.6813923807433948,0.26193560633272517 +0.13553519384538978,0.7273350212500309 +-0.5588087603644326,-0.053440761294585803 +0.49917909836508434,0.31080323800013043 +-0.288934636732601,-0.24621201349462368 +0.7912821464797538,0.754673183958006 +1.2199574686647947,0.3371805659248868 +0.026082869302141654,0.3294741236160654 +-0.5024069919831937,-0.2809460513756151 +1.3605932367848674,-0.9476528288947614 +1.3266822998839674,-0.33008953664610974 +1.277578921942807,-0.0012366246003737702 +0.6857026395120291,-0.1935049074629694 +1.4992006377264948,-0.8432603932060312 +-0.38688726088457515,1.6623492884315878 +1.4118405994835248,-0.8001902675326229 +-0.0351829441183672,1.8325289445854414 +0.23853414803349626,1.8521512781643958 +-1.061065735636507,-0.2739257993747184 +0.23842660215801043,1.6131238419109855 +-0.9040561724540381,0.7447412262852691 +0.8429677837377515,1.1206401104822108 +-0.2690489241387751,1.9195431808276868 +1.243651721276692,-0.446231156642489 +0.0760069069348898,0.5522351585141352 +0.6716960587025582,-0.649485184753738 +0.7927939302295899,-0.6623925667091949 +-0.11341254027315635,0.22259437268183402 +1.184421888142956,-1.2268955526405998 +-0.6778755944799104,1.7540659483774388 +-0.5768566280625207,1.8404511423487675 +0.13553519384538978,0.7273350212500309 +-0.5588087603644326,-0.053440761294585803 +0.4283491597609513,-0.6561779993588172 +-0.288934636732601,-0.24621201349462368 +0.7912821464797538,0.754673183958006 +1.6558828750970316,-1.6172056783879571 +0.34368173903549903,0.07186713451213753 +-0.5024069919831937,-0.2809460513756151 +0.17722403625307942,-0.10233546716676556 +-0.09099674911713973,0.6345304532400998 +1.277578921942807,-0.0012366246003737702 +-0.4355235397518692,1.5904835681458924 +1.4992006377264948,-0.8432603932060312 +-0.6534788663032043,0.9693894084669591 +1.4118405994835248,-0.8001902675326229 +0.3814538001465433,0.9040687995441095 +0.23853414803349626,1.8521512781643958 +-1.061065735636507,-0.2739257993747184 +0.23842660215801043,1.6131238419109855 +-0.9040561724540381,0.7447412262852691 +0.8429677837377515,1.1206401104822108 +0.8501387624586837,-0.4779945056930742 +1.1518831243574836,-0.8299107952091689 +0.7538407302842361,0.5101592566489159 +0.6716960587025582,-0.649485184753738 +0.31494206185381335,1.7635490278650572 +-0.11341254027315635,0.22259437268183402 +1.184421888142956,-1.2268955526405998 +0.5105889667402984,0.5323870284327992 +0.31023106341175444,1.9128633698608648 +-0.7178837631328585,1.5714839416562425 +-0.5588087603644326,-0.053440761294585803 +0.4283491597609513,-0.6561779993588172 +-0.4268621479661151,1.2787639604869245 +1.0314309880545465,-0.10736610495154819 +1.6558828750970316,-1.6172056783879571 +0.34368173903549903,0.07186713451213753 +-0.5024069919831937,-0.2809460513756151 +0.17722403625307942,-0.10233546716676556 +-0.09099674911713973,0.6345304532400998 +1.277578921942807,-0.0012366246003737702 +-0.4355235397518692,1.5904835681458924 +1.4992006377264948,-0.8432603932060312 +-0.6534788663032043,0.9693894084669591 +1.4652610592119917,-1.2144324079450026 +0.8709351920376124,-0.9796138903858704 +-0.31838903628577386,-0.006201530964469293 +-1.061065735636507,-0.2739257993747184 +0.23842660215801043,1.6131238419109855 +1.2683592386919977,-1.4667758544424292 +0.8429677837377515,1.1206401104822108 +0.8501387624586837,-0.4779945056930742 +1.1518831243574836,-0.8299107952091689 +0.6555289552270965,-0.4785783259739109 +-0.14810271178865092,1.2314998975349285 +0.9546642310310054,1.0933216855349421 +1.3477893645763817,-1.685319837254551 +1.184421888142956,-1.2268955526405998 +0.5105889667402984,0.5323870284327992 +0.31023106341175444,1.9128633698608648 +0.3745875933536883,1.328389736943573 +-0.5588087603644326,-0.053440761294585803 +0.7543670259659802,-0.7671761091954972 +-0.4268621479661151,1.2787639604869245 +1.6270910734732535,-0.8464706678088371 +1.6558828750970316,-1.6172056783879571 +0.34368173903549903,0.07186713451213753 +-0.5024069919831937,-0.2809460513756151 +0.8942951589489603,-1.108259145673864 +-0.6191911166328926,1.1600465203370596 +0.2068296207193575,1.6132606712711604 +-0.4355235397518692,1.5904835681458924 +-0.8551523154233767,0.23228279356337656 +-0.15621771575698376,1.1493679903577672 +1.4652610592119917,-1.2144324079450026 +-0.4559425984850138,1.7612220789599469 +-0.31838903628577386,-0.006201530964469293 +1.2442729651887334,-0.05350612198919835 +0.23842660215801043,1.6131238419109855 +-0.4987212219106947,-0.2293859301423337 +0.13056216306354995,-0.08241763721229156 +1.7061576441267436,-2.0927144443100962 +1.1518831243574836,-0.8299107952091689 +0.6555289552270965,-0.4785783259739109 +-0.7701790338778953,1.4016978089125183 +1.064649073490998,0.3440943857570494 +1.8200903072654004,-2.163359963116161 +1.8924304472723834,-3.0559721022104895 +0.5105889667402984,0.5323870284327992 +-0.5566343343004156,0.9626033129114456 +0.3745875933536883,1.328389736943573 +-0.5588087603644326,-0.053440761294585803 +0.7543670259659802,-0.7671761091954972 +-0.4268621479661151,1.2787639604869245 +1.6270910734732535,-0.8464706678088371 +1.6558828750970316,-1.6172056783879571 +0.34368173903549903,0.07186713451213753 +-0.5024069919831937,-0.2809460513756151 +1.176262615665156,-0.6061348352795299 +-0.6191911166328926,1.1600465203370596 +-0.8174480509904993,0.7878320873913511 +-0.4355235397518692,1.5904835681458924 +-0.19837099057866192,0.07516825788672354 +-0.15621771575698376,1.1493679903577672 +-0.5418803080270742,0.5194767945233726 +-0.4559425984850138,1.7612220789599469 +-0.31838903628577386,-0.006201530964469293 +1.2442729651887334,-0.05350612198919835 +0.23842660215801043,1.6131238419109855 +0.5891967703764167,-0.5486875013400057 +0.13056216306354995,-0.08241763721229156 +1.7061576441267436,-2.0927144443100962 +-0.59020274265602,0.5596598475350836 +0.6225489436712127,1.6436373766192836 +0.22141071142808777,0.8179649731139131 +-0.3257822685478379,-0.3042571330844961 +0.9789670774005185,0.6085221584752165 +1.8924304472723834,-3.0559721022104895 +0.5105889667402984,0.5323870284327992 +-0.5566343343004156,0.9626033129114456 +-0.5961182443042512,0.4147138890318565 +0.9998714216482726,-0.9526775339664231 +0.5662967879271156,0.2994668860753633 +0.9267603431696982,0.5901920633026977 +1.6270910734732535,-0.8464706678088371 +1.6558828750970316,-1.6172056783879571 +-0.7607363323387645,0.3820225171499263 +-0.5024069919831937,-0.2809460513756151 +0.5178631150747728,-0.7601270625123852 +-0.6892986654396758,0.4553947432762202 +-0.5783526974028377,0.7153404412320509 +-0.4355235397518692,1.5904835681458924 +0.6050237662579261,-0.34185211463095444 +0.4138940776070549,-0.632750420753214 +1.2221706405449893,-1.3722050733152518 +-0.4559425984850138,1.7612220789599469 +-0.970080232309711,0.45199526322388084 +1.2926688081262094,-1.2065512282932627 +0.6883577213393358,1.6236182345760064 +-1.1467078210693047,-0.23731432287327486 +1.7069213675603687,-2.2309503481590336 +1.7061576441267436,-2.0927144443100962 +-0.59020274265602,0.5596598475350836 +0.6225489436712127,1.6436373766192836 +0.80490522983906,-0.43725078782321636 +-0.3257822685478379,-0.3042571330844961 +0.9789670774005185,0.6085221584752165 +0.8237699787975341,-0.2915296766995779 +0.5105889667402984,0.5323870284327992 +-0.5566343343004156,0.9626033129114456 +-0.9208370887297042,0.013077969620158614 +0.8572706586744072,-0.12641630448801533 +0.5662967879271156,0.2994668860753633 +0.8044906238731642,1.627483407021994 +1.506112370351351,-2.4992482592954604 +0.6557375874139295,-0.9982278501848493 +1.0853022920999964,-0.6141612487716089 +-0.5024069919831937,-0.2809460513756151 +-0.5170345092687011,1.83011703201514 +-0.6892986654396758,0.4553947432762202 +0.5935263858070344,1.5353689598134193 +-0.4355235397518692,1.5904835681458924 +-0.6398540340765699,1.1539286044926969 +-0.5399472175987775,1.5906458832981234 +0.3275854401666706,1.7047580761338803 +0.9235415056198805,-0.9954382235984673 +-0.970080232309711,0.45199526322388084 +-0.3415491581484177,0.2950780143604931 +0.6883577213393358,1.6236182345760064 +0.6334637616524759,-0.6165032423053668 +1.7069213675603687,-2.2309503481590336 +-0.48206197296317665,0.48506933310728517 +-0.9548662909718506,-0.43987402550324484 +0.6225489436712127,1.6436373766192836 +0.80490522983906,-0.43725078782321636 +0.20974946650885362,-0.13900754528790987 +0.9789670774005185,0.6085221584752165 +0.8237699787975341,-0.2915296766995779 +1.3901582472795,-0.8981544201780869 +0.39171976045184886,-0.5416316952927855 +0.01378981028308357,0.15650108006401453 +-0.6121553897551816,0.12239396520105983 +0.11893999515214485,1.878417380420022 +-0.31108750635701615,-0.21725677855175873 +1.506112370351351,-2.4992482592954604 +-0.5930890984668733,1.7882149183018252 +1.0853022920999964,-0.6141612487716089 +-0.5024069919831937,-0.2809460513756151 +-0.6014785500457883,0.4954064809491132 +-0.6892986654396758,0.4553947432762202 +1.7828335499986014,-2.1383912538353287 +-0.4355235397518692,1.5904835681458924 +1.5143514148403172,-2.0805093309786113 +-0.5399472175987775,1.5906458832981234 +0.8847305614928354,1.1977252640466096 +0.9235415056198805,-0.9954382235984673 +-0.970080232309711,0.45199526322388084 +0.1824716631465546,1.0116314366252217 +0.6883577213393358,1.6236182345760064 +0.6334637616524759,-0.6165032423053668 +1.7069213675603687,-2.2309503481590336 +0.2627606335415573,1.615599345569081 +-0.9548662909718506,-0.43987402550324484 +0.6225489436712127,1.6436373766192836 +0.7740678243691812,0.08694257788261577 +0.20974946650885362,-0.13900754528790987 +0.9789670774005185,0.6085221584752165 +0.8237699787975341,-0.2915296766995779 +1.3901582472795,-0.8981544201780869 +0.11178356540427126,0.34441237995432405 +0.29132906378442436,1.5671478745654868 +-0.6121553897551816,0.12239396520105983 +1.7454853481427317,-2.6335441120883982 +1.5553762602038517,-1.8466149175560438 +0.37974295160235405,-0.01493700266141651 +-0.5930890984668733,1.7882149183018252 +1.529820964392926,-1.8775511177495008 +-0.7258656336539678,1.278519043865516 +-0.6014785500457883,0.4954064809491132 +0.43355112655500777,2.2482620325469402 +0.4886092915501026,-0.08401232459891539 +0.3560054323141397,-0.7320786076137555 +1.5143514148403172,-2.0805093309786113 +-0.9802279005603818,0.5986802600670428 +0.8847305614928354,1.1977252640466096 +0.5223735984934943,-0.5865629884008949 +0.1667497171702303,0.32396497814666997 +0.49980148182735384,1.5199756040384085 +0.539813738277357,-0.7528305170799647 +0.6334637616524759,-0.6165032423053668 +-0.1200729538362304,1.413700346233091 +0.2627606335415573,1.615599345569081 +-0.9548662909718506,-0.43987402550324484 +0.6225489436712127,1.6436373766192836 +-0.9211473765238931,0.5347564411488714 +0.20974946650885362,-0.13900754528790987 +0.9789670774005185,0.6085221584752165 +0.6949661154047044,-0.5097609640071791 +-0.06742749100660062,0.13690267479253904 +0.11178356540427126,0.34441237995432405 +0.11357566919257656,0.04260060731257598 +1.209749647077314,0.2688968450347097 +1.7454853481427317,-2.6335441120883982 +-0.4755956461172199,0.3193047131515804 +0.37974295160235405,-0.01493700266141651 +-0.5930890984668733,1.7882149183018252 +1.529820964392926,-1.8775511177495008 +-0.7258656336539678,1.278519043865516 +-0.6014785500457883,0.4954064809491132 +1.0090478192568613,0.10681533699814394 +0.4886092915501026,-0.08401232459891539 +0.3560054323141397,-0.7320786076137555 +1.5139405121788954,-0.8625608080098071 +-0.9802279005603818,0.5986802600670428 +0.8847305614928354,1.1977252640466096 +0.5223735984934943,-0.5865629884008949 +0.1667497171702303,0.32396497814666997 +0.49980148182735384,1.5199756040384085 +1.3541650262459437,-0.5014828899353811 +0.6334637616524759,-0.6165032423053668 +0.6818337289610641,1.64559471173881 +0.2627606335415573,1.615599345569081 +0.5092480462945129,1.687876722097455 +0.9202725476859264,-1.041887812853593 +-0.9211473765238931,0.5347564411488714 +0.17390085921709458,-0.684960430767913 +0.9789670774005185,0.6085221584752165 +0.6949661154047044,-0.5097609640071791 +-0.06742749100660062,0.13690267479253904 +0.11178356540427126,0.34441237995432405 +0.39922436035353964,1.991531044173423 +1.209749647077314,0.2688968450347097 +1.7454853481427317,-2.6335441120883982 +-0.4755956461172199,0.3193047131515804 +0.37974295160235405,-0.01493700266141651 +0.7015064881728843,-0.5430813188215796 +1.529820964392926,-1.8775511177495008 +-0.6964059749974478,0.3270811268913409 +0.46525198838266807,-0.06011816062832972 +1.0090478192568613,0.10681533699814394 +0.4886092915501026,-0.08401232459891539 +0.17868418318302282,1.9909670485561768 +1.5139405121788954,-0.8625608080098071 +-0.9802279005603818,0.5986802600670428 +0.8847305614928354,1.1977252640466096 +0.9707707512348809,-0.8081259500887724 +0.1667497171702303,0.32396497814666997 +0.49980148182735384,1.5199756040384085 +1.73301783497816,-2.248794385911477 +0.6334637616524759,-0.6165032423053668 +0.6818337289610641,1.64559471173881 +0.2627606335415573,1.615599345569081 +0.20267445149305302,-0.24700968021523595 +0.9202725476859264,-1.041887812853593 +-0.9211473765238931,0.5347564411488714 +0.17390085921709458,-0.684960430767913 +0.9789670774005185,0.6085221584752165 +0.6949661154047044,-0.5097609640071791 +-0.06742749100660062,0.13690267479253904 +0.11178356540427126,0.34441237995432405 +0.39922436035353964,1.991531044173423 +1.209749647077314,0.2688968450347097 +1.7454853481427317,-2.6335441120883982 +1.3277690139287057,-1.5110595122651784 +0.4470484645937507,0.19995054366591586 +0.7015064881728843,-0.5430813188215796 +1.529820964392926,-1.8775511177495008 +-0.6964059749974478,0.3270811268913409 +0.46525198838266807,-0.06011816062832972 +1.104916239139932,-0.6776059950753903 +0.4886092915501026,-0.08401232459891539 +0.17868418318302282,1.9909670485561768 +1.5139405121788954,-0.8625608080098071 +-0.9802279005603818,0.5986802600670428 +0.8847305614928354,1.1977252640466096 +1.2253282387969033,-1.933383571622859 +0.9658374923620732,0.016805349003701897 +0.8901163834304041,0.8410698233107172 +0.950269796734813,-0.5605242132523957 +0.6334637616524759,-0.6165032423053668 +0.6818337289610641,1.64559471173881 +0.2627606335415573,1.615599345569081 +0.20267445149305302,-0.24700968021523595 +0.9202725476859264,-1.041887812853593 +-0.9112631941913786,1.0337886765231983 +0.17390085921709458,-0.684960430767913 +0.9789670774005185,0.6085221584752165 +0.6949661154047044,-0.5097609640071791 +0.6619098935332483,0.3273628351793285 +0.11178356540427126,0.34441237995432405 +0.21359638258500946,-0.21767649017412227 +1.209749647077314,0.2688968450347097 +0.2273042345691778,2.441186016067874 +1.3277690139287057,-1.5110595122651784 +0.368778921327878,-0.4213865051680329 +-0.22948835265735196,1.818262850854532 +-0.17755097282073012,-0.1622044082589459 +-0.6964059749974478,0.3270811268913409 +-0.06724523510795216,1.993531495105302 +1.104916239139932,-0.6776059950753903 +-0.1892933139444219,1.2526525062480243 +0.17868418318302282,1.9909670485561768 +1.5139405121788954,-0.8625608080098071 +0.43062086481049966,1.8324363829839991 +0.8847305614928354,1.1977252640466096 +0.8041948982880465,0.3689512528899671 +-0.4260672525760308,0.5908435027903128 +0.7905006198595411,1.5527496360268722 +0.950269796734813,-0.5605242132523957 +-0.7373956494604859,0.6298245827911608 +-0.5710885460021717,0.9548323801789771 +0.2627606335415573,1.615599345569081 +1.1664457866799494,-1.8537328760989011 +0.9202725476859264,-1.041887812853593 +-0.9112631941913786,1.0337886765231983 +0.17390085921709458,-0.684960430767913 +-0.24993341943601521,0.7666045011986798 +0.6949661154047044,-0.5097609640071791 +0.6619098935332483,0.3273628351793285 +-0.3877820360069679,0.6471233332841482 +0.21359638258500946,-0.21767649017412227 +1.209749647077314,0.2688968450347097 +0.48932865851634844,-0.03829022278036398 +1.3277690139287057,-1.5110595122651784 +1.4520458662821296,-1.1956702367127794 +-0.22948835265735196,1.818262850854532 +1.4015333041755254,-1.6242825649265704 +-0.6964059749974478,0.3270811268913409 +-0.3349896920651101,0.8806611029212112 +0.30560730182209794,0.1596730308093044 +1.3544534732313867,-0.8308096574913955 +0.17868418318302282,1.9909670485561768 +1.5139405121788954,-0.8625608080098071 +0.43062086481049966,1.8324363829839991 +0.8847305614928354,1.1977252640466096 +0.3059689174840977,1.6231750542695087 +-0.4260672525760308,0.5908435027903128 +-0.5407917118899472,1.4431745048273346 +0.950269796734813,-0.5605242132523957 +-0.7373956494604859,0.6298245827911608 +-0.24486715561502279,0.9254288658116745 +0.2627606335415573,1.615599345569081 +1.160541231516044,-0.5993659005591776 +0.9202725476859264,-1.041887812853593 +-0.9112631941913786,1.0337886765231983 +0.17390085921709458,-0.684960430767913 +-0.4832521575787937,1.47448408807294 +0.6949661154047044,-0.5097609640071791 +-1.0244663579523003,0.6213487137472392 +-0.3877820360069679,0.6471233332841482 +1.279434257631549,-0.9713309359609947 +1.209749647077314,0.2688968450347097 +0.31218193190588944,0.11572050944885245 +-0.462901300911044,1.7563154056381731 +1.4142411270175894,-1.4558832504470636 +-0.22948835265735196,1.818262850854532 +1.4015333041755254,-1.6242825649265704 +1.4040851323231016,-0.36015748728027347 +-0.3349896920651101,0.8806611029212112 +0.4501930789428613,-0.11295213000186882 +1.3544534732313867,-0.8308096574913955 +-0.9342594905402933,0.6363524976743875 +1.5139405121788954,-0.8625608080098071 +0.43062086481049966,1.8324363829839991 +0.8847305614928354,1.1977252640466096 +1.248813856841346,-1.949673293591021 +0.833719086708791,-0.48351476974453894 +-0.5407917118899472,1.4431745048273346 +0.950269796734813,-0.5605242132523957 +0.9205529108689228,-0.8726189957499824 +0.33668272639831687,2.456811725911463 +-0.3646763886312001,1.6650089295407455 +1.084016566026219,0.1930084286636422 +0.32665905842878756,0.27520528888588836 +-0.9112631941913786,1.0337886765231983 +0.17390085921709458,-0.684960430767913 +-0.4832521575787937,1.47448408807294 +0.6949661154047044,-0.5097609640071791 +-1.0244663579523003,0.6213487137472392 +-0.3877820360069679,0.6471233332841482 +1.279434257631549,-0.9713309359609947 +1.209749647077314,0.2688968450347097 +0.7611225298459171,-0.5100941825001429 +0.9111898184261522,0.7950285558680263 +1.0297536983983706,0.08418824202367614 +-0.22948835265735196,1.818262850854532 +0.15138935834404316,1.915938207141934 +0.3714734615104889,0.13062388647809675 +0.9622782113807045,-1.1174472209393365 +1.8101250344089723,-1.9325890813229079 +0.20835840820744794,0.41474331462133585 +1.9206462581343198,-2.115237719313317 +1.5139405121788954,-0.8625608080098071 +0.43062086481049966,1.8324363829839991 +0.362251269765029,0.817257840432169 +1.248813856841346,-1.949673293591021 +-0.6973177579137071,0.2571949620929661 +-0.5407917118899472,1.4431745048273346 +0.950269796734813,-0.5605242132523957 +0.9205529108689228,-0.8726189957499824 +0.33668272639831687,2.456811725911463 +1.2820152687836517,-0.5550940654568568 +1.084016566026219,0.1930084286636422 +-0.12418866371889553,2.0836359222954903 +-0.9112631941913786,1.0337886765231983 +0.24424593705662248,1.0562215540124273 +0.5736414120433626,1.4474543410502276 +0.6949661154047044,-0.5097609640071791 +-1.0244663579523003,0.6213487137472392 +-0.225179919561578,0.5549781729891623 +1.3570509733635536,-1.3497592740007234 +0.21110186266423164,1.2976358819712055 +-0.04351493425525005,1.7688299918252965 +0.764615633982157,0.05178056161293454 +0.44365206936557744,1.3361658371774987 +-0.22948835265735196,1.818262850854532 +0.15138935834404316,1.915938207141934 +0.3714734615104889,0.13062388647809675 +1.442275857844289,0.07273452751168108 +1.8101250344089723,-1.9325890813229079 +0.993178470312709,0.8065253009706093 +0.568312048643173,-0.9284978376916071 +1.5139405121788954,-0.8625608080098071 +-0.35265151080015644,1.461777165086822 +0.5467285861154743,1.7617827093942278 +-0.4338601749531385,1.7396750284044264 +-0.6973177579137071,0.2571949620929661 +1.3846589366932147,-0.3373042181603733 +1.798717766819896,-3.2407087731083433 +0.9205529108689228,-0.8726189957499824 +-1.1401782343366542,0.33462347738313053 +1.2820152687836517,-0.5550940654568568 +1.0172504215594118,-0.7942381496063444 +-0.12418866371889553,2.0836359222954903 +-0.9112631941913786,1.0337886765231983 +-1.0330109605857234,-0.0011593921530135831 +0.5736414120433626,1.4474543410502276 +0.6949661154047044,-0.5097609640071791 +0.1405496694366461,0.6445940557679688 +-0.225179919561578,0.5549781729891623 +1.3570509733635536,-1.3497592740007234 +0.21110186266423164,1.2976358819712055 +-0.04351493425525005,1.7688299918252965 +1.7228212668520548,-1.6070609394989432 +1.3912194345392175,-1.9366504867574705 +-0.22948835265735196,1.818262850854532 +0.15138935834404316,1.915938207141934 +-0.3606925418772957,1.8890577068214067 +0.4993107335697491,1.3726228494044488 +1.5779505065601176,-2.299092611178204 +0.993178470312709,0.8065253009706093 +1.422985178080866,-1.6811274556813085 +1.317157380977229,-0.7238409720550653 +-0.35265151080015644,1.461777165086822 +0.5467285861154743,1.7617827093942278 +-0.18313428545633526,2.132662021612408 +0.061074808584244966,1.1121147889846608 +1.3846589366932147,-0.3373042181603733 +0.38395808930382197,0.7695216404352094 +0.9205529108689228,-0.8726189957499824 +-1.1401782343366542,0.33462347738313053 +1.2820152687836517,-0.5550940654568568 +1.2501986490559924,-1.134044249304001 +0.32605452129777185,2.243724995753445 +0.960318281056638,0.5329624446210686 +-1.0330109605857234,-0.0011593921530135831 +0.5736414120433626,1.4474543410502276 +0.6949661154047044,-0.5097609640071791 +0.1405496694366461,0.6445940557679688 +-0.225179919561578,0.5549781729891623 +1.3570509733635536,-1.3497592740007234 +-0.050942173207914804,0.4411458899231341 +-0.04351493425525005,1.7688299918252965 +-0.5686038682283049,1.4634405277995886 +1.3912194345392175,-1.9366504867574705 +-0.22948835265735196,1.818262850854532 +0.15138935834404316,1.915938207141934 +-0.3606925418772957,1.8890577068214067 +0.4993107335697491,1.3726228494044488 +-0.6130152061639946,1.2729541152898238 +0.993178470312709,0.8065253009706093 +1.422985178080866,-1.6811274556813085 +1.317157380977229,-0.7238409720550653 +1.1821116843147723,-1.1948406297338698 +0.5467285861154743,1.7617827093942278 +-0.18313428545633526,2.132662021612408 +0.061074808584244966,1.1121147889846608 +-0.06649004827862207,0.3785485310315988 +0.007053201400834631,0.40345042626065 +0.9205529108689228,-0.8726189957499824 +-1.1401782343366542,0.33462347738313053 +1.2820152687836517,-0.5550940654568568 +-0.051331018006247585,0.8870905207401014 +0.6422207154643673,-0.8546269615151314 +0.9826862674434511,-0.7722604722176343 +-1.0330109605857234,-0.0011593921530135831 +0.5736414120433626,1.4474543410502276 +1.2142828341205736,-1.8079913184192278 +-0.22569681999837243,-0.5811731749478508 +-0.9983827794683096,0.2524409892537013 +0.6890142159451111,-0.7403985796809609 +-0.8387562466337369,0.9562583776085286 +1.6669071927856427,-1.346398210038814 +-0.5686038682283049,1.4634405277995886 +1.3912194345392175,-1.9366504867574705 +-0.22948835265735196,1.818262850854532 +1.5251706607039237,-1.0341198578642705 +-0.3606925418772957,1.8890577068214067 +0.4993107335697491,1.3726228494044488 +-0.6130152061639946,1.2729541152898238 +0.993178470312709,0.8065253009706093 +0.9140388586784445,-1.0059810161049287 +1.521429658064715,-2.3346791584251947 +-0.4818147359374968,0.8892110054475033 +0.5467285861154743,1.7617827093942278 +1.2200081632937612,-0.08965983999819316 +0.061074808584244966,1.1121147889846608 +0.870010843964685,-0.5600778792558925 +0.20661467231941588,-0.07743241994157657 +0.10536818070411691,-0.3625411711599307 +-0.2370962353260044,0.7687715297993125 +-0.08689941028604542,0.0798884106760348 +-0.051331018006247585,0.8870905207401014 +0.6422207154643673,-0.8546269615151314 +1.0335274124363285,-0.7007236901236475 +-1.0330109605857234,-0.0011593921530135831 +0.9708191062787479,-1.1385638075551987 +0.8272382930693011,-0.7332762619935195 +-0.22569681999837243,-0.5811731749478508 +0.6982424844947559,-0.4359765057497374 +0.6890142159451111,-0.7403985796809609 +-0.8387562466337369,0.9562583776085286 +-0.08828447410374579,1.7423274412631415 +1.6578958045214178,-1.6168163589555546 +1.3912194345392175,-1.9366504867574705 +-0.22948835265735196,1.818262850854532 +1.5251706607039237,-1.0341198578642705 +-0.3606925418772957,1.8890577068214067 +0.38832706107889137,-0.38111159644427706 +-0.6130152061639946,1.2729541152898238 +0.993178470312709,0.8065253009706093 +-1.020528074442769,0.7359889047418875 +1.2182992625586706,-1.2950401708339467 +0.6420742371368302,1.6618817089993008 +0.5467285861154743,1.7617827093942278 +1.6802777871890033,-2.481552545551897 +0.12124252692648063,0.14177308722270032 +0.870010843964685,-0.5600778792558925 +0.8409621347663941,-0.9544331532366002 +1.1575240055079348,-1.4672735280389977 +-0.2370962353260044,0.7687715297993125 +-0.5723800128638278,0.9511094279414398 +0.2549798883364869,0.6357480152919786 +-0.5805437009070321,1.2437067355646996 +1.0335274124363285,-0.7007236901236475 +-1.0330109605857234,-0.0011593921530135831 +1.7284875876857482,-1.553951816383472 +0.8272382930693011,-0.7332762619935195 +0.5598712152216856,-0.48710925453785325 +0.6982424844947559,-0.4359765057497374 +0.4485346364702086,-0.25849132962302557 +-0.8387562466337369,0.9562583776085286 +-0.08828447410374579,1.7423274412631415 +1.6578958045214178,-1.6168163589555546 +1.3912194345392175,-1.9366504867574705 +-0.22948835265735196,1.818262850854532 +-0.42849881294145437,0.6389401160277474 +0.0012716985199379138,-0.1667952741464035 +0.38832706107889137,-0.38111159644427706 +-0.10817136240333858,1.9809153432052118 +0.993178470312709,0.8065253009706093 +-0.25880761185269097,1.459181718321894 +1.4514335591916785,-1.898551760144989 +0.2766298114902189,1.6876977537058884 +0.5467285861154743,1.7617827093942278 +1.6802777871890033,-2.481552545551897 +1.340024851519484,-1.2284005776989957 +0.870010843964685,-0.5600778792558925 +0.8409621347663941,-0.9544331532366002 +1.8394072391473109,-1.6870149533405319 +-0.2370962353260044,0.7687715297993125 +0.47218205881902275,-0.21230542511919948 +0.3155761461037746,-0.1331536994014063 +-0.5805437009070321,1.2437067355646996 +1.0335274124363285,-0.7007236901236475 +-1.0330109605857234,-0.0011593921530135831 +0.8638505453525986,-0.6742823708993693 +0.5758761019617822,-0.43906318186008697 +0.1669199105604111,1.7452486570774255 +-0.5530540417064163,1.2499023111189669 +0.8359103604239093,0.28767881309436294 +0.06676949775777241,-0.024925193206543406 +-0.08828447410374579,1.7423274412631415 +1.6578958045214178,-1.6168163589555546 +1.3912194345392175,-1.9366504867574705 +-0.22948835265735196,1.818262850854532 +0.788092327615707,-0.7071875386456442 +0.0012716985199379138,-0.1667952741464035 +0.7421635026102312,-0.11127712236912368 +-0.10817136240333858,1.9809153432052118 +0.993178470312709,0.8065253009706093 +-0.25880761185269097,1.459181718321894 +1.1555375705590116,-0.9237529751870215 +-1.1741881358910242,-0.26475459666733536 +0.7922935327882227,0.2573573026734415 +1.6802777871890033,-2.481552545551897 +1.340024851519484,-1.2284005776989957 +0.870010843964685,-0.5600778792558925 +-0.4862077046798934,0.21056262010855242 +-0.7311597165166888,1.812066678816832 +-0.2370962353260044,0.7687715297993125 +0.8736931359045904,0.8966003037191956 +0.3155761461037746,-0.1331536994014063 +-0.5805437009070321,1.2437067355646996 +1.4088583896334739,-1.777914822488046 +-1.0330109605857234,-0.0011593921530135831 +1.5518620509701926,-2.4442876616151117 +0.5758761019617822,-0.43906318186008697 +-0.3400452806208075,1.575004288564685 +-0.5530540417064163,1.2499023111189669 +0.13199699461740444,-0.26187385865892154 +0.06676949775777241,-0.024925193206543406 +-0.08828447410374579,1.7423274412631415 +1.6504694042470076,-0.8698389137691652 +-0.7615752227921374,0.221265430671338 +-0.22948835265735196,1.818262850854532 +1.1708567295766783,-1.388410175920665 +0.0012716985199379138,-0.1667952741464035 +0.7737857770560349,-0.12925245748490877 +0.09011378652967497,1.8407515070591671 +0.5621611525858712,1.4356177110949724 +-0.25880761185269097,1.459181718321894 +1.1555375705590116,-0.9237529751870215 +-1.1741881358910242,-0.26475459666733536 +0.7922935327882227,0.2573573026734415 +1.6802777871890033,-2.481552545551897 +1.0129297921013407,0.8897519609407428 +0.870010843964685,-0.5600778792558925 +-0.4862077046798934,0.21056262010855242 +0.5005361259390347,-0.4303018902264021 +0.07781669737796937,-0.3760094205003543 +-0.3431633950276989,1.8672566423086472 +0.3155761461037746,-0.1331536994014063 +-0.8155614835681476,0.44014070823752965 +0.8976976368321097,-0.6043073621697787 +1.7281303236378323,-2.2289981133619796 +0.24439955660505225,1.4572975266810348 +0.5758761019617822,-0.43906318186008697 +0.11657282814482461,1.8397516082170537 +-0.5530540417064163,1.2499023111189669 +0.13199699461740444,-0.26187385865892154 +0.06676949775777241,-0.024925193206543406 +-0.08828447410374579,1.7423274412631415 +0.027223133083182194,1.175991192733379 +-0.7615752227921374,0.221265430671338 +-0.22948835265735196,1.818262850854532 +0.24828481176978656,0.03400573972385457 +0.0012716985199379138,-0.1667952741464035 +-0.4358633699958448,1.6107392950058208 +0.7809746687513548,1.31543576583469 +0.5621611525858712,1.4356177110949724 +-0.25880761185269097,1.459181718321894 +1.1555375705590116,-0.9237529751870215 +-1.1741881358910242,-0.26475459666733536 +0.7922935327882227,0.2573573026734415 +1.6802777871890033,-2.481552545551897 +1.0129297921013407,0.8897519609407428 +0.870010843964685,-0.5600778792558925 +-0.4862077046798934,0.21056262010855242 +1.0882368375184843,-1.335740416634906 +0.07781669737796937,-0.3760094205003543 +-0.17480630358702148,2.319660630306739 +0.05854199124605847,2.0822268658449357 +-0.6928770679772247,1.0897272251259194 +0.8976976368321097,-0.6043073621697787 +1.7281303236378323,-2.2289981133619796 +0.47021698973581993,-0.004845348654919389 +0.5758761019617822,-0.43906318186008697 +0.22366143007958955,1.3098226561277404 +-0.5530540417064163,1.2499023111189669 +1.7339846005990744,-2.4516858232857115 +0.06676949775777241,-0.024925193206543406 +-0.08828447410374579,1.7423274412631415 +-0.37767165023028954,-0.4381313061295942 +-0.7615752227921374,0.221265430671338 +-0.22948835265735196,1.818262850854532 +0.24828481176978656,0.03400573972385457 +0.0012716985199379138,-0.1667952741464035 +-0.4358633699958448,1.6107392950058208 +0.7809746687513548,1.31543576583469 +0.5621611525858712,1.4356177110949724 +0.5445062937686871,2.0738245452333426 +1.1555375705590116,-0.9237529751870215 +1.1889128413867556,0.05351249624351772 +0.7922935327882227,0.2573573026734415 +1.6802777871890033,-2.481552545551897 +-0.34731115838424664,0.1467452341910207 +1.7305024255052106,-2.2044608833264667 +-0.26326948409300094,0.18127258438057237 +1.0882368375184843,-1.335740416634906 +-0.44829657398530887,-0.4015416175630193 +-0.17480630358702148,2.319660630306739 +0.05854199124605847,2.0822268658449357 +0.11795760152469854,-0.19528869527923673 +0.8976976368321097,-0.6043073621697787 +0.37058493131422443,-0.05312235431039364 +-0.3910208661181151,-0.012179345120446827 +0.5758761019617822,-0.43906318186008697 +0.22366143007958955,1.3098226561277404 +-0.5530540417064163,1.2499023111189669 +-0.0201058171900554,0.21629048268982978 +-0.030187677080525832,0.01564808383429872 +-0.3841430737111862,0.4992253012347947 +0.7327437651910558,0.425513337123957 +0.3330540885838819,-0.5809467256876449 +-0.22948835265735196,1.818262850854532 +0.24828481176978656,0.03400573972385457 +-0.5363566255362303,0.5469445391571381 +-0.4358633699958448,1.6107392950058208 +-0.13668897891632878,0.4096829472711794 +1.0766908550343306,0.6233426497820483 +0.5445062937686871,2.0738245452333426 +1.1555375705590116,-0.9237529751870215 +1.1889128413867556,0.05351249624351772 +-0.0809305690965626,0.8611445000268594 +1.299263307382342,-1.2575451104599873 +-0.8129794934841944,0.7151781992741438 +1.7305024255052106,-2.2044608833264667 +-0.26326948409300094,0.18127258438057237 +-0.26342646769273953,1.7289799317141483 +-0.5638955362940932,0.3696561577578823 +-0.17480630358702148,2.319660630306739 +0.05854199124605847,2.0822268658449357 +0.11795760152469854,-0.19528869527923673 +0.6544048259777846,-0.13718747739389014 +-0.33952125346568024,0.315021425996037 +-0.3910208661181151,-0.012179345120446827 +0.5758761019617822,-0.43906318186008697 +0.20698234999296378,0.7053274180730396 +-0.5530540417064163,1.2499023111189669 +-0.0201058171900554,0.21629048268982978 +0.0036892257743022794,0.11288116875537069 +0.5128714121958371,-0.578254466665314 +0.7327437651910558,0.425513337123957 +0.3330540885838819,-0.5809467256876449 +-0.22948835265735196,1.818262850854532 +-0.39305271535169994,0.7878452716507145 +-0.5363566255362303,0.5469445391571381 +-0.4358633699958448,1.6107392950058208 +-0.13668897891632878,0.4096829472711794 +1.0766908550343306,0.6233426497820483 +0.5445062937686871,2.0738245452333426 +1.1555375705590116,-0.9237529751870215 +1.1889128413867556,0.05351249624351772 +-0.09645863723569015,0.020425002840486012 +1.299263307382342,-1.2575451104599873 +0.4315677653614832,1.6951905661077329 +1.7305024255052106,-2.2044608833264667 +-0.26326948409300094,0.18127258438057237 +-0.4764288372979673,-0.33936543743523623 +-0.07680993516059875,0.28391165495997617 +-0.2966471101423364,1.1588824738786916 +1.6694683269370385,-1.4377777210976022 +0.11795760152469854,-0.19528869527923673 +0.6544048259777846,-0.13718747739389014 +-0.6634038482698354,0.6673774479356299 +-0.3910208661181151,-0.012179345120446827 +1.9049580055122606,-1.7448624807102122 +0.9568561121656698,0.5169446205212084 +-0.061455893934512756,0.26896825058999146 +0.5905902073247002,1.208632903588212 +-0.5819999845003236,1.6318934856686118 +0.5128714121958371,-0.578254466665314 +-0.43046166953402637,-0.07929280363793645 +0.5777491335155015,0.9300308419610922 +-0.22948835265735196,1.818262850854532 +-0.39305271535169994,0.7878452716507145 +0.947787927845827,-1.2458429926308885 +0.6769679495023012,-0.3056299671606757 +-0.13668897891632878,0.4096829472711794 +1.0766908550343306,0.6233426497820483 +0.5445062937686871,2.0738245452333426 +-0.4462050897112878,1.4670100461559248 +1.1889128413867556,0.05351249624351772 +0.4222189333043671,0.057090752957074775 +1.299263307382342,-1.2575451104599873 +0.4315677653614832,1.6951905661077329 +0.04242889897434654,0.1983880034380917 +-0.26326948409300094,0.18127258438057237 +0.18282498033373817,-0.4595768925016178 +-0.009811017600425798,-0.3605095347938705 +-0.08057513844125241,2.0277508413724834 +1.6694683269370385,-1.4377777210976022 +-0.5064681781839117,1.3347564646162189 +0.6544048259777846,-0.13718747739389014 +0.04904073693359842,-0.3598907639097143 +-0.3910208661181151,-0.012179345120446827 +1.253817825052787,-0.7419226038166054 +0.9568561121656698,0.5169446205212084 +1.4088406869270866,-1.564376535730038 +0.5905902073247002,1.208632903588212 +-0.5819999845003236,1.6318934856686118 +0.5128714121958371,-0.578254466665314 +-0.31851936970808614,0.004874922096757661 +0.5777491335155015,0.9300308419610922 +-0.501067051803218,0.9809854083298134 +-0.39305271535169994,0.7878452716507145 +0.947787927845827,-1.2458429926308885 +0.6769679495023012,-0.3056299671606757 +0.2771274609009053,1.5545893214226474 +1.0766908550343306,0.6233426497820483 +0.9506162961369893,0.5347442393379956 +-0.4462050897112878,1.4670100461559248 +-0.4006746813565435,1.8499213867375301 +0.4222189333043671,0.057090752957074775 +1.299263307382342,-1.2575451104599873 +0.4315677653614832,1.6951905661077329 +-0.11718810319783476,1.6888798489479784 +-0.26326948409300094,0.18127258438057237 +0.8392656329663195,0.8550533314125064 +1.3825681290440817,-0.25861386405965137 +-0.08057513844125241,2.0277508413724834 +1.6694683269370385,-1.4377777210976022 +-0.6831007940026582,1.3514810778432784 +0.6544048259777846,-0.13718747739389014 +-0.36476292426970125,1.1035294353889995 +-0.3910208661181151,-0.012179345120446827 +1.1885451226359123,0.7483502385965124 +0.8395099236983319,0.9970216320738481 +1.4088406869270866,-1.564376535730038 +0.5905902073247002,1.208632903588212 +1.479650206501931,-1.2402230471946099 +1.0320144978739019,0.2766254400990811 +0.3164366634536928,1.4019862787264283 +-0.1506384887995716,-0.008704311444653418 +-0.5940299703113617,1.593618207473633 +-0.39305271535169994,0.7878452716507145 +-0.29743927338021275,-0.2668134670594082 +0.6769679495023012,-0.3056299671606757 +-0.23500372616294996,0.02416321244945343 +0.9108791706398444,-0.31356437443375273 +1.6848521326679076,-1.930965970757837 +0.5654765288289341,-0.4067900909788923 +-0.4006746813565435,1.8499213867375301 +-0.02060802424678998,0.27761541077152563 +1.299263307382342,-1.2575451104599873 +1.1609519951792255,0.6406457501935283 +1.4620222126513145,-0.06458920404473079 +-0.26326948409300094,0.18127258438057237 +0.3342065275606553,-0.4182568359568159 +1.3825681290440817,-0.25861386405965137 +-0.08057513844125241,2.0277508413724834 +0.5873010107794872,-0.44919624483300435 +-0.6831007940026582,1.3514810778432784 +0.26122798860199625,1.747609271065428 +1.3259292527075879,0.1768147688885811 +-0.1511783267872565,2.018396784606809 +1.1885451226359123,0.7483502385965124 +-0.7462441065816188,0.48853184704070396 +1.4088406869270866,-1.564376535730038 +0.5905902073247002,1.208632903588212 +0.5927987838173367,-0.4347159425544765 +0.7663698569658068,1.4578221815212753 +0.3164366634536928,1.4019862787264283 +-0.1506384887995716,-0.008704311444653418 +-0.004098226816138029,1.4769050094186387 +1.6909538186210233,-1.933654582247073 +-0.29743927338021275,-0.2668134670594082 +1.0001568711360396,-1.0090138792403152 +-0.23500372616294996,0.02416321244945343 +0.7466174250360085,0.8364778741180874 +1.6848521326679076,-1.930965970757837 +-0.6000596930716137,1.0143675129540586 +0.7467711034454696,-0.46524654670889676 +-0.02060802424678998,0.27761541077152563 +1.299263307382342,-1.2575451104599873 +1.1609519951792255,0.6406457501935283 +-0.020212975866727184,2.549764727623391 +0.1198320003799509,1.5125831138929384 +0.030590730613378053,1.5770098162280815 +1.3825681290440817,-0.25861386405965137 +0.9060706365026266,-0.6219734014231636 +0.5873010107794872,-0.44919624483300435 +-0.46008623334138443,-0.21205426981007242 +0.26122798860199625,1.747609271065428 +1.3259292527075879,0.1768147688885811 +-0.1511783267872565,2.018396784606809 +1.1885451226359123,0.7483502385965124 +1.3536010969791543,-0.33686093185679244 +1.4088406869270866,-1.564376535730038 +0.5905902073247002,1.208632903588212 +0.5927987838173367,-0.4347159425544765 +-0.8124453821212653,0.13351812358488196 +0.3164366634536928,1.4019862787264283 +-0.1506384887995716,-0.008704311444653418 +-0.004098226816138029,1.4769050094186387 +1.6909538186210233,-1.933654582247073 +-0.29743927338021275,-0.2668134670594082 +1.0001568711360396,-1.0090138792403152 +0.5972241778458204,1.4101491804159927 +0.7504799126619381,-1.0523977141405363 +-0.936676844697747,0.7770568953960565 +-0.6000596930716137,1.0143675129540586 +0.0015685936997077154,1.0652738246809172 +-0.7832788823778477,-0.00040863135157392927 +1.299263307382342,-1.2575451104599873 +1.0267502201346663,-1.437509119236218 +-0.020212975866727184,2.549764727623391 +0.1198320003799509,1.5125831138929384 +1.188272847436922,-1.0815992795350593 +1.3825681290440817,-0.25861386405965137 +0.9060706365026266,-0.6219734014231636 +0.5873010107794872,-0.44919624483300435 +0.3979812174797064,0.1257370030273287 +0.10470318273428852,1.3157280018864148 +1.0552157867364578,0.5800543482096441 +-0.44233179977164994,0.014042429485340069 +1.1885451226359123,0.7483502385965124 +-0.7475884041694489,-0.1360174912299357 +1.4088406869270866,-1.564376535730038 +0.5905902073247002,1.208632903588212 +0.5927987838173367,-0.4347159425544765 +-0.8124453821212653,0.13351812358488196 +-0.1900294246765665,0.9249564563008388 +-0.1506384887995716,-0.008704311444653418 +0.8308585718924699,-0.053852066239817586 +0.010815255579371741,1.6860384933175059 +1.2784776698172737,-1.7407252545177574 +-0.6016486450630587,1.3358304220790438 +0.5972241778458204,1.4101491804159927 +0.5004944821188289,0.7320972671218415 +-0.5207582082230042,1.7911656908618452 +-0.6000596930716137,1.0143675129540586 +1.0292588594037313,-0.13420662718874232 +-0.7832788823778477,-0.00040863135157392927 +0.378273194654507,1.3495695979759275 +0.8909681130887264,0.49933846592429265 +-0.020212975866727184,2.549764727623391 +0.6405915774493749,-0.17786044085561226 +0.9836264420167576,0.7899125655126199 +0.7254335858317379,1.6218038743138248 +0.3686463500961015,1.1282546632812887 +0.5873010107794872,-0.44919624483300435 +0.3979812174797064,0.1257370030273287 +0.10470318273428852,1.3157280018864148 +0.8648839224616903,1.1819366612826567 +0.1308808089376291,-0.37449379237341296 +1.1885451226359123,0.7483502385965124 +-0.7475884041694489,-0.1360174912299357 +1.4088406869270866,-1.564376535730038 +0.19644694962125675,1.805748157382356 +0.5927987838173367,-0.4347159425544765 +-0.8124453821212653,0.13351812358488196 +-0.1900294246765665,0.9249564563008388 +-0.1506384887995716,-0.008704311444653418 +-0.25085648250968584,0.08867824399607639 +0.010815255579371741,1.6860384933175059 +1.0245327180930566,0.7744204191888022 +1.467488614190949,-1.5049187380163258 +0.5972241778458204,1.4101491804159927 +1.7227926774956663,-2.675663713224065 +-0.5207582082230042,1.7911656908618452 +-0.6000596930716137,1.0143675129540586 +1.0292588594037313,-0.13420662718874232 +-0.7680319452001406,0.219519035725708 +1.3529676734278047,-1.1031532302159057 +0.8909681130887264,0.49933846592429265 +-0.020212975866727184,2.549764727623391 +0.7318885328877917,-0.031382494669557004 +1.0683218150051503,0.7483715581957755 +0.7254335858317379,1.6218038743138248 +0.6511185345879277,1.7837996386636605 +-0.4990335672921742,1.9913124705927598 +0.5815290677316602,-0.1706885619289853 +0.19960692564096405,1.6846328444672845 +0.8648839224616903,1.1819366612826567 +0.1308808089376291,-0.37449379237341296 +-0.5068899916154652,0.36303263142536757 +-0.7475884041694489,-0.1360174912299357 +1.4088406869270866,-1.564376535730038 +0.19644694962125675,1.805748157382356 +-0.9463862346333545,0.724729068577167 +-0.8124453821212653,0.13351812358488196 +0.4762337423343966,2.192439230564418 +-0.1506384887995716,-0.008704311444653418 +-0.25085648250968584,0.08867824399607639 +0.9868880573759092,0.7523590258018151 +1.0245327180930566,0.7744204191888022 +1.467488614190949,-1.5049187380163258 +-0.4146366132940126,0.9742882021962207 +1.7227926774956663,-2.675663713224065 +-0.7774486835230054,0.2162562642148722 +-0.35859300720066967,-0.26410131470574516 +-0.1280356126761576,2.169717778552113 +-0.7680319452001406,0.219519035725708 +1.3529676734278047,-1.1031532302159057 +0.8909681130887264,0.49933846592429265 +0.4799807295097376,0.029749814071351244 +0.7318885328877917,-0.031382494669557004 +0.817217430833628,1.566352722923621 +0.7254335858317379,1.6218038743138248 +0.9992856375043626,-0.3124557076645028 +-0.4990335672921742,1.9913124705927598 +-0.47874174559785104,1.6693068569310991 +0.19960692564096405,1.6846328444672845 +0.8648839224616903,1.1819366612826567 +0.1308808089376291,-0.37449379237341296 +1.4546371744311886,-0.8571177487097821 +-0.7475884041694489,-0.1360174912299357 +1.4088406869270866,-1.564376535730038 +0.19644694962125675,1.805748157382356 +0.11822354385140066,-0.46563836756564314 +-0.7622277476586315,1.5341442614041565 +0.4762337423343966,2.192439230564418 +-0.1506384887995716,-0.008704311444653418 +-0.6492067392210373,1.1951285307462052 +-0.9343316669186896,0.3924927302390233 +0.6073114831089086,0.2818139625114159 +1.467488614190949,-1.5049187380163258 +-0.4146366132940126,0.9742882021962207 +1.7227926774956663,-2.675663713224065 +0.2718398080254095,2.242954134902056 +-0.35859300720066967,-0.26410131470574516 +-0.1280356126761576,2.169717778552113 +-0.7680319452001406,0.219519035725708 +1.3529676734278047,-1.1031532302159057 +1.1199638701754986,0.10708186661306018 +0.4799807295097376,0.029749814071351244 +0.3494080581906873,2.3096049910509517 +-0.09132846145814688,1.9155320508670517 +0.7254335858317379,1.6218038743138248 +-0.003518890310637235,1.5866969584651476 +-0.4990335672921742,1.9913124705927598 +-0.47874174559785104,1.6693068569310991 +0.19960692564096405,1.6846328444672845 +0.8648839224616903,1.1819366612826567 +0.3266199336232542,0.2376922156190635 +-0.27264422107726777,1.455799137146697 +1.5520341907444013,-2.509280918296093 +1.4088406869270866,-1.564376535730038 +0.10752538914474483,2.242946381975254 +0.17812897387513982,1.5531156697170836 +-0.7622277476586315,1.5341442614041565 +1.7146975578536947,-1.5693947513059934 +-0.1506384887995716,-0.008704311444653418 +-0.6492067392210373,1.1951285307462052 +-0.9343316669186896,0.3924927302390233 +-0.14195909899567966,1.6545068388393844 +1.467488614190949,-1.5049187380163258 +-0.02068148890139132,2.015489507440587 +1.7227926774956663,-2.675663713224065 +1.0043291180739737,-1.0962873940618876 +-0.35859300720066967,-0.26410131470574516 +-0.1280356126761576,2.169717778552113 +-0.7680319452001406,0.219519035725708 +-0.4296683094001657,0.04880529813953052 +0.7143398552158037,-0.20831310054523922 +-0.2076785162509829,2.2075852542257377 +-0.2655780056219291,0.8579469547495825 +-0.09132846145814688,1.9155320508670517 +-0.6014157268785605,0.09861721922025891 +-0.003518890310637235,1.5866969584651476 +-0.3602827975120006,1.2576076035627894 +-0.47874174559785104,1.6693068569310991 +0.19960692564096405,1.6846328444672845 +1.1603922410820433,0.8485857077115777 +0.3266199336232542,0.2376922156190635 +0.18714532493785987,1.8063608461455656 +1.5520341907444013,-2.509280918296093 +1.4088406869270866,-1.564376535730038 +0.10752538914474483,2.242946381975254 +0.6841961898593715,0.52216318833161 +-0.5197050800034262,1.8016306175315717 +0.277673291274065,1.9479872387104569 +0.11358813953693062,0.9173136172337549 +-0.6492067392210373,1.1951285307462052 +-0.9343316669186896,0.3924927302390233 +-0.4059594148381973,1.819713011705249 +1.467488614190949,-1.5049187380163258 +-0.02068148890139132,2.015489507440587 +1.7227926774956663,-2.675663713224065 +1.3669045609722577,-1.2030521862178039 +-0.7121465505495129,0.7040164798039121 +-0.1280356126761576,2.169717778552113 +-0.7680319452001406,0.219519035725708 +-0.4296683094001657,0.04880529813953052 +0.7143398552158037,-0.20831310054523922 +-0.17318529431269644,1.9592025889073752 +-0.265447087141917,1.1590169347829662 +-0.4465519589982447,1.6170678418473514 +-0.6014157268785605,0.09861721922025891 +-0.003518890310637235,1.5866969584651476 +-0.3602827975120006,1.2576076035627894 +-0.34686959857912675,1.9324795495250031 +1.0751581990367018,-1.2673184114639493 +-0.7173678714555722,0.9624909787567566 +-0.6889303687232936,1.068460381755568 +-0.21012774311163662,1.8267111092736985 +1.2393198566200834,-1.4134103276418561 +1.4088406869270866,-1.564376535730038 +0.10752538914474483,2.242946381975254 +-0.1745938762017143,0.23769390956665837 +-0.5197050800034262,1.8016306175315717 +0.277673291274065,1.9479872387104569 +0.11358813953693062,0.9173136172337549 +0.507826394464442,-0.16417531687769757 +-0.9343316669186896,0.3924927302390233 +-0.4059594148381973,1.819713011705249 +1.467488614190949,-1.5049187380163258 +-0.02068148890139132,2.015489507440587 +1.7227926774956663,-2.675663713224065 +0.8319337439631788,-1.1573621568275998 +-0.48534259771782706,-0.1423777868913152 +0.5346377233106522,0.9782397858054527 +-0.7680319452001406,0.219519035725708 +-0.4296683094001657,0.04880529813953052 +0.45975873862208105,1.5963851196757226 +-0.17318529431269644,1.9592025889073752 +-0.5896840730508828,0.2536942439996887 +0.3730275781727633,0.16020532396010667 +-0.6014157268785605,0.09861721922025891 +-0.0022817921810188713,1.5649615598289792 +1.6949228062334298,-2.0707963060554815 +-0.4008121373850043,0.5973077356026633 +1.0751581990367018,-1.2673184114639493 +-0.7173678714555722,0.9624909787567566 +-0.6889303687232936,1.068460381755568 +1.1123953105600857,-0.6930710208143118 +0.5065278030438577,0.8810986723951235 +1.636796617731259,-2.81224144295342 +0.6562930373443017,1.731083555347058 +-0.6151236326674709,0.9988091912471619 +1.5145866875497709,-1.0591262491224769 +0.277673291274065,1.9479872387104569 +0.11104908299445151,1.4183278380658377 +1.0175392805459629,-0.5737358447605462 +-0.9343316669186896,0.3924927302390233 +-0.4059594148381973,1.819713011705249 +1.467488614190949,-1.5049187380163258 +-0.02068148890139132,2.015489507440587 +0.8133048057718871,0.8475152578847753 +0.8319337439631788,-1.1573621568275998 +1.2310426077210317,0.23901046906988577 +0.5346377233106522,0.9782397858054527 +1.0396390867895364,0.4127749389639325 +-0.4296683094001657,0.04880529813953052 +1.089751005004729,-0.1330432517769965 +-0.17318529431269644,1.9592025889073752 +-0.5896840730508828,0.2536942439996887 +-0.781300424103717,0.7709264587392901 +-0.6014157268785605,0.09861721922025891 +-0.0022817921810188713,1.5649615598289792 +1.6949228062334298,-2.0707963060554815 +-0.4008121373850043,0.5973077356026633 +1.0751581990367018,-1.2673184114639493 +0.10758443208768698,0.1070580278141616 +-0.8595352777641458,0.175957870013756 +1.0721408176924756,-0.4758627759638021 +0.5065278030438577,0.8810986723951235 +1.636796617731259,-2.81224144295342 +0.49871892039228044,-0.6619300437862544 +-0.6151236326674709,0.9988091912471619 +1.5145866875497709,-1.0591262491224769 +0.277673291274065,1.9479872387104569 +-0.0679060405970171,-0.16359748639749577 +0.626927388924158,0.9098244642367622 +-0.36638593698992605,2.1202616711440014 +-0.4059594148381973,1.819713011705249 +1.467488614190949,-1.5049187380163258 +0.35188444569920313,-0.2008252122709851 +-0.16294791381982188,-0.00229474087115121 +0.8319337439631788,-1.1573621568275998 +1.17159597696614,-0.9946040671889994 +0.5346377233106522,0.9782397858054527 +1.0396390867895364,0.4127749389639325 +-0.04471817231286146,1.6620319034036095 +-0.6049195185201397,1.7718263382890047 +-0.17318529431269644,1.9592025889073752 +0.2617417616479785,1.3992018959189352 +0.16834645801372528,0.4698952183035694 +-0.6014157268785605,0.09861721922025891 +-0.5653246410828621,0.6649812158113888 +1.6949228062334298,-2.0707963060554815 +-0.4008121373850043,0.5973077356026633 +0.7265992050778294,-0.14494460992550146 +-0.7587478965330535,0.46950254350956006 +0.8500897817958467,-0.6475576411194994 +1.1307488784785424,-1.8564520205457002 +-0.3709550947407771,0.37549111083587927 +1.636796617731259,-2.81224144295342 +0.49871892039228044,-0.6619300437862544 +0.9068843752549938,1.1536065712213697 +1.5145866875497709,-1.0591262491224769 +1.1268407033286891,0.8555824269299173 +-0.0679060405970171,-0.16359748639749577 +1.2220534001876704,-0.6708889692421909 +-0.36638593698992605,2.1202616711440014 +-0.4059594148381973,1.819713011705249 +0.9020692267077215,-0.3725914199651529 +1.262295020469054,-0.4163793933151737 +-0.16294791381982188,-0.00229474087115121 +0.3199053659785697,0.9418490486853014 +1.4980264855972183,-0.3404060276235419 +0.06303022304674158,-0.1257468727438846 +1.0396390867895364,0.4127749389639325 +0.11190060532818019,-0.7799277011118272 +0.3222516976080564,1.6694451218961774 +-0.4865200836795989,0.8889692715679788 +0.21624628662553635,2.2544494203774663 +-0.17851676669998,0.09747699402950709 +-0.6014157268785605,0.09861721922025891 +0.7843122150101978,0.11499256361823773 +1.6949228062334298,-2.0707963060554815 +1.1452314900934775,-1.1690593091180896 +0.7265992050778294,-0.14494460992550146 +-0.7587478965330535,0.46950254350956006 +0.6878947356729587,1.0151846877946311 +1.012730625204083,0.31590849829270684 +-0.3709550947407771,0.37549111083587927 +1.636796617731259,-2.81224144295342 +1.0925175394057562,-0.25509522646843885 +1.1159234960661786,-0.08138969304732838 +1.5145866875497709,-1.0591262491224769 +-0.10990711900143138,1.6752154122087082 +0.7981925484949312,-0.6582706262114346 +1.523813105514829,-1.4086614763686616 +-0.36638593698992605,2.1202616711440014 +-0.4059594148381973,1.819713011705249 +0.9020692267077215,-0.3725914199651529 +1.262295020469054,-0.4163793933151737 +-0.16294791381982188,-0.00229474087115121 +1.3981472933177659,0.05634541758716172 +1.4980264855972183,-0.3404060276235419 +0.04160444276883116,-0.11827084556003793 +1.0396390867895364,0.4127749389639325 +-0.1188529669877339,-0.2540347780584865 +0.3222516976080564,1.6694451218961774 +-0.4865200836795989,0.8889692715679788 +0.21624628662553635,2.2544494203774663 +-0.7726429002405681,0.8522619249249563 +-0.6014157268785605,0.09861721922025891 +1.0226178960680083,-0.1764218558462668 +1.6949228062334298,-2.0707963060554815 +1.1452314900934775,-1.1690593091180896 +1.6767828153683664,-2.72800737850571 +1.574142053907319,-0.9036017592875041 +0.6878947356729587,1.0151846877946311 +1.1828514237055638,0.11661500824809318 +0.29069479661237996,0.2106404275652956 +1.7489158537175482,-1.3879946094370847 +1.1568586752494034,-0.07314972890035806 +-0.18626006767444475,0.07094726920930958 +0.6297066518106644,-0.5674503708302914 +0.5062460758063398,1.2033306140055386 +0.7981925484949312,-0.6582706262114346 +1.523813105514829,-1.4086614763686616 +-0.36638593698992605,2.1202616711440014 +0.3644821122369376,0.566900185433826 +1.4824703453839239,-2.1807082200804837 +1.262295020469054,-0.4163793933151737 +-0.16294791381982188,-0.00229474087115121 +1.3460016426162267,-0.42670609609346244 +0.31492174485903307,2.1980281038206435 +0.04160444276883116,-0.11827084556003793 +0.9015181709640621,-0.05478664296034892 +-0.1188529669877339,-0.2540347780584865 +0.3222516976080564,1.6694451218961774 +-0.5216853562030043,1.1549611496690266 +0.21624628662553635,2.2544494203774663 +-0.1936186445484495,-0.08993671739672407 +-0.6014157268785605,0.09861721922025891 +1.4104666503943912,-0.16564958090046544 +1.6949228062334298,-2.0707963060554815 +0.026801293729439624,2.468709958760292 +1.6767828153683664,-2.72800737850571 +1.574142053907319,-0.9036017592875041 +0.3212769036316341,0.22426086439822773 +1.2740832968190985,0.03233153820595175 +0.29069479661237996,0.2106404275652956 +1.7489158537175482,-1.3879946094370847 +1.0723941805997768,-0.8097369673695229 +1.1670901858125178,0.06704460554013 +0.6297066518106644,-0.5674503708302914 +0.5062460758063398,1.2033306140055386 +0.751951420207089,-0.6176813495217985 +1.523813105514829,-1.4086614763686616 +-0.36638593698992605,2.1202616711440014 +-0.8361866959087496,1.2215233218957313 +0.7737687856558939,1.0999410611272298 +1.262295020469054,-0.4163793933151737 +0.1151906387188465,-0.1601673470030498 +1.3706330132767321,-0.391215602755502 +0.31492174485903307,2.1980281038206435 +0.04160444276883116,-0.11827084556003793 +-0.4547556936069014,1.7717939795506312 +-0.1188529669877339,-0.2540347780584865 +1.219502269030611,-0.6746701163756339 +-0.5216853562030043,1.1549611496690266 +-0.13054398499357592,2.3338636695351345 +-0.1936186445484495,-0.08993671739672407 +-0.2372721633661509,0.0801638722022644 +-0.07016338928518104,-0.23821737280249822 +1.6949228062334298,-2.0707963060554815 +0.026801293729439624,2.468709958760292 +0.14393801989046792,0.11934298766149726 +1.574142053907319,-0.9036017592875041 +0.12800438193827635,1.3942431315364523 +1.2740832968190985,0.03233153820595175 +0.9116494871217417,-0.7598635038656352 +-0.47293972740374357,1.0857288411534527 +-0.16060766877270677,1.1505007494290649 +1.1670901858125178,0.06704460554013 +0.9199830885689295,0.12509523011071133 +0.5062460758063398,1.2033306140055386 +0.11571292331260079,1.5041680222707925 +1.523813105514829,-1.4086614763686616 +0.172200182609691,0.2007099805226844 +-0.8361866959087496,1.2215233218957313 +0.7737687856558939,1.0999410611272298 +-0.7436552872386626,0.050445136100811555 +-0.33590549263180713,-0.2515499841079983 +1.3706330132767321,-0.391215602755502 +0.07877324417630904,0.4139126655941092 +-0.30504694161416046,0.545658959679236 +-0.4547556936069014,1.7717939795506312 +0.6013289289623226,1.3745235841188386 +1.219502269030611,-0.6746701163756339 +1.7690643651398887,-3.0189019057575592 +0.9957053287372125,-1.3042082781121644 +-0.1936186445484495,-0.08993671739672407 +-0.04941302770056488,0.4170841947401679 +-0.07016338928518104,-0.23821737280249822 +0.17548411127211017,2.051744949792344 +-0.2755784773803932,0.5652379517070613 +0.14393801989046792,0.11934298766149726 +1.574142053907319,-0.9036017592875041 +-0.8815600795708505,0.6925779725815604 +1.2740832968190985,0.03233153820595175 +-0.004561928284528061,1.4070816748605794 +-0.47293972740374357,1.0857288411534527 +0.3430595207565753,1.0085176544261982 +0.4680101410434087,1.341792030039815 +0.9199830885689295,0.12509523011071133 +0.5062460758063398,1.2033306140055386 +0.11571292331260079,1.5041680222707925 +0.8991010375452817,1.1063229613353365 +0.172200182609691,0.2007099805226844 +-0.8361866959087496,1.2215233218957313 +0.7737687856558939,1.0999410611272298 +-0.7352999882862035,1.5343464303668386 +0.9232972470391781,1.4087899974731157 +-0.49368441810504415,0.06870872456162191 +0.36194015984963607,1.5385601620439255 +-0.30504694161416046,0.545658959679236 +0.6757710474676817,1.7160343363463817 +-0.15546303806340434,0.9021000076088171 +1.219502269030611,-0.6746701163756339 +1.7690643651398887,-3.0189019057575592 +0.9957053287372125,-1.3042082781121644 +-0.1936186445484495,-0.08993671739672407 +-0.04941302770056488,0.4170841947401679 +-0.4112057695722629,0.2885116019111301 +0.17548411127211017,2.051744949792344 +-0.02794345993715086,1.50493343895883 +0.05706438242735956,1.527423317874306 +-0.33096887330072133,0.17872076248030533 +-0.22395837434365395,1.7184854394665354 +1.2740832968190985,0.03233153820595175 +-0.4324431785869073,-0.2128903886345067 +-0.10689347076950154,0.08895558498301293 +-0.2846531214339755,-0.36511329562521017 +0.4680101410434087,1.341792030039815 +0.30645621394975203,-0.17371669294952863 +0.15258741607828696,2.2045105755103935 +0.40002835959001126,-0.06986582387808096 +0.8991010375452817,1.1063229613353365 +-0.7402539078412523,-0.06971880518440121 +-0.8361866959087496,1.2215233218957313 +0.7737687856558939,1.0999410611272298 +-0.8011470455104812,0.2361980474332241 +0.9232972470391781,1.4087899974731157 +-0.49368441810504415,0.06870872456162191 +0.36194015984963607,1.5385601620439255 +-0.21006250716284502,-0.028269526762410332 +0.6757710474676817,1.7160343363463817 +-0.309580998560214,1.289876904978929 +0.03598769696300724,1.5609019367124475 +1.7690643651398887,-3.0189019057575592 +0.9957053287372125,-1.3042082781121644 +-0.28019303699848785,1.9944411327181593 +-0.5519212340027714,1.0971183889782843 +1.1622630688726392,0.6688513726009879 +0.17548411127211017,2.051744949792344 +0.487400141928863,0.9165805331782562 +0.03589136498519285,0.42680011628750136 +0.5801411966310788,1.9569049743640008 +0.7091631864976092,-0.3526419272955279 +1.2740832968190985,0.03233153820595175 +0.6705226026804687,-0.4598809198458764 +-0.10689347076950154,0.08895558498301293 +-0.2846531214339755,-0.36511329562521017 +0.30227225203227526,1.321258989682434 +0.30645621394975203,-0.17371669294952863 +0.15258741607828696,2.2045105755103935 +0.40002835959001126,-0.06986582387808096 +0.8991010375452817,1.1063229613353365 +-0.7402539078412523,-0.06971880518440121 +0.2878914205948593,1.3764824108966227 +1.8543372566620238,-2.0955195290039637 +-0.8011470455104812,0.2361980474332241 +0.2279103317646176,2.274676715129398 +-0.2565578762061099,0.08852246311971951 +0.36194015984963607,1.5385601620439255 +0.8871324860707024,-0.6458750234333015 +-0.5592249402397745,1.3081796642060726 +-0.309580998560214,1.289876904978929 +-0.2979865251694341,0.6230248591211102 +1.7690643651398887,-3.0189019057575592 +0.34584981030895323,1.7634795421343674 +0.5987440996703921,1.2507606863431908 +-0.06824187339120236,1.4059889556261538 +1.1622630688726392,0.6688513726009879 +0.21012255909745908,-0.4786282963273907 +0.38236718111945944,-0.28862365486742275 +0.3630069964645585,0.1318044024361209 +-0.4071510872313513,1.2083841250340166 +0.7091631864976092,-0.3526419272955279 +0.843023998531703,-0.6605990411521827 +0.47676020372042915,1.4271786469931835 +-0.10689347076950154,0.08895558498301293 +-0.18503720500735915,-0.13134110661167075 +0.30227225203227526,1.321258989682434 +0.31765093950283785,-0.4950013972855742 +0.15258741607828696,2.2045105755103935 +-0.23040337308884795,2.218361483550066 +-0.6541633184678062,1.9859117126249588 +-0.7402539078412523,-0.06971880518440121 +0.6466175431155564,0.6453230246459412 +1.8543372566620238,-2.0955195290039637 +-0.8011470455104812,0.2361980474332241 +0.2279103317646176,2.274676715129398 +-0.2565578762061099,0.08852246311971951 +0.36194015984963607,1.5385601620439255 +-0.20711656201347328,1.9084765407162565 +0.3214620330808689,1.6080749169617843 +-0.309580998560214,1.289876904978929 +-0.40695477390119583,1.2118056703798659 +1.7690643651398887,-3.0189019057575592 +0.8018937709275499,1.0818345260835818 +0.5987440996703921,1.2507606863431908 +-0.06824187339120236,1.4059889556261538 +-0.08340612671783332,-0.3003702680654874 +0.21012255909745908,-0.4786282963273907 +0.2488992388489395,-0.6282486884079518 +0.3630069964645585,0.1318044024361209 +0.9746876227440122,-0.4412849042982151 +0.7091631864976092,-0.3526419272955279 +0.843023998531703,-0.6605990411521827 +0.47676020372042915,1.4271786469931835 +-0.10689347076950154,0.08895558498301293 +-0.18503720500735915,-0.13134110661167075 +-0.733774403964947,0.9338463031304838 +0.31765093950283785,-0.4950013972855742 +0.15258741607828696,2.2045105755103935 +-0.23040337308884795,2.218361483550066 +-0.7734900861119869,1.7481906219328 +-0.7402539078412523,-0.06971880518440121 +0.6466175431155564,0.6453230246459412 +1.8543372566620238,-2.0955195290039637 +0.06277653066719874,-0.03408829776793815 +0.2279103317646176,2.274676715129398 +-0.7993523433346643,0.1443758110212966 +0.17843646213645403,-0.09693619718680811 +-0.20711656201347328,1.9084765407162565 +-0.113162559294394,1.6461311584392715 +-0.009190242701892781,0.1642424600485714 +-0.40695477390119583,1.2118056703798659 +1.7690643651398887,-3.0189019057575592 +0.8018937709275499,1.0818345260835818 +0.6031209224558863,1.3836666637676107 +-0.2191183658931162,0.05796113959904531 +-0.3141459125863284,1.6947515938210729 +0.21012255909745908,-0.4786282963273907 +0.2488992388489395,-0.6282486884079518 +0.09632004565485686,-0.1861627767434179 +0.9746876227440122,-0.4412849042982151 +-0.7001988544091444,1.386636292138471 +0.843023998531703,-0.6605990411521827 +0.47676020372042915,1.4271786469931835 +0.7162966005281747,0.4154056469785329 +-0.18503720500735915,-0.13134110661167075 +-0.7036173262533023,0.2363096456177577 +0.31765093950283785,-0.4950013972855742 +0.15258741607828696,2.2045105755103935 +-0.738566316542688,1.1712930649710904 +-0.7734900861119869,1.7481906219328 +1.7602143431291706,-2.0786014890010738 +-0.19948382059022532,-0.36340334175368305 +1.8543372566620238,-2.0955195290039637 +-0.1040366218970381,0.040244429267036586 +0.2279103317646176,2.274676715129398 +-0.24962283208987193,0.7626582373184503 +1.8590277702450915,-2.711937518716222 +1.0488019148065915,0.7729336017921788 +-0.1543148544593278,1.3719522475871444 +-0.18296815519836018,0.4041298853632326 +1.0832422158175594,-0.1581985159290734 +1.7690643651398887,-3.0189019057575592 +-0.5392390187433584,1.1410895246080734 +1.7704165170998118,-2.4331241743989342 +-0.2191183658931162,0.05796113959904531 +0.6644830734451382,1.595035858031064 +-0.3204546183981527,0.6569816269228992 +0.43813343418540157,1.5034575802822665 +0.09632004565485686,-0.1861627767434179 +0.9746876227440122,-0.4412849042982151 +-0.7001988544091444,1.386636292138471 +0.9849874380315878,-0.6736493570372755 +0.1390559931249476,1.2663490093057825 +1.541267544517385,-0.6059865850829651 +-0.18503720500735915,-0.13134110661167075 +0.15649223675793594,2.006248855667522 +1.6779335548074186,-1.8182980562402564 +0.9311946030528484,0.961000004041758 +1.7600852672132152,-1.338350811280768 +0.5499212176859426,1.6039283941992162 +1.7602143431291706,-2.0786014890010738 +1.1833389257259934,-1.3471574064151355 +-0.29313761191317567,0.615496374075597 +0.5063399349420192,0.7579210877525233 +0.08054377350003833,2.070787012119701 +-0.10178598167821912,2.3494374821327693 +0.07906143584126207,-0.16395185857341155 +-0.8012808823983022,1.355003539556652 +-0.1543148544593278,1.3719522475871444 +-0.18296815519836018,0.4041298853632326 +0.20052649927526955,0.8853457612961604 +1.3246178816899792,-0.2377271034828033 +1.2656723913180685,-1.0904399153567366 +-0.4516711640433433,0.11387088726841976 +-0.2191183658931162,0.05796113959904531 +1.678565361420979,-1.8880946089411734 +1.0381041803716031,-0.8469828944465592 +0.43813343418540157,1.5034575802822665 +-0.5201806003395025,0.38752050620363915 +0.9746876227440122,-0.4412849042982151 +-0.8282654908911393,0.3389725091520287 +0.74324217528895,-0.3468317958245757 +0.6704930372722587,1.148870957803828 +1.541267544517385,-0.6059865850829651 +-0.18503720500735915,-0.13134110661167075 +1.7369584912066447,-1.8769610696089822 +1.36883829280633,-0.9950828123662447 +-0.3040868618906106,1.2948414956447862 +1.6132834969570429,-0.8022233745332364 +0.5499212176859426,1.6039283941992162 +1.7602143431291706,-2.0786014890010738 +1.1605753178646832,-0.9725815255934434 +0.6958138679603639,1.2108679020691022 +0.5063399349420192,0.7579210877525233 +0.09474980887315862,2.141842306975746 +-0.10178598167821912,2.3494374821327693 +0.046002359336260734,1.1047342631800972 +0.21797170322554849,1.6039924808106367 +0.6032569359577622,1.6654479119940624 +-0.6762531379127256,-0.275643818217267 +-1.1474086556287428,0.15787467350829754 +0.6645461665133696,1.6511264375596597 +0.4560364730017711,-0.5101856404943474 +-0.4516711640433433,0.11387088726841976 +-0.2191183658931162,0.05796113959904531 +1.678565361420979,-1.8880946089411734 +1.0381041803716031,-0.8469828944465592 +0.43813343418540157,1.5034575802822665 +-0.5201806003395025,0.38752050620363915 +0.9746876227440122,-0.4412849042982151 +-0.8282654908911393,0.3389725091520287 +1.6636886897435899,-1.5239671512049262 +0.6704930372722587,1.148870957803828 +1.541267544517385,-0.6059865850829651 +-0.18503720500735915,-0.13134110661167075 +1.7369584912066447,-1.8769610696089822 +1.36883829280633,-0.9950828123662447 +-0.3040868618906106,1.2948414956447862 +0.6828256332362173,0.9003369100144446 +0.5499212176859426,1.6039283941992162 +0.990993310881449,0.6469086374959847 +1.1605753178646832,-0.9725815255934434 +-0.08502262551607853,0.1688321215073787 +-0.4186483101490449,1.2938548221190045 +-0.27115754493839567,0.9875500109444929 +-0.3384635672922257,0.7197335926680857 +0.1775943891740605,-0.4691999274582975 +0.3787145856439459,0.5084936016472043 +0.6032569359577622,1.6654479119940624 +1.7136853637472838,-2.1473823082261836 +0.03927932407770235,0.4134692726982722 +0.6645461665133696,1.6511264375596597 +0.5339106643760284,1.577797146115858 +1.2588605884999575,0.355406156804591 +-0.12881279738936946,0.25059961135441966 +1.678565361420979,-1.8880946089411734 +0.5581459114769733,1.524023444216612 +-0.6260548040550844,1.7222577095914082 +0.6190584100718841,1.7267400303146085 +0.9746876227440122,-0.4412849042982151 +-0.8282654908911393,0.3389725091520287 +1.1869593245697352,-1.021515197234065 +-0.39970974433568485,1.664985654385996 +1.541267544517385,-0.6059865850829651 +-0.18503720500735915,-0.13134110661167075 +1.7369584912066447,-1.8769610696089822 +1.36883829280633,-0.9950828123662447 +0.5358003424853817,-0.24575523822548123 +0.6828256332362173,0.9003369100144446 +0.7960064213653864,1.1126266912744258 +0.15285220647911835,-0.03973747912487152 +1.1605753178646832,-0.9725815255934434 +1.3610432849897933,-0.0842901407942599 +-0.4186483101490449,1.2938548221190045 +-0.27115754493839567,0.9875500109444929 +-0.3384635672922257,0.7197335926680857 +0.8556036051500572,0.7531955836249029 +0.3787145856439459,0.5084936016472043 +1.6363889643904082,-2.3638807902395715 +0.6148262154534025,-0.1955013630564744 +0.4637741724000928,1.9085429393926077 +0.5014629964644958,0.32793452867151696 +0.8106002855398591,-0.5841932455093004 +1.2588605884999575,0.355406156804591 +-0.12881279738936946,0.25059961135441966 +1.678565361420979,-1.8880946089411734 +0.7193365129325211,1.9366575926418952 +-0.6260548040550844,1.7222577095914082 +-0.3547141451917042,0.7493134111161591 +0.6638971279666309,1.5741626111938554 +-0.10805417156105723,1.1608407654471242 +0.9876645862449196,0.7559412808198647 +-0.39970974433568485,1.664985654385996 +1.6678873232674531,-2.165954990483643 +-0.18503720500735915,-0.13134110661167075 +-0.13988403354179357,0.9969942693063744 +-0.5060042185268339,1.078954550679585 +0.5358003424853817,-0.24575523822548123 +-0.7737558106804068,0.8090488424692676 +0.7960064213653864,1.1126266912744258 +0.6488501643481727,1.3845924661588316 +1.5215614391492123,-1.8697323847088887 +1.3610432849897933,-0.0842901407942599 +-0.4186483101490449,1.2938548221190045 +-0.27115754493839567,0.9875500109444929 +-0.3219868960005043,0.9135366985875116 +-0.13532516892177027,0.3903603724630462 +0.4295744136830384,-0.542922074437177 +1.6363889643904082,-2.3638807902395715 +0.6148262154534025,-0.1955013630564744 +0.4637741724000928,1.9085429393926077 +-0.4611334654860101,1.155782702198751 +0.8106002855398591,-0.5841932455093004 +1.2588605884999575,0.355406156804591 +-0.12881279738936946,0.25059961135441966 +1.678565361420979,-1.8880946089411734 +0.23312050085041747,0.04003998258724037 +0.4060537709463934,0.7814093763896994 +-0.3547141451917042,0.7493134111161591 +0.6638971279666309,1.5741626111938554 +0.8919309723998019,-0.33232617177391827 +0.9876645862449196,0.7559412808198647 +-0.39970974433568485,1.664985654385996 +-0.7412941655912556,0.07511661902303679 +1.5476980571445735,-1.8738336277340146 +1.169108963014239,-0.5494880045639163 +-0.5060042185268339,1.078954550679585 +0.5358003424853817,-0.24575523822548123 +1.0644118828667126,-1.360845405912082 +0.7960064213653864,1.1126266912744258 +0.3711599789875534,0.11355943503702626 +1.5215614391492123,-1.8697323847088887 +0.5572520592945952,0.10600265317128171 +-0.4186483101490449,1.2938548221190045 +-0.6534727819978858,0.5498392606918383 +-0.16788094019575506,2.103098659453414 +-0.13532516892177027,0.3903603724630462 +0.6225908452698639,-0.2532021680335341 +1.0105487821452699,1.0592640528561033 +-0.48237230530231723,1.6588423154788534 +0.4637741724000928,1.9085429393926077 +-0.4611334654860101,1.155782702198751 +0.8106002855398591,-0.5841932455093004 +0.3437078799557153,0.02205738427300502 +-0.12881279738936946,0.25059961135441966 +1.678565361420979,-1.8880946089411734 +-0.42345793478746657,0.859219560864061 +0.22864308093926478,0.003975640589536755 +-0.3547141451917042,0.7493134111161591 +-0.5573687956630493,1.3217190632624432 +0.27127857674019595,2.0091650882612333 +0.9876645862449196,0.7559412808198647 +-0.6377096412921925,-0.1255616310761165 +-0.7412941655912556,0.07511661902303679 +0.7563371390598115,0.0861910534187034 +1.169108963014239,-0.5494880045639163 +1.559442388053789,-2.0418210104909855 +0.5358003424853817,-0.24575523822548123 +1.0644118828667126,-1.360845405912082 +1.648497283620983,-1.5161818667065474 +-0.15482549483924504,2.2888601591745084 +-0.26254046641240625,1.9320992523124776 +0.05045391741275357,0.6665172367744472 +0.1193628560410076,2.243104979828651 +-0.6534727819978858,0.5498392606918383 +-0.16788094019575506,2.103098659453414 +-0.13532516892177027,0.3903603724630462 +0.6225908452698639,-0.2532021680335341 +-0.3359327704501455,1.5663407798985423 +0.3154252249871296,1.4288341072902075 +0.564522867381941,0.03839270640110648 +0.587786384849223,1.7708263697806172 +0.8106002855398591,-0.5841932455093004 +0.9143655457604907,0.8322847399891071 +0.7422418851813647,-0.8392350677730767 +1.678565361420979,-1.8880946089411734 +-0.42345793478746657,0.859219560864061 +0.22864308093926478,0.003975640589536755 +-0.694980907744597,1.3174803686219643 +0.0044757651646786245,1.7509915264753109 +1.416569050254513,-0.1667307196380664 +0.9876645862449196,0.7559412808198647 +-0.6377096412921925,-0.1255616310761165 +-0.7412941655912556,0.07511661902303679 +0.7563371390598115,0.0861910534187034 +0.8808596912310804,1.4795048943962985 +1.559442388053789,-2.0418210104909855 +1.3453455529570835,-0.18646456018737328 +0.6961337622012278,-0.12343133766396203 +1.648497283620983,-1.5161818667065474 +-0.6985509815006002,0.07442527335898758 +-0.26254046641240625,1.9320992523124776 +0.05045391741275357,0.6665172367744472 +0.1193628560410076,2.243104979828651 +-0.6534727819978858,0.5498392606918383 +-0.16788094019575506,2.103098659453414 +-0.4026940820222755,1.7541831877966592 +0.6225908452698639,-0.2532021680335341 +-0.3359327704501455,1.5663407798985423 +0.8760163559915657,-0.47591691552502047 +1.3285391737135308,-0.5759763243692402 +0.1400542402908473,1.8635251189215098 +0.10165455472283547,-0.275484549646829 +0.9143655457604907,0.8322847399891071 +1.1717304017565393,-0.6085181247075092 +1.678565361420979,-1.8880946089411734 +-0.42345793478746657,0.859219560864061 +-0.8200986226756357,1.2566457581275436 +1.52212372056922,-0.521671956280855 +1.3234086544195482,-0.7566204946922315 +1.3102784209544223,-0.8064925810260182 +0.9876645862449196,0.7559412808198647 +-0.6377096412921925,-0.1255616310761165 +-0.7412941655912556,0.07511661902303679 +0.4189816289888445,1.4233809974470506 +0.09219159689365625,0.19960343600142946 +1.559442388053789,-2.0418210104909855 +1.3453455529570835,-0.18646456018737328 +0.4290388541746429,-0.311900894425089 +1.648497283620983,-1.5161818667065474 +-0.6985509815006002,0.07442527335898758 +-0.26254046641240625,1.9320992523124776 +0.05045391741275357,0.6665172367744472 +0.5888657373602586,-0.4870436515475405 +-0.14927546954897436,1.127387191901988 +-0.16788094019575506,2.103098659453414 +-0.6290019962687908,0.7921567852477119 +0.3600365098518069,1.170297182535415 +-0.3359327704501455,1.5663407798985423 +-0.0949164295951892,0.7021146123391256 +1.2998926596789695,-0.6745643406230093 +0.3074461321667088,0.15139820888619815 +0.10165455472283547,-0.275484549646829 +0.9143655457604907,0.8322847399891071 +1.1717304017565393,-0.6085181247075092 +1.678565361420979,-1.8880946089411734 +-0.42345793478746657,0.859219560864061 +-0.6649248959590314,0.3592628494715377 +1.2479148177651476,-0.11223507218726653 +1.5306213292746023,-1.5973779459293396 +-0.2922352557222934,1.420349035486943 +0.9876645862449196,0.7559412808198647 +-0.7689080948938223,1.1982320273145173 +-0.7412941655912556,0.07511661902303679 +0.4189816289888445,1.4233809974470506 +-0.6254930788554166,0.4358108919900645 +1.559442388053789,-2.0418210104909855 +1.558508150831843,-2.319799360085433 +-0.27240456707577554,0.9857378980636416 +1.3895683865939386,-0.5759899325821521 +-0.6541405713142582,1.1110962250761687 +-0.26254046641240625,1.9320992523124776 +1.7688283353368435,-2.2497296243013074 +-0.203351944229609,1.599614988056711 +-0.14927546954897436,1.127387191901988 +-0.16788094019575506,2.103098659453414 +1.2605875380606029,-0.6092558893095629 +0.19547703193802335,0.31274228742355836 +-0.29639681313600547,-0.48247855698630937 +-0.0949164295951892,0.7021146123391256 +0.45460378823879577,0.7250567557418831 +0.9749513883121972,0.560745132531547 +0.14328272596699754,1.633472737868579 +0.9143655457604907,0.8322847399891071 +1.1717304017565393,-0.6085181247075092 +1.678565361420979,-1.8880946089411734 +-0.42345793478746657,0.859219560864061 +0.1683965683037506,2.171936819619882 +1.695360404780069,-1.728288624709687 +0.4625930763070169,-0.36944877402126297 +-0.2922352557222934,1.420349035486943 +-0.3702892980907572,1.5973433578297007 +-0.1844729224378776,2.0608351129102953 +-0.7412941655912556,0.07511661902303679 +0.05448566812781068,1.2395514167283512 +-0.6254930788554166,0.4358108919900645 +1.559442388053789,-2.0418210104909855 +1.558508150831843,-2.319799360085433 +-0.27240456707577554,0.9857378980636416 +-0.3634171416445362,2.0674176943424896 +-0.6541405713142582,1.1110962250761687 +1.331458635685729,-0.12865961910173396 +1.7688283353368435,-2.2497296243013074 +0.7363694670166809,-0.14374251656482284 +-0.14927546954897436,1.127387191901988 +0.9210217875698258,0.7785776521004814 +0.08153604452661911,0.5301375675326239 +-0.4611526784596138,-0.27931519919272374 +0.047492993100796965,1.4343782980445083 +-0.0949164295951892,0.7021146123391256 +0.45460378823879577,0.7250567557418831 +0.0260969526503253,1.6793456977628913 +0.14328272596699754,1.633472737868579 +1.5017870171726502,-1.7524220736763971 +1.1717304017565393,-0.6085181247075092 +1.678565361420979,-1.8880946089411734 +-0.42345793478746657,0.859219560864061 +0.1683965683037506,2.171936819619882 +1.3242755587155068,-0.49754809070398615 +0.4625930763070169,-0.36944877402126297 +-0.00858016728053912,0.08333138442415144 +-0.3702892980907572,1.5973433578297007 +-0.1844729224378776,2.0608351129102953 +-0.7412941655912556,0.07511661902303679 +0.05448566812781068,1.2395514167283512 +-0.07772438043028275,0.7470233526923953 +0.7076037512450166,-0.02638992132084017 +1.558508150831843,-2.319799360085433 +1.6944539140139232,-2.047727606518067 +-0.3634171416445362,2.0674176943424896 +-0.6541405713142582,1.1110962250761687 +-0.0926318567629163,0.39958669297240856 +1.3058834477173389,-1.4355479612121689 +0.5629236189734015,-0.48505973387107837 +0.7538993496960096,-0.5967050972234229 +0.9210217875698258,0.7785776521004814 +-0.020041811864123404,2.2892323958308833 +-0.4611526784596138,-0.27931519919272374 +0.047492993100796965,1.4343782980445083 +0.17842414256763744,0.005137231437328582 +1.0280142952647258,-0.9516628868911707 +0.0260969526503253,1.6793456977628913 +0.19350350763907473,1.3246224549480448 +0.5645383932163711,1.3314342740717615 +-0.35327440299397256,1.9935029070748629 +-0.2839168934288952,0.42639512967291116 +-0.38708064151726346,1.0827839382139546 +0.1683965683037506,2.171936819619882 +1.3242755587155068,-0.49754809070398615 +0.4625930763070169,-0.36944877402126297 +-0.00858016728053912,0.08333138442415144 +-0.03951907070759836,1.7380814618181994 +-0.1844729224378776,2.0608351129102953 +-0.7412941655912556,0.07511661902303679 +1.4506305480943535,-1.7183123289325972 +2.049011776680002,-3.885240303795792 +0.21259473189614453,1.8513382450123417 +1.164225293666243,-1.2444088086312202 +1.6944539140139232,-2.047727606518067 +-0.5523404983237298,1.4615082781560962 +-0.6541405713142582,1.1110962250761687 +-0.5355865329262645,1.1766808872225885 +-0.5060011070654636,1.462951285162123 +0.5629236189734015,-0.48505973387107837 +0.7538993496960096,-0.5967050972234229 +0.9210217875698258,0.7785776521004814 +-0.020041811864123404,2.2892323958308833 +-0.4611526784596138,-0.27931519919272374 +0.047492993100796965,1.4343782980445083 +0.17842414256763744,0.005137231437328582 +1.0280142952647258,-0.9516628868911707 +0.0260969526503253,1.6793456977628913 +1.8013073059060742,-2.118547277802682 +1.4802808490322479,-0.91786447082199 +-0.36125187694292493,1.5521323575295785 +-0.2839168934288952,0.42639512967291116 +-0.8852132304485173,0.7928920330793104 +0.1683965683037506,2.171936819619882 +1.3242755587155068,-0.49754809070398615 +0.4625930763070169,-0.36944877402126297 +-0.00858016728053912,0.08333138442415144 +-0.03951907070759836,1.7380814618181994 +-0.1844729224378776,2.0608351129102953 +1.8047754883325178,-2.349521344422179 +-8.04155332357892e-05,1.7203023457708577 +2.049011776680002,-3.885240303795792 +0.21259473189614453,1.8513382450123417 +1.164225293666243,-1.2444088086312202 +1.6944539140139232,-2.047727606518067 +-0.5523404983237298,1.4615082781560962 +-0.6541405713142582,1.1110962250761687 +-0.5355865329262645,1.1766808872225885 +-0.5060011070654636,1.462951285162123 +0.5629236189734015,-0.48505973387107837 +0.7538993496960096,-0.5967050972234229 +0.9210217875698258,0.7785776521004814 +-0.020041811864123404,2.2892323958308833 +-0.4611526784596138,-0.27931519919272374 +0.047492993100796965,1.4343782980445083 +0.17842414256763744,0.005137231437328582 +1.0280142952647258,-0.9516628868911707 +0.0260969526503253,1.6793456977628913 +1.0858095816563167,0.6626876169431697 +1.4802808490322479,-0.91786447082199 +0.7893466723029454,-1.0930412354876706 +1.402217651404589,-0.7162659293908696 +-0.8852132304485173,0.7928920330793104 +0.1683965683037506,2.171936819619882 +1.3242755587155068,-0.49754809070398615 +0.4625930763070169,-0.36944877402126297 +-0.00858016728053912,0.08333138442415144 +-0.08051271179286079,0.6433099915987023 +0.7570099234278429,-0.059003847085585814 +1.8047754883325178,-2.349521344422179 +-0.5696748674574812,1.1835388614880906 +2.049011776680002,-3.885240303795792 +-0.1340695129610993,1.8552971231921103 +1.164225293666243,-1.2444088086312202 +1.2235789529828902,-0.41127816244134774 +1.896086659930467,-2.229993573731642 +0.7861745245252145,-0.31893638852096023 +-0.015397451280685731,0.453332269391251 +-0.5060011070654636,1.462951285162123 +-0.5116466608093371,0.6651642893721119 +-0.19498041019812984,0.1780096905284632 +0.9210217875698258,0.7785776521004814 +-0.020041811864123404,2.2892323958308833 +1.8420691729261554,-2.749512855928177 +0.047492993100796965,1.4343782980445083 +0.17842414256763744,0.005137231437328582 +0.6223020259712988,-0.17851253791089117 +0.0260969526503253,1.6793456977628913 +1.0858095816563167,0.6626876169431697 +1.4802808490322479,-0.91786447082199 +0.13517996407676663,-0.6024790635235079 +1.402217651404589,-0.7162659293908696 +0.2794340083638295,1.9901751700011274 +0.1683965683037506,2.171936819619882 +-0.3300913375073545,2.207897094155329 +0.4625930763070169,-0.36944877402126297 +-0.00858016728053912,0.08333138442415144 +2.090443568378248,-3.449156543144909 +-0.9069586840961754,0.0990898498029773 +1.8047754883325178,-2.349521344422179 +-0.5696748674574812,1.1835388614880906 +-0.1808650588074966,0.8434372215254209 +-0.1340695129610993,1.8552971231921103 +1.2278229266851322,-0.5532786257985889 +0.009373857251201823,0.18596742609781836 +1.5001153424009246,-1.0625351012347855 +-0.07612947623552623,1.9694945283239909 +0.9835963896905404,0.6104015790396051 +-0.5060011070654636,1.462951285162123 +0.878105811133429,-0.32873571238269506 +-0.19498041019812984,0.1780096905284632 +0.9210217875698258,0.7785776521004814 +-0.020041811864123404,2.2892323958308833 +-0.4319740354494277,2.130403998425613 +1.4739374163951546,-1.602385913862028 +0.17842414256763744,0.005137231437328582 +0.6223020259712988,-0.17851253791089117 +0.0260969526503253,1.6793456977628913 +-0.46538385114128233,0.5751914537119884 +-0.17093538352464305,0.670175891061151 +0.6271824121778391,1.4071395735874614 +0.8560481018788929,1.2454598910212664 +-0.1826136832799037,0.21150770488268136 +0.1683965683037506,2.171936819619882 +-0.15180780229360996,1.8768370952456963 +1.1968142553287406,-1.2910145822388017 +-0.00858016728053912,0.08333138442415144 +0.7813074161284075,1.4989251615145975 +-0.9069586840961754,0.0990898498029773 +0.7769566774793111,-0.7543379122314388 +-0.5696748674574812,1.1835388614880906 +0.4743598715926189,2.0443061474242676 +0.8505562512504073,-0.5536412736818379 +1.2278229266851322,-0.5532786257985889 +0.29109081131322184,-0.14044277452018838 +1.5001153424009246,-1.0625351012347855 +-0.07612947623552623,1.9694945283239909 +1.3601608932047535,-1.9379171230035759 +-0.5060011070654636,1.462951285162123 +0.878105811133429,-0.32873571238269506 +-0.19498041019812984,0.1780096905284632 +-0.44787276233701845,0.46468520683310166 +1.021790191756107,-1.2129947473150318 +0.48273436305554573,0.44444119109152014 +1.4739374163951546,-1.602385913862028 +0.17842414256763744,0.005137231437328582 +0.44313170028109583,-0.09572884844169818 +0.0260969526503253,1.6793456977628913 +0.2185408044726837,0.46493661341836023 +-0.17093538352464305,0.670175891061151 +0.6271824121778391,1.4071395735874614 +0.8560481018788929,1.2454598910212664 +-0.1826136832799037,0.21150770488268136 +0.1683965683037506,2.171936819619882 +1.0726544716413204,-0.6401733502348887 +0.09680752322005948,0.1500686176872839 +-0.566380704739904,0.5678641978399777 +0.14062756540697396,2.1763065885138815 +-0.9069586840961754,0.0990898498029773 +0.7769566774793111,-0.7543379122314388 +-0.676742967912933,0.8834260139979178 +-0.12214633037647493,2.228262845905944 +1.5876673598415751,-1.2920532766600998 +1.2278229266851322,-0.5532786257985889 +0.853796685686747,0.05535397833472902 +0.36337207706291963,2.330136003398602 +1.2638135742824346,-0.6808777889122442 +1.3601608932047535,-1.9379171230035759 +-0.5060011070654636,1.462951285162123 +-0.1438108828444459,0.030823990992137423 +-0.19498041019812984,0.1780096905284632 +-0.44787276233701845,0.46468520683310166 +1.2462768052192479,-0.7797535764567307 +0.48273436305554573,0.44444119109152014 +0.5770645896522135,0.038336996725089945 +0.17842414256763744,0.005137231437328582 +0.44313170028109583,-0.09572884844169818 +0.4212933252411263,-0.20812127550665643 +1.0289277529300782,0.37631794848730205 +1.0582653882686166,0.8134861718838841 +0.6271824121778391,1.4071395735874614 +0.8560481018788929,1.2454598910212664 +0.518038862888999,1.7209763906265656 +0.1683965683037506,2.171936819619882 +-0.7184702782669954,1.8135406415437372 +0.09680752322005948,0.1500686176872839 +0.8195714544035863,0.14742921901883332 +0.14062756540697396,2.1763065885138815 +1.3424963934131373,-1.3990451765841898 +1.0680344084989555,-0.48907948206787466 +-0.676742967912933,0.8834260139979178 +1.5080757730500367,-1.9307635833988785 +1.5876673598415751,-1.2920532766600998 +-0.22582518439889548,2.2056817776478477 +1.2902938363428087,0.5254559454662824 +1.4032896513246154,-0.6701771676127816 +1.2638135742824346,-0.6808777889122442 +1.97440850229908,-3.774040371149982 +-0.5060011070654636,1.462951285162123 +-0.1438108828444459,0.030823990992137423 +-0.19498041019812984,0.1780096905284632 +-0.44787276233701845,0.46468520683310166 +0.8693776552074871,-0.8328672916491996 +-0.2472533879914226,0.9776154883240104 +0.5770645896522135,0.038336996725089945 +0.17842414256763744,0.005137231437328582 +-0.4322475204422065,1.3098073492428735 +0.6321652758705276,1.639270176647094 +1.0289277529300782,0.37631794848730205 +1.0582653882686166,0.8134861718838841 +0.40504289886582306,1.2530838322090028 +0.8560481018788929,1.2454598910212664 +0.518038862888999,1.7209763906265656 +0.41155157249589036,0.20454185835052885 +1.014961219535289,-1.0292468614343386 +0.09680752322005948,0.1500686176872839 +-0.42210658625507486,-0.3579435832648805 +-0.3589498157957206,1.0284262467410328 +1.611458536666871,-1.663152181135711 +0.08623050105927972,0.22452337610331394 +-0.676742967912933,0.8834260139979178 +1.5080757730500367,-1.9307635833988785 +1.5876673598415751,-1.2920532766600998 +-0.22582518439889548,2.2056817776478477 +-0.4258078138185887,0.9429895275126006 +1.4032896513246154,-0.6701771676127816 +1.365638342679516,-0.8741794701475263 +1.97440850229908,-3.774040371149982 +-0.5060011070654636,1.462951285162123 +-0.05444313377583759,0.34900492775404357 +0.5513064808995283,-0.6195641781321617 +-0.44787276233701845,0.46468520683310166 +-0.2543386453055729,0.1412933651969342 +0.29663554456750607,1.7677558406829164 +-0.24209355202522453,2.2573743621804887 +0.17842414256763744,0.005137231437328582 +-0.4322475204422065,1.3098073492428735 +0.5589516730832023,2.0259346958657725 +-0.33589214502322634,1.2937091415875206 +1.0582653882686166,0.8134861718838841 +1.45875860545943,-0.8831904075931521 +0.8560481018788929,1.2454598910212664 +-0.18801147563292148,-0.5210353130864044 +-0.653883853078537,1.2012581211895503 +1.014961219535289,-1.0292468614343386 +0.17043715952657235,1.8833188831899237 +-0.42210658625507486,-0.3579435832648805 +0.9986411295414497,1.1732747685679543 +1.611458536666871,-1.663152181135711 +0.08623050105927972,0.22452337610331394 +-0.676742967912933,0.8834260139979178 +1.5080757730500367,-1.9307635833988785 +1.419972914338497,-1.3824202370186662 +-0.22582518439889548,2.2056817776478477 +0.05035979923521278,2.0727169667385543 +1.4032896513246154,-0.6701771676127816 +1.365638342679516,-0.8741794701475263 +1.8305986885029761,-1.7748783553821417 +1.829948959621308,-1.9642928230546164 +-0.45337111966109295,0.3864107431894086 +-0.24969093943718823,1.9109124264814679 +-0.44787276233701845,0.46468520683310166 +0.012703774929543991,2.161944448335232 +1.201179666376245,-1.1774209081838007 +-0.24209355202522453,2.2573743621804887 +0.17842414256763744,0.005137231437328582 +-0.16748456487907282,0.223786466744042 +0.5589516730832023,2.0259346958657725 +-0.3754834571606305,1.6073704296580016 +-0.07200193834022056,-0.12571110353073323 +1.45875860545943,-0.8831904075931521 +0.8560481018788929,1.2454598910212664 +-0.18801147563292148,-0.5210353130864044 +-0.653717739101131,1.364784971033546 +1.014961219535289,-1.0292468614343386 +0.6596520727062192,-0.09180569232777314 +-0.42210658625507486,-0.3579435832648805 +0.9986411295414497,1.1732747685679543 +1.611458536666871,-1.663152181135711 +-0.6484737677879658,0.3347008186117981 +-0.676742967912933,0.8834260139979178 +1.5080757730500367,-1.9307635833988785 +1.419972914338497,-1.3824202370186662 +0.5706071045336424,0.555272753825821 +0.05035979923521278,2.0727169667385543 +0.7759017598182336,0.5126640000239837 +1.044220964054154,0.21390909912651168 +1.1555325672747911,-1.7649516356069497 +-0.2806692589751838,1.0336094206343038 +-0.45337111966109295,0.3864107431894086 +-0.6817039397861747,1.6844217748650405 +1.03202744057318,-0.3339293731069196 +0.012703774929543991,2.161944448335232 +0.8151239517604313,-0.09776060376309881 +1.470101668259923,-1.9667809946834791 +0.18673238457165187,0.060390723556929315 +-0.16748456487907282,0.223786466744042 +0.5998165365314183,-0.7379173928666377 +0.07631832147245399,1.2102560852575943 +1.3667604942138898,-0.9309225505565494 +0.5240929383760455,-0.5683773720265595 +0.8560481018788929,1.2454598910212664 +-0.18801147563292148,-0.5210353130864044 +-0.653717739101131,1.364784971033546 +1.014961219535289,-1.0292468614343386 +0.6596520727062192,-0.09180569232777314 +1.0170955460695992,-0.9863842871219077 +0.9986411295414497,1.1732747685679543 +1.611458536666871,-1.663152181135711 +-0.6484737677879658,0.3347008186117981 +-0.676742967912933,0.8834260139979178 +0.8039337191948972,-0.5790616556411164 +-0.900223670823226,1.2871803665381494 +1.5344002740853164,-1.356724666093747 +-1.0048946074728877,0.7262481383421638 +0.2398399879119757,-0.09532101364460366 +-0.49502863939288044,0.753021657731093 +1.5471923392136424,-0.37363058868793053 +1.4574849268683634,-0.5198102005382363 +-0.45337111966109295,0.3864107431894086 +0.36503803293711623,0.22153442220610042 +-0.6779313057303834,0.6887134403505675 +0.012703774929543991,2.161944448335232 +-0.14271278489002603,0.3186142147177592 +1.470101668259923,-1.9667809946834791 +0.18673238457165187,0.060390723556929315 +-0.3614874516097657,0.8454574997861269 +1.0676214600925473,-0.953900702644161 +0.07631832147245399,1.2102560852575943 +-0.07743070471189195,-0.17211092451957843 +0.676610343037362,-0.31749210353637136 +0.8560481018788929,1.2454598910212664 +-0.23847104209103498,0.32847852253421356 +-0.653717739101131,1.364784971033546 +1.014961219535289,-1.0292468614343386 +0.6596520727062192,-0.09180569232777314 +-0.43135857474705436,1.7919603691573753 +0.9986411295414497,1.1732747685679543 +1.611458536666871,-1.663152181135711 +1.5471224224980025,-1.5064532537144681 +0.1592616549711257,-0.012800507556092258 +0.8039337191948972,-0.5790616556411164 +-0.900223670823226,1.2871803665381494 +-1.0915171619674218,0.8912761077706133 +-1.0048946074728877,0.7262481383421638 +0.6180881539466245,-0.497277294432257 +-0.34007836784764356,0.12257439352686689 +1.5471923392136424,-0.37363058868793053 +1.4574849268683634,-0.5198102005382363 +-0.45337111966109295,0.3864107431894086 +0.36503803293711623,0.22153442220610042 +-0.6779313057303834,0.6887134403505675 +-0.47421250574439067,0.3871264662411763 +1.0620890755021866,-0.7608528295200645 +1.470101668259923,-1.9667809946834791 +0.18673238457165187,0.060390723556929315 +-0.3402127123214089,1.2801305061325328 +1.0676214600925473,-0.953900702644161 +-0.1888139570229667,-0.3569377989417827 +1.1313716962130744,-0.6158163692425815 +0.42237943552492174,-0.629505746398559 +0.8560481018788929,1.2454598910212664 +1.758939015590911,-1.5806130452666451 +-0.653717739101131,1.364784971033546 +-0.16738732364375733,1.574671531299638 +0.1660660389033242,0.2203758734389382 +-0.43135857474705436,1.7919603691573753 +0.9986411295414497,1.1732747685679543 +0.09589982423914578,0.30987010378808805 +1.3945963459933544,-0.6723773274289201 +0.1592616549711257,-0.012800507556092258 +0.8039337191948972,-0.5790616556411164 +-0.7197055651688149,0.9585378994437348 +-0.9285477617875713,0.9089988174416146 +0.3255946547558935,-0.11781879011335936 +0.6180881539466245,-0.497277294432257 +-0.34007836784764356,0.12257439352686689 +0.9968231281154774,-0.4958382341235276 +-0.6268218068733374,0.202411255374029 +0.18562970895410866,0.34686759352464536 +0.36503803293711623,0.22153442220610042 +-0.6779313057303834,0.6887134403505675 +-0.47421250574439067,0.3871264662411763 +0.7239897189485109,1.2332064820026398 +1.470101668259923,-1.9667809946834791 +0.24628792457073465,-0.20256198041173185 +-0.3402127123214089,1.2801305061325328 +1.0676214600925473,-0.953900702644161 +-0.1888139570229667,-0.3569377989417827 +-0.2917819438680248,1.2817877292921822 +-0.20075914160271047,0.02105644656396599 +0.8560481018788929,1.2454598910212664 +1.758939015590911,-1.5806130452666451 +-0.653717739101131,1.364784971033546 +0.8697119076180735,0.042640080807585606 +-0.5307555121378609,0.878834475764618 +0.15559284481746488,0.7955885583620388 +0.9986411295414497,1.1732747685679543 +-0.34891023139132804,1.2969737924439435 +1.3945963459933544,-0.6723773274289201 +0.1592616549711257,-0.012800507556092258 +-0.38762963895973856,0.07214436443295591 +-0.7197055651688149,0.9585378994437348 +0.31985459555078566,0.7730934139627065 +0.09110433290737147,-0.06331726307144198 +0.7247632084824016,-0.5235896745128006 +0.4231842845602374,0.0343762059280428 +0.44517181348071255,-0.4154384527304613 +-0.6268218068733374,0.202411255374029 +1.229753834999006,-1.1310821655439791 +0.36503803293711623,0.22153442220610042 +-0.6779313057303834,0.6887134403505675 +0.6903936746435089,1.8161866885818965 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.24628792457073465,-0.20256198041173185 +-0.3402127123214089,1.2801305061325328 +1.0676214600925473,-0.953900702644161 +-0.1888139570229667,-0.3569377989417827 +-0.2917819438680248,1.2817877292921822 +-0.20075914160271047,0.02105644656396599 +0.8560481018788929,1.2454598910212664 +-0.5005008192975167,0.8471261919437952 +-0.653717739101131,1.364784971033546 +0.8697119076180735,0.042640080807585606 +1.4603238714233449,-0.5107013291180053 +1.6818733446126282,-0.8731185428794586 +-1.035075249964916,0.10447266533829588 +-0.34891023139132804,1.2969737924439435 +-0.46273882143910516,0.10466625304498707 +-0.6504934219816754,1.1494285667040554 +-0.38762963895973856,0.07214436443295591 +-0.7197055651688149,0.9585378994437348 +0.46398498163979873,1.890751904404921 +0.09110433290737147,-0.06331726307144198 +0.7247632084824016,-0.5235896745128006 +0.9630563746556771,-0.7650337916122629 +0.1431002609750949,0.3303314142604814 +-0.7102132572406104,0.5846225012458358 +0.12351791878106355,1.7866198410175345 +0.36503803293711623,0.22153442220610042 +1.0705817696190707,-0.12563727914217784 +0.6903936746435089,1.8161866885818965 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +-0.7360537626419488,0.8917064267920487 +-0.3402127123214089,1.2801305061325328 +1.0676214600925473,-0.953900702644161 +0.7830467597320323,-0.23864136974679806 +-0.2917819438680248,1.2817877292921822 +0.6232864007632727,1.4844270470511347 +0.8560481018788929,1.2454598910212664 +-0.5005008192975167,0.8471261919437952 +-0.653717739101131,1.364784971033546 +1.648644789581698,-2.933857416306759 +0.06889792283331753,1.4716280042362795 +0.5561782001734908,1.7138838028573642 +-1.035075249964916,0.10447266533829588 +-0.34891023139132804,1.2969737924439435 +-0.46273882143910516,0.10466625304498707 +0.6088396995803338,-0.21457694015728723 +-0.38762963895973856,0.07214436443295591 +0.9317524179781731,-0.6474394915451013 +0.46398498163979873,1.890751904404921 +0.09110433290737147,-0.06331726307144198 +0.7247632084824016,-0.5235896745128006 +0.21105877693177244,-0.26412609623848576 +-0.5455010309569949,1.592695636436949 +-0.7102132572406104,0.5846225012458358 +0.05653762278498842,-0.3443878997620866 +0.8586931869727913,0.8618053175313726 +-0.6744327297493751,0.2714088110059659 +0.6903936746435089,1.8161866885818965 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.5414352357100004,-0.5779185963094464 +-0.3402127123214089,1.2801305061325328 +1.0676214600925473,-0.953900702644161 +0.7830467597320323,-0.23864136974679806 +0.015201297407221787,-0.008845047346208279 +0.6232864007632727,1.4844270470511347 +0.8560481018788929,1.2454598910212664 +-0.7570041582068748,0.007256452009163472 +-0.653717739101131,1.364784971033546 +1.648644789581698,-2.933857416306759 +0.06889792283331753,1.4716280042362795 +0.5561782001734908,1.7138838028573642 +-1.035075249964916,0.10447266533829588 +-0.34891023139132804,1.2969737924439435 +-0.46273882143910516,0.10466625304498707 +0.09855389501933876,-0.45369585908370536 +-0.38762963895973856,0.07214436443295591 +0.9317524179781731,-0.6474394915451013 +0.46398498163979873,1.890751904404921 +-0.09781874562385195,1.090031553670155 +0.7247632084824016,-0.5235896745128006 +0.21105877693177244,-0.26412609623848576 +-0.38073787267420645,0.9693531481974794 +-0.7102132572406104,0.5846225012458358 +0.19000013323282355,-0.2372890877021351 +0.8586931869727913,0.8618053175313726 +0.2989990028273048,-0.25226458753196 +0.6903936746435089,1.8161866885818965 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.5414352357100004,-0.5779185963094464 +-0.2620847095827641,0.3546476350859886 +1.0880978981479652,0.36601655329459964 +0.5325273832254788,1.4045593124216134 +0.015201297407221787,-0.008845047346208279 +0.6232864007632727,1.4844270470511347 +0.8560481018788929,1.2454598910212664 +-0.7570041582068748,0.007256452009163472 +-0.653717739101131,1.364784971033546 +1.648644789581698,-2.933857416306759 +1.0250225876447754,-0.23648365410959205 +0.5561782001734908,1.7138838028573642 +-1.035075249964916,0.10447266533829588 +-0.34891023139132804,1.2969737924439435 +-0.46273882143910516,0.10466625304498707 +0.09855389501933876,-0.45369585908370536 +-0.38762963895973856,0.07214436443295591 +0.9317524179781731,-0.6474394915451013 +0.46398498163979873,1.890751904404921 +-0.028743306007800895,-0.10204350366292753 +0.7247632084824016,-0.5235896745128006 +0.568066957697736,1.5819475099161493 +-0.38073787267420645,0.9693531481974794 +-0.7102132572406104,0.5846225012458358 +0.19000013323282355,-0.2372890877021351 +0.8586931869727913,0.8618053175313726 +-0.7358141301983867,0.5569046060173629 +1.5329510348138036,-0.6893921321414127 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.885327456242335,-0.637463291398158 +0.24496380952515223,-0.2407360450416153 +0.2527054228706625,0.0040614831643226434 +0.5325273832254788,1.4045593124216134 +0.015201297407221787,-0.008845047346208279 +0.6232864007632727,1.4844270470511347 +0.8560481018788929,1.2454598910212664 +-0.7570041582068748,0.007256452009163472 +-0.653717739101131,1.364784971033546 +1.648644789581698,-2.933857416306759 +-0.6743344800866293,0.06998200300253027 +0.27215822704042786,-0.544393046428275 +-1.035075249964916,0.10447266533829588 +-0.34891023139132804,1.2969737924439435 +-0.46273882143910516,0.10466625304498707 +0.09855389501933876,-0.45369585908370536 +-0.38762963895973856,0.07214436443295591 +0.9317524179781731,-0.6474394915451013 +0.46398498163979873,1.890751904404921 +1.1011852957597965,0.056712184449092484 +0.7247632084824016,-0.5235896745128006 +1.3338451794902588,-0.13259676409096643 +-0.38073787267420645,0.9693531481974794 +-0.7102132572406104,0.5846225012458358 +0.19000013323282355,-0.2372890877021351 +0.8586931869727913,0.8618053175313726 +-0.7358141301983867,0.5569046060173629 +1.5329510348138036,-0.6893921321414127 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.885327456242335,-0.637463291398158 +0.24496380952515223,-0.2407360450416153 +-0.8213093299268885,0.4419122298331175 +0.5325273832254788,1.4045593124216134 +0.015201297407221787,-0.008845047346208279 +0.6232864007632727,1.4844270470511347 +1.3201450450699133,-0.21709356904606958 +1.0169750922879004,0.10038438808837502 +-0.653717739101131,1.364784971033546 +1.648644789581698,-2.933857416306759 +-0.6743344800866293,0.06998200300253027 +-0.6091691982692902,0.38423606529184073 +-1.035075249964916,0.10447266533829588 +-0.34891023139132804,1.2969737924439435 +-0.46273882143910516,0.10466625304498707 +0.09855389501933876,-0.45369585908370536 +-0.44077683370081217,0.16107236344805506 +1.5081517330840886,-0.906564625272494 +0.046700626724631045,1.5005460748334054 +0.982778887092941,-0.8976035141559958 +0.7247632084824016,-0.5235896745128006 +1.3338451794902588,-0.13259676409096643 +-0.38073787267420645,0.9693531481974794 +-0.7102132572406104,0.5846225012458358 +0.19000013323282355,-0.2372890877021351 +0.8586931869727913,0.8618053175313726 +-0.16563186567562688,0.3679628107950725 +-0.8463638570206969,0.3601108023964531 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.6946349072455197,-0.18188884312751144 +0.24496380952515223,-0.2407360450416153 +-0.8213093299268885,0.4419122298331175 +0.7629943441772629,0.9411928443429046 +0.4120039631922038,1.5023268027806949 +0.14093054963489815,-0.29114795790119885 +-0.1619831356749758,2.096223228395942 +1.0169750922879004,0.10038438808837502 +0.05397878952304175,1.8294666004355045 +-0.28212843230031776,0.28231995147721883 +0.3651819172828039,0.7380003015265293 +-0.6091691982692902,0.38423606529184073 +0.24737854110569735,-0.10912380388979226 +-0.34891023139132804,1.2969737924439435 +-0.3707045208211575,-0.2164747842794983 +0.09855389501933876,-0.45369585908370536 +-0.716201381413078,0.45949514306499717 +0.7535060626452784,0.680294590613166 +-0.23332147927153302,0.027727820376580947 +1.081380462631003,0.9765534938261291 +0.021098911358077788,0.6521534769841301 +1.3338451794902588,-0.13259676409096643 +-0.7177382415721595,-0.033688372997397076 +-0.1779411481128249,0.5779418998722117 +0.9749498834078303,0.7536770822452921 +0.8586931869727913,0.8618053175313726 +-0.008869612123593162,-0.2500830540933353 +-0.8463638570206969,0.3601108023964531 +1.2410802909801688,-0.43934295187340566 +1.470101668259923,-1.9667809946834791 +0.6946349072455197,-0.18188884312751144 +0.7865410629519389,1.3175597819295408 +-0.8213093299268885,0.4419122298331175 +0.7629943441772629,0.9411928443429046 +0.4120039631922038,1.5023268027806949 +0.14093054963489815,-0.29114795790119885 +-0.1619831356749758,2.096223228395942 +1.0169750922879004,0.10038438808837502 +0.05397878952304175,1.8294666004355045 +-0.28212843230031776,0.28231995147721883 +0.3651819172828039,0.7380003015265293 +-0.6091691982692902,0.38423606529184073 +0.0029362350246633986,2.309511900409696 +0.051018134835997375,0.2457333629567071 +-0.3707045208211575,-0.2164747842794983 +0.8080434002128011,-0.8263617358705012 +0.5348590594293052,-0.07408434789687901 +-0.002534577183773923,0.6445225359785992 +-0.4819979149120479,0.0743695694068609 +1.081380462631003,0.9765534938261291 +0.48200106232051704,-0.43631023211897685 +1.3338451794902588,-0.13259676409096643 +-0.6215472613529156,0.7259943737261566 +-0.1779411481128249,0.5779418998722117 +0.30877015891423987,0.006696173687606527 +1.6022426581817353,-0.9212579708265844 +-0.008869612123593162,-0.2500830540933353 +-0.8463638570206969,0.3601108023964531 +-0.09153508571804297,1.5510436249637771 +1.470101668259923,-1.9667809946834791 +0.7194413769812384,-0.935225327541186 +0.7865410629519389,1.3175597819295408 +-0.8213093299268885,0.4419122298331175 +1.6992141214023981,-2.3108521476770645 +0.4120039631922038,1.5023268027806949 +0.14093054963489815,-0.29114795790119885 +-0.1619831356749758,2.096223228395942 +-0.834658767323253,0.7922996385656426 +0.05397878952304175,1.8294666004355045 +-0.28212843230031776,0.28231995147721883 +-0.03753207015102218,0.03709220885653641 +-0.6091691982692902,0.38423606529184073 +0.0029362350246633986,2.309511900409696 +0.051018134835997375,0.2457333629567071 +1.4830294837339855,-1.2386941163243563 +0.8080434002128011,-0.8263617358705012 +0.5348590594293052,-0.07408434789687901 +-0.29809702555588224,0.0008332164284721444 +-0.4819979149120479,0.0743695694068609 +1.081380462631003,0.9765534938261291 +0.1449744080759548,1.0733891550835675 +1.3338451794902588,-0.13259676409096643 +-0.6215472613529156,0.7259943737261566 +-0.1779411481128249,0.5779418998722117 +-0.10975096092541248,1.965697784061367 +1.6022426581817353,-0.9212579708265844 +-0.4388535722910355,0.96731794515359 +-0.153064400730859,2.1194492089491415 +-0.5911644416483638,-0.2637949781839295 +1.470101668259923,-1.9667809946834791 +-0.046652626216363915,2.214501086473701 +0.7865410629519389,1.3175597819295408 +-0.7515211867053817,0.3519735683884471 +1.6992141214023981,-2.3108521476770645 +0.4120039631922038,1.5023268027806949 +0.14093054963489815,-0.29114795790119885 +-0.7258628685194892,-0.7195415562725395 +1.2942107832076932,0.06746051044681317 +0.05397878952304175,1.8294666004355045 +0.39551650011188266,0.4555753049865182 +-0.20814594277965565,-0.08209906002727499 +-0.6091691982692902,0.38423606529184073 +0.0029362350246633986,2.309511900409696 +0.051018134835997375,0.2457333629567071 +1.4830294837339855,-1.2386941163243563 +0.8080434002128011,-0.8263617358705012 +0.5348590594293052,-0.07408434789687901 +-0.309695588686708,1.8147347403330056 +-0.7540147311338374,0.9281433890273736 +1.081380462631003,0.9765534938261291 +0.1449744080759548,1.0733891550835675 +1.3338451794902588,-0.13259676409096643 +-0.6215472613529156,0.7259943737261566 +0.5111907720850086,1.1421332168146623 +-0.10975096092541248,1.965697784061367 +1.1120368478740172,-0.5733572324546443 +-0.4388535722910355,0.96731794515359 +1.2332950577354544,-1.604368924259763 +-0.5911644416483638,-0.2637949781839295 +1.470101668259923,-1.9667809946834791 +-0.046652626216363915,2.214501086473701 +-0.3208657284809635,2.090222039237265 +-0.04189229870044536,1.6926918313072163 +1.6992141214023981,-2.3108521476770645 +0.4120039631922038,1.5023268027806949 +0.14093054963489815,-0.29114795790119885 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +0.2987296661286323,-0.21333864508228187 +0.39551650011188266,0.4555753049865182 +-0.20814594277965565,-0.08209906002727499 +-0.6091691982692902,0.38423606529184073 +0.0029362350246633986,2.309511900409696 +0.051018134835997375,0.2457333629567071 +-0.6993822502518078,1.2841936646973477 +0.8080434002128011,-0.8263617358705012 +0.1680875139639057,1.8165603203818983 +-0.309695588686708,1.8147347403330056 +-0.7540147311338374,0.9281433890273736 +1.081380462631003,0.9765534938261291 +0.1449744080759548,1.0733891550835675 +1.3338451794902588,-0.13259676409096643 +0.834041478019732,0.6137178389918326 +0.5111907720850086,1.1421332168146623 +1.229960738702296e-05,-0.05638363165854777 +0.5570854242876586,-0.37228047677282816 +1.8359243240247527,-2.6240769668420523 +0.6686820374018354,1.1300688413451323 +-0.5911644416483638,-0.2637949781839295 +1.470101668259923,-1.9667809946834791 +-0.046652626216363915,2.214501086473701 +-0.3208657284809635,2.090222039237265 +-0.04189229870044536,1.6926918313072163 +-0.5466758448364721,0.690468074019571 +0.6648164358575676,1.3712412029985868 +0.14093054963489815,-0.29114795790119885 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +-0.044530312706156844,0.11875840073737978 +0.4087337676430649,1.4820351331698527 +-0.4497270582461355,1.0914667559753082 +-0.6091691982692902,0.38423606529184073 +0.30179740482741635,1.766736463852819 +-0.6710370712387331,-0.0006764641752606826 +-0.6993822502518078,1.2841936646973477 +0.8080434002128011,-0.8263617358705012 +0.9121963994165492,-1.0902660393095358 +-0.309695588686708,1.8147347403330056 +0.6652788430263039,-0.7865285797047318 +-0.23993690941173607,0.130573677628254 +0.3457793997139883,1.28887211316075 +1.3338451794902588,-0.13259676409096643 +0.027604698748650125,-0.31848358951963845 +0.5111907720850086,1.1421332168146623 +0.787698850870685,1.450117957445499 +0.07555377452364039,1.435317048694158 +0.9478924318683913,-1.128619342632793 +0.6686820374018354,1.1300688413451323 +-0.5911644416483638,-0.2637949781839295 +0.565742375668429,-0.49327840666385525 +-0.15913761051285197,2.096788826609292 +-0.3208657284809635,2.090222039237265 +-0.39700383214404383,1.7555781166381106 +-0.5466758448364721,0.690468074019571 +1.3285616216294491,-1.090748844640132 +0.14093054963489815,-0.29114795790119885 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +-0.044530312706156844,0.11875840073737978 +-0.1345296615426526,0.4591471146932984 +0.3067173258749555,-0.40144201614360264 +0.9398052065664707,-0.8692669027537969 +0.30179740482741635,1.766736463852819 +-0.6710370712387331,-0.0006764641752606826 +-0.38043278643039213,1.2217808151138438 +0.8080434002128011,-0.8263617358705012 +1.0086360353395016,-0.6435470246095868 +-0.731893800757003,1.5940795409565318 +0.5848261098617279,-0.5715360401259599 +-0.23993690941173607,0.130573677628254 +0.3457793997139883,1.28887211316075 +1.3338451794902588,-0.13259676409096643 +-0.20985544605386075,0.10408979683938069 +0.5111907720850086,1.1421332168146623 +-0.494802730769384,1.8677258488692416 +0.08060618131674063,0.21687897353129126 +-0.5548830049417329,0.17388315465706727 +0.6686820374018354,1.1300688413451323 +-0.5911644416483638,-0.2637949781839295 +0.565742375668429,-0.49327840666385525 +1.2084865052156952,-1.0970569041932254 +1.2824836432967437,-0.514272461069148 +-0.39700383214404383,1.7555781166381106 +-0.5466758448364721,0.690468074019571 +-0.6300848834048319,1.2414841311663258 +0.486143030152292,-0.09923131020734921 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +0.5141775068098953,1.448671463909901 +0.12076128125636998,1.030423158285819 +0.5774359024760681,0.1853032337435827 +0.9398052065664707,-0.8692669027537969 +0.30179740482741635,1.766736463852819 +0.6500251065496347,1.3107234137206265 +-0.38043278643039213,1.2217808151138438 +1.3678384270638206,-0.16623085887609926 +1.0086360353395016,-0.6435470246095868 +0.0976213813192019,0.8161248681335704 +-0.16616010172993856,-0.12239203678256866 +-0.021527687568058562,2.1085681509478604 +0.5303796412099745,-0.5655753516610306 +1.3338451794902588,-0.13259676409096643 +-0.20985544605386075,0.10408979683938069 +0.007285357508370782,-0.47724844407318223 +-0.29101302297343246,0.9669912407870095 +0.2892131679124463,1.5462016858305452 +-0.5548830049417329,0.17388315465706727 +-0.6818806892262239,1.5195084175845757 +-0.5911644416483638,-0.2637949781839295 +0.6558867879794874,1.9835217290987552 +1.2084865052156952,-1.0970569041932254 +1.2824836432967437,-0.514272461069148 +-0.6555575990481588,1.3079713314639898 +-0.9206974157481757,0.958110379153317 +1.2150326090426984,-1.1082569365092814 +1.1482817821951161,-1.1669188419323397 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +0.5141775068098953,1.448671463909901 +0.12076128125636998,1.030423158285819 +0.46784384010957014,0.18685061566347827 +0.9398052065664707,-0.8692669027537969 +0.30179740482741635,1.766736463852819 +0.6500251065496347,1.3107234137206265 +-0.38043278643039213,1.2217808151138438 +-0.036761614723123455,1.5962853628817117 +1.0086360353395016,-0.6435470246095868 +0.5977861078562889,1.42602391713105 +-0.16616010172993856,-0.12239203678256866 +-0.021527687568058562,2.1085681509478604 +0.17201511954905105,1.589340547974317 +1.3338451794902588,-0.13259676409096643 +-0.20985544605386075,0.10408979683938069 +-0.24924817263240212,1.675151637963804 +-0.29101302297343246,0.9669912407870095 +1.1262640846165515,-0.7960719125509679 +-0.5548830049417329,0.17388315465706727 +1.3490786414028544,-0.2341576992098358 +-0.20069316901105097,0.9183021727842562 +-0.019756935323602565,0.31974134053506453 +1.2084865052156952,-1.0970569041932254 +-0.5403377681312602,1.062703031063913 +-0.6555575990481588,1.3079713314639898 +1.4974767762413261,-0.41938353846212173 +1.2150326090426984,-1.1082569365092814 +1.1482817821951161,-1.1669188419323397 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +1.3471377726606497,-0.7439462731356323 +0.9285684372441587,1.2453423813679236 +1.642618729832014,-0.9059005602052044 +0.6603222012301766,1.3297727571365368 +0.30179740482741635,1.766736463852819 +0.6500251065496347,1.3107234137206265 +0.49948123322998284,-0.37595670541743265 +1.108708580122744,-0.7718395631340942 +-0.5973345336953622,1.6531222155888852 +0.5977861078562889,1.42602391713105 +0.46585525812170514,-0.2981544172979863 +0.44854360411069594,-0.2463598786647358 +-0.7072530134132013,1.2395732222503657 +1.3338451794902588,-0.13259676409096643 +-0.20985544605386075,0.10408979683938069 +-0.6145235091266211,1.7192800616122865 +0.7359095457346965,1.61314203211393 +0.9392451480097987,-0.017036256433059227 +-0.5548830049417329,0.17388315465706727 +0.8793917043864182,1.2286863261699403 +-0.15476532446124658,0.371281922441462 +1.6842479378312287,-1.7640948233330378 +1.2084865052156952,-1.0970569041932254 +-0.6059951565064359,0.15650940869918317 +0.9930258359108881,-0.012311639317454881 +1.4974767762413261,-0.41938353846212173 +0.6137685078549634,0.5947842013629999 +1.1482817821951161,-1.1669188419323397 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +1.3471377726606497,-0.7439462731356323 +0.9285684372441587,1.2453423813679236 +0.9187378344889416,-0.03890464287660339 +-0.4030170730782481,1.4678435323304375 +1.3118549241365134,-0.34366458327246185 +0.2628954562709087,0.44465675801595994 +0.49948123322998284,-0.37595670541743265 +-0.14606565159038742,0.3721063789864174 +-0.5973345336953622,1.6531222155888852 +0.5977861078562889,1.42602391713105 +0.46585525812170514,-0.2981544172979863 +0.44854360411069594,-0.2463598786647358 +-0.7072530134132013,1.2395732222503657 +1.3338451794902588,-0.13259676409096643 +-0.20985544605386075,0.10408979683938069 +-0.6145235091266211,1.7192800616122865 +-0.8633854044074514,0.528364050496417 +0.43234377525538426,1.4221673510315769 +-0.5548830049417329,0.17388315465706727 +0.8793917043864182,1.2286863261699403 +0.6510378833853565,1.3188191133544929 +-0.09025437883100579,0.5152228386471484 +1.2084865052156952,-1.0970569041932254 +-0.6059951565064359,0.15650940869918317 +0.979861484491127,0.2697309538169075 +1.3739832849965374,-1.861119354428118 +-0.14834251373210705,0.876805334606209 +1.1482817821951161,-1.1669188419323397 +1.8109049304647447,-2.6193506818738843 +1.2942107832076932,0.06746051044681317 +1.3471377726606497,-0.7439462731356323 +0.9285684372441587,1.2453423813679236 +1.4838640274520087,-2.1218247057532604 +-0.4865653458736954,0.06874141039904208 +0.8588456606857806,1.5956570794750329 +0.2628954562709087,0.44465675801595994 +1.3595252900762804,-1.4907360174941737 +-0.14606565159038742,0.3721063789864174 +-0.5973345336953622,1.6531222155888852 +0.5977861078562889,1.42602391713105 +0.46585525812170514,-0.2981544172979863 +0.44854360411069594,-0.2463598786647358 +0.5169538902818649,1.4395443765498481 +1.7399264783931987,-2.038314446803226 +-0.13841486024092559,-0.16280058414912835 +-0.6145235091266211,1.7192800616122865 +-0.8633854044074514,0.528364050496417 +-0.7138236309446433,1.1979497324504798 +-0.21517514651065783,2.022810756075636 +-0.41300413042592743,0.08296409180331053 +0.13166806961125843,-0.476120154753523 +-0.09025437883100579,0.5152228386471484 +1.2084865052156952,-1.0970569041932254 +-0.6059951565064359,0.15650940869918317 +-0.5565987714698956,-0.024216219073248335 +1.3739832849965374,-1.861119354428118 +0.32240903906397367,1.0733908832841388 +1.1482817821951161,-1.1669188419323397 +-0.6113334692743739,-0.4043800388522957 +0.21668279073150892,1.4440575929028294 +1.3471377726606497,-0.7439462731356323 +0.9285684372441587,1.2453423813679236 +1.4838640274520087,-2.1218247057532604 +-0.27254498774756225,1.8386821036725105 +1.6722594790871717,-1.9258051334021116 +0.2628954562709087,0.44465675801595994 +0.48146622951072066,1.8321895939377466 +-0.14606565159038742,0.3721063789864174 +-0.20173788080214256,-0.4066042911493572 +0.39568402733078933,0.10646590863156546 +0.46585525812170514,-0.2981544172979863 +0.44854360411069594,-0.2463598786647358 +0.5169538902818649,1.4395443765498481 +0.40841365936344715,1.3450573540711368 +-0.13841486024092559,-0.16280058414912835 +-0.6145235091266211,1.7192800616122865 +0.4140940150577067,2.0481390726664483 +-0.7138236309446433,1.1979497324504798 +-0.21517514651065783,2.022810756075636 +0.14425938761410928,-0.2666548038027299 +-0.776811411746636,-0.2885304321401014 +-0.09025437883100579,0.5152228386471484 +1.2084865052156952,-1.0970569041932254 +-0.6059951565064359,0.15650940869918317 +-0.5565987714698956,-0.024216219073248335 +-0.5962509950514049,2.066299958081997 +0.23797382077521304,1.7684265687861935 +0.5278525649989438,2.1134819595605983 +-0.18310776576503907,0.18700182465667675 +0.31068955263938813,0.6989342987894469 +1.3471377726606497,-0.7439462731356323 +0.9285684372441587,1.2453423813679236 +1.4838640274520087,-2.1218247057532604 +-0.27254498774756225,1.8386821036725105 +1.6722594790871717,-1.9258051334021116 +0.2628954562709087,0.44465675801595994 +-1.1007769443643332,0.5827440218157347 +-0.8266867755751212,-0.8189998025754512 +-0.5157802983946133,-0.4201777507878673 +0.39568402733078933,0.10646590863156546 +0.46585525812170514,-0.2981544172979863 +-0.9733555399648746,0.45272161791490095 +0.4505876004967872,1.5542093340453595 +0.40841365936344715,1.3450573540711368 +-0.13841486024092559,-0.16280058414912835 +-0.6145235091266211,1.7192800616122865 +0.4140940150577067,2.0481390726664483 +-0.7138236309446433,1.1979497324504798 +-0.20703568997640742,-0.099783080672321 +0.852387843049938,0.4158108570327078 +0.29975486703663,-0.45615465592731297 +-0.09025437883100579,0.5152228386471484 +1.2084865052156952,-1.0970569041932254 +0.1472284408843177,2.1699505569192667 +-0.15620841239277986,0.9182055765538133 +-0.4624283306309068,0.12644131856061858 +0.550536906557451,-0.5295890671713178 +0.5278525649989438,2.1134819595605983 +0.4262167129230377,0.025804553311827738 +-0.11973416127746102,1.3387889526067054 +1.3144070235697791,-0.43909309177569766 +-0.3273781000575796,0.6528574064513468 +1.4838640274520087,-2.1218247057532604 +-0.589267193827226,0.370523665950251 +1.064527100617752,-0.6090979701398419 +1.784402071559068,-1.9873159366536208 +0.37767184934690073,0.8699522025128247 +-0.05006844149381259,1.6553584372727217 +0.5004885530521079,1.663879129436948 +-0.26982761524855653,0.41944891297611414 +0.0594218475365286,-0.25007457395128324 +1.0452601190986723,-1.530607947353904 +1.373798107345831,-0.7590409012066516 +0.14082044756532333,1.2563719290841158 +-0.13841486024092559,-0.16280058414912835 +-0.6145235091266211,1.7192800616122865 +0.4140940150577067,2.0481390726664483 +1.0238921122747935,-0.9477327752485418 +0.7180078524874633,-0.31126022758242433 +0.6008097972381103,-0.8832956299679248 +0.29975486703663,-0.45615465592731297 +-0.09025437883100579,0.5152228386471484 +1.1618390645823533,-1.60221467739947 +1.5205849587374558,-0.05251531140187704 +0.3193078462578488,0.018662347956670766 +0.6006645826979213,1.7091698570037934 +1.4332732929443972,-0.9705783591743997 +-0.516652837749732,0.28853825930785126 +1.664081376940413,-0.7118420433280075 +0.1612177602628096,2.197475214236332 +-0.6915936542383063,-0.461080723983736 +-0.5121933580858182,0.52284310650689 +-0.183981742821349,1.3849665440404328 +0.11041698885069784,-0.028326518475957796 +0.4710022284251076,0.02595929375310524 +1.784402071559068,-1.9873159366536208 +1.1123131498349832,-1.1523174452045315 +-0.05006844149381259,1.6553584372727217 +0.5004885530521079,1.663879129436948 +-0.26982761524855653,0.41944891297611414 +-0.3292765254946757,1.0357958430245784 +0.3048030612961203,1.5689063188982402 +-0.7930093718228708,-0.031611510186938585 +1.6732915981459673,-1.5577209995962034 +-0.13841486024092559,-0.16280058414912835 +1.0655430171718192,-0.9713380960744044 +1.1604991814582173,-0.6417474065565747 +1.3295362938844237,-1.2204112582416249 +-0.02026194337756726,0.6377144874005759 +1.568086541025968,-1.0674704997213968 +0.29975486703663,-0.45615465592731297 +-0.09025437883100579,0.5152228386471484 +1.3260648605186232,-0.008576422907598337 +0.9810402670131178,1.7240048716913223 +0.3193078462578488,0.018662347956670766 +0.6006645826979213,1.7091698570037934 +-0.27370657737195897,0.8314632609126936 +-0.516652837749732,0.28853825930785126 +0.16023349813931542,0.6856069839469834 +0.1612177602628096,2.197475214236332 +-0.6915936542383063,-0.461080723983736 +-0.8539530223694061,0.7109808836455 +-0.183981742821349,1.3849665440404328 +0.08235895576605354,2.5524642809138065 +-0.614116894733026,0.3524700837827377 +1.784402071559068,-1.9873159366536208 +1.161218843950682,-1.3087067293909946 +-0.8022829663004765,1.3334309126857797 +0.5004885530521079,1.663879129436948 +-0.8102333973256114,-0.13504926844378373 +-0.06700051526261308,1.6075946114977437 +-0.1968648460758079,0.22620818096679352 +1.3604828774890494,-0.04908908663673894 +0.9237014688515491,-0.7147803490567399 +-0.13841486024092559,-0.16280058414912835 +0.17762414909753577,0.16537876239181548 +1.1604991814582173,-0.6417474065565747 +1.3295362938844237,-1.2204112582416249 +-0.23387301842470753,0.6011486880577555 +2.06115442725506,-3.213167292881698 +-0.8727964015351944,0.796650750762974 +1.2841570258161765,-1.461039296283459 +1.3260648605186232,-0.008576422907598337 +0.23208181554765178,0.14936110590311003 +0.3193078462578488,0.018662347956670766 +0.6006645826979213,1.7091698570037934 +0.8474285179638728,0.16404121529387516 +-0.516652837749732,0.28853825930785126 +0.5508897370629945,0.46963768716084653 +0.1612177602628096,2.197475214236332 +0.6165235240492193,-0.6264396796706733 +-0.8539530223694061,0.7109808836455 +-0.183981742821349,1.3849665440404328 +0.08235895576605354,2.5524642809138065 +-0.614116894733026,0.3524700837827377 +1.2449125978411815,-1.2995603542876029 +1.161218843950682,-1.3087067293909946 +1.3713602777681269,0.16035262510439893 +0.5004885530521079,1.663879129436948 +-0.8102333973256114,-0.13504926844378373 +-0.06700051526261308,1.6075946114977437 +-0.1968648460758079,0.22620818096679352 +-0.5084625090838237,1.391152322194028 +0.9237014688515491,-0.7147803490567399 +-0.3052644103931542,-0.13110483265890938 +0.17762414909753577,0.16537876239181548 +1.1604991814582173,-0.6417474065565747 +1.3295362938844237,-1.2204112582416249 +-0.23387301842470753,0.6011486880577555 +2.06115442725506,-3.213167292881698 +0.5710328393361049,1.5540528837097152 +1.2841570258161765,-1.461039296283459 +0.20551649542324513,0.8897316793711554 +0.8234310318077838,-0.44132207790615086 +0.9807294664633768,0.17871032214166932 +0.6006645826979213,1.7091698570037934 +1.328492745163425,-1.7686272979677484 +-0.516652837749732,0.28853825930785126 +-0.40284443990742697,1.293762404048939 +0.1612177602628096,2.197475214236332 +0.9120149743058048,0.9715538290211889 +-0.8539530223694061,0.7109808836455 +0.9561778237419869,-0.19330678068106943 +1.3923633583508654,-1.9373502650787022 +1.440088732343631,-1.4017518063626988 +1.5571896077266842,-0.8032254589103511 +-0.412710291557905,0.9188666793707181 +1.3713602777681269,0.16035262510439893 +0.5004885530521079,1.663879129436948 +-0.8102333973256114,-0.13504926844378373 +-0.06700051526261308,1.6075946114977437 +-0.1968648460758079,0.22620818096679352 +-0.5084625090838237,1.391152322194028 +0.9237014688515491,-0.7147803490567399 +-0.6547572744938932,0.024795218093369376 +-0.37845152369172563,0.29719534376230117 +0.39295922674393347,1.9562930762969388 +-0.04842794132674466,0.04227089468055438 +0.22769635382412234,1.3215811989859645 +-0.30269566793339875,1.2257513962733757 +0.5710328393361049,1.5540528837097152 +0.42610721206116775,1.7645626450312777 +0.20551649542324513,0.8897316793711554 +0.8234310318077838,-0.44132207790615086 +0.6959476357686991,-0.4908132548490096 +-0.512835460049588,-0.02074393342114171 +1.8568431651668786,-2.599789419446226 +0.8204037021389677,0.3125110013283241 +-0.40284443990742697,1.293762404048939 +0.1612177602628096,2.197475214236332 +0.9120149743058048,0.9715538290211889 +0.2880966133156567,-0.37499931657838825 +0.9561778237419869,-0.19330678068106943 +1.3923633583508654,-1.9373502650787022 +1.440088732343631,-1.4017518063626988 +1.5571896077266842,-0.8032254589103511 +0.8443506054701496,-0.5122977454452858 +1.3713602777681269,0.16035262510439893 +0.5004885530521079,1.663879129436948 +-0.8102333973256114,-0.13504926844378373 +-0.06700051526261308,1.6075946114977437 +0.8934481092969486,-0.22064781965788288 +-0.5084625090838237,1.391152322194028 +-0.685223643212826,1.6888231315673714 +-0.6547572744938932,0.024795218093369376 +-0.37845152369172563,0.29719534376230117 +0.39295922674393347,1.9562930762969388 +-0.04842794132674466,0.04227089468055438 +-0.6298383198948047,1.9487653938862803 +-0.06278575372950912,2.041734756118357 +-0.6688038475803826,1.1900180300564627 +1.2343097005372239,-1.0836918451070097 +0.20551649542324513,0.8897316793711554 +0.701691819861755,1.109356231441659 +0.6959476357686991,-0.4908132548490096 +-0.512835460049588,-0.02074393342114171 +1.8568431651668786,-2.599789419446226 +0.31173528487927304,2.0503606819805738 +-0.40284443990742697,1.293762404048939 +0.1612177602628096,2.197475214236332 +0.054689979623160925,1.8991468100004998 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +1.3923633583508654,-1.9373502650787022 +1.440088732343631,-1.4017518063626988 +1.5571896077266842,-0.8032254589103511 +0.8443506054701496,-0.5122977454452858 +1.3141451687513108,-1.36154865681436 +0.7903723119315642,-0.799175800023586 +-0.8102333973256114,-0.13504926844378373 +-0.06700051526261308,1.6075946114977437 +1.2898206354107737,-2.0333102199931754 +-0.335931287802066,0.37958033618734244 +0.649525551141477,0.5107156574487288 +-0.6547572744938932,0.024795218093369376 +-0.37845152369172563,0.29719534376230117 +0.39295922674393347,1.9562930762969388 +-0.511010587130151,1.0513666488963294 +1.5107756317800183,-2.420218092808742 +0.37716293062339656,2.1896780777097438 +0.35458735979516837,1.7753346871781333 +-0.120526699778716,1.8041169709233136 +0.20551649542324513,0.8897316793711554 +0.701691819861755,1.109356231441659 +0.6959476357686991,-0.4908132548490096 +-0.512835460049588,-0.02074393342114171 +1.8568431651668786,-2.599789419446226 +0.2082025353601959,0.013342087686952109 +1.770558653214262,-2.497251934740709 +0.1612177602628096,2.197475214236332 +0.689871525876264,-0.18902455479716568 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +1.3923633583508654,-1.9373502650787022 +1.6964746114467855,-2.0298556346581416 +1.3964025650899734,-0.7968506848500215 +-0.7795284240458911,0.7161860415909227 +1.3141451687513108,-1.36154865681436 +0.7903723119315642,-0.799175800023586 +0.22664524321904939,1.8774806662420538 +-0.06700051526261308,1.6075946114977437 +1.2898206354107737,-2.0333102199931754 +1.5904338367553463,-1.3283096831210137 +-0.34468028018292074,1.9725008380818274 +-0.6547572744938932,0.024795218093369376 +-0.37845152369172563,0.29719534376230117 +0.39295922674393347,1.9562930762969388 +-0.511010587130151,1.0513666488963294 +-0.10199512204357053,0.9479886082869913 +1.2443569782972062,-1.0548758875983337 +-0.634643543661707,1.5375957679984624 +0.5766779336362005,1.2774850576591117 +0.7904773682941705,0.05807981283877939 +0.4614991663400774,2.1511112788924445 +0.6959476357686991,-0.4908132548490096 +-0.512835460049588,-0.02074393342114171 +1.8568431651668786,-2.599789419446226 +0.2082025353601959,0.013342087686952109 +1.770558653214262,-2.497251934740709 +0.1612177602628096,2.197475214236332 +0.689871525876264,-0.18902455479716568 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +1.3364974054049794,-1.3521939149681543 +-0.24450868903059852,-0.25821643957077256 +0.5883251991955799,1.3813630506839676 +-0.7795284240458911,0.7161860415909227 +-0.6278686519464161,0.9347989420036577 +0.7903723119315642,-0.799175800023586 +0.22664524321904939,1.8774806662420538 +-0.22547658565228845,1.4709498304274442 +1.2898206354107737,-2.0333102199931754 +1.5904338367553463,-1.3283096831210137 +-0.34468028018292074,1.9725008380818274 +-0.6547572744938932,0.024795218093369376 +-0.37845152369172563,0.29719534376230117 +0.39295922674393347,1.9562930762969388 +-0.511010587130151,1.0513666488963294 +-0.10199512204357053,0.9479886082869913 +-0.30147386377324586,2.3736001296796343 +-0.634643543661707,1.5375957679984624 +0.5766779336362005,1.2774850576591117 +0.7904773682941705,0.05807981283877939 +0.4614991663400774,2.1511112788924445 +0.6959476357686991,-0.4908132548490096 +1.2595270086290078,-0.49437656843106004 +1.8568431651668786,-2.599789419446226 +0.2082025353601959,0.013342087686952109 +1.770558653214262,-2.497251934740709 +0.1612177602628096,2.197475214236332 +-0.3221726588135493,1.3712755021170104 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +1.1946033973165153,-0.9720787403846368 +1.1059977976034494,0.7203190739250276 +0.21103715834376624,-0.015594485969288918 +-0.7795284240458911,0.7161860415909227 +0.8880273151457725,0.16209112186436725 +-0.013619741670957627,-0.2396913023640106 +0.22664524321904939,1.8774806662420538 +-0.22547658565228845,1.4709498304274442 +1.2898206354107737,-2.0333102199931754 +1.5904338367553463,-1.3283096831210137 +-0.34468028018292074,1.9725008380818274 +-0.6547572744938932,0.024795218093369376 +0.39851977302361613,-0.35248540183505644 +-0.39576443488246554,-0.3025738801424134 +1.4462072766317513,-1.0541496224299622 +-0.05852368561378334,0.15533080683590383 +-0.3738012592248924,1.7389325278722914 +-0.634643543661707,1.5375957679984624 +0.5766779336362005,1.2774850576591117 +0.006904864716951176,0.593590428775141 +0.4614991663400774,2.1511112788924445 +1.378559265990421,-1.1278318527736968 +-1.045777411919452,0.5410979641415796 +1.32340947378266,-1.691810103856611 +0.2082025353601959,0.013342087686952109 +1.5290071075910858,-1.1358748620405816 +0.1612177602628096,2.197475214236332 +-0.3221726588135493,1.3712755021170104 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +-0.062105019945135065,1.6530757701510628 +1.1059977976034494,0.7203190739250276 +0.21103715834376624,-0.015594485969288918 +-0.7795284240458911,0.7161860415909227 +-0.6520215844225239,1.6534642877242733 +1.3420307977461303,-1.0771880601891595 +0.22664524321904939,1.8774806662420538 +1.6656319809734643,-0.827749741499941 +1.2898206354107737,-2.0333102199931754 +1.5904338367553463,-1.3283096831210137 +-0.34468028018292074,1.9725008380818274 +-0.6547572744938932,0.024795218093369376 +-0.39513886215652644,1.3044067851681627 +-0.39576443488246554,-0.3025738801424134 +2.0292585053109535,-2.867201408451707 +0.25019773835499803,0.13726961748511624 +-0.3738012592248924,1.7389325278722914 +-0.634643543661707,1.5375957679984624 +0.5766779336362005,1.2774850576591117 +0.006904864716951176,0.593590428775141 +-0.2986522283174009,0.23726520264855822 +1.378559265990421,-1.1278318527736968 +0.6996187039027109,-0.12860457521766666 +-1.116895424641669,-0.4029652569225053 +0.2082025353601959,0.013342087686952109 +1.5290071075910858,-1.1358748620405816 +0.1612177602628096,2.197475214236332 +-0.3221726588135493,1.3712755021170104 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +-0.062105019945135065,1.6530757701510628 +0.6838197548561189,-0.37328241206073987 +-0.1846650638494307,2.201994386566477 +-0.7795284240458911,0.7161860415909227 +-0.6520215844225239,1.6534642877242733 +-0.9320887643798885,0.3011320901133 +0.22664524321904939,1.8774806662420538 +1.6656319809734643,-0.827749741499941 +1.2898206354107737,-2.0333102199931754 +1.2116460615406865,-0.8190904397338643 +-0.7461431218771087,0.3168887942732147 +-0.6547572744938932,0.024795218093369376 +-0.39513886215652644,1.3044067851681627 +-0.39576443488246554,-0.3025738801424134 +2.0292585053109535,-2.867201408451707 +0.25019773835499803,0.13726961748511624 +0.9012843488026282,-0.8902448586242386 +-0.634643543661707,1.5375957679984624 +0.4306550943007996,0.5264515442142244 +0.006904864716951176,0.593590428775141 +-0.2986522283174009,0.23726520264855822 +1.378559265990421,-1.1278318527736968 +1.0941624549351041,-1.2751658809915418 +-0.13769008442150854,-0.027262392228823484 +0.2082025353601959,0.013342087686952109 +1.5290071075910858,-1.1358748620405816 +0.1612177602628096,2.197475214236332 +-0.3221726588135493,1.3712755021170104 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +-0.062105019945135065,1.6530757701510628 +0.9694034807867669,0.19322268765470896 +-0.1846650638494307,2.201994386566477 +-0.7795284240458911,0.7161860415909227 +-0.6520215844225239,1.6534642877242733 +-0.9320887643798885,0.3011320901133 +0.725419065479537,-0.7998374159074182 +-0.5887639393224067,1.500979887556893 +1.6401132995543262,-0.9821374677660049 +1.2116460615406865,-0.8190904397338643 +-0.7461431218771087,0.3168887942732147 +-0.6547572744938932,0.024795218093369376 +1.0665206162535017,-0.6916112892596364 +0.4110433714183279,-0.40299047288408896 +-0.9892964592883553,0.14418513567931832 +0.25019773835499803,0.13726961748511624 +-0.7544288148192786,-0.7168351352559613 +-0.634643543661707,1.5375957679984624 +0.4306550943007996,0.5264515442142244 +0.006904864716951176,0.593590428775141 +1.4678038801758853,-1.8984513871278006 +-0.027183045251307103,1.5505133093033079 +-0.6457822982931704,1.1327916243568956 +-0.13769008442150854,-0.027262392228823484 +0.06160309002902535,2.2771562987645524 +-0.9044417707414417,-0.13202066940002297 +-0.5435666349386671,1.4497380415232306 +-0.7914243945649044,0.16742792184505112 +1.3337489642038602,-1.2099756580593701 +0.6396105692952682,1.506301943068618 +-0.062105019945135065,1.6530757701510628 +0.9694034807867669,0.19322268765470896 +1.4825984944589514,-2.4280219610085894 +1.0566129739984242,-0.8350552213175533 +-0.26674394450435657,0.35715376362600937 +-0.5375313195342468,0.07001119366705977 +0.725419065479537,-0.7998374159074182 +-0.5887639393224067,1.500979887556893 +0.15705558567061007,1.7982838058175805 +-0.7429084961291351,6.37208530139266e-05 +-0.18484581383004905,2.035822904376075 +1.5472345310753808,-2.4726252806650564 +1.0665206162535017,-0.6916112892596364 +0.4110433714183279,-0.40299047288408896 +-1.020212092874981,0.09237588916638928 +0.25019773835499803,0.13726961748511624 +1.2147443250349388,-0.89376971302461 +-0.634643543661707,1.5375957679984624 +0.4306550943007996,0.5264515442142244 +0.006904864716951176,0.593590428775141 +-0.7967610032423034,0.5823724018180753 +-0.027183045251307103,1.5505133093033079 +1.2550748599437882,-0.2533123708572348 +-0.13769008442150854,-0.027262392228823484 +0.06160309002902535,2.2771562987645524 +-0.9044417707414417,-0.13202066940002297 +-0.5435666349386671,1.4497380415232306 +-0.7914243945649044,0.16742792184505112 +-0.4312246335007997,2.161451508690812 +0.6396105692952682,1.506301943068618 +-0.062105019945135065,1.6530757701510628 +0.9694034807867669,0.19322268765470896 +1.4825984944589514,-2.4280219610085894 +1.0566129739984242,-0.8350552213175533 +0.7877762361834894,-0.6909294766134926 +-0.5375313195342468,0.07001119366705977 +-0.3881315368788274,1.1335467827571872 +-0.7306527046621776,-0.6492970955044853 +0.15705558567061007,1.7982838058175805 +-0.7429084961291351,6.37208530139266e-05 +-0.18484581383004905,2.035822904376075 +1.5472345310753808,-2.4726252806650564 +1.0665206162535017,-0.6916112892596364 +0.4110433714183279,-0.40299047288408896 +-0.6283603092354697,0.7707857391173918 +-0.2646263949152987,0.34536884820024005 +1.3014628388575553,-0.701222048398654 +-0.10051765151377329,1.7829297220871356 +-0.8157401353728815,0.8185097485132856 +0.589856401295293,1.7012051089232512 +0.6840631778493781,-0.7620748391145211 +-0.027183045251307103,1.5505133093033079 +0.7747711657139187,-1.3327118623700691 +0.01033744028384509,0.3066370486553165 +0.06160309002902535,2.2771562987645524 +0.5215819214166009,1.1053320940911608 +-0.5435666349386671,1.4497380415232306 +-0.7914243945649044,0.16742792184505112 +-0.4312246335007997,2.161451508690812 +0.6396105692952682,1.506301943068618 +-0.062105019945135065,1.6530757701510628 +0.5473757134560838,-0.028510705165403993 +1.4825984944589514,-2.4280219610085894 +1.0566129739984242,-0.8350552213175533 +0.7877762361834894,-0.6909294766134926 +0.7320769314177797,-0.6410512028321964 +-0.3881315368788274,1.1335467827571872 +-0.20192627202767632,-0.23175747091290766 +0.15705558567061007,1.7982838058175805 +-0.7429084961291351,6.37208530139266e-05 +-0.8995742699373891,0.6455246235889298 +1.5472345310753808,-2.4726252806650564 +0.2863687228383426,-0.30476261669992116 +1.1419609429203719,-1.6886032822606027 +-0.6283603092354697,0.7707857391173918 +-0.2646263949152987,0.34536884820024005 +-0.21000752470669434,2.0775276190658025 +1.2504193729320239,0.5596997578549865 +0.19559702678013283,2.07466960220965 +-0.004733987832368088,0.19444229439027994 +0.6840631778493781,-0.7620748391145211 +1.406851799323611,-0.08993143411895022 +0.631432059368598,0.4055046257044963 +0.295115171916529,0.25207443278532493 +0.11028299603100097,2.0144360890813737 +0.5215819214166009,1.1053320940911608 +-0.5435666349386671,1.4497380415232306 +-0.7914243945649044,0.16742792184505112 +0.8706686997770047,-0.6731075827552335 +0.4932340177296731,1.6622927729548436 +-0.062105019945135065,1.6530757701510628 +0.5473757134560838,-0.028510705165403993 +0.6253637351892728,-0.21267212892311838 +0.22384554944667873,2.0060769381902332 +-0.7675111815504788,0.5848984116706382 +0.7320769314177797,-0.6410512028321964 +-0.3881315368788274,1.1335467827571872 +-0.14221695580251176,1.884488867999473 +-0.22878979541779376,-0.05083252629464652 +-0.7429084961291351,6.37208530139266e-05 +0.013827990228823056,-0.1915864536992153 +-0.4572588051788833,1.8309446098181352 +-0.32046355941449955,0.8725206043014264 +1.1419609429203719,-1.6886032822606027 +0.04758875553355696,0.12818665442190835 +0.9265650922282282,0.2804772615284665 +-0.5695368467131249,0.8150154202736934 +1.2504193729320239,0.5596997578549865 +0.19559702678013283,2.07466960220965 +-0.19359235435158795,1.0170718485155454 +0.6840631778493781,-0.7620748391145211 +1.406851799323611,-0.08993143411895022 +0.631432059368598,0.4055046257044963 +1.2091051415815977,-0.35964254273657503 +-0.1996900862451294,1.7208373597626032 +-0.3634168317159673,1.478825198835362 +-0.5435666349386671,1.4497380415232306 +-0.7914243945649044,0.16742792184505112 +-0.08057551788273369,1.284977374609202 +0.4932340177296731,1.6622927729548436 +0.31882220253281707,1.8153659323868878 +0.5473757134560838,-0.028510705165403993 +-0.5100509069750541,2.2699118929741227 +0.22384554944667873,2.0060769381902332 +-0.7675111815504788,0.5848984116706382 +0.7320769314177797,-0.6410512028321964 +0.6213016393034742,-0.6866859536028087 +1.1365966563408119,-0.06698422986666402 +1.1677175404068345,-1.4811738875885503 +-0.5257718349685829,2.2790305773689763 +0.013827990228823056,-0.1915864536992153 +0.9870481291772033,0.8381826934411558 +-0.32046355941449955,0.8725206043014264 +0.07807221896455491,1.6767301721486298 +0.04758875553355696,0.12818665442190835 +0.9265650922282282,0.2804772615284665 +-0.5695368467131249,0.8150154202736934 +1.2504193729320239,0.5596997578549865 +0.4295961540343155,-0.4709596641729281 +-0.5584323503619856,-0.5170867583931376 +0.14883172885369866,-0.28314795200502785 +-0.11127426641834515,2.109308702002236 +1.249428325217354,-0.9773594087183652 +1.2091051415815977,-0.35964254273657503 +-0.1996900862451294,1.7208373597626032 +0.21560102745262877,-0.1836295536881969 +0.22295893081770696,1.463182724565986 +-0.7914243945649044,0.16742792184505112 +-0.08057551788273369,1.284977374609202 +-0.030344561924308122,-0.12369981228730209 +0.31882220253281707,1.8153659323868878 +0.5473757134560838,-0.028510705165403993 +-0.7409865738523957,0.640689796763118 +0.7125937301426843,-0.2239565272304036 +-0.7675111815504788,0.5848984116706382 +0.2911977387698428,0.13688539422456286 +1.065750339029133,-0.6569995673365316 +1.1365966563408119,-0.06698422986666402 +1.1677175404068345,-1.4811738875885503 +-0.8403967250506643,1.4720053632162227 +0.013827990228823056,-0.1915864536992153 +-0.777787285580212,0.4040675510202789 +-0.32046355941449955,0.8725206043014264 +1.0204491255954256,-0.2000551999044653 +0.04758875553355696,0.12818665442190835 +0.9265650922282282,0.2804772615284665 +0.6417018944106985,1.7404942663938323 +0.18293223945760007,-0.37633371659302783 +0.4295961540343155,-0.4709596641729281 +-0.5584323503619856,-0.5170867583931376 +1.598701968006366,-1.2982351618337247 +-0.11127426641834515,2.109308702002236 +1.249428325217354,-0.9773594087183652 +-0.6156925949599429,0.11937560581590984 +1.5482035710726454,-0.5407747966933755 +0.502426194260533,0.7824088095111872 +0.9959633171897787,0.502385711559151 +0.008510608066173153,1.7992540065204623 +-0.6064843183224309,0.36403189291419025 +-0.030344561924308122,-0.12369981228730209 +0.31882220253281707,1.8153659323868878 +0.5473757134560838,-0.028510705165403993 +-0.7008861922724103,0.9659435347643448 +-1.0021666406422616,0.1719998496688439 +-0.15488751715786117,1.3312876695200344 +1.4328625846982002,-0.7379863442403529 +1.065750339029133,-0.6569995673365316 +1.1365966563408119,-0.06698422986666402 +-0.5415499167858574,0.035887957476866794 +0.03775289788877986,1.4069941507028898 +0.40073302714030373,-0.027881583693059986 +-0.7210430525809859,-0.019219889271475 +-0.32046355941449955,0.8725206043014264 +0.4679883070205785,1.1602657657976267 +-0.4976049889794178,0.3703795666945378 +-0.15606818091611158,1.633980762121287 +-0.7920507443902098,0.9603545608861572 +0.18293223945760007,-0.37633371659302783 +0.4295961540343155,-0.4709596641729281 +0.2822187984704485,1.5273873607972215 +1.598701968006366,-1.2982351618337247 +-0.11127426641834515,2.109308702002236 +1.249428325217354,-0.9773594087183652 +-1.0083067863064399,0.9967765906151629 +-0.4413939305034997,-0.3192408861699151 +-0.43078618412234715,0.24699559789647668 +0.9959633171897787,0.502385711559151 +0.27509073514920485,-0.02687189164841508 +-0.6064843183224309,0.36403189291419025 +0.8110445498438696,-0.5612656466239834 +0.07991100551540171,1.1005445792359092 +-0.49177805393681673,0.5398544167236579 +-0.7008861922724103,0.9659435347643448 +-1.0021666406422616,0.1719998496688439 +-0.851344679327063,-0.08209454955747769 +1.4328625846982002,-0.7379863442403529 +-0.20533380671486307,1.279744868170755 +1.1365966563408119,-0.06698422986666402 +-0.7749285395280032,0.16652913847564 +0.46300376640709295,2.135546853086708 +0.710405572919972,0.6828510772181464 +-0.5663108095520092,1.0032735694329697 +-0.32046355941449955,0.8725206043014264 +-0.6907033284866204,0.751548716394061 +-0.4976049889794178,0.3703795666945378 +-0.15606818091611158,1.633980762121287 +-0.7920507443902098,0.9603545608861572 +-0.4183857352836938,1.5393021317293596 +-0.5422851704442216,-0.36392415056310295 +0.2822187984704485,1.5273873607972215 +1.598701968006366,-1.2982351618337247 +1.2174899202738638,-1.208433620924653 +0.883683354554229,0.8891147548021169 +0.23278221135035215,-0.27771878923810667 +-0.4413939305034997,-0.3192408861699151 +-0.43078618412234715,0.24699559789647668 +0.9959633171897787,0.502385711559151 +1.183562633996586,0.14307361637642768 +-0.6064843183224309,0.36403189291419025 +1.2569369309491825,-0.15556534040715975 +0.07991100551540171,1.1005445792359092 +-0.49177805393681673,0.5398544167236579 +-0.7008861922724103,0.9659435347643448 +0.3583656347325799,-0.748669087410982 +0.486153682658823,1.1954918860468282 +1.4328625846982002,-0.7379863442403529 +-0.20533380671486307,1.279744868170755 +1.1365966563408119,-0.06698422986666402 +-0.7749285395280032,0.16652913847564 +0.9421930526842158,-0.8977989526790514 +-0.7716618649114457,0.17923667536297438 +-0.5663108095520092,1.0032735694329697 +0.6650146007929006,-0.2321064054469129 +-0.3032380318679644,-0.10742192756479861 +0.8516389455742973,-0.9636943085777301 +0.8273259510915357,-0.9681563836494416 +-0.7920507443902098,0.9603545608861572 +-0.4183857352836938,1.5393021317293596 +-0.5422851704442216,-0.36392415056310295 +0.2966705804716733,-0.46861665759907634 +1.598701968006366,-1.2982351618337247 +1.2174899202738638,-1.208433620924653 +0.7073160748177002,1.0731927702453565 +0.23278221135035215,-0.27771878923810667 +1.2637132034150587,-0.2562340775766204 +0.16744586713092352,0.6191833242453718 +0.9959633171897787,0.502385711559151 +0.47191491500603483,0.9079185695315475 +-0.6064843183224309,0.36403189291419025 +1.2569369309491825,-0.15556534040715975 +-0.6681692036994848,-0.023436604955173967 +0.4980770733426365,0.3629962476540185 +-0.05583142397513924,-0.3439763753448935 +0.015761604662508533,0.348713961476094 +0.12602450306078247,1.4024667083804985 +1.4328625846982002,-0.7379863442403529 +0.9449200578694315,-0.46928952366163945 +0.1818494827556667,0.6779658887173892 +-0.7749285395280032,0.16652913847564 +0.9421930526842158,-0.8977989526790514 +0.35774073223739444,0.23888916940829813 +-0.5663108095520092,1.0032735694329697 +0.15495800474688487,0.5114948043496437 +-0.8478441635702479,0.12865959200979055 +0.8516389455742973,-0.9636943085777301 +-0.5595351053865999,-0.21250978327014625 +-0.7920507443902098,0.9603545608861572 +-0.4183857352836938,1.5393021317293596 +0.39681247216215076,0.47819107806555605 +-0.10459319971606074,0.5379985466706453 +1.598701968006366,-1.2982351618337247 +1.2174899202738638,-1.208433620924653 +-0.3629963726619271,1.310411980469413 +0.23278221135035215,-0.27771878923810667 +-0.47993475257590124,-0.30323955927388174 +-0.27530915303079745,-0.37892663854416025 +0.9959633171897787,0.502385711559151 +-0.3296503511233949,0.129521362871334 +-0.6064843183224309,0.36403189291419025 +1.2569369309491825,-0.15556534040715975 +-0.24467673075401059,1.66761554170765 +1.782272269692596,-1.6234533717423822 +-0.05583142397513924,-0.3439763753448935 +0.015761604662508533,0.348713961476094 +-0.06172998010582054,0.9520038970578768 +1.4328625846982002,-0.7379863442403529 +-0.32491287230813537,1.2152219043818013 +0.5572435259998428,1.3155391845437918 +-0.7749285395280032,0.16652913847564 +0.9421930526842158,-0.8977989526790514 +1.2733106487767196,-0.19451905967284916 +0.5373793161456537,0.1840334616010415 +0.8913209626263165,0.5465292531953431 +-0.8478441635702479,0.12865959200979055 +-0.004184629956878544,0.007551822496386418 +1.7701323275733505,-1.2035127736406568 +-0.7920507443902098,0.9603545608861572 +1.1900154980687743,-0.05822617592483137 +0.058055537464744233,-0.44895147442301364 +1.0996907949629802,0.6837663639788316 +1.598701968006366,-1.2982351618337247 +1.2174899202738638,-1.208433620924653 +0.9622788696150378,-0.0009940388854223214 +-0.8063412215589201,0.12858019773890975 +-0.47993475257590124,-0.30323955927388174 +-0.5790826738801602,0.5408028616250706 +0.9959633171897787,0.502385711559151 +-0.3890514471057024,-0.2666061614491112 +0.11238907314388757,0.017222238714494353 +1.5695018826586669,-0.9004863278829747 +-0.24467673075401059,1.66761554170765 +0.41711776876093426,-0.5531274426415684 +0.06743783474626597,0.6759973077477661 +0.015761604662508533,0.348713961476094 +-0.06172998010582054,0.9520038970578768 +1.4328625846982002,-0.7379863442403529 +-0.24456333865284652,-0.0666346526752628 +0.5572435259998428,1.3155391845437918 +-0.7749285395280032,0.16652913847564 +1.2685692965232467,-1.6274611459004675 +0.8022137712706272,-0.8839482849042763 +0.5373793161456537,0.1840334616010415 +0.8913209626263165,0.5465292531953431 +-0.8478441635702479,0.12865959200979055 +-0.004184629956878544,0.007551822496386418 +1.7701323275733505,-1.2035127736406568 +-0.34409932328699777,1.2199317747101022 +1.1900154980687743,-0.05822617592483137 +0.8608785617725384,-0.15883175607577832 +1.0996907949629802,0.6837663639788316 +-0.5636166760221839,-0.5292792761150235 +-0.5331343321965376,1.6206946219369045 +0.684444996321472,-0.7258692718643855 +-0.8063412215589201,0.12858019773890975 +1.0012083579146585,0.6006476646921097 +-0.6285392095299172,0.7891999953203211 +0.9959633171897787,0.502385711559151 +-0.8285640597724393,0.3424915558921258 +0.319879878465673,-0.33610452264162427 +-0.6556512012523673,0.0008258867649472146 +-0.24467673075401059,1.66761554170765 +0.41711776876093426,-0.5531274426415684 +-0.07417902217179523,0.8352224831214239 +1.6539142537284157,-1.8118069042968519 +0.4654830520694627,0.028261865671018183 +1.4328625846982002,-0.7379863442403529 +1.3247385244240422,0.4024874723478394 +0.32328143753077876,-0.08394628482624505 +0.2579469709740907,-0.1967748935415386 +1.2685692965232467,-1.6274611459004675 +0.8022137712706272,-0.8839482849042763 +0.5373793161456537,0.1840334616010415 +0.28778690599840706,-0.2918834493993231 +-0.8478441635702479,0.12865959200979055 +-0.004184629956878544,0.007551822496386418 +-1.0286281002769924,0.9934407494346565 +-0.34409932328699777,1.2199317747101022 +1.1900154980687743,-0.05822617592483137 +0.01631367958834451,0.03847005934898328 +1.0996907949629802,0.6837663639788316 +-0.5636166760221839,-0.5292792761150235 +-0.5331343321965376,1.6206946219369045 +0.684444996321472,-0.7258692718643855 +-0.3464616627370473,0.6142219369797234 +1.0012083579146585,0.6006476646921097 +-0.6285392095299172,0.7891999953203211 +1.4401091773202197,-1.1934380663476247 +-0.8005805124878281,0.9590823265750552 +0.5275003147536337,1.7544889607956993 +-0.6556512012523673,0.0008258867649472146 +-0.24467673075401059,1.66761554170765 +0.41711776876093426,-0.5531274426415684 +-0.07417902217179523,0.8352224831214239 +1.6539142537284157,-1.8118069042968519 +-0.14556149331575774,0.11905198981829584 +1.4328625846982002,-0.7379863442403529 +-0.3454740003778699,-0.4514083628945922 +0.9974614887821758,0.7707015697864064 +1.4611208632268786,-0.544525348302085 +1.2685692965232467,-1.6274611459004675 +0.8022137712706272,-0.8839482849042763 +1.3710603019445184,-0.7133675321822412 +0.8551647383751675,-0.4163839323030733 +1.2996800245459041,-1.2124568151489297 +-0.004184629956878544,0.007551822496386418 +-1.046171401579347,0.8205104181844113 +-0.34409932328699777,1.2199317747101022 +1.1900154980687743,-0.05822617592483137 +0.01631367958834451,0.03847005934898328 +0.5833344053311785,-0.171352164414001 +0.0782594019873169,1.7249023442790317 +0.434912258427936,1.4519108345802576 +1.2244937121794308,0.06705405425002142 +-0.25111739071605826,1.283182285929227 +1.0012083579146585,0.6006476646921097 +-0.6285392095299172,0.7891999953203211 +1.2525155802966867,-0.06819743184693522 +-0.8005805124878281,0.9590823265750552 +0.5275003147536337,1.7544889607956993 +-0.683087376321845,1.3455332411594518 +-0.24467673075401059,1.66761554170765 +0.41711776876093426,-0.5531274426415684 +-0.3565405341349327,0.7496419598797974 +1.6539142537284157,-1.8118069042968519 +-0.14556149331575774,0.11905198981829584 +1.4328625846982002,-0.7379863442403529 +-0.3454740003778699,-0.4514083628945922 +0.6169811874212584,-0.23810414217277837 +0.600175030215606,-0.18997381778213174 +1.2685692965232467,-1.6274611459004675 +1.1116787065350566,0.4129736855269701 +0.1528150161543098,1.4622680660621956 +0.8551647383751675,-0.4163839323030733 +1.2996800245459041,-1.2124568151489297 +1.6732669376870204,-1.233270785692582 +1.1931190050213056,-0.2989573810028986 +-0.34409932328699777,1.2199317747101022 +1.1900154980687743,-0.05822617592483137 +0.01631367958834451,0.03847005934898328 +0.5833344053311785,-0.171352164414001 +0.0782594019873169,1.7249023442790317 +0.434912258427936,1.4519108345802576 +1.2244937121794308,0.06705405425002142 +-0.25111739071605826,1.283182285929227 +0.8419821693568752,-0.5002095285282031 +-0.5677358851218759,0.7283225263887515 +-0.3913304602633366,2.1333315531603674 +-0.6356621672116998,0.9487608187147656 +0.21792522715658552,0.12050207475696836 +-0.683087376321845,1.3455332411594518 +-0.24467673075401059,1.66761554170765 +0.44857456830230313,1.6496310245772168 +0.8354024862915512,1.1887509029370302 +-0.6623940823574739,0.6722246456418091 +0.24136975556407816,0.3867756265059522 +0.30896262946746716,-0.6151436008382349 +0.6934032744659906,1.0363992621004383 +0.6169811874212584,-0.23810414217277837 +0.600175030215606,-0.18997381778213174 +1.2685692965232467,-1.6274611459004675 +1.1116787065350566,0.4129736855269701 +0.1528150161543098,1.4622680660621956 +0.8551647383751675,-0.4163839323030733 +0.6891282248670063,-0.18262312980154002 +1.6732669376870204,-1.233270785692582 +0.3744397712724092,0.592027596862881 +-0.34409932328699777,1.2199317747101022 +1.1900154980687743,-0.05822617592483137 +0.01631367958834451,0.03847005934898328 +0.5833344053311785,-0.171352164414001 +-0.09798827940900112,1.9611261892980458 +0.434912258427936,1.4519108345802576 +1.2244937121794308,0.06705405425002142 +0.9555464228200208,0.39767985483069196 +-0.32570902675680874,1.3412070375191418 +-0.5677358851218759,0.7283225263887515 +-0.3913304602633366,2.1333315531603674 +-0.6356621672116998,0.9487608187147656 +0.18039505194212102,0.3725194824677279 +1.010618861314982,-0.8882776435757975 +0.29802569804888696,0.552830675395772 +0.44857456830230313,1.6496310245772168 +0.8354024862915512,1.1887509029370302 +-0.6623940823574739,0.6722246456418091 +1.6006511140099888,-1.8252275638143192 +1.6570197338238517,-1.2142481755989925 +0.6934032744659906,1.0363992621004383 +1.5283576210143108,-2.0684387304835092 +0.600175030215606,-0.18997381778213174 +1.2685692965232467,-1.6274611459004675 +1.1116787065350566,0.4129736855269701 +0.7409204251480721,1.081434193889055 +0.5645622648701538,-0.3070816389239618 +0.957297395413316,1.183993513084614 +1.6732669376870204,-1.233270785692582 +-0.12559083027726806,0.5518768454499952 +-0.9864718828191089,0.6117328741153452 +1.1900154980687743,-0.05822617592483137 +0.01631367958834451,0.03847005934898328 +1.2699322073028343,-0.8310686215342217 +-0.09798827940900112,1.9611261892980458 +1.1094291265105791,0.5173818416851209 +1.2244937121794308,0.06705405425002142 +0.9555464228200208,0.39767985483069196 +-0.32570902675680874,1.3412070375191418 +-0.5677358851218759,0.7283225263887515 +-0.3913304602633366,2.1333315531603674 +-0.6356621672116998,0.9487608187147656 +-0.6247350640908512,1.0989498125710915 +0.4641369130651839,-0.17413629894390747 +1.3761378360535992,-0.7148839462065104 +0.44857456830230313,1.6496310245772168 +-0.1260446391716199,0.4559404078138128 +-0.6623940823574739,0.6722246456418091 +0.9111080414325979,0.4391961609962961 +1.6570197338238517,-1.2142481755989925 +0.6934032744659906,1.0363992621004383 +1.5283576210143108,-2.0684387304835092 +0.9556657583504857,0.6397739569916842 +1.2685692965232467,-1.6274611459004675 +-1.0875297593077344,-0.20101043509907146 +1.2548267926650043,-1.65944944875132 +0.5645622648701538,-0.3070816389239618 +0.3808964318930598,1.3266294392957578 +1.6732669376870204,-1.233270785692582 +1.1614348731444588,-1.5782433688605915 +-0.7956563634624745,-0.38259140082976195 +0.3344548684516735,0.7977850346012394 +0.01631367958834451,0.03847005934898328 +1.2699322073028343,-0.8310686215342217 +-0.09798827940900112,1.9611261892980458 +1.1094291265105791,0.5173818416851209 +1.457206093153376,-0.5268084988792778 +1.226691372102128,-0.6118065378208637 +-0.021647041178529614,0.8131902142811654 +-0.5677358851218759,0.7283225263887515 +-0.3913304602633366,2.1333315531603674 +-0.6356621672116998,0.9487608187147656 +-0.6247350640908512,1.0989498125710915 +-0.29561430469230715,0.24772203815191163 +-0.4170908779946123,0.18746991942098856 +0.44857456830230313,1.6496310245772168 +-0.1260446391716199,0.4559404078138128 +-0.6623940823574739,0.6722246456418091 +-0.2538729949075287,1.7570024428822608 +1.1831441038969965,-0.14056708367356396 +0.6934032744659906,1.0363992621004383 +1.5283576210143108,-2.0684387304835092 +0.9556657583504857,0.6397739569916842 +1.2685692965232467,-1.6274611459004675 +-1.0875297593077344,-0.20101043509907146 +1.2548267926650043,-1.65944944875132 +0.7319565264848632,-0.8949803204400737 +0.3808964318930598,1.3266294392957578 +1.6732669376870204,-1.233270785692582 +1.1614348731444588,-1.5782433688605915 +-0.6010104137799317,1.0134718282852644 +0.3344548684516735,0.7977850346012394 +0.01631367958834451,0.03847005934898328 +-0.44194538663624094,1.2607923430299266 +-0.09798827940900112,1.9611261892980458 +-0.9105797137308992,0.17011372751986292 +1.457206093153376,-0.5268084988792778 +1.226691372102128,-0.6118065378208637 +-0.23331417597361412,1.6125081337428395 +-0.6313099882143149,0.5878938048555933 +-0.3913304602633366,2.1333315531603674 +-0.3589114576994924,1.3073723092788563 +0.07908979337850097,1.986157699434358 +-0.29561430469230715,0.24772203815191163 +-0.4170908779946123,0.18746991942098856 +0.44857456830230313,1.6496310245772168 +-0.32656174489259016,0.3701925346564444 +-0.6623940823574739,0.6722246456418091 +-0.2538729949075287,1.7570024428822608 +-0.19154455728903758,0.11333733543639979 +0.6934032744659906,1.0363992621004383 +1.5283576210143108,-2.0684387304835092 +0.9556657583504857,0.6397739569916842 +0.37172930104641566,1.2274191799194258 +-1.0875297593077344,-0.20101043509907146 +-0.24202748166597177,0.32904354758251847 +0.7319565264848632,-0.8949803204400737 +0.3808964318930598,1.3266294392957578 +1.6732669376870204,-1.233270785692582 +1.1614348731444588,-1.5782433688605915 +-0.6010104137799317,1.0134718282852644 +0.3344548684516735,0.7977850346012394 +1.194520830519426,-1.3400846987555632 +-0.44194538663624094,1.2607923430299266 +-0.09798827940900112,1.9611261892980458 +-0.9105797137308992,0.17011372751986292 +1.457206093153376,-0.5268084988792778 +1.226691372102128,-0.6118065378208637 +-0.23331417597361412,1.6125081337428395 +0.9387030604489562,-0.1135660432594221 +0.9472927800966031,0.9556567778589822 +0.798261028220262,1.0223439222279598 +0.07908979337850097,1.986157699434358 +-0.29561430469230715,0.24772203815191163 +-0.4170908779946123,0.18746991942098856 +0.17093248875223807,0.24060644885753132 +-0.32656174489259016,0.3701925346564444 +-0.6623940823574739,0.6722246456418091 +-0.2538729949075287,1.7570024428822608 +-0.19154455728903758,0.11333733543639979 +0.6934032744659906,1.0363992621004383 +1.5283576210143108,-2.0684387304835092 +0.5523660543261745,-0.6178467158570404 +0.18628010031465586,-0.2489579720506293 +-0.7724667314309797,-0.05956191395773852 +0.16892528857950573,0.15478635855619263 +0.7319565264848632,-0.8949803204400737 +1.3402120627157066,-1.817145136109431 +1.6732669376870204,-1.233270785692582 +1.0552066548270516,0.0650819046167761 +-0.6010104137799317,1.0134718282852644 +0.3344548684516735,0.7977850346012394 +1.194520830519426,-1.3400846987555632 +-0.594822390914426,0.7038827525872009 +-0.09798827940900112,1.9611261892980458 +-0.9105797137308992,0.17011372751986292 +1.457206093153376,-0.5268084988792778 +-0.652304210530018,1.3741998439340877 +-0.23331417597361412,1.6125081337428395 +0.9387030604489562,-0.1135660432594221 +-0.4923733156844098,-0.17596879539781907 +0.798261028220262,1.0223439222279598 +0.07908979337850097,1.986157699434358 +-0.10837251827546557,-0.2725027709270416 +1.2085652221599266,-1.3171026120609073 +0.17093248875223807,0.24060644885753132 +-0.32656174489259016,0.3701925346564444 +-0.4494271128266655,-0.08965783188688162 +1.750884817900733,-2.6320075950911517 +-0.19154455728903758,0.11333733543639979 +0.6934032744659906,1.0363992621004383 +1.5283576210143108,-2.0684387304835092 +-0.75843783935881,0.6912152964381773 +-0.4927423856670893,1.1950483170883093 +-0.7724667314309797,-0.05956191395773852 +-1.2144882306576585,-0.35807759851613574 +0.7319565264848632,-0.8949803204400737 +1.3402120627157066,-1.817145136109431 +1.6732669376870204,-1.233270785692582 +-0.9748086913573625,0.7203553107500354 +-0.6010104137799317,1.0134718282852644 +1.3525571258453954,-0.576095675021297 +0.9548120807026637,0.8632994906865954 +0.27807395350976355,0.1013727524226804 +-0.5146545814265742,0.9702861438611285 +-0.9105797137308992,0.17011372751986292 +1.457206093153376,-0.5268084988792778 +1.2722307321992967,-0.7216979246242481 +0.4603168382328299,0.7907882308479608 +0.9387030604489562,-0.1135660432594221 +0.613736720313198,-0.254339097970933 +0.798261028220262,1.0223439222279598 +0.07908979337850097,1.986157699434358 +-0.10837251827546557,-0.2725027709270416 +1.2085652221599266,-1.3171026120609073 +0.17093248875223807,0.24060644885753132 +-0.5468035474083899,-0.09713524504752805 +-0.6842564731130867,0.7715172882603585 +1.750884817900733,-2.6320075950911517 +-0.19154455728903758,0.11333733543639979 +0.11979425557287347,0.22527442255842514 +1.1648364519648857,-1.3762326998470202 +-0.75843783935881,0.6912152964381773 +-0.4927423856670893,1.1950483170883093 +-0.7724667314309797,-0.05956191395773852 +-1.2144882306576585,-0.35807759851613574 +0.7319565264848632,-0.8949803204400737 +1.3402120627157066,-1.817145136109431 +1.6732669376870204,-1.233270785692582 +-0.9748086913573625,0.7203553107500354 +-0.6010104137799317,1.0134718282852644 +1.3525571258453954,-0.576095675021297 +0.9548120807026637,0.8632994906865954 +0.27807395350976355,0.1013727524226804 +0.6589325774487171,0.10636388310049394 +0.7029926040399237,0.5235242009284738 +1.457206093153376,-0.5268084988792778 +1.2722307321992967,-0.7216979246242481 +0.4603168382328299,0.7907882308479608 +0.4049951478862912,-0.6679137208503603 +-0.1561891090681916,0.601821759204602 +-0.03585868434778866,1.4681822783797833 +0.07908979337850097,1.986157699434358 +-0.10837251827546557,-0.2725027709270416 +1.2085652221599266,-1.3171026120609073 +0.909954477175442,-0.8329610543376416 +-0.5511013396770246,0.057091964316167296 +-0.6842564731130867,0.7715172882603585 +-0.24126391675602576,1.7866460543111855 +0.18579489683843686,-0.20791608180076282 +0.11979425557287347,0.22527442255842514 +1.1648364519648857,-1.3762326998470202 +-0.75843783935881,0.6912152964381773 +-0.4927423856670893,1.1950483170883093 +0.9981062828346232,-0.7195147017589101 +-1.2144882306576585,-0.35807759851613574 +1.5589532352494773,-1.89224876883101 +0.4941048004624833,0.07539149718825805 +1.6732669376870204,-1.233270785692582 +-0.40564356895721254,-0.04357307026542945 +-0.6010104137799317,1.0134718282852644 +-0.4778493499728589,0.47924279126034475 +0.9548120807026637,0.8632994906865954 +0.27807395350976355,0.1013727524226804 +1.4961729747929455,-0.673047509086691 +0.8247232481190471,-0.14213007500164065 +1.457206093153376,-0.5268084988792778 +0.5092413284268217,-0.3096718545629444 +0.39869535785822785,1.4145429605491413 +0.4049951478862912,-0.6679137208503603 +1.4104187707741775,-0.9396905627043501 +-0.03585868434778866,1.4681822783797833 +0.07908979337850097,1.986157699434358 +0.9477359755100893,-1.094782052083073 +1.267112536999106,-1.2285827445121824 +0.9636095527020099,-0.6754240408339813 +-0.5511013396770246,0.057091964316167296 +-0.6842564731130867,0.7715172882603585 +0.2133677450939553,1.452708994057824 +0.18579489683843686,-0.20791608180076282 +-0.13246723483549672,0.5912465378647435 +-0.50307523858999,0.003312748911362587 +-0.75843783935881,0.6912152964381773 +-0.7895941116594488,-0.04298252524763646 +0.9981062828346232,-0.7195147017589101 +-1.2144882306576585,-0.35807759851613574 +1.5589532352494773,-1.89224876883101 +0.4941048004624833,0.07539149718825805 +1.2099535820215448,0.1493846107048758 +0.4079600280710788,-0.313122673077784 +-0.04100262865904209,0.8384766339904053 +-0.6827344968059692,-0.18447504852634544 +0.9548120807026637,0.8632994906865954 +0.27807395350976355,0.1013727524226804 +1.4961729747929455,-0.673047509086691 +0.33649048771211243,-0.7511910834263525 +1.457206093153376,-0.5268084988792778 +0.5092413284268217,-0.3096718545629444 +0.480093435217547,-0.3224989457357321 +0.0865451214891706,1.1439438609738124 +0.8631476060664853,-0.3452511471670655 +-0.07877791519733723,0.0871363193223682 +0.07908979337850097,1.986157699434358 +0.9477359755100893,-1.094782052083073 +-0.6827324951517539,1.2460852166860281 +-0.8533809923059894,-0.18081260280449357 +0.0816163617560437,0.7428475990079635 +-0.6842564731130867,0.7715172882603585 +0.2133677450939553,1.452708994057824 +1.1866934248797516,0.19729962699329173 +1.263318934654816,-1.4185221551149105 +-0.50307523858999,0.003312748911362587 +-0.75843783935881,0.6912152964381773 +-0.7895941116594488,-0.04298252524763646 +-0.5738588051959657,0.4532691637049314 +0.1915796252730565,1.2607742053700646 +1.5589532352494773,-1.89224876883101 +0.4941048004624833,0.07539149718825805 +1.2099535820215448,0.1493846107048758 +0.4079600280710788,-0.313122673077784 +-0.04100262865904209,0.8384766339904053 +-0.6827344968059692,-0.18447504852634544 +0.8087193580530547,0.253341451638137 +0.27807395350976355,0.1013727524226804 +1.4961729747929455,-0.673047509086691 +0.33649048771211243,-0.7511910834263525 +1.457206093153376,-0.5268084988792778 +0.5092413284268217,-0.3096718545629444 +-0.6415037204680634,-0.04198598957048613 +0.0865451214891706,1.1439438609738124 +0.8631476060664853,-0.3452511471670655 +0.193549674983731,0.8492478017376229 +-0.43484843410570556,0.14354940268762117 +0.9477359755100893,-1.094782052083073 +-0.6827324951517539,1.2460852166860281 +-0.732776482562886,0.5838397967748113 +-0.811606392814459,0.09668937140731837 +0.29255264409862447,1.278892145759225 +0.2133677450939553,1.452708994057824 +-0.38719646389155804,2.082934262481008 +1.263318934654816,-1.4185221551149105 +-0.8053704379627467,0.9054735070305069 +0.10458224719360965,-0.3260042499984875 +0.06865052773221217,1.3354211127548887 +0.27707717846338287,0.27815459564792133 +0.1915796252730565,1.2607742053700646 +1.5589532352494773,-1.89224876883101 +1.0058058277047648,1.1798561185378005 +1.2099535820215448,0.1493846107048758 +0.4079600280710788,-0.313122673077784 +0.20514864085967208,0.8843777399640149 +0.5142560945123458,-0.48145638470827257 +-0.26614397371125487,2.1480846979990575 +0.27807395350976355,0.1013727524226804 +1.4961729747929455,-0.673047509086691 +-0.25225958051782543,2.0726986980802398 +1.457206093153376,-0.5268084988792778 +0.5092413284268217,-0.3096718545629444 +-0.1482636676678562,0.2654588002488791 +0.0865451214891706,1.1439438609738124 +-0.6495257796489327,-0.16094321937298722 +0.193549674983731,0.8492478017376229 +-0.43484843410570556,0.14354940268762117 +0.9477359755100893,-1.094782052083073 +-0.6592562313872302,0.6967235753024827 +1.3898678918972673,-1.5263840871358567 +-0.8317462338704271,0.8572668344071304 +0.22589061304790364,1.860861886060417 +0.6483120852924463,1.489219937252231 +-0.38719646389155804,2.082934262481008 +-0.18424349540068738,1.919545123874071 +1.114451984916088,-0.7419534327109287 +0.10458224719360965,-0.3260042499984875 +0.06865052773221217,1.3354211127548887 +0.6061643229033886,-0.013134101762246997 +0.1915796252730565,1.2607742053700646 +1.5589532352494773,-1.89224876883101 +0.1950413376011415,0.09934745851214344 +1.0886399342188473,0.3530522511045102 +0.4079600280710788,-0.313122673077784 +0.20514864085967208,0.8843777399640149 +0.5869557670363226,0.1442386264014988 +-0.26614397371125487,2.1480846979990575 +1.557614100816,-2.0311990886921576 +-0.8691486787564622,0.6931108680103453 +-0.375419634445903,0.33668480713778703 +1.457206093153376,-0.5268084988792778 +0.5092413284268217,-0.3096718545629444 +-0.5252650314126154,0.4098034595541055 +0.17855829354328917,2.107931918442554 +-0.6495257796489327,-0.16094321937298722 +0.9871783801728498,-0.9124281818490318 +0.33102564464157463,-0.3040469312412039 +-0.5925877684414743,0.27965684892265535 +-0.6592562313872302,0.6967235753024827 +1.3898678918972673,-1.5263840871358567 +0.3114398319816758,1.9601543892145028 +0.06891842027567141,-0.4279067343213021 +0.6483120852924463,1.489219937252231 +-0.38719646389155804,2.082934262481008 +-0.18424349540068738,1.919545123874071 +1.114451984916088,-0.7419534327109287 +-0.17785264837636583,0.5253725832037085 +-0.557196171149626,0.8017125806636323 +0.6061643229033886,-0.013134101762246997 +-0.31993601351640655,0.2543828634466322 +1.5589532352494773,-1.89224876883101 +0.1950413376011415,0.09934745851214344 +1.0886399342188473,0.3530522511045102 +0.7248315385207159,0.6040268319464035 +0.20514864085967208,0.8843777399640149 +0.5271834609311747,1.528003219337573 +-0.26614397371125487,2.1480846979990575 +-0.8836994118942341,0.4523561440866382 +-0.3076386139592864,0.0011996010184512906 +-0.375419634445903,0.33668480713778703 +0.4394604091957019,1.5714302264623239 +0.6615744137850584,1.4459551847564942 +-0.5252650314126154,0.4098034595541055 +0.17855829354328917,2.107931918442554 +-0.6495257796489327,-0.16094321937298722 +1.6155574687373007,-1.4351530497778346 +0.33102564464157463,-0.3040469312412039 +1.1940247564500943,-0.8105049745002584 +-0.6592562313872302,0.6967235753024827 +1.3898678918972673,-1.5263840871358567 +0.3114398319816758,1.9601543892145028 +0.06891842027567141,-0.4279067343213021 +0.6483120852924463,1.489219937252231 +-0.38719646389155804,2.082934262481008 +0.22479795743490072,-0.3448771952608294 +1.114451984916088,-0.7419534327109287 +-0.3104863576435703,0.08083274186391498 +-0.557196171149626,0.8017125806636323 +0.6061643229033886,-0.013134101762246997 +0.0623483613305289,0.14354762561507634 +1.5589532352494773,-1.89224876883101 +-0.6861653102893247,0.2950815379221395 +1.0886399342188473,0.3530522511045102 +0.7248315385207159,0.6040268319464035 +0.20514864085967208,0.8843777399640149 +1.4363985374656294,-1.3351592242568089 +-0.26614397371125487,2.1480846979990575 +-0.17646893546840142,2.1709015864008916 +1.1845683486450815,-1.374300702911914 +-0.375419634445903,0.33668480713778703 +-0.19529093677971332,2.1202518418813256 +0.6615744137850584,1.4459551847564942 +1.5380658853626408,-1.8024091555678186 +-0.782450541775222,1.2215677266499392 +-0.6495257796489327,-0.16094321937298722 +1.6155574687373007,-1.4351530497778346 +0.33102564464157463,-0.3040469312412039 +0.5083214831262071,1.9461420915329253 +-0.6592562313872302,0.6967235753024827 +1.7639491199838806,-1.674364387956122 +1.0577480543433868,0.5650847558818082 +0.9810400812442394,1.0374221985239895 +0.6483120852924463,1.489219937252231 +-0.38719646389155804,2.082934262481008 +-0.5065522707473323,-0.24565282751487466 +1.6549189674465186,-2.4079554269139094 +-0.3104863576435703,0.08083274186391498 +-0.05764488890529354,1.237032570175823 +1.3888829074223645,-1.576424612944133 +0.0623483613305289,0.14354762561507634 +1.5589532352494773,-1.89224876883101 +-0.6456394433358298,0.5280975849724083 +1.0886399342188473,0.3530522511045102 +0.7248315385207159,0.6040268319464035 +-0.1084823253445335,0.1727034856320509 +1.4363985374656294,-1.3351592242568089 +-0.26614397371125487,2.1480846979990575 +0.4419876574190687,1.890195207693562 +1.1845683486450815,-1.374300702911914 +-0.375419634445903,0.33668480713778703 +-0.19529093677971332,2.1202518418813256 +0.6615744137850584,1.4459551847564942 +1.5380658853626408,-1.8024091555678186 +-0.782450541775222,1.2215677266499392 +0.374566327340363,0.4408640088040976 +0.7030404596517974,-0.7051863613173494 +0.33102564464157463,-0.3040469312412039 +0.5083214831262071,1.9461420915329253 +-0.6592562313872302,0.6967235753024827 +-0.33757695327156684,0.113803920235997 +1.0577480543433868,0.5650847558818082 +0.5327727046744996,-0.5806887765635955 +0.6483120852924463,1.489219937252231 +0.15683099036774228,1.5448639820913492 +0.315823332046519,1.783860640623921 +0.9286397544537686,0.5065565991050617 +-0.3104863576435703,0.08083274186391498 +0.20984813219370663,0.4624160397758644 +-0.33869700027824123,0.08980114844407433 +0.0623483613305289,0.14354762561507634 +1.5589532352494773,-1.89224876883101 +0.5016884294866948,-0.39810213201432804 +1.0886399342188473,0.3530522511045102 +-0.8743126390420057,0.1490684927394731 +0.1854284533935916,1.914079128606659 +1.4363985374656294,-1.3351592242568089 +-0.13504442578712927,0.4150994068246325 +0.4419876574190687,1.890195207693562 +0.5638809171369286,-0.584358554626252 +-0.22458485278094478,2.2567062330933005 +0.8127523519924372,-0.7777090915873404 +0.41678834981100726,-0.09982813818326608 +1.5380658853626408,-1.8024091555678186 +0.21227916079696033,1.740523120551251 +-0.3743247894211635,0.8268486970327285 +0.3103465071297966,1.3539000455592753 +0.4044295460061481,0.66835281495801 +1.6248780336781945,-1.3436045161742747 +-0.6592562313872302,0.6967235753024827 +-0.33757695327156684,0.113803920235997 +-0.31836470052522825,1.7305098199776858 +-0.1039897182600687,2.103391967616695 +1.5161352216914834,-0.44506675792761274 +-0.30908401054288814,-0.280601653992535 +0.7803149907113861,-0.7863866375820434 +-0.027763653981903447,-0.19269709007899471 +-0.3104863576435703,0.08083274186391498 +0.6565623324227248,-0.9114128703919488 +-0.5608888367910628,-0.13420104294151658 +0.5740572606642168,1.2996328588497894 +1.1554667461984405,-1.2121691378408264 +0.5016884294866948,-0.39810213201432804 +1.0886399342188473,0.3530522511045102 +-0.8743126390420057,0.1490684927394731 +0.1854284533935916,1.914079128606659 +1.4363985374656294,-1.3351592242568089 +-0.13504442578712927,0.4150994068246325 +0.4419876574190687,1.890195207693562 +0.5638809171369286,-0.584358554626252 +-0.22458485278094478,2.2567062330933005 +0.8127523519924372,-0.7777090915873404 +1.0221752519777163,0.8618260916317981 +0.4476498360265038,1.7200485331874722 +-0.4776094362022159,1.0577482212725948 +-0.3743247894211635,0.8268486970327285 +-0.7026620335385791,0.8636188365955986 +0.4044295460061481,0.66835281495801 +1.6248780336781945,-1.3436045161742747 +-0.6592562313872302,0.6967235753024827 +0.897175880809894,1.2156418021495186 +0.3133680482372218,1.5249933410558225 +-0.37117995372393503,0.7343100916247601 +1.5161352216914834,-0.44506675792761274 +-0.30908401054288814,-0.280601653992535 +1.0639061908471934,-0.5246346470466461 +-0.027763653981903447,-0.19269709007899471 +-0.5271483632672902,0.033125905808022035 +-0.0675640842911936,1.6024699774381468 +-0.5608888367910628,-0.13420104294151658 +0.34063116122463577,-0.1129176563859825 +1.1554667461984405,-1.2121691378408264 +0.5016884294866948,-0.39810213201432804 +1.0886399342188473,0.3530522511045102 +-0.8743126390420057,0.1490684927394731 +0.18659181499041605,0.5624608086203158 +1.4363985374656294,-1.3351592242568089 +1.3109596483546013,0.21141147657624382 +0.4419876574190687,1.890195207693562 +0.5638809171369286,-0.584358554626252 +-0.22458485278094478,2.2567062330933005 +0.8127523519924372,-0.7777090915873404 +1.0221752519777163,0.8618260916317981 +0.4476498360265038,1.7200485331874722 +0.3290798669859627,2.2460307070873347 +-0.3743247894211635,0.8268486970327285 +-0.7026620335385791,0.8636188365955986 +0.4044295460061481,0.66835281495801 +1.6248780336781945,-1.3436045161742747 +-0.6592562313872302,0.6967235753024827 +0.897175880809894,1.2156418021495186 +0.3133680482372218,1.5249933410558225 +-0.37117995372393503,0.7343100916247601 +1.5161352216914834,-0.44506675792761274 +-0.30908401054288814,-0.280601653992535 +1.0639061908471934,-0.5246346470466461 +-0.027763653981903447,-0.19269709007899471 +0.08864610230648912,-0.09987360820593333 +-0.0675640842911936,1.6024699774381468 +0.5410530376632907,-0.4442650180426991 +0.34063116122463577,-0.1129176563859825 +1.1554667461984405,-1.2121691378408264 +0.5016884294866948,-0.39810213201432804 +1.0886399342188473,0.3530522511045102 +-0.6444194422016803,1.6056356465913764 +0.033238526956228504,0.7146507428220358 +1.4363985374656294,-1.3351592242568089 +1.3109596483546013,0.21141147657624382 +-0.2544212298843167,1.7988639599001053 +0.5638809171369286,-0.584358554626252 +-0.22458485278094478,2.2567062330933005 +0.8127523519924372,-0.7777090915873404 +1.0221752519777163,0.8618260916317981 +1.6343084593959314,-2.1101316097096205 +0.3290798669859627,2.2460307070873347 +0.14345693056516945,0.18967251486898834 +-0.7026620335385791,0.8636188365955986 +1.0981930427106137,0.6495549065255687 +1.6248780336781945,-1.3436045161742747 +-0.21454627657975872,0.8927743831466227 +-0.026663681607142387,1.4535106474560768 +1.7038472925178778,-2.3225911731551285 +-0.37117995372393503,0.7343100916247601 +1.0484566895057514,-0.1284295386221933 +-0.30908401054288814,-0.280601653992535 +-0.40635972816409116,0.5121687015119658 +-0.45203914355466845,1.3844808993744813 +1.4946516751690562,-1.8647659108864647 +-0.0675640842911936,1.6024699774381468 +0.5410530376632907,-0.4442650180426991 +0.34063116122463577,-0.1129176563859825 +1.1554667461984405,-1.2121691378408264 +-0.11547552866470234,0.191590955904605 +0.8259270301204089,1.1995459716526509 +-0.6444194422016803,1.6056356465913764 +0.9416347089236743,-1.0270482554249107 +1.4363985374656294,-1.3351592242568089 +-0.6260230909861626,1.2071622034906688 +1.3582048628345773,-1.4741006439406465 +0.23726117823041548,0.4207899507595798 +-0.22458485278094478,2.2567062330933005 +0.3810998393508307,0.2832114524506001 +-0.04190346104870124,0.05208619929820811 +1.6343084593959314,-2.1101316097096205 +1.4071235778823432,-1.1926876425649358 +1.4917953527209808,-2.073372718681295 +-0.7026620335385791,0.8636188365955986 +-0.02410049385454688,1.9133087189974856 +1.6248780336781945,-1.3436045161742747 +-0.22306417607301626,1.2932798713688833 +0.9637859197185794,0.9851764701030066 +1.7038472925178778,-2.3225911731551285 +-0.37117995372393503,0.7343100916247601 +1.1353351317481268,-1.3578225250395768 +-0.30908401054288814,-0.280601653992535 +0.5669006458742112,0.0809551922263424 +-0.45203914355466845,1.3844808993744813 +0.03114798076133382,-0.10969639498519035 +0.5180058194232304,-0.2532287341038016 +0.5410530376632907,-0.4442650180426991 +0.34063116122463577,-0.1129176563859825 +1.353504288869721,-0.8127341716291047 +-0.11547552866470234,0.191590955904605 +0.8259270301204089,1.1995459716526509 +1.1568890266389944,-0.8241207009132008 +0.9416347089236743,-1.0270482554249107 +1.4363985374656294,-1.3351592242568089 +-0.6260230909861626,1.2071622034906688 +1.335541868196232,-0.07125866756907262 +1.228562376313773,-1.1470146603778455 +-0.22458485278094478,2.2567062330933005 +0.3810998393508307,0.2832114524506001 +1.1618146094361832,-0.8228544511619563 +1.4069610971945017,-0.9577731646070878 +1.3293066039554067,-1.8971599234865215 +0.057502309565905935,1.8670952357704398 +-0.7026620335385791,0.8636188365955986 +0.8410988627589675,0.7810961264194238 +1.6248780336781945,-1.3436045161742747 +-0.22306417607301626,1.2932798713688833 +0.9637859197185794,0.9851764701030066 +1.4693055322097879,-0.5910667327129882 +-0.0698621347582894,1.8651216123893253 +1.1353351317481268,-1.3578225250395768 +-0.6851874298241377,0.919027394632713 +-0.32494876906732834,1.8799079884805066 +0.4844620322252542,2.0198293024631258 +0.03114798076133382,-0.10969639498519035 +0.5180058194232304,-0.2532287341038016 +0.5410530376632907,-0.4442650180426991 +0.34063116122463577,-0.1129176563859825 +1.353504288869721,-0.8127341716291047 +-0.11547552866470234,0.191590955904605 +0.8259270301204089,1.1995459716526509 +0.39299945128990565,-0.15850246249838587 +1.2325928938165096,0.19140690774993518 +1.0445949542320518,0.4149016740074074 +-0.6260230909861626,1.2071622034906688 +0.5344432215719297,2.126185974160037 +1.3405303684263346,-1.1355896708909472 +-0.21832112409051377,0.5100119551101797 +0.4619750280491382,1.6263847129622508 +1.655062606177684,-1.1284972212733793 +1.4069610971945017,-0.9577731646070878 +1.0131160341574386,0.7963326088040197 +0.057502309565905935,1.8670952357704398 +-0.7026620335385791,0.8636188365955986 +-0.6733380121877746,1.3525911550769296 +0.6978570978515759,1.483561949379376 +-0.37602218651223396,0.18087104033180867 +0.9637859197185794,0.9851764701030066 +1.4693055322097879,-0.5910667327129882 +-0.0698621347582894,1.8651216123893253 +-0.2947038611995108,2.453899977814136 +1.6707544873988531,-1.774469961045393 +1.164149168590157,-0.6987498754012285 +0.4844620322252542,2.0198293024631258 +0.45660058935801695,-0.32773514361578027 +0.5180058194232304,-0.2532287341038016 +0.5410530376632907,-0.4442650180426991 +0.5854401616425855,0.10557040813260876 +1.353504288869721,-0.8127341716291047 +-0.11547552866470234,0.191590955904605 +-0.501407910005112,1.9827992639833047 +1.584679938110507,-1.1413293691107753 +1.2325928938165096,0.19140690774993518 +1.0445949542320518,0.4149016740074074 +-0.6260230909861626,1.2071622034906688 +1.5242777255552413,-2.2966587640979004 +1.3405303684263346,-1.1355896708909472 +-0.21832112409051377,0.5100119551101797 +-0.5163621185777999,1.746421745322126 +1.655062606177684,-1.1284972212733793 +1.4069610971945017,-0.9577731646070878 +1.0131160341574386,0.7963326088040197 +0.057502309565905935,1.8670952357704398 +0.4248592029639318,-0.13627949259417171 +-0.6733380121877746,1.3525911550769296 +0.6978570978515759,1.483561949379376 +-0.37602218651223396,0.18087104033180867 +-0.3451049462606201,0.26165157184438687 +1.2483276217416557,-0.5258140731631982 +-0.0698621347582894,1.8651216123893253 +0.853719554331677,0.02992313254404988 +1.6707544873988531,-1.774469961045393 +0.15336906655138155,0.0469681778991172 +0.4844620322252542,2.0198293024631258 +0.5966037609195863,-0.8090167943943818 +0.5605386495262364,1.2123669464508324 +0.5410530376632907,-0.4442650180426991 +0.5854401616425855,0.10557040813260876 +1.353504288869721,-0.8127341716291047 +-0.04713910318026393,0.3431224470045123 +-0.47440570642217084,0.4809695959612028 +0.07455275404988734,0.271075595940408 +1.2325928938165096,0.19140690774993518 +1.0445949542320518,0.4149016740074074 +-0.013585418457580656,1.241379512417402 +1.5242777255552413,-2.2966587640979004 +0.36180928498005765,-0.05782781207075434 +-0.21832112409051377,0.5100119551101797 +-0.5163621185777999,1.746421745322126 +1.655062606177684,-1.1284972212733793 +1.4069610971945017,-0.9577731646070878 +1.0131160341574386,0.7963326088040197 +0.057502309565905935,1.8670952357704398 +0.4248592029639318,-0.13627949259417171 +-0.6733380121877746,1.3525911550769296 +0.6978570978515759,1.483561949379376 +-0.03388589361616991,1.7167770640179247 +0.20411728983414257,0.5183800503450766 +1.4014346635666408,-0.4154312500704368 +0.6163245441913257,1.663841933723584 +0.7627456428334926,-0.18974370223823156 +1.6707544873988531,-1.774469961045393 +-0.9331867059418506,0.8324480242516683 +-0.004868346828201253,1.6171766710908575 +0.5966037609195863,-0.8090167943943818 +0.5605386495262364,1.2123669464508324 +0.05854560666132386,-0.3498679676798728 +-0.46470656378939706,1.3798169992382332 +1.353504288869721,-0.8127341716291047 +-0.04713910318026393,0.3431224470045123 +-0.47440570642217084,0.4809695959612028 +0.07455275404988734,0.271075595940408 +1.2325928938165096,0.19140690774993518 +1.6677638356096391,-1.4609912426725953 +1.123321346809153,-1.686322794493118 +-0.6807097354993445,1.0638585171484887 +0.7737135517289278,0.9326291294131946 +0.28984100918763533,0.46617189702501816 +-0.5163621185777999,1.746421745322126 +1.655062606177684,-1.1284972212733793 +1.4069610971945017,-0.9577731646070878 +1.0401555936064333,0.7366138261299214 +0.057502309565905935,1.8670952357704398 +-0.9080413234665773,0.9422309448069593 +1.596988178846632,-1.5164118838962106 +0.6978570978515759,1.483561949379376 +0.09421617103372977,0.9711224193582182 +-0.8797693925133905,0.503855870752709 +1.4014346635666408,-0.4154312500704368 +0.6163245441913257,1.663841933723584 +0.7627456428334926,-0.18974370223823156 +-0.4760761271181928,-0.256121401662743 +-0.46115912815142623,0.8417331775500037 +-0.3290883310649779,1.4857820848135193 +-0.23924240975712396,-0.18842170344544096 +0.5605386495262364,1.2123669464508324 +1.1939167564502546,-0.6919460669147783 +-0.46470656378939706,1.3798169992382332 +1.353504288869721,-0.8127341716291047 +-0.09943228148558847,-0.44102074592062057 +-0.47440570642217084,0.4809695959612028 +0.788585299435687,-0.8523414737288254 +1.2325928938165096,0.19140690774993518 +1.6677638356096391,-1.4609912426725953 +1.123321346809153,-1.686322794493118 +-0.6807097354993445,1.0638585171484887 +0.7854875062172035,-0.9306402539605558 +-0.7022028099273782,0.30228905649781956 +-0.5163621185777999,1.746421745322126 +1.655062606177684,-1.1284972212733793 +1.4069610971945017,-0.9577731646070878 +1.0401555936064333,0.7366138261299214 +0.9500207980343723,-0.7455544418887502 +-0.9080413234665773,0.9422309448069593 +1.1915642519743943,-0.343891706663718 +-0.9856994005593656,0.6497071554199669 +1.0139846387328022,0.5963561336630897 +-0.8797693925133905,0.503855870752709 +1.4014346635666408,-0.4154312500704368 +1.2503723302316838,-1.2947679193099466 +1.0822522422895486,-0.6593730002971797 +-0.13565355700738757,0.23552733695954264 +-0.46115912815142623,0.8417331775500037 +-0.3290883310649779,1.4857820848135193 +-0.23924240975712396,-0.18842170344544096 +-0.32531129122784913,0.013597761254766833 +1.1529295451001025,-0.43473477619936185 +-0.46470656378939706,1.3798169992382332 +0.47768050871207113,1.2411300896028103 +-0.09943228148558847,-0.44102074592062057 +-0.5663976777278784,1.5811362722484434 +0.788585299435687,-0.8523414737288254 +1.2325928938165096,0.19140690774993518 +1.1170489571721545,-0.8040415381710247 +1.123321346809153,-1.686322794493118 +-0.6807097354993445,1.0638585171484887 +0.9685112765522277,0.42540761775191227 +-0.7022028099273782,0.30228905649781956 +-0.5163621185777999,1.746421745322126 +1.655062606177684,-1.1284972212733793 +-0.3561300806108175,2.2433072372482714 +1.0401555936064333,0.7366138261299214 +1.5435933122456373,-1.702043693899964 +0.5716876376471791,0.8973181487209014 +1.1915642519743943,-0.343891706663718 +0.6441910983634609,-0.6969339116164031 +1.7179569900577225,-2.27212537144357 +-0.8797693925133905,0.503855870752709 +1.4014346635666408,-0.4154312500704368 +1.5720463994328902,-1.2755754783557207 +-0.19717463746165054,-0.16603631054387008 +-0.5593454509866069,0.28703974392034953 +-0.7373521512755491,0.8077051757531442 +0.8562483032365649,-1.0415595219071054 +-0.23924240975712396,-0.18842170344544096 +-0.32531129122784913,0.013597761254766833 +1.5669259450402884,-1.174194349088674 +-0.46470656378939706,1.3798169992382332 +0.47768050871207113,1.2411300896028103 +-0.09943228148558847,-0.44102074592062057 +-0.8056936869995927,1.2182067899603921 +0.788585299435687,-0.8523414737288254 +0.6063542358673215,0.9050212607407045 +-0.5149063807974157,1.8134983323852363 +0.19890623980435768,2.2814928663173606 +-0.6807097354993445,1.0638585171484887 +-0.20686817951778647,0.754734650714362 +-0.7022028099273782,0.30228905649781956 +-0.689656845602286,1.0440112836076718 +1.655062606177684,-1.1284972212733793 +0.12471256354556735,1.68275564874552 +1.0401555936064333,0.7366138261299214 +0.6450077053857247,-0.4968223621832115 +0.5716876376471791,0.8973181487209014 +1.2318013936101408,0.19371216629603882 +-0.9487865760752245,0.2748164044024659 +1.7179569900577225,-2.27212537144357 +-0.8797693925133905,0.503855870752709 +-0.7620423724948878,0.5190998524594956 +1.6023744413661778,-1.5488392754035696 +-0.19717463746165054,-0.16603631054387008 +0.4664897201538345,1.43985121104078 +-0.538929003787983,-0.07415127182916884 +0.8562483032365649,-1.0415595219071054 +-0.23924240975712396,-0.18842170344544096 +0.7610308696696914,1.2019661961395676 +1.659851383271969,-2.5117080402391494 +-0.46470656378939706,1.3798169992382332 +0.47302431113670196,0.7051125515222547 +-0.09943228148558847,-0.44102074592062057 +1.6025421277243015,-1.0366904490162052 +1.3483328554861005,-0.34405785553097334 +0.6063542358673215,0.9050212607407045 +-0.5149063807974157,1.8134983323852363 +0.19890623980435768,2.2814928663173606 +-0.6807097354993445,1.0638585171484887 +0.7837909974811982,-0.9263580210757891 +-0.7022028099273782,0.30228905649781956 +-0.689656845602286,1.0440112836076718 +1.655062606177684,-1.1284972212733793 +-0.14305309188788512,0.2669168091594994 +1.0401555936064333,0.7366138261299214 +0.13455590720515342,-0.0705181123141253 +0.6980646054862438,0.023492021343436753 +-0.08889145338608817,2.4514415911341527 +-0.9487865760752245,0.2748164044024659 +1.7179569900577225,-2.27212537144357 +-0.872270881120812,0.2387473408917787 +-0.7620423724948878,0.5190998524594956 +1.6023744413661778,-1.5488392754035696 +-0.7405286433793867,0.8182178046160512 +0.4664897201538345,1.43985121104078 +0.050896153587958404,1.8561308659264522 +0.8562483032365649,-1.0415595219071054 +-0.23924240975712396,-0.18842170344544096 +0.7610308696696914,1.2019661961395676 +1.659851383271969,-2.5117080402391494 +-0.46470656378939706,1.3798169992382332 +0.47302431113670196,0.7051125515222547 +-0.09943228148558847,-0.44102074592062057 +1.6025421277243015,-1.0366904490162052 +0.38042878047528106,0.07592559147247635 +0.6063542358673215,0.9050212607407045 +-0.5149063807974157,1.8134983323852363 +0.19890623980435768,2.2814928663173606 +-0.3748933695668394,1.189157980733141 +0.7837909974811982,-0.9263580210757891 +-0.7022028099273782,0.30228905649781956 +-1.188499102959464,0.1449283071655039 +1.655062606177684,-1.1284972212733793 +-0.14305309188788512,0.2669168091594994 +1.0401555936064333,0.7366138261299214 +0.13455590720515342,-0.0705181123141253 +0.7769260543968319,-0.2708958894841331 +-0.08889145338608817,2.4514415911341527 +-0.9487865760752245,0.2748164044024659 +1.7179569900577225,-2.27212537144357 +-0.872270881120812,0.2387473408917787 +-0.7620423724948878,0.5190998524594956 +1.549488177140771,-1.4359720637244795 +-0.9917512578204617,0.38655363393663067 +0.4664897201538345,1.43985121104078 +-0.2233176315212343,0.5784389508817505 +0.8562483032365649,-1.0415595219071054 +1.4047141063228903,0.15639426490586716 +0.7610308696696914,1.2019661961395676 +1.659851383271969,-2.5117080402391494 +-0.8033558183799433,0.5550579790227544 +1.6267733700731424,-1.1834230832901524 +-0.2876873885381517,1.5279505085781722 +1.6025421277243015,-1.0366904490162052 +-0.02556071101459602,0.3556835946748136 +0.23570592132021365,2.139068831910946 +-0.5149063807974157,1.8134983323852363 +0.7764336613231583,0.08312534638502717 +-0.3748933695668394,1.189157980733141 +0.7837909974811982,-0.9263580210757891 +0.5459590873866198,1.0431012950506486 +0.848203918977638,0.4758874511154615 +1.655062606177684,-1.1284972212733793 +-0.1515786322261189,-0.12956035058881907 +1.0401555936064333,0.7366138261299214 +0.3805074548574372,1.9588230610079518 +0.7769260543968319,-0.2708958894841331 +1.2802404742655638,-1.1734858715796022 +-0.7030951492206422,0.2065692649395843 +1.7179569900577225,-2.27212537144357 +-0.872270881120812,0.2387473408917787 +0.1149172112050969,1.3467911682899474 +-0.36216533917560856,0.9038206260855544 +0.6332075342019468,-0.7565076414800068 +1.520599174529758,-1.66062704208478 +1.0600391683007053,0.18883762740167587 +-0.2667650606479024,-0.1965091852801254 +0.8385513383856399,-0.7012850198861103 +0.7610308696696914,1.2019661961395676 +1.659851383271969,-2.5117080402391494 +0.8099379484690381,1.443285588170451 +1.6267733700731424,-1.1834230832901524 +-0.2876873885381517,1.5279505085781722 +0.7462329047517235,1.1842753884008506 +-0.02556071101459602,0.3556835946748136 +0.23570592132021365,2.139068831910946 +1.629808018872363,-1.1952184924441547 +1.2374100951290554,-1.9093029404840496 +-0.5279581379646052,1.8628101471722607 +0.7837909974811982,-0.9263580210757891 +0.45681486312073705,-0.43393761804407216 +0.818442575498995,-0.32046899078425684 +0.8159575282207531,-0.7751241625031637 +-0.1515786322261189,-0.12956035058881907 +1.0401555936064333,0.7366138261299214 +0.3805074548574372,1.9588230610079518 +0.500992283679762,1.3286456757846365 +1.2802404742655638,-1.1734858715796022 +-0.017450742814250575,1.5520912520147496 +1.7179569900577225,-2.27212537144357 +-0.872270881120812,0.2387473408917787 +1.2640190199171593,-1.1470793645863984 +-0.36216533917560856,0.9038206260855544 +0.05671433627105976,1.5185913362745243 +1.520599174529758,-1.66062704208478 +1.0600391683007053,0.18883762740167587 +-0.28466183480234186,2.253659302904905 +0.8385513383856399,-0.7012850198861103 +0.7610308696696914,1.2019661961395676 +1.659851383271969,-2.5117080402391494 +1.439737688304593,-1.0836805102600704 +0.6278339195601073,1.1685764677232684 +-0.2876873885381517,1.5279505085781722 +0.7497386040309697,-1.0989928172804169 +-0.02556071101459602,0.3556835946748136 +0.23570592132021365,2.139068831910946 +1.0800320799559968,0.9400742002124011 +1.3780543180518845,-1.5556451903574646 +-0.5279581379646052,1.8628101471722607 +-0.141537760020739,2.0204724074795446 +-0.383205515954286,0.669489222592522 +0.818442575498995,-0.32046899078425684 +0.8159575282207531,-0.7751241625031637 +0.6747783345763082,1.138525643848899 +1.0401555936064333,0.7366138261299214 +0.3805074548574372,1.9588230610079518 +0.500992283679762,1.3286456757846365 +1.2802404742655638,-1.1734858715796022 +1.0219384463538441,0.2479822645786045 +0.7962666502236375,-0.4375060482485562 +-0.01653817081203779,-0.17951669410253582 +1.2771406459887804,-0.5275380629082864 +-0.6686971128882346,1.551771103367491 +0.7046970742890377,-0.5401007158927142 +1.520599174529758,-1.66062704208478 +0.018753583621624048,1.3400044489264695 +0.25176485979436636,0.30361663750052537 +0.8385513383856399,-0.7012850198861103 +-0.167866702481781,0.8572919776392799 +1.659851383271969,-2.5117080402391494 +1.439737688304593,-1.0836805102600704 +-0.5298980691827858,1.7005400428451025 +-0.2876873885381517,1.5279505085781722 +0.7497386040309697,-1.0989928172804169 +0.2870687009543045,2.2972688484791046 +-0.4665886800740928,1.631562464416791 +1.0800320799559968,0.9400742002124011 +1.3780543180518845,-1.5556451903574646 +-0.6411302935809028,1.0107226841362684 +-0.141537760020739,2.0204724074795446 +0.5056331195584159,0.12689652153538145 +0.818442575498995,-0.32046899078425684 +1.415663869301723,-0.6371429503939015 +0.6747783345763082,1.138525643848899 +1.2000713060486878,-0.6432325439997829 +1.1048023901281445,-1.8628166704283617 +0.500992283679762,1.3286456757846365 +0.09909402239353479,0.6953659829411527 +1.7161760835678823,-1.765805464466759 +0.42608499915202114,1.61319438901121 +-0.06621486471306831,-0.023711362458398222 +1.2771406459887804,-0.5275380629082864 +0.3714852598503921,1.4988822037745044 +0.7046970742890377,-0.5401007158927142 +1.520599174529758,-1.66062704208478 +0.018753583621624048,1.3400044489264695 +1.227812440506634,-1.7895296785715735 +0.8385513383856399,-0.7012850198861103 +-0.1681096909524904,1.8867440489863023 +1.3977788454868607,-0.6274783068342283 +-0.8004125132052518,0.1454785859418939 +-0.5298980691827858,1.7005400428451025 +-0.2876873885381517,1.5279505085781722 +-0.4741908131166956,2.200337212962925 +0.2870687009543045,2.2972688484791046 +-0.3394708345961541,0.4994406125839257 +1.5459872975589903,-1.4823031048003454 +1.3780543180518845,-1.5556451903574646 +-0.6411302935809028,1.0107226841362684 +1.711441183568525,-1.7525020181725899 +-0.14772769075308187,1.9557026915485514 +0.818442575498995,-0.32046899078425684 +-0.7234604641257979,0.9045261242566982 +1.7664844912926263,-1.3396476549816587 +1.2000713060486878,-0.6432325439997829 +0.7930348228537695,-1.4592761897916446 +0.13907130645040305,1.4937799581585631 +-0.5905805312220964,1.3819372622453676 +1.7161760835678823,-1.765805464466759 +0.42608499915202114,1.61319438901121 +-0.06621486471306831,-0.023711362458398222 +1.122669516490616,-1.0599718683323087 +1.7465051403177156,-2.5506831242943213 +0.7046970742890377,-0.5401007158927142 +1.3823738519450015,-0.08987227625343108 +0.8782167395669898,0.1955622069069416 +1.227812440506634,-1.7895296785715735 +0.8385513383856399,-0.7012850198861103 +0.9173929410897279,1.3851730948470629 +1.3977788454868607,-0.6274783068342283 +-0.8004125132052518,0.1454785859418939 +-0.5298980691827858,1.7005400428451025 +-0.2876873885381517,1.5279505085781722 +0.6008338188981632,-0.7119565817088463 +-0.06328279352855737,0.14273928994662655 +-0.5077650596403934,1.6190249743754916 +1.5459872975589903,-1.4823031048003454 +1.3780543180518845,-1.5556451903574646 +-0.6411302935809028,1.0107226841362684 +0.36692939829923477,1.3663557758634597 +-0.14772769075308187,1.9557026915485514 +0.818442575498995,-0.32046899078425684 +0.21492312795880075,-0.07073970228441095 +1.74141730540398,-2.449611861457524 +0.25828807903627615,-0.0462871884677547 +0.7930348228537695,-1.4592761897916446 +1.4203239774695429,-1.5508140080619186 +-0.5905805312220964,1.3819372622453676 +0.8031674600916358,0.26952999635908337 +0.42608499915202114,1.61319438901121 +-0.8408600405886498,-0.22048639688358562 +1.122669516490616,-1.0599718683323087 +1.7465051403177156,-2.5506831242943213 +-0.2741585644592176,0.0665677104631417 +-0.2159522749584882,0.5840581075860138 +0.8782167395669898,0.1955622069069416 +1.227812440506634,-1.7895296785715735 +-0.7348458359356912,-0.0591611075596255 +0.9173929410897279,1.3851730948470629 +1.3977788454868607,-0.6274783068342283 +-0.8004125132052518,0.1454785859418939 +-0.5298980691827858,1.7005400428451025 +-0.2876873885381517,1.5279505085781722 +0.6008338188981632,-0.7119565817088463 +-0.06328279352855737,0.14273928994662655 diff --git a/examples/only-model/data/posterior/posterior_plot.py b/examples/only-model/data/posterior/posterior_plot.py new file mode 100644 index 0000000000000000000000000000000000000000..840d0bcd7717f903750e6cadf8978e5d7df6b06a --- /dev/null +++ b/examples/only-model/data/posterior/posterior_plot.py @@ -0,0 +1,52 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu May 19 14:31:50 2022 + +@author: farid +""" +import matplotlib.pyplot as plt +import os +import pandas as pd +import seaborn as sns +import numpy as np +# Load the mplstyle +plt.style.use(os.path.join( + os.path.split(__file__)[0], + '../../../../src/bayesvalidrox/', 'bayesvalidrox.mplstyle')) + +font_size = 80 + +posterior_df = pd.read_csv('posterior_orig.csv') +par_names = list(posterior_df.keys()) +n_params = len(par_names) +posterior = posterior_df.values +bound_tuples = [(-5, 5), (-5, 5)] + +folder = 'BAL_DKL' +file = 'SeqPosterior_45' +posterior = np.load(f'{folder}/{file}.npy') + +figPosterior, ax = plt.subplots(figsize=(15, 15)) + +sns.kdeplot(x=posterior[:, 0], y=posterior[:, 1], + fill=True, ax=ax, cmap=plt.cm.jet, + clip=bound_tuples) +# Axis labels +plt.xlabel(par_names[0], fontsize=font_size) +plt.ylabel(par_names[1], fontsize=font_size) + +# Set axis limit +plt.xlim(bound_tuples[0]) +plt.ylim(bound_tuples[1]) + +# Increase font size +plt.xticks(fontsize=font_size) +plt.yticks(fontsize=font_size) + +# Switch off the grids +plt.grid(False) +plt.show() +# figPosterior.savefig("orig_posterior.pdf", bbox_inches='tight') +figPosterior.savefig(f"seq_posterior_45_{folder}.pdf", bbox_inches='tight') +plt.close() diff --git a/examples/only-model/data/refBME_KLD_10.npy b/examples/only-model/data/refBME_KLD_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..5cad0720c29c966ae19cc942275bb5bcc6af3810 Binary files /dev/null and b/examples/only-model/data/refBME_KLD_10.npy differ diff --git a/examples/only-model/data/refBME_KLD_2.npy b/examples/only-model/data/refBME_KLD_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..f6874ab10d08f3864e755b65d7cff94b0cabf81f Binary files /dev/null and b/examples/only-model/data/refBME_KLD_2.npy differ diff --git a/examples/only-model/data/std_10.npy b/examples/only-model/data/std_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..0ca99dbb88c8a6676a3cdf5a280bf34edc9685ed Binary files /dev/null and b/examples/only-model/data/std_10.npy differ diff --git a/examples/only-model/data/std_2.npy b/examples/only-model/data/std_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..144f3abe232c4215984befeadc898d3f6601f6d8 Binary files /dev/null and b/examples/only-model/data/std_2.npy differ diff --git a/examples/only-model/data/validLikelihoods_10.npy b/examples/only-model/data/validLikelihoods_10.npy new file mode 100644 index 0000000000000000000000000000000000000000..e4646b7e7e1b0d33e1810488af485d5bb0679605 Binary files /dev/null and b/examples/only-model/data/validLikelihoods_10.npy differ diff --git a/examples/only-model/data/validLikelihoods_2.npy b/examples/only-model/data/validLikelihoods_2.npy new file mode 100644 index 0000000000000000000000000000000000000000..70971b581122eb48aca6fcf4961bdd39fd66b17a Binary files /dev/null and b/examples/only-model/data/validLikelihoods_2.npy differ diff --git a/examples/only-model/test_analytical_function_NoSigmaMetaMod.py b/examples/only-model/test_analytical_function_NoSigmaMetaMod.py new file mode 100644 index 0000000000000000000000000000000000000000..9e8e68afba56ae605a484ea624c9decf3f691f57 --- /dev/null +++ b/examples/only-model/test_analytical_function_NoSigmaMetaMod.py @@ -0,0 +1,331 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This test shows a surrogate-assisted Bayesian calibration of a time dependent + analytical function. + +Author: Farid Mohammadi, M.Sc. +E-Mail: farid.mohammadi@iws.uni-stuttgart.de +Department of Hydromechanics and Modelling of Hydrosystems (LH2) +Institute for Modelling Hydraulic and Environmental Systems (IWS), University +of Stuttgart, www.iws.uni-stuttgart.de/lh2/ +Pfaffenwaldring 61 +70569 Stuttgart + +Created on Fri Aug 9 2019 + +""" + +import numpy as np +import pandas as pd +import random +import sys +import joblib +# import bayesvalidrox +# Add BayesValidRox path +sys.path.append("../../src/bayesvalidrox/") + +#import bayesvalidrox as bv +from bayesvalidrox.pylink.pylink import PyLinkForwardModel +from bayesvalidrox.surrogate_models.inputs import Input +from bayesvalidrox.surrogate_models.surrogate_models import MetaModel +from bayesvalidrox.surrogate_models.meta_model_engine import MetaModelEngine +from bayesvalidrox.post_processing.post_processing import PostProcessing +from bayesvalidrox.bayes_inference.bayes_inference import BayesInference +from bayesvalidrox.bayes_inference.discrepancy import Discrepancy +import matplotlib +matplotlib.use('agg') + + +if __name__ == "__main__": + random.seed(15) + + # Number of parameters + ndim = 10 # 2, 10 + + # ===================================================== + # ============= COMPUTATIONAL MODEL ================ + # ===================================================== + Model = PyLinkForwardModel() + + Model.link_type = 'Function' + Model.py_file = 'analytical_function' + Model.name = 'AnalyticFunc' + + Model.Output.names = ['Z'] + + # For Bayesian inversion synthetic data with X=[0,0] + Model.observations = {} + Model.observations['Time [s]'] = np.arange(0, 10, 1.) / 9 + Model.observations['Z'] = np.repeat([2.], 10) + Model.observations['Z1'] = np.repeat([2.], 10) + #Model.observations['Nothing'] = np.zeros((1,10)) + + # For Checking with the MonteCarlo refrence + # Model.mc_reference = {} + # Model.mc_reference['Time [s]'] = np.arange(0, 10, 1.) / 9 + # Model.mc_reference['mean'] = np.load(f"data/mean_{ndim}.npy") + # Model.mc_reference['std'] = np.load(f"data/std_{ndim}.npy") + + # ===================================================== + # ========= PROBABILISTIC INPUT MODEL ============== + # ===================================================== + # Define the uncertain parameters with their mean and + # standard deviation + Inputs = Input() + + # Assuming dependent input variables + # Inputs.Rosenblatt = True + + for i in range(ndim): + Inputs.add_marginals() + Inputs.Marginals[i].name = "$\\theta_{"+str(i+1)+"}$" + Inputs.Marginals[i].dist_type = 'uniform' + Inputs.Marginals[i].parameters = [-5, 5] + + # arbitrary polynomial chaos + # inputParams = np.load('data/InputParameters_{}.npy'.format(ndim)) + # for i in range(ndim): + # Inputs.add_marginals() + # Inputs.Marginals[i].name = f'$X_{i+1}$' + # Inputs.Marginals[i].input_data = inputParams[:, i] + + # ===================================================== + # ========== DEFINITION OF THE METAMODEL ============ + # ===================================================== + MetaModelOpts = MetaModel(Inputs, Model) + + # Select if you want to preserve the spatial/temporal depencencies + # MetaModelOpts.dim_red_method = 'PCA' + # MetaModelOpts.var_pca_threshold = 99.999 + # MetaModelOpts.n_pca_components = 10 + + # Select your metamodel method + # 1) PCE (Polynomial Chaos Expansion) 2) aPCE (arbitrary PCE) + # 3) GPE (Gaussian Process Emulator) + MetaModelOpts.meta_model_type = 'aPCE' + + # ------------------------------------------------ + # ------------- PCE Specification ---------------- + # ------------------------------------------------ + # Select the sparse least-square minimization method for + # the PCE coefficients calculation: + # 1)OLS: Ordinary Least Square 2)BRR: Bayesian Ridge Regression + # 3)LARS: Least angle regression 4)ARD: Bayesian ARD Regression + # 5)FastARD: Fast Bayesian ARD Regression + # 6)BCS: Bayesian Compressive Sensing + # 7)OMP: Orthogonal Matching Pursuit + # 8)VBL: Variational Bayesian Learning + # 9)EBL: Emperical Bayesian Learning + MetaModelOpts.pce_reg_method = 'FastARD' + + # Bootstraping + # 1) normal 2) fast + MetaModelOpts.bootstrap_method = 'fast' + MetaModelOpts.n_bootstrap_itrs = 1 + + # Specify the max degree to be compared by the adaptive algorithm: + # The degree with the lowest Leave-One-Out cross-validation (LOO) + # error (or the highest score=1-LOO)estimator is chosen as the final + # metamodel. pce_deg accepts degree as a scalar or a range. + MetaModelOpts.pce_deg = 12 + + # q-quasi-norm 0<q<1 (default=1) + MetaModelOpts.pce_q_norm = 0.85 if ndim < 5 else 0.5 + + # Print summary of the regression results + # MetaModelOpts.verbose = True + + # ------------------------------------------------ + # ------ Experimental Design Configuration ------- + # ------------------------------------------------ + MetaModelOpts.add_ExpDesign() + + # One-shot (normal) or Sequential Adaptive (sequential) Design + MetaModelOpts.ExpDesign.method = 'sequential' + MetaModelOpts.ExpDesign.n_init_samples = 3*ndim + + # Sampling methods + # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley + # 6) chebyshev(FT) 7) grid(FT) 8)user + MetaModelOpts.ExpDesign.sampling_method = 'latin_hypercube' + + # Provide the experimental design object with a hdf5 file + # MetaModelOpts.ExpDesign.hdf5_file = 'ExpDesign_AnalyticFunc.hdf5' + + # ------------------------------------------------ + # ------- Sequential Design configuration -------- + # ------------------------------------------------ + # Set the sampling parameters + MetaModelOpts.ExpDesign.n_new_samples = 1 + MetaModelOpts.ExpDesign.n_max_samples = 33#150 # sum of init + sequential + MetaModelOpts.ExpDesign.mod_LOO_threshold = 1e-16 + + # MetaModelOpts.adapt_verbose = True + # 1) None 2) 'equal' 3)'epsilon-decreasing' 4) 'adaptive' + MetaModelOpts.ExpDesign.tradeoff_scheme = None + # MetaModelOpts.ExpDesign.n_replication = 5 + # -------- Exploration ------ + # 1)'Voronoi' 2)'random' 3)'latin_hypercube' 4)'LOOCV' 5)'dual annealing' + MetaModelOpts.ExpDesign.explore_method = 'random' + + # Use when 'dual annealing' chosen + MetaModelOpts.ExpDesign.max_func_itr = 1000 + + # Use when 'Voronoi' or 'random' or 'latin_hypercube' chosen + MetaModelOpts.ExpDesign.n_canddidate = 1000 + MetaModelOpts.ExpDesign.n_cand_groups = 4 + + # -------- Exploitation ------ + # 1)'BayesOptDesign' 2)'BayesActDesign' 3)'VarOptDesign' 4)'alphabetic' + # 5)'Space-filling' + MetaModelOpts.ExpDesign.exploit_method = 'BayesActDesign' + + # BayesOptDesign/BayesActDesign -> when data is available + # 1) MI (Mutual information) 2) ALC (Active learning McKay) + # 2)DKL (Kullback-Leibler Divergence) 3)DPP (D-Posterior-percision) + # 4)APP (A-Posterior-percision) # ['DKL', 'BME', 'infEntropy'] + # MetaModelOpts.ExpDesign.util_func = 'DKL' + + # BayesActDesign -> when data is available + # 1) BME (Bayesian model evidence) 2) infEntropy (Information entropy) + # 2)DKL (Kullback-Leibler Divergence) + MetaModelOpts.ExpDesign.util_func = 'BME'#'DKL' + + # VarBasedOptDesign -> when data is not available + # 1)ALM 2)EIGF, 3)LOOCV + # or a combination as a list + # MetaModelOpts.ExpDesign.util_func = 'EIGF' + + # alphabetic + # 1)D-Opt (D-Optimality) 2)A-Opt (A-Optimality) + # 3)K-Opt (K-Optimality) or a combination as a list + # MetaModelOpts.ExpDesign.util_func = 'D-Opt' + + # Defining the measurement error, if it's known a priori + obsData = pd.DataFrame(Model.observations, columns=Model.Output.names) + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obsData**2 + MetaModelOpts.Discrepancy = DiscrepancyOpts + + # Plot the posterior snapshots for SeqDesign + MetaModelOpts.ExpDesign.post_snapshot = False + MetaModelOpts.ExpDesign.step_snapshot = 1 + MetaModelOpts.ExpDesign.max_a_post = [0] * ndim + + # For calculation of validation error for SeqDesign + prior = np.load(f"data/Prior_{ndim}.npy") + prior_outputs = np.load(f"data/origModelOutput_{ndim}.npy") + likelihood = np.load(f"data/validLikelihoods_{ndim}.npy") + MetaModelOpts.valid_samples = prior[:500] + MetaModelOpts.valid_model_runs = {'Z': prior_outputs[:500]} + # MetaModelOpts.valid_likelihoods = likelihood + + # >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + # Train the meta model + meta_model_engine = MetaModelEngine(MetaModelOpts) + meta_model_engine.run() + PCEModel = meta_model_engine.MetaModel + + # Save PCE models + with open(f'PCEModel_{Model.name}.pkl', 'wb') as output: + joblib.dump(PCEModel, output, 2) + + # Load the objects + # with open(f"PCEModel_{Model.name}.pkl", "rb") as input: + # PCEModel = joblib.load(input) + + # ===================================================== + # ========= POST PROCESSING OF METAMODELS =========== + # ===================================================== + PostPCE = PostProcessing(PCEModel) + + # Plot to check validation visually. + PostPCE.valid_metamodel(n_samples=1) + + # Compute and print RMSE error + PostPCE.check_accuracy(n_samples=300) + + # Compute the moments and compare with the Monte-Carlo reference + if MetaModelOpts.meta_model_type != 'GPE': + PostPCE.plot_moments() + + # Plot the evolution of the KLD,BME, and Modified LOOCV error + if MetaModelOpts.ExpDesign.method == 'sequential': + refBME_KLD = np.load("data/refBME_KLD_"+str(ndim)+".npy") +# PostPCE.plot_seq_design_diagnostics(refBME_KLD) + + # Plot the sobol indices + if MetaModelOpts.meta_model_type != 'GPE': + total_sobol = PostPCE.sobol_indices() + + # ===================================================== + # ======== Bayesian inference with Emulator ========== + # ===================================================== + BayesOpts = BayesInference(PCEModel) + BayesOpts.emulator = True + BayesOpts.plot_post_pred = True + + # BayesOpts.selected_indices = [0, 3, 5, 7, 9] + # BME Bootstrap + # BayesOpts.bootstrap = True + # BayesOpts.n_bootstrap_itrs = 500 + # BayesOpts.bootstrap_noise = 100 + + # Bayesian cross validation + # BayesOpts.bayes_loocv = True + + # Select the inference method + import emcee + BayesOpts.inference_method = "MCMC" + # Set the MCMC parameters passed to self.mcmc_params + BayesOpts.mcmc_params = { + 'n_steps': 1e3, + 'n_walkers': 30, + 'moves': emcee.moves.KDEMove(), + 'multiprocessing': False, + 'verbose': False + } + + # ----- Define the discrepancy model ------- + BayesOpts.measurement_error = obsData + + # # -- (Option B) -- + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obsData**2 + BayesOpts.Discrepancy = DiscrepancyOpts + + # -- (Option C) -- + # DiscOutputOpts = Input() + # # # OutputName = 'Z' + # DiscOutputOpts.add_marginals() + # DiscOutputOpts.Marginals[0].Nnme = '$\sigma^2_{\epsilon}$' + # DiscOutputOpts.Marginals[0].dist_type = 'uniform' + # DiscOutputOpts.Marginals[0].parameters = [0, 10] + # BayesOpts.Discrepancy = {'known': DiscrepancyOpts, + # 'infer': Discrepancy(DiscOutputOpts)} + + # BayesOpts.bias_inputs = {'Z':np.arange(0, 10, 1.).reshape(-1,1) / 9} + # DiscOutputOpts = Input() + # # OutputName = 'lambda' + # DiscOutputOpts.add_marginals() + # DiscOutputOpts.Marginals[0].name = '$\lambda$' + # DiscOutputOpts.Marginals[0].dist_type = 'uniform' + # DiscOutputOpts.Marginals[0].parameters = [0, 1] + + # # OutputName = 'sigma_f' + # DiscOutputOpts.add_marginals() + # DiscOutputOpts.Marginals[1].Name = '$\sigma_f$' + # DiscOutputOpts.Marginals[1].dist_type = 'uniform' + # DiscOutputOpts.Marginals[1].parameters = [0, 1e-4] + # BayesOpts.Discrepancy = Discrepancy(DiscOutputOpts) + # BayesOpts.Discrepancy = {'known': DiscrepancyOpts, + # 'infer': Discrepancy(DiscOutputOpts)} + # Start the calibration/inference + Bayes_PCE = BayesOpts.create_inference() + + # Save class objects + with open(f'Bayes_{Model.name}.pkl', 'wb') as output: + joblib.dump(Bayes_PCE, output, 2) diff --git a/examples/only-model/test_analytical_function_noMetaMod.py b/examples/only-model/test_analytical_function_noMetaMod.py new file mode 100644 index 0000000000000000000000000000000000000000..99842f80f22a126daeb602051f20ee14e1ffc280 --- /dev/null +++ b/examples/only-model/test_analytical_function_noMetaMod.py @@ -0,0 +1,245 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +This test shows a surrogate-assisted Bayesian calibration of a time dependent + analytical function. + +Author: Farid Mohammadi, M.Sc. +E-Mail: farid.mohammadi@iws.uni-stuttgart.de +Department of Hydromechanics and Modelling of Hydrosystems (LH2) +Institute for Modelling Hydraulic and Environmental Systems (IWS), University +of Stuttgart, www.iws.uni-stuttgart.de/lh2/ +Pfaffenwaldring 61 +70569 Stuttgart + +Created on Fri Aug 9 2019 + +""" + +import numpy as np +import pandas as pd +import sys +import joblib +# import bayesvalidrox +# Add BayesValidRox path +#sys.path.append("../../src/bayesvalidrox/") + +import bayesvalidrox as bv +from bayesvalidrox.pylink.pylink import PyLinkForwardModel +from bayesvalidrox.surrogate_models.inputs import Input +from bayesvalidrox.surrogate_models.surrogate_models import MetaModel +from bayesvalidrox.surrogate_models.meta_model_engine import MetaModelEngine +from bayesvalidrox.post_processing.post_processing import PostProcessing +from bayesvalidrox.bayes_inference.bayes_inference import BayesInference +from bayesvalidrox.bayes_inference.discrepancy import Discrepancy +import matplotlib +matplotlib.use('agg') + + +if __name__ == "__main__": + + # Number of parameters + ndim = 10 # 2, 10 + + # ===================================================== + # ============= COMPUTATIONAL MODEL ================ + # ===================================================== + Model = PyLinkForwardModel() + + Model.link_type = 'Function' + Model.py_file = 'analytical_function' + Model.name = 'AnalyticFunc' + + Model.Output.names = ['Z'] + + # For Bayesian inversion synthetic data with X=[0,0] + Model.observations = {} + Model.observations['Time [s]'] = np.arange(0, 10, 1.) / 9 + Model.observations['Z'] = np.repeat([2.], 10) + + # For Checking with the MonteCarlo refrence + Model.mc_reference = {} + Model.mc_reference['Time [s]'] = np.arange(0, 10, 1.) / 9 + Model.mc_reference['mean'] = np.load(f"data/mean_{ndim}.npy") + Model.mc_reference['std'] = np.load(f"data/std_{ndim}.npy") + + # ===================================================== + # ========= PROBABILISTIC INPUT MODEL ============== + # ===================================================== + # Define the uncertain parameters with their mean and + # standard deviation + Inputs = Input() + + # Assuming dependent input variables + # Inputs.Rosenblatt = True + + for i in range(ndim): + Inputs.add_marginals() + Inputs.Marginals[i].name = "$\\theta_{"+str(i+1)+"}$" + Inputs.Marginals[i].dist_type = 'uniform' + Inputs.Marginals[i].parameters = [-5, 5] + + # arbitrary polynomial chaos + # inputParams = np.load('data/InputParameters_{}.npy'.format(ndim)) + # for i in range(ndim): + # Inputs.add_marginals() + # Inputs.Marginals[i].name = f'$X_{i+1}$' + # Inputs.Marginals[i].input_data = inputParams[:, i] + + # ===================================================== + # ========== DEFINITION OF THE METAMODEL ============ + # ===================================================== + MetaModelOpts = MetaModel(Inputs, Model) + + # Select if you want to preserve the spatial/temporal depencencies + # MetaModelOpts.dim_red_method = 'PCA' + # MetaModelOpts.var_pca_threshold = 99.999 + # MetaModelOpts.n_pca_components = 10 + + # Select your metamodel method + # 1) PCE (Polynomial Chaos Expansion) 2) aPCE (arbitrary PCE) + # 3) GPE (Gaussian Process Emulator) + MetaModelOpts.meta_model_type = 'aPCE' + + # ------------------------------------------------ + # ------------- PCE Specification ---------------- + # ------------------------------------------------ + # Select the sparse least-square minimization method for + # the PCE coefficients calculation: + # 1)OLS: Ordinary Least Square 2)BRR: Bayesian Ridge Regression + # 3)LARS: Least angle regression 4)ARD: Bayesian ARD Regression + # 5)FastARD: Fast Bayesian ARD Regression + # 6)BCS: Bayesian Compressive Sensing + # 7)OMP: Orthogonal Matching Pursuit + # 8)VBL: Variational Bayesian Learning + # 9)EBL: Emperical Bayesian Learning + MetaModelOpts.pce_reg_method = 'FastARD' + + # Bootstraping + # 1) normal 2) fast + MetaModelOpts.bootstrap_method = 'fast' + MetaModelOpts.n_bootstrap_itrs = 1 + + # Specify the max degree to be compared by the adaptive algorithm: + # The degree with the lowest Leave-One-Out cross-validation (LOO) + # error (or the highest score=1-LOO)estimator is chosen as the final + # metamodel. pce_deg accepts degree as a scalar or a range. + MetaModelOpts.pce_deg = 12 + + # q-quasi-norm 0<q<1 (default=1) + MetaModelOpts.pce_q_norm = 0.85 if ndim < 5 else 0.5 + + # Print summary of the regression results + # MetaModelOpts.verbose = True + + # ------------------------------------------------ + # ------ Experimental Design Configuration ------- + # ------------------------------------------------ + MetaModelOpts.add_ExpDesign() + + # One-shot (normal) or Sequential Adaptive (sequential) Design + MetaModelOpts.ExpDesign.method = 'sequential' + MetaModelOpts.ExpDesign.n_init_samples = 3*ndim + + # Sampling methods + # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley + # 6) chebyshev(FT) 7) grid(FT) 8)user + MetaModelOpts.ExpDesign.sampling_method = 'latin_hypercube' + + # Provide the experimental design object with a hdf5 file + # MetaModelOpts.ExpDesign.hdf5_file = 'ExpDesign_AnalyticFunc.hdf5' + + # ------------------------------------------------ + # ------- Sequential Design configuration -------- + # ------------------------------------------------ + # Set the sampling parameters + MetaModelOpts.ExpDesign.n_new_samples = 1 + MetaModelOpts.ExpDesign.n_max_samples = 10#150 + MetaModelOpts.ExpDesign.mod_LOO_threshold = 1e-16 + + # MetaModelOpts.adapt_verbose = True + # 1) None 2) 'equal' 3)'epsilon-decreasing' 4) 'adaptive' + MetaModelOpts.ExpDesign.tradeoff_scheme = None + # MetaModelOpts.ExpDesign.n_replication = 5 + # -------- Exploration ------ + # 1)'Voronoi' 2)'random' 3)'latin_hypercube' 4)'LOOCV' 5)'dual annealing' + MetaModelOpts.ExpDesign.explore_method = 'random' + + # Use when 'dual annealing' chosen + MetaModelOpts.ExpDesign.max_func_itr = 1000 + + # Use when 'Voronoi' or 'random' or 'latin_hypercube' chosen + MetaModelOpts.ExpDesign.n_canddidate = 1000 + MetaModelOpts.ExpDesign.n_cand_groups = 4 + + # -------- Exploitation ------ + # 1)'BayesOptDesign' 2)'BayesActDesign' 3)'VarOptDesign' 4)'alphabetic' + # 5)'Space-filling' + MetaModelOpts.ExpDesign.exploit_method = 'BayesActDesign' + + # BayesActDesign -> when data is available + # 1) BME (Bayesian model evidence) 2) infEntropy (Information entropy) + # 2)DKL (Kullback-Leibler Divergence) + MetaModelOpts.ExpDesign.util_func = 'DKL' + + # Defining the measurement error, if it's known a priori + obsData = pd.DataFrame(Model.observations, columns=Model.Output.names) + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obsData**2 + MetaModelOpts.Discrepancy = DiscrepancyOpts + + # Plot the posterior snapshots for SeqDesign + MetaModelOpts.ExpDesign.post_snapshot = False + MetaModelOpts.ExpDesign.step_snapshot = 1 + MetaModelOpts.ExpDesign.max_a_post = [0] * ndim + + # For calculation of validation error for SeqDesign + prior = np.load(f"data/Prior_{ndim}.npy") + prior_outputs = np.load(f"data/origModelOutput_{ndim}.npy") + likelihood = np.load(f"data/validLikelihoods_{ndim}.npy") + MetaModelOpts.valid_samples = prior[:500] + MetaModelOpts.valid_model_runs = {'Z': prior_outputs[:500]} + # MetaModelOpts.valid_likelihoods = likelihood + + # >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + # Train the meta model + meta_model_engine = MetaModelEngine(MetaModelOpts) + #meta_model_engine.run() + PCEModel = meta_model_engine.MetaModel + + + # ===================================================== + # ======== Bayesian inference with Emulator ========== + # ===================================================== + BayesOpts = BayesInference(PCEModel) + BayesOpts.emulator = False + BayesOpts.plot_post_pred = True + + # Select the inference method + import emcee + BayesOpts.inference_method = "MCMC" + # Set the MCMC parameters passed to self.mcmc_params + BayesOpts.mcmc_params = { + 'n_steps': 1e3, + 'n_walkers': 30, + 'moves': emcee.moves.KDEMove(), + 'multiprocessing': False, + 'verbose': False + } + + # ----- Define the discrepancy model ------- + BayesOpts.measurement_error = obsData + + # # -- (Option B) -- + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.type = 'Gaussian' + DiscrepancyOpts.parameters = obsData**2 + BayesOpts.Discrepancy = DiscrepancyOpts + + # Start the calibration/inference + Bayes_PCE = BayesOpts.create_inference() + + # Save class objects + with open(f'Bayes_{Model.name}.pkl', 'wb') as output: + joblib.dump(Bayes_PCE, output, 2) diff --git a/examples/only-model/util/AnalytFuncValid_Test.py b/examples/only-model/util/AnalytFuncValid_Test.py new file mode 100644 index 0000000000000000000000000000000000000000..b172de0baf73399ad8a1180ab9e8cfe20b4fb7b8 --- /dev/null +++ b/examples/only-model/util/AnalytFuncValid_Test.py @@ -0,0 +1,353 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 9 16:25:43 2019 +This example is for the calibration and validation scenario. +@author: farid + """ + +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +plt.style.use('seaborn-white') +plt.rcParams.update({'font.size': 18}) +plt.rc('font', family='sans-serif', serif='Arial') +plt.rc('figure', figsize = (24, 16)) +plt.rc('text', usetex=True) +plt.rc('xtick', labelsize=18) +plt.rc('ytick', labelsize=18) +plt.rc('axes', labelsize=18) + +import seaborn as sns +import os + +try: + import cPickle as pickle +except ModuleNotFoundError: + import pickle + +from PyLink.FuncForwardModel import FuncForwardModel +from surrogate_models.Input import Input +from surrogate_models.surrogate_models import Metamodel +from PostProcessing.PostProcessing import PostProcessing +from BayesInference.BayesInference import BayesInference, Discrepancy + +if __name__ == "__main__": + + #===================================================== + #============= COMPUTATIONAL MODEL ================ + #===================================================== + Model = FuncForwardModel() + + Model.Type = 'Function' + Model.pyFile = 'AnalyticalFunction' + Model.Name = 'AnalyticFunc' + + Model.Output.Names = ['Z'] + + + # For Bayesian inversion synthetic data with X=[0,0] + Model.Observations['Time [s]'] = np.arange(0, 5, 1.) / 5 + Model.Observations['Z'] = np.repeat([2],5) + + # For Checking with the MonteCarlo refrence +# Model.MCReference['Time [s]'] = np.arange(0, 10, 1.) / 9 +# Model.MCReference['mean'] = np.array([127.13880108, 127.12652988, 127.12144698, +# 127.11754674, 127.11425868, 127.11136184, 127.1087429, +# 127.10633454, 127.10409289, 127.10198748]) +# Model.MCReference['std'] = np.array([171.2520775, 171.21550753, 171.20352691, +# 171.19559223, 171.18975202, 171.18525035, 171.18169953, +# 171.17886925, 171.17660944, 171.17481586]) + + # For Bayesian inversion synthetic data with X=[1,1] + Model.ObservationsValid['Time [s]'] = np.arange(0, 5, 1.) / 5 + Model.ObservationsValid['Z']= np.array([2.21773563, 2.11712764, + 2.02460905, 1.93849485, 1.85761462]) + + #===================================================== + #========= PROBABILISTIC INPUT MODEL ============== + #===================================================== + # Define the uncertain parameters with their mean and + # standard deviation + Inputs = Input() + + ndim = 2 + for i in range(ndim): + Inputs.add_marginals() + Inputs.Marginals[i].Name = '$X_{%s}$'%(i+1) + Inputs.Marginals[i].DistType = 'unif' + Inputs.Marginals[i].Parameters = [-5, 5] + + #===================================================== + #========== DEFINITION OF THE METAMODEL ============ + #===================================================== + MetaModelOpts = Metamodel(Inputs) + + # Select if you want to preserve the spatial/temporal depencencies + MetaModelOpts.DimRedMethod = 'PCA' + + # Select your metamodel method + # 1) PCE (Polynomial Chaos Expansion) 2) GPE (Gaussian Process Emulator) + # 3) PCEKriging (PCE + GPE) + MetaModelOpts.metaModel = 'GPE' + + # ------------------------------------------------ + # ------------- PCE Specification ---------------- + # ------------------------------------------------ + # Select the sparse least-square minimization method for + # the PCE coefficients calculation: + # 1)OLS: Ordinary Least Square 2)BRR: Bayesian Ridge Regression + # 3)LARS: Least angle regression 4)ARD: Bayesian ARD Regression + # 5)FastARD: Fast Bayesian ARD Regression + # 6)SGDR: Stochastic gradient descent learning + MetaModelOpts.RegMethod = 'FastARD' + + # Specify the max degree to be compared by the adaptive algorithm: + # The degree with the lowest Leave-One-Out cross-validation (LOO) + # error (or the highest score=1-LOO)estimator is chosen as the final + # metamodel. + MetaModelOpts.MinPceDegree = 1 #3 + MetaModelOpts.MaxPceDegree = 8 #15 + + # q-quasi-norm 0<q<1 (default=1) + MetaModelOpts.q = 1 #0.75 + + # Print summary of the regression results + #MetaModelOpts.DisplayFlag = True + + # ------------------------------------------------ + # ------ Experimental Design Configuration ------- + # ------------------------------------------------ + + # Generate an experimental design of size NrExpDesign based on a latin + # hypercube sampling of the input model or user-defined values of X and/or Y: + MetaModelOpts.addExpDesign() + + # One-shot (normal) or Sequential Adaptive (sequential) Design + MetaModelOpts.ExpDesign.Method = 'normal' + NrofInitSamples = 200 #75 + MetaModelOpts.ExpDesign.NrSamples = NrofInitSamples + + # Sampling methods + # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley 6) chebyshev(FT) + # 7) korobov 8) grid(FT) 9) nested_grid(FT) 10)user + MetaModelOpts.ExpDesign.SamplingMethod = 'random' + + # Sequential experimental design (needed only for sequential ExpDesign) + MetaModelOpts.ExpDesign.NrofNewSample = 1 + MetaModelOpts.ExpDesign.MaxNSamples = 50 #150 + MetaModelOpts.ExpDesign.ModifiedLOOThreshold = 1e-16 + + # Defining the measurement error, if it's known a priori + obsData = pd.DataFrame(Model.Observations, columns=Model.Output.Names) + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.Type = 'Gaussian' + DiscrepancyOpts.Parameters = obsData ** 2 + MetaModelOpts.Discrepancy = DiscrepancyOpts + + # Plot the posterior snapshots for SeqDesign + MetaModelOpts.ExpDesign.PostSnapshot = False + MetaModelOpts.ExpDesign.stepSnapshot = 1 + MetaModelOpts.ExpDesign.MAP = (0,0) + MetaModelOpts.ExpDesign.parNames = ['$X_1$', '$X_2$'] + + # ------------------------------------------------ + # ------- Sequential Design configuration -------- + # ------------------------------------------------ + # 1) 'None' 2) 'epsilon-decreasing' + MetaModelOpts.ExpDesign.TradeOffScheme = 'epsilon-decreasing' + #MetaModelOpts.ExpDesign.nReprications = 2 + # -------- Exploration ------ + #1)'Voronoi' 2)'MC' 3)'LHS' 4)'dual annealing' + MetaModelOpts.ExpDesign.ExploreMethod = 'Voronoi' + + # Use when 'dual annealing' chosen + MetaModelOpts.ExpDesign.MaxFunItr = 200 + + # Use when 'MC' or 'LHS' chosen + MetaModelOpts.ExpDesign.NCandidate = 100 + MetaModelOpts.ExpDesign.NrofCandGroups = 4 + + # -------- Exploitation ------ + # 1)'BayesOptDesign' 2)'ActiveLearning' 3)'alphabetic' 4)'None' (Space-filling) + MetaModelOpts.ExpDesign.ExploitMethod = 'None' + + # BayesOptDesign -> when data is available + # 1)DKL (Kullback-Leibler Divergence) 2)DPP (D-Posterior-percision) + # 3)APP (A-Posterior-percision) + MetaModelOpts.ExpDesign.UtilityFunction = 'DKL' #['DKL', 'DPP'] + + # ActiveLearning + # 1)ALM (Active learning MacKay) 2)ALC (Active learning Cohn) + # 3) + #MetaModelOpts.ExpDesign.UtilityFunction = 'ALM' #['ALM', 'ALC'] + + # alphabetic + # 1)D-Opt (D-Optimality) 2)A-Opt (A-Optimality) + # 3)K-Opt (K-Optimality) + # MetaModelOpts.ExpDesign.UtilityFunction = 'D-Opt' #['D-Opt', 'A-Opt', 'K-Opt'] + + # >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + # MetaModelOpts.slicingforValidation = True + MetaModelOpts.index = 5 + # Adaptive sparse arbitrary polynomial chaos expansion + # PCEModelCalib, PCEModelValid = MetaModelOpts.create_metamodel(Model) + PCEModel = MetaModelOpts.create_metamodel(Model) + + #===================================================== + #========= POST PROCESSING OF METAMODELS =========== + #===================================================== + #PostPCE = PostProcessing(PCEModelCalib) + PostPCE = PostProcessing(PCEModel) + + PostPCE.Name = 'Calib' + PostPCE.validMetamodel(nValidSamples= 3) + + # Compute the moments and compare with the Monte-Carlo reference +# PostPCE.plotMoments() + + if MetaModelOpts.metaModel != 'GPE': + # Plot the evolution of the KLD,BME, and Modified LOOCV error + if MetaModelOpts.ExpDesign.Method == 'sequential': + PostPCE.seqDesignDiagnosticPlots() + + # Plot the sobol indices + sobol_cell, total_sobol = PostPCE.sobolIndicesPCE() + + # Compute and print RMSE error + PostPCE.accuracyCheckMetaModel(nSamples=3000) + + + #===================================================== + #======= Bayesian calibration with Emulator ========= + #===================================================== + # BayesOpts = BayesInference(PCEModelCalib) + BayesOpts = BayesInference(PCEModel) + BayesOpts.Name = 'Calib' + BayesOpts.emulator = True + + # BME Bootstrap + BayesOpts.Bootstrap = True + BayesOpts.NrofSamples = 100000 + BayesOpts.BootstrapItrNr = 10 + BayesOpts.BootstrapNoise = 0.05 + + # Select the inference method + BayesOpts.SamplingMethod = 'MCMC' + BayesOpts.MCMCnSteps = 1000 + BayesOpts.MCMCnwalkers = 50 + BayesOpts.MultiProcessMCMC = True + + BayesOpts.PlotPostDist = True + BayesOpts.PlotPostPred = True + + # ----- Define the discrepancy model ------- + obsData = pd.DataFrame(Model.Observations, columns=Model.Output.Names) + # (Option B) + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.Type = 'Gaussian' + DiscrepancyOpts.Parameters = obsData[:MetaModelOpts.index]**2 + + BayesOpts.Discrepancy = DiscrepancyOpts + + # (Option C) +# DiscInputOpts = Input() +# +# DiscInputOpts.addMarginals() +# DiscInputOpts.Marginals[0].Name = 'Sigma2' +# DiscInputOpts.Marginals[0].DistType = 'unif' +# DiscInputOpts.Marginals[0].Parameters = [0, 5e-1] +# +# DiscrepancyOpts = Discrepancy(DiscInputOpts) +# +# BayesOpts.Discrepancy = DiscrepancyOpts + + + Bayes_Calib = BayesOpts.create_Inference() + + # Make directory for saving the plots/outputs + newpath = (r'Outputs_'+MetaModelOpts.ExpDesign.Method) + if not os.path.exists(newpath): os.makedirs(newpath) + + + ## Plot the posterior (Model) + with sns.axes_style("white"): + g = sns.jointplot(x=Bayes_Calib.Posterior_df['$X_{1}$'], y=Bayes_Calib.Posterior_df['$X_{2}$'], + kind="kde", cmap='jet'); + g.ax_joint.collections[0].set_alpha(0) + g.set_axis_labels("$X_1$", "$X_2$") + + g.savefig('./'+newpath+'/Posterior_PCEModel_Calib_'+MetaModelOpts.ExpDesign.Method+'.svg') + plt.close() + + + #===================================================== + #======= Bayesian validation with Emulator ========= + #===================================================== + # BayesOpts_Valid = BayesInference(PCEModelValid) + BayesOpts_Valid = BayesInference(PCEModel) + + BayesOpts_Valid.Name = 'Valid' + BayesOpts_Valid.emulator = True + + # BME Bootstrap + BayesOpts_Valid.Bootstrap = True + BayesOpts_Valid.MCMCinitSamples = Bayes_Calib.Posterior_df + BayesOpts_Valid.BootstrapItrNr = 10 + BayesOpts_Valid.BootstrapNoise = 0.05 + + # Select the inference method + BayesOpts_Valid.SamplingMethod = 'MCMC' + BayesOpts_Valid.MCMCnSteps = 1000 + BayesOpts_Valid.MCMCnwalkers = 50 + BayesOpts.MultiProcessMCMC = True + + BayesOpts_Valid.PlotPostDist = True + BayesOpts_Valid.PlotPostPred = True + + # ----- Define the discrepancy model ------- + obsDataValid = pd.DataFrame(Model.ObservationsValid, columns=Model.Output.Names) + # (Option B) + DiscrepancyOpts = Discrepancy('') + DiscrepancyOpts.Type = 'Gaussian' + DiscrepancyOpts.Parameters = 0.01 * obsDataValid**2 + + BayesOpts_Valid.Discrepancy = DiscrepancyOpts + + Bayes_Valid = BayesOpts_Valid.create_Inference() + + + ## Plot the posterior (PCEModel) + with sns.axes_style("white"): + g = sns.jointplot(x=Bayes_Valid.Posterior_df['$X_{1}$'], y=Bayes_Valid.Posterior_df['$X_{2}$'], + kind="kde", cmap='jet'); + g.ax_joint.collections[0].set_alpha(0) + g.set_axis_labels("$X_1$", "$X_2$") + g.savefig('./'+newpath+'/Posterior_PCEModel_Valid_'+MetaModelOpts.ExpDesign.Method+'.svg') + plt.close() + + + #===================================================== + #============== Save class objects ================= + #===================================================== + with open('AnalyticFunc_Results.pkl', 'wb') as output: + pickle.dump(PCEModel, output, pickle.HIGHEST_PROTOCOL) + + # pickle.dump(PCEModelValid, output, pickle.HIGHEST_PROTOCOL) + + pickle.dump(PostPCE, output, pickle.HIGHEST_PROTOCOL) + + pickle.dump(Bayes_Calib, output, pickle.HIGHEST_PROTOCOL) + + pickle.dump(Bayes_Valid, output, pickle.HIGHEST_PROTOCOL) + +# del PCEModel +# del PostPCE +# del Bayes + + # Load the objects +# with open('AnalyticFunc_Results.pkl', 'rb') as input: +# PCEModel = pickle.load(input) +# PostPCE = pickle.load(input) +# Bayes_PCE = pickle.load(input) +# Bayes_Model = pickle.load(input) \ No newline at end of file diff --git a/examples/only-model/util/AnalyticFunc_Demo.py b/examples/only-model/util/AnalyticFunc_Demo.py new file mode 100644 index 0000000000000000000000000000000000000000..dea66f67dd8907fcc2560bd56a184f9e65f17a38 --- /dev/null +++ b/examples/only-model/util/AnalyticFunc_Demo.py @@ -0,0 +1,207 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 9 16:25:43 2019 + +@author: farid +""" + +import numpy as np +import os +import matplotlib.pyplot as plt +plt.style.use('seaborn-white') +plt.rcParams.update({'font.size': 16}) +plt.rc('font', family='sans-serif', serif='Arial') +plt.rc('figure', figsize = (24, 16)) +plt.rc('text', usetex=True) +plt.rc('xtick', labelsize=16) +plt.rc('ytick', labelsize=16) +plt.rc('axes', labelsize=16) + + +from PyLink.FuncForwardModel import FuncForwardModel +from surrogate_models.Input import Input +from surrogate_models.surrogate_models import Metamodel + +if __name__ == "__main__": + + #===================================================== + #============= COMPUTATIONAL MODEL ================ + #===================================================== + Model = FuncForwardModel() + + Model.Type = 'Function' + Model.pyFile = 'AnalyticalFunction' + Model.Name = 'AnalyticFunc' + + Model.Output.Names = ['Z'] + + + #===================================================== + #========= PROBABILISTIC INPUT MODEL ============== + #===================================================== + # Define the uncertain parameters with their mean and + # standard deviation + Inputs = Input() + + Inputs.addMarginals() + Inputs.Marginals[0].Name = 'x1' + Inputs.Marginals[0].DistType = 'unif' + Inputs.Marginals[0].Parameters = [-5, 5] + + Inputs.addMarginals() + Inputs.Marginals[1].Name = 'x2' + Inputs.Marginals[1].DistType = 'unif' + Inputs.Marginals[1].Parameters = [-5, 5] + + + #===================================================== + #======== PCE METAMODELS with adaptive aPCE ======== + #===================================================== + MetaModelOpts = Metamodel(Inputs) + + # Specify the max degree to be compared by the adaptive algorithm: + # The degree with the lowest Leave-One-Out cross-validation (LOO) + # error (or the highest score=1-LOO)estimator is chosen as the final + # metamodel. + MetaModelOpts.MaxPceDegree = 10 + + # Select the sparse least-square minimization method for + # the PCE coefficients calculation: + # 1)OLS: Ordinary Least Square 2)BRR: Bayesian Ridge Regression + # 3)LARS: Least angle regression 4)ARD: Bayesian ARD Regression + # 5)SGDR: Stochastic gradient descent learning + MetaModelOpts.RegMethod = 'OLS' + + # Print summary of the regression results + #MetaModelOpts.DisplayFlag = True + + # ------ Experimental Design -------- + # Generate an experimental design of size NrExpDesign based on a latin + # hypercube sampling of the input model or user-defined values of X and/or Y: + MetaModelOpts.addExpDesign() + + # One-shot (normal) or Sequential Adaptive (sequential) Design + MetaModelOpts.ExpDesign.Method = 'normal' + NrofInitSamples = 100 + MetaModelOpts.ExpDesign.NrSamples = NrofInitSamples + + # Sampling methods + # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley 6) chebyshev(FT) + # 7) korobov 8) grid(FT) 9) nested_grid(FT) 10)user + MetaModelOpts.ExpDesign.SamplingMethod = 'latin_hypercube' + + # Sequential experimental design (needed only for sequential ExpDesign) + MetaModelOpts.ExpDesign.MaxNSamples = 100 + MetaModelOpts.ExpDesign.ModifiedLOOThreshold = 1e-4 + + # ------------------------------------------------ + # ------- Sequential Design configuration -------- + # ------------------------------------------------ + # -------- Exploration ------ + MetaModelOpts.ExpDesign.ExploreMethod = 'MC' + MetaModelOpts.ExpDesign.NCandidate = 500 + MetaModelOpts.ExpDesign.NrofCandGroups = 4 + # -------- Optimality criteria: alphabetic ------ + MetaModelOpts.ExpDesign.ExploitMethod = 'alphabetic' + + # 1)D-Opt (D-Optimality) 2)A-Opt (A-Optimality) + # 3)K-Opt (K-Optimality) + MetaModelOpts.ExpDesign.UtilityFunction = 'D-Opt'#['D-Opt', 'A-Opt', 'K-Opt'] + + # >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + # Adaptive sparse arbitrary polynomial chaos expansion + PCEModel_OLS = MetaModelOpts.create_metamodel(Model) + + # Extract the basis and coefficients + Basis_OLS = PCEModel_OLS.BasisDict['Z']['y_2'] + COFFS_OLS = PCEModel_OLS.CoeffsDict['Z']['y_2'] + + #===================================================== + #=========== DEMO OF BAYESPCE METAMODEL =========== + #===================================================== + fig1=plt.figure() + barWidth = 0.3 + plt.title("Bar plot of the weights (OLS)") + + # Create cyan bars + r = np.arange(len(Basis_OLS)) + plt.bar(r, COFFS_OLS, width = barWidth, color = 'cyan', bottom=0.001, + edgecolor = 'black', capsize=7, label='Cofficients') + + # general layout + plt.xticks([r + barWidth for r in range(len(r))], ['term'+str(i+1) for i in range(len(Basis_OLS))]) + + plt.xlabel("Features") + plt.ylabel("Values of the weights") + plt.yscale('symlog', linthreshy=0.1) #('log') + plt.hlines(0,xmin=r.min() , xmax=r.max() ,color='k') + plt.xticks(rotation=45) + plt.legend(loc="upper left") + plt.show() + + # Make directory for saving the plots/outputs + newpath = (r'Outputs_demo') + if not os.path.exists(newpath): os.makedirs(newpath) + + ## Save the plot the posterior (Model) + fig1.savefig('./'+newpath+'/Coeffs_AaPCE.svg', bbox_inches='tight') + plt.close() + + + #===================================================== + #=========== PCE METAMODELS with BRR aPCE ========== + #===================================================== + BRRMetaModelOpts = Metamodel(Inputs) + BRRMetaModelOpts.MaxPceDegree = 10 + BRRMetaModelOpts.RegMethod = 'BRR' + + # ------ Experimental Design -------- + BRRMetaModelOpts.addExpDesign() + BRRMetaModelOpts.ExpDesign.NrSamples = PCEModel_OLS.ExpDesign.X.shape[0] + BRRMetaModelOpts.ExpDesign.SamplingMethod = 'user' + BRRMetaModelOpts.ExpDesign.X = PCEModel_OLS.ExpDesign.X + BRRMetaModelOpts.ExpDesign.Y = PCEModel_OLS.ExpDesign.Y + BRRMetaModelOpts.ExpDesign.Method = 'normal' + + # >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + # Adaptive sparse arbitrary polynomial chaos expansion + PCEModel_BRR = BRRMetaModelOpts.create_metamodel(Model) + + + # Extract the basis and coefficients + Basis_BRR = PCEModel_BRR.BasisDict['Z']['y_2'] + clf_poly = PCEModel_BRR.clf_poly['Z']['y_2'] + + COFFS_BRR = clf_poly.coef_ + # Find the error(std) for coeffs + COFFSError_BRR = clf_poly.sigma_.diagonal() + + #===================================================== + #=========== DEMO OF BAYESPCE METAMODEL ============ + #===================================================== + fig2=plt.figure() + barWidth = 0.3 + plt.title("Bar plot of the weights (BayesPCE)") + + # Create cyan bars + r = np.arange(len(Basis_BRR)) + plt.bar(r, COFFS_BRR, width = barWidth, color = 'cyan', bottom=0.001, + edgecolor = 'black', yerr=COFFSError_BRR, capsize=7, label='Cofficients') + + # general layout + plt.xticks([r + barWidth for r in range(len(r))], ['term'+str(i+1) for i in range(len(Basis_BRR))]) + + plt.xlabel("Features") + plt.ylabel("Values of the weights") + plt.yscale('symlog', linthreshy=0.1) #('log') + plt.hlines(0,xmin=r.min() , xmax=r.max() ,color='k') + plt.xticks(rotation=45) + plt.legend(loc="upper left") + plt.show() + + ## Save the plot the posterior (Model) + fig2.savefig('./'+newpath+'/Coeffs_BRR.svg', bbox_inches='tight') + plt.close() + + diff --git a/examples/only-model/util/AnalyticalFunction.py b/examples/only-model/util/AnalyticalFunction.py new file mode 100644 index 0000000000000000000000000000000000000000..c4ed8e05c3ecd841f16d6b2d4757b12d5ecad325 --- /dev/null +++ b/examples/only-model/util/AnalyticalFunction.py @@ -0,0 +1,145 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Wed Nov 20 14:48:43 2019 + +@author: farid +""" +import numpy as np +import scipy.stats as stats +import matplotlib.pyplot as plt +import scipy.stats as st +import seaborn as sns + +def AnalyticalFunction(xx, t=None): + """ + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % + % Analytical Non-Gaussian Function + % + % Authors: Farid Mohammadi, University of Stuttgart + % Sergey Oladyshkin, University of Stuttgart + % Questions/Comments: Please email Farid Mohammadi at: + % farid.mohammadi@iws.uni-stuttgart.de + % + % Copyright 2019. Farid Mohammadi, University of Stuttgart. + % + % THERE IS NO WARRANTY, EXPRESS OR IMPLIED. WE DO NOT ASSUME ANY LIABILITY + % FOR THE USE OF THIS SOFTWARE. If software is modified to produce + % derivative works, such modified software should be clearly marked. + % Additionally, this program is free software; you can redistribute it + % and/or modify it under the terms of the GNU General Public License as + % published by the Free Software Foundation; version 2.0 of the License. + % Accordingly, this program is distributed in the hope that it will be + % useful, but WITHOUT ANY WARRANTY; without even the implied warranty + % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + % General Public License for more details. + % + % For function details and reference information, see: + % https://doi.org/10.3390/e21111081 + % + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % + % OUTPUT AND INPUTS: + % + % Output = row vector of time vectors (s, t) + % Its structure is: + % y(t_1), y(t_2), ..., y(t_dt) + % xx = [x1, x2, ..., xn] + % xn ~ Uinform(-5, 5) + % t = vector of times (optional), with default value + % ( k − 1 ) /9 and k = 1,..., 10 + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + """ + nParamSets, nParams = xx.shape + + if t is None: t = np.arange(0, 10, 1.) / 9 + + term1 = (xx[:,0]**2 + xx[:,1] - 1)**2 + + term2 = xx[:,0]**2 + + term3 = 0.1 * xx[:,0] * np.exp(xx[:,1]) + + term5 = 0 + if nParams > 2: + for i in range(2, nParams): + term5 = term5 + xx[:,i]**3/i + + const = term1 + term2 + term3 + 1 + term5 + + # Compute time dependent term + term4 = np.zeros((nParamSets,len(t))) + for idx in range(nParamSets): + term4[idx] = -2 * xx[idx,0] * np.sqrt(0.5*t) + + Output = term4 + np.repeat(const[:,None], len(t), axis=1) + + return np.vstack((t, Output)) + +if __name__ == "__main__": + + MCSize = 10000 #1000000 + ndim = 10 + sigma = 2 + + # ------------------------------------------------------------------------- + # ----------------------- Synthetic data generation ----------------------- + # ------------------------------------------------------------------------- + t = np.arange(0, 10, 1.) / 9 + + MAP = np.zeros((1, ndim)) + synthethicData = AnalyticalFunction(MAP, t=t) + + # ------------------------------------------------------------------------- + # ---------------------- Generate Prior distribution ---------------------- + # ------------------------------------------------------------------------- + + xx = np.zeros((MCSize, ndim)) + + params = (-5,5) + + for idxDim in range(ndim): + lower, upper = params + xx[:,idxDim] = stats.uniform(loc=lower, scale=upper-lower).rvs(size=MCSize) + + # ------------------------------------------------------------------------- + # ------------- BME and Kullback-Leibler Divergence ----------------------- + # ------------------------------------------------------------------------- + Outputs = AnalyticalFunction(xx, t=t) + + cov_matrix = np.diag(np.repeat(sigma**2, synthethicData.shape[1])) + + Likelihoods = st.multivariate_normal.pdf(Outputs[1:], mean=synthethicData[1], cov=cov_matrix) + + sns.kdeplot(np.log(Likelihoods[Likelihoods>0]), shade=True, color="g", label='Ref. Likelihood') + + normLikelihood = Likelihoods / np.nanmax(Likelihoods) + # Random numbers between 0 and 1 + unif = np.random.rand(1, MCSize)[0] + + # Reject the poorly performed prior + accepted = normLikelihood >= unif + + # Prior-based estimation of BME + logBME = np.log(np.nanmean(Likelihoods)) + print('\nThe Naive MC-Estimation of BME is %.5f.'%(logBME)) + + # Posterior-based expectation of likelihoods + postExpLikelihoods = np.mean(np.log(Likelihoods[accepted])) + + # Calculate Kullback-Leibler Divergence + KLD = postExpLikelihoods - logBME + print("The Kullback-Leibler divergence estimation is %.5f."%KLD) + + # ------------------------------------------------------------------------- + # ----------------- Save the arrays as .npy files ------------------------- + # ------------------------------------------------------------------------- + if MCSize > 500000: + np.save("data/refBME_KLD_"+str(ndim)+".npy", (logBME, KLD)) + np.save("data/mean_"+str(ndim)+".npy", np.mean(Outputs[1:],axis=0)) + np.save("data/std_"+str(ndim)+".npy", np.std(Outputs[1:],axis=0)) + else: + np.save("data/Prior_"+str(ndim)+".npy", xx) + np.save("data/origModelOutput_"+str(ndim)+".npy", Outputs[1:]) + np.save("data/validLikelihoods_"+str(ndim)+".npy", Likelihoods) diff --git a/examples/only-model/util/PCE_vs_Chaospy.py b/examples/only-model/util/PCE_vs_Chaospy.py new file mode 100644 index 0000000000000000000000000000000000000000..87a71cea2389e6b639fb5927baf0c6b8cb488d2b --- /dev/null +++ b/examples/only-model/util/PCE_vs_Chaospy.py @@ -0,0 +1,319 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Thu Aug 13 09:53:11 2020 + +@author: farid +""" +import sys, os +import numpy as np +import scipy.stats as stats +from itertools import cycle +import pandas as pd +try: + import cPickle as pickle +except ModuleNotFoundError: + import pickle +from sklearn import linear_model as lm +from matplotlib.backends.backend_pdf import PdfPages +import matplotlib.pyplot as plt +plt.rcParams.update({'font.size': 24}) +plt.rc('figure', figsize = (24, 16)) +plt.rc('font', family='serif', serif='Arial') +plt.rc('axes', grid = True) +plt.rc('text', usetex=True) +plt.rc('xtick', labelsize=24) +plt.rc('ytick', labelsize=24) +plt.rc('axes', labelsize=24) +plt.rc('axes', linewidth=2) +plt.rc('axes', grid=True) +plt.rc('grid', linestyle="-") +plt.rc('savefig', dpi=2000) + +import matplotlib +matplotlib.use('agg') +# Local +sys.path.insert(0,'./../bayesian-validation/BayesValidRox/') + +# Batch script +# sys.path.insert(0,'./../../bayesian-validation/BayesValidRox/') + +from PyLink.FuncForwardModel import FuncForwardModel +from surrogate_models.Input import Input +from surrogate_models.surrogate_models import Metamodel +from PostProcessing.PostProcessing import PostProcessing + + +# Number of parameters +ndim = 10 # 2, 10 + +#===================================================== +#============= COMPUTATIONAL MODEL ================ +#===================================================== +Model = FuncForwardModel() + +Model.Type = 'Function' +Model.pyFile = 'AnalyticalFunction' +Model.Name = 'AnalyticFunc' + +Model.Output.Names = ['Z'] +OutputNames = ['Z'] + +# For Bayesian inversion synthetic data with X=[0,0] +Model.Observations['Time [s]'] = np.arange(0, 10, 1.) / 9 +Model.Observations['Z'] = np.repeat([2],10) + +# For Checking with the MonteCarlo refrence +Model.MCReference['Time [s]'] = np.arange(0, 10, 1.) / 9 +Model.MCReference['mean'] = np.load("../data/mean_"+str(ndim)+".npy") +Model.MCReference['std'] = np.load("../data/std_"+str(ndim)+".npy") + +#===================================================== +#========= PROBABILISTIC INPUT MODEL ============== +#===================================================== +# Define the uncertain parameters with their mean and +# standard deviation +Inputs = Input() + +for i in range(ndim): + Inputs.addMarginals() + Inputs.Marginals[i].Name = '$X_{%s}$'%(i+1) + Inputs.Marginals[i].DistType = 'unif' + Inputs.Marginals[i].Parameters = [-5, 5] + +# arbitrary polynomial chaos +# inputParams = np.load('../data/InputParameters_{}.npy'.format(ndim)) +# for i in range(ndim): +# Inputs.addMarginals() +# Inputs.Marginals[i].Name = '$X_{%s}$'%(i+1) +# Inputs.Marginals[i].InputValues = inputParams[:,i] + +#===================================================== +#========== DEFINITION OF THE METAMODEL ============ +#===================================================== +MetaModelOpts = Metamodel(Inputs) + +# Select if you want to preserve the spatial/temporal depencencies +MetaModelOpts.DimRedMethod = 'PCA' +MetaModelOpts.varPCAThreshold = 99.999 + +# Select your metamodel method +# 1) PCE (Polynomial Chaos Expansion) 2) GPE (Gaussian Process Emulator) +# 3) PCEKriging (PCE + GPE) +MetaModelOpts.metaModel = 'PCEKriging' + +# ------------------------------------------------ +# ------------- PCE Specification ---------------- +# ------------------------------------------------ +# Select the sparse least-square minimization method for +# the PCE coefficients calculation: +# 1)OLS: Ordinary Least Square 2)BRR: Bayesian Ridge Regression +# 3)LARS: Least angle regression 4)ARD: Bayesian ARD Regression +# 5)FastARD: Fast Bayesian ARD Regression +MetaModelOpts.RegMethod = 'FastARD' + +# Specify the max degree to be compared by the adaptive algorithm: +# The degree with the lowest Leave-One-Out cross-validation (LOO) +# error (or the highest score=1-LOO)estimator is chosen as the final +# metamodel. +MetaModelOpts.MinPceDegree = 6 +MetaModelOpts.MaxPceDegree = 6 +# q-quasi-norm 0<q<1 (default=1) +MetaModelOpts.q = 1.0 if ndim<5 else 0.75 + +# ------------------------------------------------ +# ------ Experimental Design Configuration ------- +# ------------------------------------------------ +# Generate an experimental design of size NrExpDesign based on a latin +# hypercube sampling of the input model or user-defined values of X and/or Y: +MetaModelOpts.addExpDesign() + +# One-shot (normal) or Sequential Adaptive (sequential) Design +MetaModelOpts.ExpDesign.Method = 'normal' +MetaModelOpts.ExpDesign.NrSamples = 200 + +# Sampling methods +# 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley 6) chebyshev(FT) +# 7) korobov 8) grid(FT) 9) nested_grid(FT) 10)user +MetaModelOpts.ExpDesign.SamplingMethod = 'random' + +# >>>>>>>>>>>>>>>>>>>>>> Build Surrogate <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< +# Adaptive sparse arbitrary polynomial chaos expansion +MetaModelOpts.index = 181 +PCEModel = MetaModelOpts.create_metamodel(Model) + +# PCEModel = BayesObj.PCEModel +# Extract slicing index +# Extract the experimental design +EDX = PCEModel.ExpDesign.X +index = PCEModel.index +EDYDict = PCEModel.ExpDesign.Y +JDist = PCEModel.ExpDesign.JDist +X_train = PCEModel.ExpDesign.X +EDY = PCEModel.ExpDesign.Y +#===================================================== +#========= POST PROCESSING OF METAMODELS =========== +#===================================================== +PostPCE = PostProcessing(PCEModel) + +# Compute the moments and compare with the Monte-Carlo reference +PostPCE.plotMoments() + +# Plot the sobol indices +sobol_cell, total_sobol = PostPCE.sobolIndicesPCE() + + +#===================================================== +#============ METAMODELS WITH CHAOSPY ============= +#===================================================== +import chaospy +from surrogate_models.RegressionFastARD import RegressionFastARD + +def PCATransformation(Output): + + # Transform via Principal Component Analysis + from sklearn.decomposition import PCA as sklearnPCA + + n_samples, n_features = Output.shape + covar_matrix = sklearnPCA(n_components=None, svd_solver='full') + covar_matrix.fit(Output) + var = np.cumsum(np.round(covar_matrix.explained_variance_ratio_, decimals=5)*100) + try: + selected_n_components = np.where(var>=99.0)[0][0] + 1 + except: + selected_n_components = min(n_samples, n_features) + + nComponents = min(n_samples, n_features, selected_n_components) + + pca = sklearnPCA(n_components=nComponents, svd_solver='full', whiten=False) + OutputMatrix = pca.fit_transform(Output) + + return pca, OutputMatrix + +def fit_regression(methodConfig, X_train,Y_train,pca=False): + + from sklearn.multioutput import MultiOutputRegressor + + if pca: + PCA, Y_train = PCATransformation(Y_train) + else: + PCA = None + + deg = methodConfig['deg'] + distribution = methodConfig['distribution'] + q = methodConfig['q'] + regmethod = methodConfig['regmethod'] + # Generate Orthogonal Polynomial Expansion: + orthogonal_expansion = chaospy.orth_ttr(deg, distribution, cross_truncation=q) + + PCEModel={} + PCEModel['config'] = methodConfig + newPsi = orthogonal_expansion(*X_train.T).T + + if regmethod =='FastARD': + PCEModel = MultiOutputRegressor(RegressionFastARD(fit_intercept=False)).fit(newPsi, Y_train) + else: + PCEModel = MultiOutputRegressor(lm.BayesianRidge(fit_intercept=False)).fit(newPsi, Y_train) + + # for idx in range(Y_train.shape[1]): + # clf_poly = RegressionFastARD(fit_intercept=False) + + # PCEModel[idx] = clf_poly.fit(newPsi, Y_train[:,idx]) + + return PCA, PCEModel + +def approx_model(model, X,pca=None): + + global methodConfig + + y_Hat, y_Std = [], [] + deg = methodConfig['deg'] + distribution = methodConfig['distribution'] + q = methodConfig['q'] + + # Generate Orthogonal Polynomial Expansion: + orthogonal_expansion = chaospy.orth_ttr(deg, distribution, cross_truncation=q) + + psi = orthogonal_expansion(*X.T).T + + y_Hat = model.predict(psi).T + + # for idx in list(model.keys())[1:]: + # y_hat, y_std = model[idx].predict(psi, return_std=True) + # y_Hat.append(y_hat) + # y_Std.append(y_std) + + if pca is None: + return np.array(y_Hat).T + else: + return pca.inverse_transform(np.array(y_Hat).T)# , np.array(y_Std).T + +# Select a Distributions: +distribution = JDist #chaospy.J(*[chaospy.Uniform(-5.0,5.0)]*ndim) + +methodConfig = dict() +y_chaos = dict() +methodConfig['regmethod'] = 'FastARD' #'FastARD' +methodConfig['deg'] = PCEModel.MaxPceDegree +methodConfig['distribution'] = distribution +methodConfig['q'] = MetaModelOpts.q + + +# Fit regression model +PCA = True +for key in OutputNames: + + pca, PCEModel_chaospy = fit_regression(methodConfig, X_train,EDY[key],pca=PCA) + y_chaos[key] = approx_model(PCEModel_chaospy, X_train,pca=pca) + + +#===================================================== +#================= Visualization =================== +#===================================================== +# List of markers and colors +Color = ['k','b', 'g', 'r'] +Marker = 'x' + +Time = EDY['x_values'] + +nStes = 1 + +# Run pcemodel +y_hat, y_std = PCEModel.eval_metamodel(samples=EDX[:nStes]) #(nsamples=100, samples=EDX, name=case) + +# create a PdfPages object +pdf = PdfPages('./PCE.pdf') +fig = plt.figure() + +for key in OutputNames: + + fig, ax = plt.subplots() + + + # Plot ExpDesign + for i, output in enumerate(EDY[key][:nStes]): + plt.plot(Time,output, alpha=0.35) + + + # Plot PCE with BayesValidRox + for i, output in enumerate(y_hat[key]): + plt.plot(Time,output, ls='-', marker='*') + + + # Plot PCE with Chaospy + for i, output in enumerate(y_chaos[key][:nStes]): + plt.plot(Time,output, ls='-', marker='*') + + plt.legend(loc='best', frameon=True) + plt.xlabel('Time [s]') + plt.ylabel(key) + + # save the current figure + pdf.savefig(fig, bbox_inches='tight') + + # Destroy the current plot + plt.clf() + +pdf.close() + + diff --git a/examples/only-model/util/Psi_BayesValidRox.npy b/examples/only-model/util/Psi_BayesValidRox.npy new file mode 100644 index 0000000000000000000000000000000000000000..43373abb38884fbe6f5e8c509443b916a3a0aea7 Binary files /dev/null and b/examples/only-model/util/Psi_BayesValidRox.npy differ diff --git a/examples/only-model/util/Psi_Chaospy.npy b/examples/only-model/util/Psi_Chaospy.npy new file mode 100644 index 0000000000000000000000000000000000000000..dc7974367157dba6f4775091aa09acd314b4c8fe Binary files /dev/null and b/examples/only-model/util/Psi_Chaospy.npy differ diff --git a/examples/only-model/util/__pycache__/AnalyticalFunction.cpython-38.pyc b/examples/only-model/util/__pycache__/AnalyticalFunction.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e89c6708d7e9e374610f5dec468e2d7c3a94036f Binary files /dev/null and b/examples/only-model/util/__pycache__/AnalyticalFunction.cpython-38.pyc differ diff --git a/examples/only-model/util/dynamic_image.py b/examples/only-model/util/dynamic_image.py new file mode 100644 index 0000000000000000000000000000000000000000..8c1478164c37739fc1c7b42d4fe4d108c696deee --- /dev/null +++ b/examples/only-model/util/dynamic_image.py @@ -0,0 +1,142 @@ +""" +================================================= +Animated image using a precomputed list of images +================================================= + +""" + +import numpy as np +import matplotlib.pyplot as plt +import matplotlib.animation as animation +plt.rcParams.update({'font.size': 16}) +plt.rc('figure', figsize = (12, 8)) +plt.rc('font', family='sans-serif', serif='Arial') +plt.rc('axes', grid = True) +plt.rc('text', usetex=True) +plt.rc('xtick', labelsize=16) +plt.rc('ytick', labelsize=16) +plt.rc('axes', labelsize=16) + +def posteriorPlot(ax,figPosterior,Posterior, MAP, parNames): + + # Initialization + lw = 3. + BoundTuples = [(-5,5), (-5,5)] + NofPa = len(MAP) + + # This is the true mean of the second mode that we used above: + value1 = MAP + + # This is the empirical mean of the sample: + value2 = np.mean(Posterior, axis=0) + + if NofPa == 2: + + #figPosterior, ax = plt.subplots() + plt.hist2d(Posterior[:,0], Posterior[:,1], bins=(200, 200), + range=np.array([BoundTuples[0],BoundTuples[1]]), cmap=plt.cm.jet) + + plt.xlabel(parNames[0]) + plt.ylabel(parNames[1]) + + plt.xlim(BoundTuples[0]) + plt.ylim(BoundTuples[1]) + + ax.axvline(value1[0], color="g", lw=lw) + ax.axhline(value1[1], color="g", lw=lw) + ax.plot(value1[0], value1[1], "sg", lw=lw+1) + + #ax.axvline(value2[0], ls='--', color="r", lw=lw) + #ax.axhline(value2[1], ls='--', color="r", lw=lw) + #ax.plot(value2[0], value2[1], "sr", lw=lw+1) + + else: + import corner + figPosterior = corner.corner(Posterior, labels=parNames, + show_titles=True, title_kwargs={"fontsize": 12}) + + # Extract the axes + axes = np.array(figPosterior.axes).reshape((NofPa, NofPa)) + + # Loop over the diagonal + for i in range(NofPa): + ax = axes[i, i] + ax.axvline(value1[i], color="g") + ax.axvline(value2[i], ls='--', color="r") + + # Loop over the histograms + for yi in range(NofPa): + for xi in range(yi): + ax = axes[yi, xi] + ax.axvline(value1[xi], color="g") + ax.axvline(value2[xi], ls='--', color="r") + ax.axhline(value1[yi], color="g") + ax.axhline(value2[yi], ls='--', color="r") + ax.plot(value1[xi], value1[yi], "sg") + ax.plot(value2[xi], value2[yi], "sr") + + plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1) + #figPosterior.set_size_inches((10,10)) + return figPosterior + +fig, ax = plt.subplots() +dirPath = '/home/farid/scientific/bayesian-validation/BayesValidRox/tests/AnalyticalFunction/Outputs_SeqPosteriorComparison/' + +nRuns= 35 +Posteriors = {} +nameList = ['init'] + list(range(1,nRuns+1)) +for i, name in enumerate(nameList): +# x = np.random.normal(size=50000) +# y = x * 3 * (i+1) + np.random.normal(size=50000) +# Posteriors[i] = np.stack((x,y)).T + Posteriors[i] = np.load(dirPath+'SeqPosterior_%s.npy'%name) + + +# animation function +def animate(i, Posteriors): + + Posterior = Posteriors[i] + + cont = posteriorPlot(ax,fig,Posterior, MAP = (0,0), parNames=['$X_1$', '$X_2$']) + + plt.title(r'Iteration = %i' % i) + + return cont + +anim = animation.FuncAnimation(fig, animate, fargs=(Posteriors,))#, frames=nRuns) +anim.save('animation.mp4') + + + +#fig = plt.figure() +# +# +#def f(x, y): +# return np.sin(x) + np.cos(y) +# +#x = np.linspace(0, 2 * np.pi, 120) +#y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1) +## ims is a list of lists, each row is a list of artists to draw in the +## current frame; here we are just animating one artist, the image, in +## each frame +#ims = [] +#for i in range(60): +# x += np.pi / 15. +# y += np.pi / 20. +# im = plt.imshow(f(x, y), animated=True) +# ims.append([im]) +# +#ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, +# repeat_delay=1000) +# +## To save the animation, use e.g. +## +#ani.save("movie.mp4") +# +# or +# +# from matplotlib.animation import FFMpegWriter +# writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800) +# ani.save("movie.mp4", writer=writer) + +#plt.show() diff --git a/examples/only-model/util/indices_bayesValid.npy b/examples/only-model/util/indices_bayesValid.npy new file mode 100644 index 0000000000000000000000000000000000000000..087a2608fb8da023977760ab15582c61c7a8ff6d Binary files /dev/null and b/examples/only-model/util/indices_bayesValid.npy differ diff --git a/examples/only-model/util/indices_chaospy.npy b/examples/only-model/util/indices_chaospy.npy new file mode 100644 index 0000000000000000000000000000000000000000..087a2608fb8da023977760ab15582c61c7a8ff6d Binary files /dev/null and b/examples/only-model/util/indices_chaospy.npy differ diff --git a/examples/only-model/util/svg_gif.py b/examples/only-model/util/svg_gif.py new file mode 100644 index 0000000000000000000000000000000000000000..4430de69c299a495bba9642ea5d5115e7452bdda --- /dev/null +++ b/examples/only-model/util/svg_gif.py @@ -0,0 +1,47 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon May 16 10:51:20 2022 + +@author: farid +""" + +import imageio +import os +import re + + +def tryint(s): + try: + return int(s) + except: + return s + + +def alphanum_key(s): + """ Turn a string into a list of string and number chunks. + "z23a" -> ["z", 23, "a"] + """ + return [tryint(c) for c in re.split('([0-9]+)', s)] + + +def sort_nicely(input_list): + """ Sort the given list in the way that humans expect. + """ + input_list.sort(key=alphanum_key) + + +path = '../adaptivePlots' +file_ext = 'pdf' + + +filenames = [] +for file in os.listdir(path): + if file.endswith(f'.{file_ext}'): + filenames.append(os.path.join(path, file)) +sort_nicely(filenames) + +images = [] +for filename in filenames: + images.append(imageio.imread(filename)) +imageio.mimsave(f'{path}/movie.gif', images)