From cec9f85eeff7c72633631d05dc24226f66697259 Mon Sep 17 00:00:00 2001
From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com>
Date: Mon, 26 Aug 2024 13:26:31 +0200
Subject: [PATCH] [tests] Update tests to match new classes

---
 .gitignore                                       |   3 +++
 Outputs_Bayes_None_Calib/emcee_sampler.h5        | Bin 0 -> 8432 bytes
 .../bayes_inference/bayes_inference.py           |   9 ++++-----
 src/bayesvalidrox/bayes_inference/mcmc.py        |   4 ++--
 .../surrogate_models/sequential_design.py        |   4 ++--
 .../surrogate_models/surrogate_models.py         |   3 +++
 tests/test_BayesInference.py                     |   2 +-
 tests/test_SequentialDesign.py                   |   2 +-
 8 files changed, 16 insertions(+), 11 deletions(-)
 create mode 100644 Outputs_Bayes_None_Calib/emcee_sampler.h5

diff --git a/.gitignore b/.gitignore
index f2b103b6c..d3708f097 100644
--- a/.gitignore
+++ b/.gitignore
@@ -29,3 +29,6 @@ examples/*/Outputs_*
 
 # Ignore files for local environments
 *_env/*
+
+# Ignore test results
+.coverage*
\ No newline at end of file
diff --git a/Outputs_Bayes_None_Calib/emcee_sampler.h5 b/Outputs_Bayes_None_Calib/emcee_sampler.h5
new file mode 100644
index 0000000000000000000000000000000000000000..a7058d8bea4a7106c1b427b2e2b2a49fcf631925
GIT binary patch
literal 8432
zcmeHM&2AGh5FYO)!h|4Fi9-qq?Fr>nRnP-BTG5moDq6Kg;?{1q5sAo8l}5mkV|Wve
zeFTm?LXSK`-=KKx`9j%h`Kg2iWE{map0Q``FJBz#%ZJwb#?8u|3URZRN>uYMx^rn~
zNr+&K{DC+|>{RT>C^&}rMO2sgg4EB?+uLb2$<0K4SXoA2%E7Y;sGTbWTFtd>KJZI9
zHCXytcm^;A*&t&dd~6|cMQg}@$KRUpw{a~LJe9gX<L{@%Ffoz&YUT@pJb#zv_*1#p
zfJT~Souf(T5aX<y_J(fIAHCW?8jsqDgWnAV3heIlt#!VEac?GZn27Z)8FzF0C@43#
zVSMlLLv|uaRB6?FjPPyue$yEr_eMinG{)Z)d`|_e!zTdTJ>2r4aI8v?rOtKdTN=Ji
z`>$OsA9P*K%`N#s;(OG&??=2oFv?IltUv4xI90R`*XFaQTbsTXZ`3u^1sxtOEiXL`
zDc_&ox-d{z5l{pa0YyL&Py`eKML-cy1QY>9KoL*`{s{!2$LDpRDsB7y8>-L)r$=<t
z<NbDj)P^8YcLD-y1*|Uw&A`&e+U9Q4#rAeyu<;4#34ZLlZ#qZC>lD37XPi!0F$t|m
zufTfNH+)SgY($VTPH*7`Jp?v(dCn{(PuwZEt<uU3S~(ZptL&njkD|yIuu?BJl<;h#
zvtVZZbmsjHPSE#aIUCUl{%9%K9Mbk~!2}5>V(a&QJnw(WUgnkPagGQV8+Zl%4F6N*
z<G;+iIMCS&-QuW(lAK`5@&*ER{YDOa|EIglcr^SYP57G39*=Wl(-{B$`2#cKC`PIG
X?jd|`Is3cWGu2T96ahuxDhPZ9D)E(j

literal 0
HcmV?d00001

diff --git a/src/bayesvalidrox/bayes_inference/bayes_inference.py b/src/bayesvalidrox/bayes_inference/bayes_inference.py
index c0c4cd08e..557a786b8 100644
--- a/src/bayesvalidrox/bayes_inference/bayes_inference.py
+++ b/src/bayesvalidrox/bayes_inference/bayes_inference.py
@@ -511,7 +511,7 @@ class BayesInference:
             MAP_theta = self.prior_samples.mean(axis=0).reshape((1, n_params))
 
             # Evaluate the (meta-)model at the MAP
-            y_MAP, y_std_MAP = self.engine.MetaModel.eval_metamodel(samples=MAP_theta)
+            y_MAP, y_std_MAP = self.engine.MetaModel.eval_metamodel(MAP_theta)
 
             # Train a GPR meta-model using MAP
             self.error_MetaModel = self.engine.MetaModel.create_model_error(
@@ -534,7 +534,7 @@ class BayesInference:
                 # map_theta = stats.mode(Posterior_df,axis=0)[0]
 
                 # Evaluate the (meta-)model at the MAP
-                y_MAP, y_std_MAP = self.engine.MetaModel.eval_metamodel(samples=map_theta)
+                y_MAP, y_std_MAP = self.engine.MetaModel.eval_metamodel(map_theta)
 
                 # Train a GPR meta-model using MAP
                 self.error_MetaModel = self.engine.MetaModel.create_model_error(
@@ -1133,7 +1133,7 @@ class BayesInference:
                 post_pred_std = self._std_pce_prior_pred
             else:
                 post_pred, post_pred_std = MetaModel.eval_metamodel(  # TODO: recheck if this is needed
-                    samples=posterior_df.values
+                    posterior_df.values
                 )
 
         else:  # TODO: see emulator version
@@ -1298,8 +1298,7 @@ class BayesInference:
 
         # Run the models for MAP
         # MetaModel
-        map_metamodel_mean, map_metamodel_std = MetaModel.eval_metamodel(
-            samples=map_theta)
+        map_metamodel_mean, map_metamodel_std = MetaModel.eval_metamodel(map_theta)
         self.map_metamodel_mean = map_metamodel_mean
         self.map_metamodel_std = map_metamodel_std
 
diff --git a/src/bayesvalidrox/bayes_inference/mcmc.py b/src/bayesvalidrox/bayes_inference/mcmc.py
index a9914826a..daf8e7b6a 100755
--- a/src/bayesvalidrox/bayes_inference/mcmc.py
+++ b/src/bayesvalidrox/bayes_inference/mcmc.py
@@ -753,7 +753,7 @@ class MCMC:
 
         if self.emulator:
             # Evaluate the MetaModel
-            mean_pred, std_pred = engine.MetaModel.eval_metamodel(samples=theta)
+            mean_pred, std_pred = engine.MetaModel.eval_metamodel(theta)
         else:
             # Evaluate the origModel
             mean_pred, std_pred = dict(), dict()
@@ -818,7 +818,7 @@ class MCMC:
         # MAP_theta = st.mode(Posterior_df,axis=0)[0]
 
         # Evaluate the (meta-)model at the MAP
-        y_map, y_std_map = MetaModel.eval_metamodel(samples=map_theta)
+        y_map, y_std_map = MetaModel.eval_metamodel(map_theta)
 
         # Train a GPR meta-model using MAP
         error_MetaModel = MetaModel.create_model_error(
diff --git a/src/bayesvalidrox/surrogate_models/sequential_design.py b/src/bayesvalidrox/surrogate_models/sequential_design.py
index a8039dd61..8ada17669 100644
--- a/src/bayesvalidrox/surrogate_models/sequential_design.py
+++ b/src/bayesvalidrox/surrogate_models/sequential_design.py
@@ -1178,12 +1178,12 @@ class SequentialDesign:
         P = len(BasisIndices)
 
         # ------ Old Psi ------------
-        univ_p_val = self.MetaModel._univ_basis_vals(oldExpDesignX)
+        univ_p_val = self.MetaModel.univ_basis_vals(oldExpDesignX)
         Psi = create_psi(BasisIndices, univ_p_val)
 
         # ------ New candidates (Psi_c) ------------
         # Assemble Psi_c
-        univ_p_val_c = self.MetaModel._univ_basis_vals(candidates)
+        univ_p_val_c = self.MetaModel.univ_basis_vals(candidates)
         Psi_c = create_psi(BasisIndices, univ_p_val_c)
 
         for idx in range(NCandidate):
diff --git a/src/bayesvalidrox/surrogate_models/surrogate_models.py b/src/bayesvalidrox/surrogate_models/surrogate_models.py
index 5a494135f..28b5344ee 100644
--- a/src/bayesvalidrox/surrogate_models/surrogate_models.py
+++ b/src/bayesvalidrox/surrogate_models/surrogate_models.py
@@ -413,6 +413,9 @@ class MetaModel:
         self.var_pca_threshold = None
         self.n_pca_components = None
 
+        # Parameters for Inference
+        self.rmse = None
+
         # Build general parameters
         self._pce_deg = 1 # TODO: rename this more generally, so that it can be used for other types as well
 
diff --git a/tests/test_BayesInference.py b/tests/test_BayesInference.py
index 65a5e9cca..99c3a655d 100644
--- a/tests/test_BayesInference.py
+++ b/tests/test_BayesInference.py
@@ -803,7 +803,7 @@ def test_posterior_predictive_rejection() -> None:
     expdes.Y = {'Z': [[0.4], [0.5], [0.45]]}
     expdes.x_values = np.array([0])  # Error in plots if this is not available
 
-    mm = MetaModel(inp)
+    mm = PCE(inp)
     mm.n_params = 1
     mm.fit(expdes.X, expdes.Y)
     expdes.generate_ED(expdes.n_init_samples, max_pce_deg=np.max(1))
diff --git a/tests/test_SequentialDesign.py b/tests/test_SequentialDesign.py
index 0f90425ef..d674b9156 100644
--- a/tests/test_SequentialDesign.py
+++ b/tests/test_SequentialDesign.py
@@ -145,7 +145,7 @@ def test_tradeoff_weights_adaptiveit1() -> None:
     engine = Engine(mm, mod, expdes)
     engine.start_engine()
     seqDes = SequentialDesign(mm, mod, expdes, engine)
-    seqDes._y_hat_prev, _ = mm.eval_metamodel(samples=np.array([[0.1], [0.2], [0.6]]))
+    seqDes._y_hat_prev, _ = mm.eval_metamodel(np.array([[0.1], [0.2], [0.6]]))
     seqDes.tradeoff_weights('adaptive', expdes.X, expdes.Y)
 
 
-- 
GitLab