diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py index d67e3529fcc6eec98b63e390d905722faeb719e3..08bb5eb25cff244788359a3aeb6091617692e1d5 100644 --- a/src/bayesvalidrox/post_processing/post_processing.py +++ b/src/bayesvalidrox/post_processing/post_processing.py @@ -844,11 +844,11 @@ class PostProcessing: y_val = outputs if y_val is None: y_val, _ = self.engine.Model.run_model_parallel(samples, key_str="valid") - y_pce_val, _ = self.engine.eval_metamodel(samples=samples) + y_metamod_val, _ = self.engine.eval_metamodel(samples=samples) # Fit the data(train the model) - for key in y_pce_val.keys(): - residuals = y_val[key] - y_pce_val[key] + for key in y_metamod_val.keys(): + residuals = y_val[key] - y_metamod_val[key] # ------ Residuals vs. predicting variables ------ # Check the assumptions of linearity and independence @@ -874,7 +874,8 @@ class PostProcessing: # ------ Fitted vs. residuals ------ # Check the assumptions of linearity and independence - plt.scatter(x=y_pce_val[key], y=residuals, color="blue", edgecolor="k") + for i in range(y_metamod_val[key].shape[0]): + plt.scatter(x=y_metamod_val[key][i,:], y=residuals[i,:], color="blue", edgecolor="k") plt.title(f"{key}: Residuals vs. fitted values") plt.grid(True) plt.hlines(