From d5b857868b76aaa6d990d79769a0f15a379cb950 Mon Sep 17 00:00:00 2001 From: kohlhaasrebecca <rebecca.kohlhaas@outlook.com> Date: Mon, 26 Aug 2024 11:06:37 +0200 Subject: [PATCH] [tests] More updates for the tests --- src/bayesvalidrox/surrogate_models/engine.py | 2 +- tests/test_SequentialDesign.py | 96 ++++++++++---------- 2 files changed, 49 insertions(+), 49 deletions(-) diff --git a/src/bayesvalidrox/surrogate_models/engine.py b/src/bayesvalidrox/surrogate_models/engine.py index a6d2447c6..c9a19b8aa 100644 --- a/src/bayesvalidrox/surrogate_models/engine.py +++ b/src/bayesvalidrox/surrogate_models/engine.py @@ -947,7 +947,7 @@ class Engine: distHellinger = 0.0 # Bayesian inference with Emulator only for 2D problem - if post_snapshot and self.MetaModel.n_params == 2 and not idx % 5: + if post_snapshot and self.MetaModel.ndim == 2 and not idx % 5: bayes = BayesInference(self) bayes.emulator = True diff --git a/tests/test_SequentialDesign.py b/tests/test_SequentialDesign.py index bcffc5d05..0f90425ef 100644 --- a/tests/test_SequentialDesign.py +++ b/tests/test_SequentialDesign.py @@ -134,10 +134,10 @@ def test_tradeoff_weights_adaptiveit1() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 mm = PCE(inp) mm.fit(expdes.X, expdes.Y) mod = PL() @@ -161,10 +161,10 @@ def test_choose_next_sample() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'random' expdes.exploit_method = 'Space-filling' expdes.util_func = 'Space-filling' @@ -191,10 +191,10 @@ def test_choose_next_sample_da_spaceparallel() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'dual-annealing' expdes.exploit_method = 'Space-filling' expdes.util_func = 'Space-filling' @@ -222,10 +222,10 @@ def test_choose_next_sample_da_spacenoparallel() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'dual-annealing' expdes.exploit_method = 'Space-filling' expdes.util_func = 'Space-filling' @@ -253,10 +253,10 @@ def test_choose_next_sample_loo_space() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'LOO-CV' expdes.exploit_method = 'Space-filling' expdes.util_func = 'Space-filling' @@ -283,10 +283,10 @@ def test_choose_next_sample_vor_space() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'voronoi' expdes.exploit_method = 'Space-filling' expdes.util_func = 'Space-filling' @@ -318,10 +318,10 @@ def test_choose_next_sample_latin_space() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'Space-filling' expdes.util_func = 'Space-filling' @@ -348,10 +348,10 @@ def test_choose_next_sample_latin_alphD() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'alphabetic' expdes.util_func = 'D-Opt' @@ -378,10 +378,10 @@ def test_choose_next_sample_latin_alphK() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'alphabetic' expdes.util_func = 'K-Opt' @@ -408,10 +408,10 @@ def test_choose_next_sample_latin_alphA() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'alphabetic' expdes.util_func = 'A-Opt' @@ -438,10 +438,10 @@ def test_choose_next_sample_latin_VarALM() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'VarOptDesign' @@ -469,10 +469,10 @@ def test_choose_next_sample_latin_VarEIGF() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'VarOptDesign' @@ -502,10 +502,10 @@ if 0: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'VarOptDesign' @@ -534,10 +534,10 @@ def test_choose_next_sample_latin_BODMI() -> None: inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) expdes.sampling_method = 'user' - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesOptDesign' @@ -567,10 +567,10 @@ def test_choose_next_sample_vor_BODMI() -> None: inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) expdes.sampling_method = 'user' - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'voronoi' expdes.exploit_method = 'BayesOptDesign' @@ -605,10 +605,10 @@ def test_choose_next_sample_latin_BODALC() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesOptDesign' @@ -638,10 +638,10 @@ def test_choose_next_sample_latin_BODDKL() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesOptDesign' @@ -671,10 +671,10 @@ def test_choose_next_sample_latin_BODDPP() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesOptDesign' @@ -704,10 +704,10 @@ def test_choose_next_sample_latin_BODAPP() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesOptDesign' @@ -737,10 +737,10 @@ def test_choose_next_sample_latin_BODMI_() -> None: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesOptDesign' @@ -770,10 +770,10 @@ if 0: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesActDesign' @@ -804,10 +804,10 @@ if 0: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesActDesign' @@ -838,10 +838,10 @@ if 0: inp.Marginals[0].dist_type = 'normal' inp.Marginals[0].parameters = [0, 1] expdes = ExpDesigns(inp) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.tradeoff_scheme = 'equal' expdes.explore_method = 'latin-hypercube' expdes.exploit_method = 'BayesActDesign' @@ -921,10 +921,10 @@ if __name__ == '__main__': expdes = ExpDesigns(inp) expdes.init_param_space(max_deg=1) - expdes.n_init_samples = 2 - expdes.n_max_samples = 4 expdes.X = np.array([[0], [1], [0.5]]) expdes.Y = {'Z': [[0.4], [0.5], [0.45]]} + expdes.n_init_samples = expdes.X.shape[0] + expdes.n_max_samples = 4 expdes.x_values = np.array([0]) # Error in plots if this is not mm = PCE(inp) -- GitLab