diff --git a/src/bayesvalidrox/bayes_inference/bayes_inference.py b/src/bayesvalidrox/bayes_inference/bayes_inference.py
index 0ecbd33b774531077e8073725ac96eac43e44a16..c8073ba76ebeb3249646e17b7f395f8a2472e2f6 100644
--- a/src/bayesvalidrox/bayes_inference/bayes_inference.py
+++ b/src/bayesvalidrox/bayes_inference/bayes_inference.py
@@ -547,16 +547,6 @@ class BayesInference:
 
         # -------- Plot log_BME dist --------
         if self.bootstrap:
-            if hasattr(self, 'sigma2s'):
-                sigma2 = self.sigma2s
-            else:
-                sigma2 = None
-            # Model validation via binary hypothesis testing
-            valid_outputs = self.model_validation(
-                self.measured_data,
-                self.Discrepancy.total_sigma2,
-                sigma2=sigma2,
-                std=surrError)
 
             # Computing the TOM performance
             self.log_BME_tom = stats.chi2.rvs(
@@ -652,170 +642,6 @@ class BayesInference:
 
             return final_data
 
-    # -------------------------------------------------------------------------
-    def model_validation(self, obs_data, total_sigma2s, sigma2=None, std=None):
-        """
-        A Bayesian risk-based model validation based on the following paper:
-            Jiang, Xiaomo, and Sankaran Mahadevan. "Bayesian validation
-            assessment of multivariate computational models." Journal of
-            Applied Statistics 35, no. 1 (2008): 49-65.
-
-        Parameters
-        ----------
-        obs_data : dict
-            A dictionary/dataframe containing the observation data.
-        total_sigma2s : dict
-            A dictionary with known values of the covariance diagonal entries,
-            a.k.a sigma^2.
-        sigma2 : array, optional
-            An array of the sigma^2 samples, when the covariance diagonal
-            entries are unknown and are being jointly inferred. The default is
-            None.
-        std : dict, optional
-            A dictionary containing the root mean squared error as array of
-            shape (n_samples, n_measurement) for each model output. The default
-            is None.
-
-        Returns
-        -------
-        final_output : dict
-            It contains the following values for each output model:
-
-                1. Bayes Factor
-                2. Confidence in model acceptance (in %)
-                3. Probability of model acceptance (in %)
-        """
-
-        # Set some variables
-        MetaModel = self.MetaModel
-        Model = MetaModel.ModelObj
-        output_names = Model.Output.names
-
-        n_samples = 10000
-        samples = MetaModel.ExpDesign.generate_samples(n_samples, 'random')
-
-        # Generate model prediction
-        if self.emulator:
-            y_hat, y_std = MetaModel.eval_metamodel(samples=samples)
-        else:
-            y_hat = self._eval_model(
-                samples=samples, key='Validation'
-                )
-
-        # Compute Bayes factor in the logarichmic scale
-        final_output = {}
-        for out_idx, output in enumerate(output_names):
-            output_bf = {}
-            ln_BF = np.zeros((self.n_bootstrap_itrs))
-            # Generate data using perturb data
-            perturb_data = self._perturb_data(obs_data, [output])
-            n_out = y_hat[output].shape[1]
-            for i, data in enumerate(perturb_data):
-                # Compute \bar{Y}
-                y_bar = np.mean(data - y_hat[output], axis=0)
-                # Prepare \Sigma
-                non_nan_indices = ~np.isnan(total_sigma2s[output])
-                tot_sigma2s = total_sigma2s[output][non_nan_indices]
-
-                # Add the std of the PCE is chosen as emulator.
-                if self.emulator:
-                    if std is not None:
-                        tot_sigma2s += std[output]**2
-
-                # Covariance Matrix
-                covMatrix = np.diag(tot_sigma2s)
-                covMatrix += np.cov((data - y_hat[output]).T)
-
-                # Infer equal sigma2s
-                try:
-                    sigma_2 = np.mean(sigma2[:, out_idx])
-                except TypeError:
-                    sigma_2 = 0.0
-
-                covMatrix += sigma_2 * np.eye(n_out)
-
-                # Select the data points to compare
-                try:
-                    indices = self.selected_indices[output]
-                except:
-                    indices = list(range(n_out))
-                covMatrix = np.diag(covMatrix[indices, indices])
-                y_bar = y_bar[indices]
-
-                # Bayes factor Eq. 11
-                ln_BF[i] = -(n_samples**2/(2*n_samples+2))
-                ln_BF[i] *= np.dot(np.dot(y_bar, np.linalg.pinv(covMatrix)),
-                                   np.transpose(y_bar))
-                ln_BF[i] += np.log(n_samples+1)/2
-
-            output_bf['Bayes Factor'] = ln_BF
-
-            # Compute confidence in model acceptance (in %) Eq. 16
-            pr_H0_Y = np.exp(output_bf['Bayes Factor']) * 100
-            pr_H0_Y /= (1+np.exp(output_bf['Bayes Factor']))
-            output_bf['Confidence in model acceptance'] = pr_H0_Y
-
-            # Compute the probability of accepting the model (γ) Eq. 19
-            threshold = np.log(1)  # Eq. 4
-            gamma = np.sum(output_bf['Bayes Factor'] > threshold) * 100
-            gamma /= self.n_bootstrap_itrs
-            output_bf['Prob. of model acceptance'] = gamma
-
-            # Store computed quantities for each model output
-            final_output[output] = output_bf
-
-        # Save the results
-        with open('model_validation_output.pkl', 'wb') as output:
-            joblib.dump(final_output, output, 2)
-
-        # Plot the ln Bayes factors
-        # Create Output directory, if it doesn't exist already.
-        out_dir = f'Outputs_Bayes_{Model.name}_{self.name}'
-        os.makedirs(out_dir, exist_ok=True)
-
-        for out_idx, output in enumerate(output_names):
-            # Create figure
-            fig, ax = plt.subplots()
-            # Plot the distirbution of BF
-            sns.kdeplot(
-                final_output[output]['Bayes Factor'],
-                ax=ax, color="green", shade=True
-                )
-            # Plot the vertical line
-            decision_threshold = 1
-            plt.axvline(np.log(decision_threshold), c='red',
-                        ls='--')
-
-            ax.set_xlabel('ln(BF)')
-            ax.set_ylabel('Probability density')
-
-            legend_elements = [
-                Patch(facecolor='green', edgecolor='green',
-                      label=f'{Model.name} - {output}')
-                ]
-            ax.legend(handles=legend_elements)
-
-            # Annotate the Prob. of model acceptance
-            prob_accept = final_output[output]['Prob. of model acceptance']
-            text = f"Prob. accpetance={prob_accept:.2f} %"
-
-            plt.text(0.15, 0.75, text, bbox=dict(facecolor='wheat',
-                                                 edgecolor='black',
-                                                 boxstyle='round,pad=1'),
-                     transform=ax.transAxes)
-
-            if self.emulator:
-                plotname = f'/BME_hist_{Model.name}_emulator_{output}'
-            else:
-                plotname = f'/BME_hist_{Model.name}_{output}'
-
-            # Save figure
-            plt.savefig(f'./{out_dir}{plotname}.pdf', bbox_inches='tight')
-            plt.show()
-            plt.close()
-
-        return final_output
-
     # -------------------------------------------------------------------------
     def _logpdf(self, x, mean, cov):
         """