diff --git a/examples/model-comparison/L2_model.py b/examples/model-comparison/L2_model.py
index e945c6888593d257d68d5af258c00a2020ca4c83..6b28c818101e25859bdb222b82cfd9bee741d381 100644
--- a/examples/model-comparison/L2_model.py
+++ b/examples/model-comparison/L2_model.py
@@ -3,14 +3,14 @@
 """
 This is a simple linear model.
 
-The code for this numerical experiments is available at https://github.com/MichaelSinsbeck/
-paper sequential-design-model-selection.
+The code for this numerical experiments is available at
+https://github.com/MichaelSinsbeck/paper_sequential-design-model-selection.
 
 Author: Farid Mohammadi, M.Sc.
 E-Mail: farid.mohammadi@iws.uni-stuttgart.de
 Department of Hydromechanics and Modelling of Hydrosystems (LH2)
-Institute for Modelling Hydraulic and Environmental Systems (IWS), University of Stuttgart
-www.iws.uni-stuttgart.de/lh2/
+Institute for Modelling Hydraulic and Environmental Systems (IWS),
+University of Stuttgart, www.iws.uni-stuttgart.de/lh2/
 Pfaffenwaldring 61
 70569 Stuttgart
 
@@ -24,7 +24,11 @@ def L2_model(xx):
     """
     Linear model y = a*x+b
 
-    Models adapted from Anneli Guthke
+    Models adapted from Anneli Guthke's paper:
+        ch€oniger, A., T. W€ohling, L. Samaniego,and W. Nowak (2014), Model
+        selection on solid ground: Rigorous comparison ofnine ways to evaluate
+        Bayesian modelevidence,Water Resour. Res.,50,9484–9513,
+        doi:10.1002/2014WR016062
 
     Parameters
     ----------
diff --git a/examples/model-comparison/NL2_model.py b/examples/model-comparison/NL2_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fd4820e76a9756b85b891b0d8272404e81d3361
--- /dev/null
+++ b/examples/model-comparison/NL2_model.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This is a nonlinear cosine model.
+
+The code for this numerical experiments is available at
+https://github.com/MichaelSinsbeck/paper_sequential-design-model-selection.
+
+Author: Farid Mohammadi, M.Sc.
+E-Mail: farid.mohammadi@iws.uni-stuttgart.de
+Department of Hydromechanics and Modelling of Hydrosystems (LH2)
+Institute for Modelling Hydraulic and Environmental Systems (IWS),
+University of Stuttgart, www.iws.uni-stuttgart.de/lh2/
+Pfaffenwaldring 61
+70569 Stuttgart
+
+Created on Fri Oct 8 2021
+
+"""
+import numpy as np
+
+
+def NL2_model(xx):
+    """
+    Nonlinear model y = exp(a*x) + b
+
+    Models adapted from Anneli Guthke's paper:
+        ch€oniger, A., T. W€ohling, L. Samaniego,and W. Nowak (2014), Model
+        selection on solid ground: Rigorous comparison ofnine ways to evaluate
+        Bayesian modelevidence,Water Resour. Res.,50,9484–9513,
+        doi:10.1002/2014WR016062
+
+    Parameters
+    ----------
+    xx : array
+        Parameters a and b.
+
+    Returns
+    -------
+    2D-array
+        The first row contains the measurement locations.
+        The second row contains the model outputs.
+
+    """
+    n_output = 15
+    meas_loc = np.linspace(0.25, 4.75, n_output)
+
+    # NL2_model
+    NL2_model = np.exp(xx[:, 0] * meas_loc) + xx[:, 1]
+
+    # Output
+    output = {
+        'x_values': meas_loc,
+        'Z': NL2_model
+        }
+
+    return output
diff --git a/examples/model-comparison/NL4_model.py b/examples/model-comparison/NL4_model.py
index 2a1cc14e154e0baf34c7515ae2d65e6522391dfb..5ca495306d9a6d277ec654a3efbdfb84bfc28ce1 100644
--- a/examples/model-comparison/NL4_model.py
+++ b/examples/model-comparison/NL4_model.py
@@ -3,14 +3,14 @@
 """
 This is a nonlinear cosine model.
 
-The code for this numerical experiments is available at https://github.com/MichaelSinsbeck/
-paper sequential-design-model-selection.
+The code for this numerical experiments is available at
+https://github.com/MichaelSinsbeck/paper_sequential-design-model-selection.
 
 Author: Farid Mohammadi, M.Sc.
 E-Mail: farid.mohammadi@iws.uni-stuttgart.de
 Department of Hydromechanics and Modelling of Hydrosystems (LH2)
-Institute for Modelling Hydraulic and Environmental Systems (IWS), University of Stuttgart
-www.iws.uni-stuttgart.de/lh2/
+Institute for Modelling Hydraulic and Environmental Systems (IWS),
+University of Stuttgart, www.iws.uni-stuttgart.de/lh2/
 Pfaffenwaldring 61
 70569 Stuttgart
 
@@ -24,7 +24,11 @@ def NL4_model(xx):
     """
     Nonlinear model y = a*cos(b*x+c)+d
 
-    Models adapted from Anneli Guthke
+    Models adapted from Anneli Guthke's paper:
+        ch€oniger, A., T. W€ohling, L. Samaniego,and W. Nowak (2014), Model
+        selection on solid ground: Rigorous comparison ofnine ways to evaluate
+        Bayesian modelevidence,Water Resour. Res.,50,9484–9513,
+        doi:10.1002/2014WR016062
 
     Parameters
     ----------
diff --git a/examples/model-comparison/test_model_comparison.py b/examples/model-comparison/test_model_comparison.py
index a55d86afc8227d9dcf77a6e658ed21a4ea314235..4bdba4562f1b0fa5ca88970075f1697872211783 100644
--- a/examples/model-comparison/test_model_comparison.py
+++ b/examples/model-comparison/test_model_comparison.py
@@ -34,6 +34,7 @@ from bayes_inference.discrepancy import Discrepancy
 
 if __name__ == "__main__":
 
+    # Read data
     sigma = 0.6
     data = {
         'x [m]': np.linspace(0.25, 4.75, 15),
@@ -49,16 +50,26 @@ if __name__ == "__main__":
 
     myL2Model.link_type = 'Function'
     myL2Model.py_file = 'L2_model'
-    myL2Model.name = 'L2_model'
+    myL2Model.name = 'linear'
     myL2Model.Output.names = ['Z']
     myL2Model.observations = data
 
+    # -- Nonlinear exponential model -------
+    myNL2Model = PyLinkForwardModel()
+
+    myNL2Model.link_type = 'Function'
+    myNL2Model.py_file = 'NL2_model'
+    myNL2Model.name = 'exponential'
+    myNL2Model.Output.names = ['Z']
+    myNL2Model.observations = data
+
     # ------ Nonlinear cosine model ---------
+    # Data generating process
     myNL4Model = PyLinkForwardModel()
 
     myNL4Model.link_type = 'Function'
     myNL4Model.py_file = 'NL4_model'
-    myNL4Model.name = 'NL4_model'
+    myNL4Model.name = 'cosine'
     myNL4Model.Output.names = ['Z']
     myNL4Model.observations = data
 
@@ -83,14 +94,30 @@ if __name__ == "__main__":
         L2_Inputs.Marginals[i].name = f'$X_{i+1}$'
         L2_Inputs.Marginals[i].input_data = L2_input_params[:, i]
 
+    # ------ Nonlinear exponential model ---------
+    NL2_Inputs = Input()
+    NL2_prior_mean = np.array([0.4, -0.3])
+    NL2_prior_cov = np.array(
+        [[0.003, -0.0001],
+         [-0.0001, 0.03]]
+        )
+    NL2_input_params = np.random.multivariate_normal(
+        NL2_prior_mean, NL2_prior_cov, size=n_sample
+        )
+
+    for i in range(NL2_input_params.shape[1]):
+        NL2_Inputs.add_marginals()
+        NL2_Inputs.Marginals[i].name = f'$X_{i+1}$'
+        NL2_Inputs.Marginals[i].input_data = NL2_input_params[:, i]
+
     # ------ Nonlinear cosine model ---------
     NL4_Inputs = Input()
     NL4_prior_mean = np.array([2.6, 0.5, -2.8, 2.3])
     NL4_prior_cov = np.array(
-        [[0.46, -0.07, 0.24, -0.14],
-         [-0.07, 0.04, -0.05, 0.02],
-         [0.24, -0.05, 0.30, -0.16],
-         [-0.14, 0.02, -0.16, 0.30]]
+        [[0.44, -0.07, 0.24, -0.14],
+         [-0.07, 0.02, -0.05, 0.02],
+         [0.24, -0.05, 0.21, -0.16],
+         [-0.14, 0.02, -0.16, 0.28]]
         )
     NL4_input_params = np.random.multivariate_normal(
         NL4_prior_mean, NL4_prior_cov, size=n_sample
@@ -151,18 +178,22 @@ if __name__ == "__main__":
     # 6) chebyshev(FT) 7) grid(FT) 8)user
     L2_MetaModelOpts.ExpDesign.sampling_method = 'latin_hypercube'
 
+    # ------ Nonlinear cosine model ---------
+    NL2_MetaModelOpts = L2_MetaModelOpts.copy_meta_model_opts(NL2_Inputs)
+
     # ------ Nonlinear cosine model ---------
     NL4_MetaModelOpts = L2_MetaModelOpts.copy_meta_model_opts(NL4_Inputs)
 
     # >>>>>> Train the Surrogates <<<<<<<<<<<
     L2_MetaModel = L2_MetaModelOpts.create_metamodel(myL2Model)
+    NL2_MetaModel = NL2_MetaModelOpts.create_metamodel(myNL2Model)
     NL4_MetaModel = NL4_MetaModelOpts.create_metamodel(myNL4Model)
 
     # =====================================================
     # =========  POST PROCESSING OF METAMODELS  ===========
     # =====================================================
     # ---------- Linear model  -------------
-    L2_PostPCE = PostProcessing(L2_MetaModel)
+    L2_PostPCE = PostProcessing(L2_MetaModel, name=myL2Model.name)
 
     # Plot to check validation visually.
     L2_PostPCE.valid_metamodel(n_samples=3)
@@ -176,8 +207,23 @@ if __name__ == "__main__":
     # Plot the sobol indices
     sobol_cell, total_sobol = L2_PostPCE.sobol_indices()
 
+    # ---------- Linear model  -------------
+    NL2_PostPCE = PostProcessing(NL2_MetaModel, name=myNL2Model.name)
+
+    # Plot to check validation visually.
+    NL2_PostPCE.valid_metamodel(n_samples=3)
+
+    # Plot moments
+    NL2_PostPCE.plot_moments()
+
+    # Compute and print RMSE error
+    NL2_PostPCE.check_accuracy(n_samples=3000)
+
+    # Plot the sobol indices
+    sobol_cell, total_sobol = NL2_PostPCE.sobol_indices()
+
     # ------ Nonlinear cosine model ---------
-    NL4_PostPCE = PostProcessing(NL4_MetaModel)
+    NL4_PostPCE = PostProcessing(NL4_MetaModel, name=myNL4Model.name)
 
     # Plot to check validation visually.
     NL4_PostPCE.valid_metamodel(n_samples=3)
@@ -202,8 +248,9 @@ if __name__ == "__main__":
 
     # ----- Define the options model -------
     metaModels = {
-        "L2_model": L2_MetaModel,
-        "NL4_model": NL4_MetaModel
+        "linear": L2_MetaModel,
+        "exponential": NL4_MetaModel,
+        "cosine": NL4_MetaModel
         }
 
     # MCMC inference method
@@ -224,7 +271,7 @@ if __name__ == "__main__":
     # BME Bootstrap
     OptsDict_Bootstrap = {
         "bootstrap": True,
-        "n_samples": 20000,
+        "n_samples": 500000,
         "Discrepancy": DiscrepancyOpts,
         "emulator": False,
         "plot_post_pred": False