diff --git a/src/bayesvalidrox/surrogate_models/engine.py b/src/bayesvalidrox/surrogate_models/engine.py index a6531b978e082895fc053a7432fde38a68d2b1bc..d0b281f76544278024afa76d41afb8ca512d4816 100644 --- a/src/bayesvalidrox/surrogate_models/engine.py +++ b/src/bayesvalidrox/surrogate_models/engine.py @@ -362,7 +362,8 @@ class Engine: pce = True else: pce = False - mc_ref = True if bool(self.Model.mc_reference) else False + #mc_ref = True if bool(self.Model.mc_reference) else False + mc_ref = True if (self.Model.mc_reference is not None) else False if mc_ref: self.Model.read_observation('mc_ref') diff --git a/src/bayesvalidrox/surrogate_models/sequential_design.py b/src/bayesvalidrox/surrogate_models/sequential_design.py index e020f689f4e919b0692578f458da6d1cce7613d2..29b2130305b803652e8a4a68c430539388a61318 100644 --- a/src/bayesvalidrox/surrogate_models/sequential_design.py +++ b/src/bayesvalidrox/surrogate_models/sequential_design.py @@ -23,6 +23,7 @@ from tqdm import tqdm from bayesvalidrox.bayes_inference.bayes_inference import BayesInference from bayesvalidrox.bayes_inference.discrepancy import Discrepancy from .exploration import Exploration +from .surrogate_models import create_psi def logpdf(x, mean, cov): """ @@ -427,7 +428,7 @@ class SequentialDesign: X_can = explore.closestPoints[idx] # Calculate the maxmin score for the region of interest - newSamples, maxminScore = explore.get_mc_samples(X_can) + newSamples, maxminScore = explore.get_mc_samples(X_can) # TODO: Understand this line! # select the requested number of samples Xnew[i] = newSamples[np.argmax(maxminScore)] @@ -550,6 +551,7 @@ class SequentialDesign: # ToDo: Check function to see what it does for scores/how it chooses points, so it gives as an output the # scores. See how it works with exploration_scores. # Todo: Check if it is a minimization or maximization. (We think it is minimization) + # TODO: Move the final accumulation of scores outside of this function to match the other methods # ------- EXPLOITATION: ALPHABETIC ------- Xnew = self.util_AlphOptDesign(allCandidates, var) @@ -1249,12 +1251,12 @@ class SequentialDesign: # ------ Old Psi ------------ univ_p_val = self.MetaModel.univ_basis_vals(oldExpDesignX) - Psi = self.MetaModel.create_psi(BasisIndices, univ_p_val) + Psi = create_psi(BasisIndices, univ_p_val) # ------ New candidates (Psi_c) ------------ # Assemble Psi_c univ_p_val_c = self.MetaModel.univ_basis_vals(candidates) - Psi_c = self.MetaModel.create_psi(BasisIndices, univ_p_val_c) + Psi_c = create_psi(BasisIndices, univ_p_val_c) for idx in range(NCandidate):