From f7042f832b33c7ad44295266a5932710c6b4b735 Mon Sep 17 00:00:00 2001
From: Farid Mohammadi <farid.mohammadi@iws.uni-stuttgart.de>
Date: Mon, 1 Aug 2022 08:48:30 +0200
Subject: [PATCH] [surrogate] comment the refitting with the bias term.

---
 .../surrogate_models/surrogate_models.py      | 24 +++++++++----------
 1 file changed, 12 insertions(+), 12 deletions(-)

diff --git a/src/bayesvalidrox/surrogate_models/surrogate_models.py b/src/bayesvalidrox/surrogate_models/surrogate_models.py
index f478bbd5e..722221d74 100644
--- a/src/bayesvalidrox/surrogate_models/surrogate_models.py
+++ b/src/bayesvalidrox/surrogate_models/surrogate_models.py
@@ -701,18 +701,18 @@ class MetaModel():
         # The first column must be kept (For mean calculations)
         nnz_idx = np.nonzero(clf_poly.coef_)[0]
 
-        if len(nnz_idx) == 0 or nnz_idx[0] != 0:
-            nnz_idx = np.insert(np.nonzero(clf_poly.coef_)[0], 0, 0)
-            # Remove the zero entries for Bases and PSI if need be
-            if sparsity:
-                sparse_basis_indices = basis_indices.toarray()[nnz_idx]
-            else:
-                sparse_basis_indices = basis_indices[nnz_idx]
-            sparse_X = X[:, nnz_idx]
-
-            # Store the coefficients of the regression model
-            clf_poly.fit(sparse_X, y)
-            coeffs = clf_poly.coef_
+        # if len(nnz_idx) == 0 or nnz_idx[0] != 0:
+        #     nnz_idx = np.insert(np.nonzero(clf_poly.coef_)[0], 0, 0)
+        #     # Remove the zero entries for Bases and PSI if need be
+        #     if sparsity:
+        #         sparse_basis_indices = basis_indices.toarray()[nnz_idx]
+        #     else:
+        #         sparse_basis_indices = basis_indices[nnz_idx]
+        #     sparse_X = X[:, nnz_idx]
+
+        #     # Store the coefficients of the regression model
+        #     clf_poly.fit(sparse_X, y)
+        #     coeffs = clf_poly.coef_
 
         # This is for the case where all outputs are zero, thereby
         # all coefficients are zero
-- 
GitLab