diff --git a/.coverage b/.coverage
deleted file mode 100644
index bf1a819edb9c1da044cf1d4a9886dcae9c8a0d44..0000000000000000000000000000000000000000
Binary files a/.coverage and /dev/null differ
diff --git a/.coverage.DESKTOP-ATMEKSV.10052.XHqUUOFx b/.coverage.DESKTOP-ATMEKSV.10052.XHqUUOFx
deleted file mode 100644
index e1f7e6f75f5aa9a7a33884193b67b7cc22082200..0000000000000000000000000000000000000000
Binary files a/.coverage.DESKTOP-ATMEKSV.10052.XHqUUOFx and /dev/null differ
diff --git a/.idea/bayesvalidrox.iml b/.idea/bayesvalidrox.iml
index fab03b6eca7d238814b681f1f06637c845bcc3f4..f1f562a227e8845bc982f3b4bd2a9511eae7944d 100644
--- a/.idea/bayesvalidrox.iml
+++ b/.idea/bayesvalidrox.iml
@@ -5,7 +5,7 @@
       <sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
       <sourceFolder url="file://$MODULE_DIR$/tests" isTestSource="true" />
     </content>
-    <orderEntry type="inheritedJdk" />
+    <orderEntry type="jdk" jdkName="Python 3.10 (env_bvr)" jdkType="Python SDK" />
     <orderEntry type="sourceFolder" forTests="false" />
   </component>
   <component name="PyDocumentationSettings">
diff --git a/.idea/misc.xml b/.idea/misc.xml
index a6218fed0aeb0cbb03b46a9064efeeda11861bf6..b4038aec513340c2afa2c7acab27f85cf889347b 100644
--- a/.idea/misc.xml
+++ b/.idea/misc.xml
@@ -3,5 +3,5 @@
   <component name="Black">
     <option name="sdkName" value="Python 3.11" />
   </component>
-  <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11" project-jdk-type="Python SDK" />
+  <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (env_bvr)" project-jdk-type="Python SDK" />
 </project>
\ No newline at end of file
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 42c974fb5e5f8e31c58684551c68a4f55a74d621..daded68320a07869efaa6c5b2d643b97eaa110e7 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,6 +1,33 @@
 # CHANGELOG
 
-## [Unreleased]
+## [1.1.0]
+### Requirements
+* numpy now at 1.23.5
+
+### Added
+Features
+* class `SeqDesign` for sequential training
+
+Examples
+* Example `user_guide` to go along with the user guide on the website
+* Example `principal_component_analysis` to show application of pca on metamodel outputs
+* Example 'only_model' for use of inference and model comparison without a metamodel
+
+### Changed
+* Moved functions for sequential training from `Engine` to `SeqDesign`
+* Moved `hellinger_distance`, `logpdf`, `subdomain` into `surrogate_models/seq_design`
+* Early stop in `BayesInf` for `BayesModelComp`
+* Allow singular matrices in exploitation with `BayesActDesign` 
+
+Bug fixes
+* Import of `ExpDesign` allowed
+* Images in `PostProcessing` only saved, not opened
+
+
+### Removed
+* Disabled exploration with `voronoi`
+
+## [1.0.0]
 ### Requirements
 * numpy now at 1.23.3
 * ....
diff --git a/Outputs_Bayes_None_Calib/emcee_sampler.h5 b/Outputs_Bayes_None_Calib/emcee_sampler.h5
deleted file mode 100644
index 81f2373f9817399ab2c7fb908ad03de3f94a7d88..0000000000000000000000000000000000000000
Binary files a/Outputs_Bayes_None_Calib/emcee_sampler.h5 and /dev/null differ
diff --git a/Outputs_SeqPosteriorComparison/posterior/Z.npy b/Outputs_SeqPosteriorComparison/posterior/Z.npy
deleted file mode 100644
index 8d89efa6714257ec2d867aa5eb95b7f23b915010..0000000000000000000000000000000000000000
Binary files a/Outputs_SeqPosteriorComparison/posterior/Z.npy and /dev/null differ
diff --git a/README.md b/README.md
index 86e8f03b0f7ebf454bbbeed2ae0cffd7982e0a7e..9b9a5cdc9e5d97c86698c56c51e5211d2ddae46e 100644
--- a/README.md
+++ b/README.md
@@ -1,7 +1,7 @@
 # BayesValidRox
 
 <div align="center">
-  <img src="https://git.iws.uni-stuttgart.de/inversemodeling/bayesian-validation/-/raw/master/docs/logo/bayesvalidrox-logo.png" alt="bayesvalidrox logo"/>
+  <img src="https://git.iws.uni-stuttgart.de/inversemodeling/bayesian-validation/-/raw/master/docs/logo/BVRLogoV03_longtext.png" alt="bayesvalidrox logo"/>
 </div>
 
 An open-source, object-oriented Python package for surrogate-assisted Bayesain Validation of computational models.
@@ -9,6 +9,7 @@ This framework provides an automated workflow for surrogate-based sensitivity an
 
 ## Authors
 - [@farid](https://git.iws.uni-stuttgart.de/farid)
+- [@RKohlhaas](https://git.iws.uni-stuttgart.de/RKohlhaas)
 
 ## Installation
 The best practive is to create a virtual environment and install the package inside it.
@@ -39,6 +40,24 @@ and installing the version on the master branch can be done by cloning this repo
 * Bayesian validation with model weights for multi-model setting
 
 ## Requirements
+[1.1.0] - python 3.10:
+* numpy>=1.23.5
+* pandas==1.4.4
+* joblib==1.1.1
+* matplotlib==3.8.0
+* seaborn==0.11.1
+* scipy>=1.11.1
+* scikit-learn==1.3.1
+* tqdm>=4.61.1
+* chaospy==4.3.3
+* emcee==3.0.2
+* corner==2.2.1
+* h5py==3.9.0
+* statsmodels==0.14.2
+* multiprocess==0.70.16
+* datasets==2.20.0
+* umbridge==1.2.4
+[1.0.0] - python 3.10:
 * numpy==1.22.1
 * pandas==1.2.4
 * joblib==1.0.1
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree
index e5c2abf10f3cb1e216ec16fd6fb8a91ad9b7a4e8..c498d90c223a18a1a9f3754b489c483ff6f7fe9c 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree differ
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree
index 0eadb31a4c12108b93f29dd90d78aa1ab60a6449..f7079c9804bd84e0a6882a2b63c4af54fa843ec9 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree differ
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree
index 41687065b2337dccba6f85c6e416115e4e0dee60..5d041e0d2bdf80ab9614cb6fcefc37404c1ecd49 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree differ
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree
index 81fa2a1d8dbb91bd830596c9ec8704db54a7235e..85e5048e6702e173fbf5eec5bcb177eb2c2686f2 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree differ
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree
index 5650a86ee63013f3fdce3fa09acdb5b73ffd161c..308a36773813ec6eeff34f8fc2e555211ad6a0d7 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree differ
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree
index cae46fd3422bafecf80b68c0410a345687b1a617..6cead39f28cd54d324538feb50417014b8a947db 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree differ
diff --git a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree
index 4d062650a16e06598bac73b9516fc01db5ed2eb1..d8ac431ddf19c175a13a546a445af6960141548c 100644
Binary files a/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree and b/docs/build/doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree differ
diff --git a/docs/build/doctrees/bayes_description.doctree b/docs/build/doctrees/bayes_description.doctree
index 5d94ed288d0b4868bf27b5fb62061007e2756913..7ecf21c6be10ecf165c848a850df703d88514ba5 100644
Binary files a/docs/build/doctrees/bayes_description.doctree and b/docs/build/doctrees/bayes_description.doctree differ
diff --git a/docs/build/doctrees/bmc_description.doctree b/docs/build/doctrees/bmc_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..320a137b1447b6f76c7a0c1f453029191acb68d1
Binary files /dev/null and b/docs/build/doctrees/bmc_description.doctree differ
diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle
index fd587c9ecea314cf03119fd2ccf9d19d2d446a7c..dd1a295178cd9c0e3bdb5158f5735c8a69d2c1a7 100644
Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ
diff --git a/docs/build/doctrees/model_description.doctree b/docs/build/doctrees/model_description.doctree
index 0e9325ae7d2b2dc814460fd4255f705942f3f2a6..d5ddd83b22705a3d1377a224632a476f2d1f02e8 100644
Binary files a/docs/build/doctrees/model_description.doctree and b/docs/build/doctrees/model_description.doctree differ
diff --git a/docs/build/doctrees/packagedescription.doctree b/docs/build/doctrees/packagedescription.doctree
index d0d927b72bae6c2515e380a6dc4861dd9ac39d5f..38b5cbd7ea50fbbf4b6ccf407b7dedfcc50c1019 100644
Binary files a/docs/build/doctrees/packagedescription.doctree and b/docs/build/doctrees/packagedescription.doctree differ
diff --git a/docs/build/doctrees/post_description.doctree b/docs/build/doctrees/post_description.doctree
index 0a48743b4ef9a43565b9ea68a7997a8eae760835..3bbfa73976df88e9dc41825b21c64fd75311bca5 100644
Binary files a/docs/build/doctrees/post_description.doctree and b/docs/build/doctrees/post_description.doctree differ
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html
index a8fbf99526166e7a511815115a03b9f56209f850..d6ae664d3a234e92f0775a6cb50dab94113152e6 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html
index d5f4bdc76f24d30fb6c49cd17b346870ba53c969..be2a80de6a8e7f00e136d7bcf354bd2e691c833a 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html
index 2b9f5ffba8dc6c97279d7eaa505046c32f5ad279..8c36c6beaa669b19afc29e45796a9315b7896101 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -388,7 +389,7 @@
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_bayes_factor" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_bayes_factor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_bayes_factor</span></code></a>(BME_dict[, plot_name])</p></td>
 <td><p>Plots the Bayes factor distibutions in a <span class="math notranslate nohighlight">\(N_m \times N_m\)</span> matrix, where <span class="math notranslate nohighlight">\(N_m\)</span> is the number of the models.</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_just_analysis</span></code></a>(model_weights_dict)</p></td>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_just_analysis</span></code></a>()</p></td>
 <td><p>Visualizes the confusion matrix and the model wights for the justifiability analysis.</p></td>
 </tr>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_model_weights" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_model_weights"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_model_weights</span></code></a>(model_weights, plot_name)</p></td>
@@ -559,7 +560,7 @@ matrix, where <span class="math notranslate nohighlight">\(N_m\)</span> is the n
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis">
-<span class="sig-name descname"><span class="pre">plot_just_analysis</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_weights_dict</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">plot_just_analysis</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="Link to this definition">¶</a></dt>
 <dd><p>Visualizes the confusion matrix and the model wights for the
 justifiability analysis.</p>
 <section id="id13">
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html
index 83a0521261114677d67c27b655eecf6180c73dad..0180e21c689d5ba3b4402ef9c463fbe1d7f0ea5f 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html
index 012f9ca7b1f4452085bbb1d49a37dc995a03c7ef..3eea32209da101a5e790589f865c4aa6e3ec5cbe 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html
index 3335850940b773ac5fb5ad777466f1be6e2d63fc..e21d3a79bb7e48b5b2217b9d0213985868e04a97 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.html
index c7fdddf41ddfa00abc595774d5e201de4af10b93..11f98117146bca7bfacdc90d54d6de368db50aa8 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html
index 1c766909b66ee0fbeee63c3605370175ed825f8a..46c8c0469e8d6f67f613b1e201511c3e4abaf2ff 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -362,6 +363,32 @@ science, 5(1), pp.65-80.</p>
 <dl class="simple">
 <dt>BayesOpts<span class="classifier">obj</span></dt><dd><p>Bayes object.</p>
 </dd>
+<dt>engine<span class="classifier">bayesvalidrox.Engine</span></dt><dd><p>Engine object that contains the surrogate, model and expdesign</p>
+</dd>
+<dt>mcmc_params<span class="classifier">dict</span></dt><dd><p>Dictionary of parameters for the mcmc. Required are
+- init_samples
+- n_steps
+- n_walkers
+- n_burn
+- moves
+- multiplrocessing
+- verbose</p>
+</dd>
+<dt>Discrepancy<span class="classifier">bayesvalidrox.Discrepancy</span></dt><dd><p>Discrepancy object that described the uncertainty of the data.</p>
+</dd>
+</dl>
+<p>bias_inputs :</p>
+<p>error_model :</p>
+<p>req_outputs :</p>
+<p>selected_indices :</p>
+<p>emulator :</p>
+<dl class="simple">
+<dt>out_dir<span class="classifier">string</span></dt><dd><p>Directory to write the outputs to.</p>
+</dd>
+<dt>name<span class="classifier">string</span></dt><dd><p>Name of this MCMC selection (?)</p>
+</dd>
+<dt>BiasInputs<span class="classifier"></span></dt><dd><p>The default is None.</p>
+</dd>
 </dl>
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.bayes_inference.mcmc.MCMC.__init__">
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html
index d00bc5717899bfaeeff4c2839d4f6277d56ea7ea..69a4d24e107854fccbbfbc179d5eb9d793a6b7a8 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.html b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.html
index 29b44ce99ee43c3613f96fa97f2bbdff3c0e6f26..2038b949523048507f6c3230e1bc1d86dc7ae10a 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.bayes_inference.mcmc.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.html b/docs/build/html/_autosummary/bayesvalidrox.html
index 5c9c7d22e068d7b356e4b7f7f377a4aa656e5f35..75828bd7a5f89649705499369d2c7427093d1bf9 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.post_processing.html b/docs/build/html/_autosummary/bayesvalidrox.post_processing.html
index ee8c181766d5eb03d89369af04eeff8cd7430279..56395e27e97e85fd5414731266521168c871ea7c 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.post_processing.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.post_processing.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html b/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html
index 1e9cfdbeccd952605a0e0af15ea2bbc7674dc461..1bcb70f6927fe69b1be12fe2dd3c89aa01f6db09 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.html b/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.html
index 1c0ee07983681c2921eb574305c332b34e5b33e1..585410977c9fc2990bf5023e3067b58c7ab883c0 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.post_processing.post_processing.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.pylink.html b/docs/build/html/_autosummary/bayesvalidrox.pylink.html
index d3b4ddb9d22a55fa65b74b8480ed483ad79e5ebc..7637b34f3d664b546c8945bdb9ec6031abd92d8d 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.pylink.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.pylink.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html b/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html
index 868fd803201d3bf3f5b07955c8755ebf4ecd837f..bf9c611316356d523b3549447daf1098627b6f45 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -339,7 +340,7 @@
 <h1>bayesvalidrox.pylink.pylink.PyLinkForwardModel<a class="headerlink" href="#bayesvalidrox-pylink-pylink-pylinkforwardmodel" title="Link to this heading">¶</a></h1>
 <dl class="py class">
 <dt class="sig sig-object py" id="bayesvalidrox.pylink.pylink.PyLinkForwardModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">bayesvalidrox.pylink.pylink.</span></span><span class="sig-name descname"><span class="pre">PyLinkForwardModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="Link to this definition">¶</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">bayesvalidrox.pylink.pylink.</span></span><span class="sig-name descname"><span class="pre">PyLinkForwardModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">store</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">out_dir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="Link to this definition">¶</a></dt>
 <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
 <p>A forward model binder</p>
 <p>This calss serves as a code wrapper. This wrapper allows the execution of
@@ -428,7 +429,7 @@ This is only available for one output.</p>
 </dl>
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__">
-<span class="sig-name descname"><span class="pre">__init__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">__init__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">store</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">out_dir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__" title="Link to this definition">¶</a></dt>
 <dd></dd></dl>
 
 <p class="rubric">Methods</p>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.html b/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.html
index fd29ae01185ad77c3ba5c349b2f79b87053dbe87..6c72ed7656f7f1af8a10d118aef4553b374c38f6 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.within_range.html b/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.within_range.html
index d13e5d7afc4d30a74815716be03c5a653f7a8b2d..f5fe156616a2933fee2a7435f618159cf7bf9e00 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.within_range.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.pylink.pylink.within_range.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html
index 88166ae557a8ac4d2c5b58049ce6421b53f6da77..00c0b14a84a9171d1c90a97cdd954d78ba3e9e8e 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html
index dc183669e991009b0b317be369c56cfe4877392b..31ded85657492467d4814ceb77105ab9b3312ec9 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html
index 7fd894a2b05c2238263ca95d94ebe67ef701af04..cfa68525972b7938053f68e8eae4374aa9512cf5 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html
index bb8064c4ace44d3d188f6170d24d3752ab531710..48f07ba3f0ebf656ebeaedb6a2da36235e4a368e 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html
index e3f16fb5c421af8aef20e6ad48e17acc12af2cc3..3dee9c9805fcccaebe781d3dad6c9c7e255a8d92 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html
index 1e19d36659a9f0e61251e9a2df51a7390a84e03a..e5b8b3aaf10a2bd4c88f464582a0f1e5af901086 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html
index 3ba8a66cb906826dceb78ad5e49f2025a5b042d7..49002d5f3ad44f76b604b9d87b280bf30604a146 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html
index c3b2d56673133ba59dd38d065605a6d4e5a67186..f9446b9c30f385ca4ad6c1f66cfc05a3d9ed1c98 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html
index 5d1164c23b955450a470d7b3109840c264c7255e..12a6923224ed1edd0db9a63ff0e4857f25b04495 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html
index d9bc2a754cec48165661ad78b544fd137effc6c1..bc8c4c8dff945dbb085793018c356b2b4b20320e 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -465,7 +466,7 @@ Run_No : int</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel">
-<span class="sig-name descname"><span class="pre">eval_metamodel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nsamples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sampling_method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'random'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">eval_metamodel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nsamples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sampling_method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'random'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel" title="Link to this definition">¶</a></dt>
 <dd><p>Evaluates metamodel at the requested samples. One can also generate
 nsamples.</p>
 <section id="id3">
@@ -481,6 +482,9 @@ default is None.</p>
 </dd>
 <dt>return_samples<span class="classifier">bool, optional</span></dt><dd><p>Retun samples, if no <cite>samples</cite> is provided. The default is False.</p>
 </dd>
+<dt>parallel<span class="classifier">bool, optional</span></dt><dd><p>Set to true if the evaluations should be done in parallel.
+The default is False.</p>
+</dd>
 </dl>
 </section>
 <section id="id4">
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html
index d4d269e7f964e73aedd4c9133b33fe1369c8039b..1468932d599cc45192028e30c4a3a7afb897a1f8 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.html
index 885ebd13ab7642895d585e0c0567e2311e89b811..f43c214e2141ce0cf679c6be34d77fdfefb12c4f 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html
index d1ef23527311d72eb2e5481b01d677cc42b604d5..edd1833426247f70787c0adbf9956b4ab1214dca 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html
index 9e48ba3c35896e8bc02b49c37f91799ef5ab6363..6d630a95863555e36bed888f9b00ed6ffe0632d4 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html
index cac4d998edd67a7ece45d79cb4b38b85af8d76c4..e081f64c34ee8f5cc6b6a8cf8014903ee8fb113c 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html
index dde4517e0c995b2c29d94649c97c2c919b3a589a..936d75c876a538186eb06d729c8db840b4f48e51 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html
index cc0f1d31cfbdd9bffc41e1755edfb2958379dde0..8a43256783ed04f6ab6d2c136c868a6a08473aa6 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html
index 58709347de4066cf52315788d2b403067aed34e2..e566e9fc99989237f175a8313b24f228f845c8fa 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html
index b13d05c48d065df1dcaea836b0d1ca9fcbdf9064..211d11ec9cebbbe03da83cb0cd51b11b0f2b0da2 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html
index 78f9787e11a1f9ebd7beac6d2f79d1f5dcc303b7..ebb205a5b7b266e9b1a0e311ec1acc8bf57d44ba 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -560,12 +561,12 @@ the MetaModel object.</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.init_param_space">
-<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.init_param_space" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.init_param_space" title="Link to this definition">¶</a></dt>
 <dd><p>Initializes parameter space.</p>
 <section id="id6">
 <h3>Parameters<a class="headerlink" href="#id6" title="Link to this heading">¶</a></h3>
 <dl class="simple">
-<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>None</cite>.</p>
+<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>1</cite>.</p>
 </dd>
 </dl>
 </section>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html
index c9556e4315c0343672ac2692d4c7b940a44de4d1..3f8c99c60c8dd63fa9a94a927f2e293699489f0a 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html
index 0a54834e033be55f36faa4bf9341ac15ce40fdf6..12f3e3b7b66a1370b00dc69415423fa565ed9b25 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html
index 4496b2d8f717108f8ae3821169740ccaeae2cbd7..bfc9e488793e12d2fb6ad190a3e9f763fcc99218 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.html
index 5482569e1e7bd5a8e74fc2b8952952af366bd1d5..4fe52523a59bd299d130c541151d1ab08ee914c0 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.exploration.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html
index 5a03208c86819cc3e68adf1b35a9d5ac9c0ce90b..ef1e59d9f481edf25afe4cb78d250a75f1836ec9 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html
index a950df2ff0a2fc8f4c0aa58deb6e0e70982e5e70..128c4263055ecdbbcc5d460d2d56ea0d769d1c16 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.html
index 96400f3335ee9fefce7b8c74b73b5d7b6540132d..f22f1237773177ce5762b38a38886c265b3ef192 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.glexindex.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.html
index 4312aa2528b5efb983f248efd68be7c01872f541..551916f8f3ec882453665ebd48bcc2b7323f3486 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html
index b5eb76fa2d343182c07caac085a2d114701e1ff4..f9d2df3bd39fc5c30cbc9d2128f7aed6e5e7bc29 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -417,12 +418,12 @@ the MetaModel object.</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.input_space.InputSpace.init_param_space">
-<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.input_space.InputSpace.init_param_space" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.input_space.InputSpace.init_param_space" title="Link to this definition">¶</a></dt>
 <dd><p>Initializes parameter space.</p>
 <section id="id2">
 <h3>Parameters<a class="headerlink" href="#id2" title="Link to this heading">¶</a></h3>
 <dl class="simple">
-<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>None</cite>.</p>
+<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>1</cite>.</p>
 </dd>
 </dl>
 </section>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.html
index cc003dd63acb7bd7dff4be0e618139ff182668c7..7c8cd929947740190455750c4ad506dbc9f529dc 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.input_space.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html
index 95f8b8e450bb17bdf54da7c89e48b1e02dea8427..c3b3d9d99e6cb98532d79851949b7bba29ffd6db 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html
index fca0dcb0d866e58c0d2b0f1754daa5b673b05255..fcb16dad3f7ae7c501f6b1b30b0b795ad19d8bc1 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.html
index d5c3b12c17f42351a7d5ce1b97793db0d014d893..4e16820e398f7ce11159e57c7b6a96aaf03160b5 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.inputs.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html
index 43f20bf429b54517e920f5cc4caad9ba94e71352..7e9829327c67c5f597d11b613427c8ff235d4705 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html
index 274d8319d15ce6f02bb11570b0f04de5d05ec170..8f61f3d066b8c15efb6f1dc676309ef43da0101c 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html
index f159c07b7d16bbea3883c98dccd211d0ce7e19a3..17f469e71810fd245e0abc4031a8ef2cbf00ced4 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html
index 35ea14b81f33c21e5170f9ac5952fb87f1d38449..9dd1a74ff43fc63ee450278fb426515e5227df45 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html
index f1a15392db7b92fd33289c6a80f192bf29ad688c..dcd0820e6d30a0bce8985938c8f7ad84dc0fbcf5 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html
index ff1c030d120352eb3d7e6361764305295eb5ea81..05bcfb125d1a1b213e0db08d458290d7fef80fa1 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html
index dc6b45be7b458da14c03fc147d90f0fc698b1eab..5ea393418ba57aac457d61fe83b4c22a18a98cb5 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html
index 39bed6efb714b788a749f3800f756d641d8ab6d8..8ed5c18d58d878e5b16fcba867f0941b39449dff 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html
index 49744e8097ad29d88b38c04284f137b188ee2946..b19b796849a7a1500e42151901841e84e4dec613 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -449,8 +450,8 @@ For experimental design refer to <cite>InputSpace</cite>.</p>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.generate_polynomials" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.generate_polynomials"><code class="xref py py-obj docutils literal notranslate"><span class="pre">generate_polynomials</span></code></a>([max_deg])</p></td>
 <td><p>Generates (univariate) polynomials.</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pca_transformation</span></code></a>(target[, verbose])</p></td>
-<td><p>Transforms the targets (outputs) via Principal Component Analysis</p></td>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pca_transformation</span></code></a>(target)</p></td>
+<td><p>Transforms the targets (outputs) via Principal Component Analysis.</p></td>
 </tr>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.regression" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.regression"><code class="xref py py-obj docutils literal notranslate"><span class="pre">regression</span></code></a>(X, y, basis_indices[, ...])</p></td>
 <td><p>Fit regression using the regression method provided.</p></td>
@@ -720,16 +721,15 @@ The default is False.</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation">
-<span class="sig-name descname"><span class="pre">pca_transformation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="Link to this definition">¶</a></dt>
-<dd><p>Transforms the targets (outputs) via Principal Component Analysis</p>
+<span class="sig-name descname"><span class="pre">pca_transformation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="Link to this definition">¶</a></dt>
+<dd><p>Transforms the targets (outputs) via Principal Component Analysis.
+The number of features is set by <cite>self.n_pca_components</cite>.
+If this is not given, <cite>self.var_pca_threshold</cite> is used as a threshold.</p>
 <section id="id14">
 <h3>Parameters<a class="headerlink" href="#id14" title="Link to this heading">¶</a></h3>
 <dl class="simple">
 <dt>target<span class="classifier">array of shape (n_samples,)</span></dt><dd><p>Target values.</p>
 </dd>
-<dt>verbose<span class="classifier">bool</span></dt><dd><p>Set to True to get more information during functtion call.
-The default is False.</p>
-</dd>
 </dl>
 </section>
 <section id="id15">
@@ -804,7 +804,7 @@ for the fast version of the bootstrapping.</p>
 <section id="id20">
 <h3>Parameters<a class="headerlink" href="#id20" title="Link to this heading">¶</a></h3>
 <dl class="simple">
-<dt>X<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Training set.</p>
+<dt>X<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Training set. These samples should be already transformed.</p>
 </dd>
 <dt>y<span class="classifier">array of shape (n_samples, n_outs)</span></dt><dd><p>The (transformed) model responses.</p>
 </dd>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html
index a047d2ad8298fa5a806499059658a45f4082a040..85883cb847cf1c65e2311dbcf9b1767ee88fd7f9 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html
index 1b72a962cb784fc83d165f7b78c1ff34f2012271..4a66eb692ad6d7454d221ba2957f44131c9a5fe9 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html
index 560f6c733c28d248e12526abe547a64accb91e9f..a38aa4e631828e0e30210cc27184f01c7b6072f1 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html
index 82a65402e9c73ede08a4a8f24ca6a8bc459dbb98..bb5eaba6c656f8899f104b1832777061be31f5ed 100644
--- a/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html
+++ b/docs/build/html/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/_sources/bayes_description.rst.txt b/docs/build/html/_sources/bayes_description.rst.txt
index 2cfd3a6a8c43868b09f404eafdd36594ed9c3c7d..0cb36d10f808a92e14d29abc01b9a7fd6883466b 100644
--- a/docs/build/html/_sources/bayes_description.rst.txt
+++ b/docs/build/html/_sources/bayes_description.rst.txt
@@ -1,7 +1,121 @@
-Bayesian inference and multi-model comparison
-*********************************************
+Bayesian inference
+******************
+.. container:: twocol
 
+   .. container:: leftside
+   
+      With Bayesian inference we ask the question 'how does our understanding of the inputs change given some observation of the outputs of the model?', i.e. we perform an updating step of the prior distributions to posterior, based on some observations.
+      Bayesvalidrox provides a dedicated class to perform this task, :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference`, which infers the posterior via ``rejection-sampling`` or ``MCMC``.
+      The likelihood in rejection sampling is estimated with the help of ``bootstrapping``.
+      MCMC-specific parameters are to be given as a dictionary called ``mcmc_params`` and can include 
+	  
+      * ``init_samples``: initial samples 
+      * ``n_steps``: number of steps 
+      * ``n_walkers``: number of walkers
+      * ``n_burn``: length of the burn-in 
+      * ``moves``: function to use for the moves, e.g. taken from ``emcee``
+      * ``multiprocessing``: setting for multiprocessing
+      * ``verbose``: verbosity 
+	  
+   .. container:: rightside
+   
+      .. image:: ../diagrams/bayesian_validation.png
+         :width: 300
+         :alt: UML diagram for classes related to Bayesian inference.
 
-.. image:: ../diagrams/bayesian_validation.png
-   :width: 300
-   :alt: UML diagram for classes related to Bayesian inference and multi-model comparison.
+The observation should be set as ``Model.observations`` in the ``Engine``, and an estimation of its uncertainty can be provided as a :any:`bayesvalidrox.bayes_inference.discrepancy.Discrepancy` object.
+
+Example
+=======
+For this example we need to add the following imports.
+
+>>> from bayesvalidrox import Discrepancy, BayesInference
+
+In order to run Bayesian inference we first need to provide an observation.
+For this example we take an evaluation of the model on some chosen sample and add the resulting values as ``Model.observations``.
+As this expects a 1D-array for each output key, we need to change the format slightly.
+
+>>> true_sample = [[2]]
+>>> observation = Model.run_model_parallel(true_sample)
+>>> Model.observations = {}
+>>> for key in observation:
+>>>     if key == 'x_values':
+>>>         Model.observations[key]=observation[key]
+>>>     else:
+>>>         Model.observations[key]=observation[key][0]
+
+Next we define the uncertainty on the observation with the class :any:`bayesvalidrox.bayes_inference.discrepancy.Discrepancy`.
+For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them.
+The ``parameters`` contain the variance for each point in the observation.
+
+>>> obsData = pd.DataFrame(Model.observations, columns=Model.Output.names)
+>>> DiscrepancyOpts = Discrepancy('')
+>>> DiscrepancyOpts.type = 'Gaussian'
+>>> DiscrepancyOpts.parameters = obsData**2
+
+Now we can initialize an object of class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference` with all the wanted properties.
+This object has to be given our ``Engine``.
+If it should use the surrogate during inference, set ``emulator`` to ``True``, otherwise the model will be evaluated directly.
+We also set the defined ``Discrepancy``. and set ``post_plot_pred`` if posterior predictions should be visualized.
+
+>>> BayesObj = BayesInference(Engine_)
+>>> BayesObj.emulator = True
+>>> BayesObj.Discrepancy = DiscrepancyOpts
+>>> BayesObj.plot_post_pred = True
+
+In order to run with rejection sampling, we set the ``inference_method`` accordingly and add properties for ``bootstrap``.
+
+>>> BayesObj.inference_method = 'rejection'
+>>> BayesObj.bootstrap = True
+>>> BayesObj.n_bootstrap_itrs = 500
+>>> BayesObj.bootstrap_noise = 2
+
+If the sampling should be done with MCMC, then this is set as the ``inference_method`` and additional properties are given in ``mcmc_params``.
+For this example we use the python package ``emcee`` to define the MCMC moves.
+
+>>> BayesObj.inference_method = 'MCMC'
+>>> import emcee
+>>> BayesObj.mcmc_params = {
+>>>     'n_steps': 1e4,#5,
+>>>     'n_walkers': 30,
+>>>     'moves': emcee.moves.KDEMove(),
+>>>     'multiprocessing': False,
+>>>     'verbose': False
+>>>     }
+
+Then we run the inference.
+
+>>> BayesObj.create_inference()
+
+If the output directory ``BayesObj.out_dir`` is not set otherwise, the outputs are written into the folder ``Outputs_Bayes_model_Calib``.
+This folder includes the posterior distribution of the input parameters, as well as the predictions resulting from the mean of the posterior.
+For inference with MCMC, chain diagnostics are also written out in the console.
+
+.. container:: twocol
+
+   .. container:: leftside
+   
+      .. code-block:: py
+
+         ---------------Posterior diagnostics---------------
+         Mean auto-correlation time: 2.057
+         Thin: 1
+         Burn-in: 4
+         Flat chain shape: (13380, 1)
+         Mean acceptance fraction*: 0.752
+         Gelman-Rubin Test**:  [1.001]
+
+         * This value must lay between 0.234 and 0.5.
+         ** These values must be smaller than 1.1.
+         --------------------------------------------------
+		 
+   .. container:: rightside
+
+      .. image:: ../../examples/user_guide/Outputs_Bayes_model_Calib/Posterior_Dist_model_emulator.pdf
+         :width: 400
+         :alt: Posterior distribution of the input parameter
+		 
+      .. image:: ../../examples/user_guide/Outputs_Bayes_model_Calib/Post_Prior_Perd_model_emulator_A.pdf
+         :width: 400
+         :alt: Comparison of posterior prediction to the observation
+		 
\ No newline at end of file
diff --git a/docs/build/html/_sources/bmc_description.rst.txt b/docs/build/html/_sources/bmc_description.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b3eaf86c2ca702ffa9781de4f6f3224f87c479fb
--- /dev/null
+++ b/docs/build/html/_sources/bmc_description.rst.txt
@@ -0,0 +1,22 @@
+Bayesian multi-model comparison
+*******************************
+.. container:: twocol
+
+   .. container:: leftside
+   
+      Bayesvalidrox provides three distinct methods to compare sets of models against each other given some observation of the outputs, Bayes' Factors, model weights and confusion matrices.
+      These are contained within the class :any:`bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison` and can be called one-at-a-time with their respective functions, or consecutively with the function ``model_comparison_all()``.
+	  
+      
+   .. container:: rightside
+   
+      .. image:: ../diagrams/bayesian_model_comparison.png
+         :width: 400
+         :alt: UML diagram for classes related to Bayesian multi-model comparison.
+
+
+Example
+=======
+To perform model comparison, we first need to define the set of competing models.
+For this, we create two additional models based on the example model from :any:`model_description`.
+The first of these models 
\ No newline at end of file
diff --git a/docs/build/html/_sources/model_description.rst.txt b/docs/build/html/_sources/model_description.rst.txt
index bb719886b9a5a61cfed3f44eebcf810b5ca46ef8..923f20a7cb126bf4f068f6f824c6ba0c6f0f9f42 100644
--- a/docs/build/html/_sources/model_description.rst.txt
+++ b/docs/build/html/_sources/model_description.rst.txt
@@ -6,10 +6,10 @@ Models
    .. container:: leftside
    
       BayesValidRox gives options to create interfaces for a variety of models with the class :any:`bayesvalidrox.pylink.pylink.PyLinkForwardModel`.
-	  Its main function is to run the model on given samples and to read in and contain MC references and observations.
+      Its main function is to run the model on given samples and to read in and contain MC references and observations.
 	  
-	  Models can be defined via python functions, shell commands or as general executables.
-	  This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.
+      Models can be defined via python functions, shell commands or as general executables.
+      This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.
 
    .. container:: rightside
    
diff --git a/docs/build/html/_sources/packagedescription.rst.txt b/docs/build/html/_sources/packagedescription.rst.txt
index f245959b8d5a4b1d56de4e9cc86cff64b2da9b98..1d1fd65173851b1c5942f7da35568c2fd3e4c696 100644
--- a/docs/build/html/_sources/packagedescription.rst.txt
+++ b/docs/build/html/_sources/packagedescription.rst.txt
@@ -69,3 +69,4 @@ The next pages lead through the topics given in BayesValidRox and describe the a
    al_description
    post_description
    bayes_description
+   bmc_description
diff --git a/docs/build/html/_sources/post_description.rst.txt b/docs/build/html/_sources/post_description.rst.txt
index af2172709f4581abfabdcfd06257edfa808aa501..987f18e7dbf8ea21cc987265bbbac7ac7a8d2ee1 100644
--- a/docs/build/html/_sources/post_description.rst.txt
+++ b/docs/build/html/_sources/post_description.rst.txt
@@ -4,11 +4,11 @@ Postprocessing
 
    .. container:: leftside
    
-         Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
-         The BayesValidRox class :any:`bayesvalidrox.post_processing.post_processing.PostProcessing` includes functions that are applicable to all types of surrogate model.
+      Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
+      The BayesValidRox class :any:`bayesvalidrox.post_processing.post_processing.PostProcessing` includes functions that are applicable to all types of surrogate model.
 		 
-		 * ``valid_metamodel``: visualizing some metamodel runs against the corresponding model runs
-		 * ``check_accuracy``: computing the RMSE error of the surrogate model
+      * ``valid_metamodel``: visualizing some metamodel runs against the corresponding model runs
+      * ``check_accuracy``: computing the RMSE error of the surrogate model
 		 
    .. container:: rightside
 
diff --git a/docs/build/html/al_description.html b/docs/build/html/al_description.html
index 78a5f609efb6ef18b9a5cf743e0927f79504fb15..e3cde5ecdeba4d96aa5f5ae5687880f353b4cfdb 100644
--- a/docs/build/html/al_description.html
+++ b/docs/build/html/al_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/analyticalfunction.html b/docs/build/html/analyticalfunction.html
index 42509cf3862f35bffb524e96a08c1519f3cd6267..799f0350ab63fcff73326e688d496645156564eb 100644
--- a/docs/build/html/analyticalfunction.html
+++ b/docs/build/html/analyticalfunction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/api.html b/docs/build/html/api.html
index d853aff4e2794fdef4103a72a3b981e1acafc568..7f918265aaa46ff4fce912683b613ad2fe00c692 100644
--- a/docs/build/html/api.html
+++ b/docs/build/html/api.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/bayes_description.html b/docs/build/html/bayes_description.html
index 62bb18a5a39b10a142d3caf25cd09dea371f6d75..487cb49bcb3232a3a6ff139ff4b954e25300bd07 100644
--- a/docs/build/html/bayes_description.html
+++ b/docs/build/html/bayes_description.html
@@ -3,10 +3,10 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="TUTORIAL" href="tutorial.html" /><link rel="prev" title="Postprocessing" href="post_description.html" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="Bayesian multi-model comparison" href="bmc_description.html" /><link rel="prev" title="Postprocessing" href="post_description.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
-        <title>Bayesian inference and multi-model comparison - bayesvalidrox 1.0.0 documentation</title>
+        <title>Bayesian inference - bayesvalidrox 1.0.0 documentation</title>
       <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=362ab14a" />
     <link rel="stylesheet" type="text/css" href="_static/styles/furo.css?v=135e06be" />
     <link rel="stylesheet" type="text/css" href="_static/styles/furo-extensions.css?v=36a5483c" />
@@ -141,7 +141,7 @@
           <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
         </button>
       </div>
-      <label class="toc-overlay-icon toc-header-icon no-toc" for="__toc">
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
         <div class="visually-hidden">Toggle table of contents sidebar</div>
         <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
       </label>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -329,15 +330,122 @@
               <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
             </button>
           </div>
-          <label class="toc-overlay-icon toc-content-icon no-toc" for="__toc">
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
             <div class="visually-hidden">Toggle table of contents sidebar</div>
             <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
           </label>
         </div>
         <article role="main">
-          <section id="bayesian-inference-and-multi-model-comparison">
-<h1>Bayesian inference and multi-model comparison<a class="headerlink" href="#bayesian-inference-and-multi-model-comparison" title="Link to this heading">¶</a></h1>
-<a class="reference internal image-reference" href="_images/bayesian_validation.png"><img alt="UML diagram for classes related to Bayesian inference and multi-model comparison." src="_images/bayesian_validation.png" style="width: 300px;" /></a>
+          <section id="bayesian-inference">
+<h1>Bayesian inference<a class="headerlink" href="#bayesian-inference" title="Link to this heading">¶</a></h1>
+<div class="twocol docutils container">
+<div class="leftside docutils container">
+<p>With Bayesian inference we ask the question ‘how does our understanding of the inputs change given some observation of the outputs of the model?’, i.e. we perform an updating step of the prior distributions to posterior, based on some observations.
+Bayesvalidrox provides a dedicated class to perform this task, <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html#bayesvalidrox.bayes_inference.bayes_inference.BayesInference" title="bayesvalidrox.bayes_inference.bayes_inference.BayesInference"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</span></code></a>, which infers the posterior via <code class="docutils literal notranslate"><span class="pre">rejection-sampling</span></code> or <code class="docutils literal notranslate"><span class="pre">MCMC</span></code>.
+The likelihood in rejection sampling is estimated with the help of <code class="docutils literal notranslate"><span class="pre">bootstrapping</span></code>.
+MCMC-specific parameters are to be given as a dictionary called <code class="docutils literal notranslate"><span class="pre">mcmc_params</span></code> and can include</p>
+<ul class="simple">
+<li><p><code class="docutils literal notranslate"><span class="pre">init_samples</span></code>: initial samples</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">n_steps</span></code>: number of steps</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">n_walkers</span></code>: number of walkers</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">n_burn</span></code>: length of the burn-in</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">moves</span></code>: function to use for the moves, e.g. taken from <code class="docutils literal notranslate"><span class="pre">emcee</span></code></p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">multiprocessing</span></code>: setting for multiprocessing</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>: verbosity</p></li>
+</ul>
+</div>
+<div class="rightside docutils container">
+<a class="reference internal image-reference" href="_images/bayesian_validation.png"><img alt="UML diagram for classes related to Bayesian inference." src="_images/bayesian_validation.png" style="width: 300px;" /></a>
+</div>
+</div>
+<p>The observation should be set as <code class="docutils literal notranslate"><span class="pre">Model.observations</span></code> in the <code class="docutils literal notranslate"><span class="pre">Engine</span></code>, and an estimation of its uncertainty can be provided as a <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html#bayesvalidrox.bayes_inference.discrepancy.Discrepancy" title="bayesvalidrox.bayes_inference.discrepancy.Discrepancy"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</span></code></a> object.</p>
+<section id="example">
+<h2>Example<a class="headerlink" href="#example" title="Link to this heading">¶</a></h2>
+<p>For this example we need to add the following imports.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">bayesvalidrox</span> <span class="kn">import</span> <span class="n">Discrepancy</span><span class="p">,</span> <span class="n">BayesInference</span>
+</pre></div>
+</div>
+<p>In order to run Bayesian inference we first need to provide an observation.
+For this example we take an evaluation of the model on some chosen sample and add the resulting values as <code class="docutils literal notranslate"><span class="pre">Model.observations</span></code>.
+As this expects a 1D-array for each output key, we need to change the format slightly.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">true_sample</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">2</span><span class="p">]]</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">observation</span> <span class="o">=</span> <span class="n">Model</span><span class="o">.</span><span class="n">run_model_parallel</span><span class="p">(</span><span class="n">true_sample</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">observations</span> <span class="o">=</span> <span class="p">{}</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">observation</span><span class="p">:</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="k">if</span> <span class="n">key</span> <span class="o">==</span> <span class="s1">&#39;x_values&#39;</span><span class="p">:</span>
+<span class="gp">&gt;&gt;&gt; </span>        <span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="o">=</span><span class="n">observation</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="k">else</span><span class="p">:</span>
+<span class="gp">&gt;&gt;&gt; </span>        <span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="o">=</span><span class="n">observation</span><span class="p">[</span><span class="n">key</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
+</pre></div>
+</div>
+<p>Next we define the uncertainty on the observation with the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html#bayesvalidrox.bayes_inference.discrepancy.Discrepancy" title="bayesvalidrox.bayes_inference.discrepancy.Discrepancy"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</span></code></a>.
+For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them.
+The <code class="docutils literal notranslate"><span class="pre">parameters</span></code> contain the variance for each point in the observation.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">obsData</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">DiscrepancyOpts</span> <span class="o">=</span> <span class="n">Discrepancy</span><span class="p">(</span><span class="s1">&#39;&#39;</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">type</span> <span class="o">=</span> <span class="s1">&#39;Gaussian&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">obsData</span><span class="o">**</span><span class="mi">2</span>
+</pre></div>
+</div>
+<p>Now we can initialize an object of class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html#bayesvalidrox.bayes_inference.bayes_inference.BayesInference" title="bayesvalidrox.bayes_inference.bayes_inference.BayesInference"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</span></code></a> with all the wanted properties.
+This object has to be given our <code class="docutils literal notranslate"><span class="pre">Engine</span></code>.
+If it should use the surrogate during inference, set <code class="docutils literal notranslate"><span class="pre">emulator</span></code> to <code class="docutils literal notranslate"><span class="pre">True</span></code>, otherwise the model will be evaluated directly.
+We also set the defined <code class="docutils literal notranslate"><span class="pre">Discrepancy</span></code>. and set <code class="docutils literal notranslate"><span class="pre">post_plot_pred</span></code> if posterior predictions should be visualized.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span> <span class="o">=</span> <span class="n">BayesInference</span><span class="p">(</span><span class="n">Engine_</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">emulator</span> <span class="o">=</span> <span class="kc">True</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">Discrepancy</span> <span class="o">=</span> <span class="n">DiscrepancyOpts</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">plot_post_pred</span> <span class="o">=</span> <span class="kc">True</span>
+</pre></div>
+</div>
+<p>In order to run with rejection sampling, we set the <code class="docutils literal notranslate"><span class="pre">inference_method</span></code> accordingly and add properties for <code class="docutils literal notranslate"><span class="pre">bootstrap</span></code>.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">inference_method</span> <span class="o">=</span> <span class="s1">&#39;rejection&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">bootstrap</span> <span class="o">=</span> <span class="kc">True</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">n_bootstrap_itrs</span> <span class="o">=</span> <span class="mi">500</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">bootstrap_noise</span> <span class="o">=</span> <span class="mi">2</span>
+</pre></div>
+</div>
+<p>If the sampling should be done with MCMC, then this is set as the <code class="docutils literal notranslate"><span class="pre">inference_method</span></code> and additional properties are given in <code class="docutils literal notranslate"><span class="pre">mcmc_params</span></code>.
+For this example we use the python package <code class="docutils literal notranslate"><span class="pre">emcee</span></code> to define the MCMC moves.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">inference_method</span> <span class="o">=</span> <span class="s1">&#39;MCMC&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">emcee</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">mcmc_params</span> <span class="o">=</span> <span class="p">{</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;n_steps&#39;</span><span class="p">:</span> <span class="mf">1e4</span><span class="p">,</span><span class="c1">#5,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;n_walkers&#39;</span><span class="p">:</span> <span class="mi">30</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;moves&#39;</span><span class="p">:</span> <span class="n">emcee</span><span class="o">.</span><span class="n">moves</span><span class="o">.</span><span class="n">KDEMove</span><span class="p">(),</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;multiprocessing&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;verbose&#39;</span><span class="p">:</span> <span class="kc">False</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="p">}</span>
+</pre></div>
+</div>
+<p>Then we run the inference.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">create_inference</span><span class="p">()</span>
+</pre></div>
+</div>
+<p>If the output directory <code class="docutils literal notranslate"><span class="pre">BayesObj.out_dir</span></code> is not set otherwise, the outputs are written into the folder <code class="docutils literal notranslate"><span class="pre">Outputs_Bayes_model_Calib</span></code>.
+This folder includes the posterior distribution of the input parameters, as well as the predictions resulting from the mean of the posterior.
+For inference with MCMC, chain diagnostics are also written out in the console.</p>
+<div class="twocol docutils container">
+<div class="leftside docutils container">
+<div class="highlight-py notranslate"><div class="highlight"><pre><span></span><span class="o">---------------</span><span class="n">Posterior</span> <span class="n">diagnostics</span><span class="o">---------------</span>
+<span class="n">Mean</span> <span class="n">auto</span><span class="o">-</span><span class="n">correlation</span> <span class="n">time</span><span class="p">:</span> <span class="mf">2.057</span>
+<span class="n">Thin</span><span class="p">:</span> <span class="mi">1</span>
+<span class="n">Burn</span><span class="o">-</span><span class="ow">in</span><span class="p">:</span> <span class="mi">4</span>
+<span class="n">Flat</span> <span class="n">chain</span> <span class="n">shape</span><span class="p">:</span> <span class="p">(</span><span class="mi">13380</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="n">Mean</span> <span class="n">acceptance</span> <span class="n">fraction</span><span class="o">*</span><span class="p">:</span> <span class="mf">0.752</span>
+<span class="n">Gelman</span><span class="o">-</span><span class="n">Rubin</span> <span class="n">Test</span><span class="o">**</span><span class="p">:</span>  <span class="p">[</span><span class="mf">1.001</span><span class="p">]</span>
+
+<span class="o">*</span> <span class="n">This</span> <span class="n">value</span> <span class="n">must</span> <span class="n">lay</span> <span class="n">between</span> <span class="mf">0.234</span> <span class="ow">and</span> <span class="mf">0.5</span><span class="o">.</span>
+<span class="o">**</span> <span class="n">These</span> <span class="n">values</span> <span class="n">must</span> <span class="n">be</span> <span class="n">smaller</span> <span class="n">than</span> <span class="mf">1.1</span><span class="o">.</span>
+<span class="o">--------------------------------------------------</span>
+</pre></div>
+</div>
+</div>
+<div class="rightside docutils container">
+<a class="reference internal image-reference" href="_images/Posterior_Dist_model_emulator.pdf"><img alt="Posterior distribution of the input parameter" src="_images/Posterior_Dist_model_emulator.pdf" style="width: 400px;" /></a>
+<a class="reference internal image-reference" href="_images/Post_Prior_Perd_model_emulator_A.pdf"><img alt="Comparison of posterior prediction to the observation" src="_images/Post_Prior_Perd_model_emulator_A.pdf" style="width: 400px;" /></a>
+</div>
+</div>
+</section>
 </section>
 
         </article>
@@ -345,12 +453,12 @@
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="tutorial.html">
+          <a class="next-page" href="bmc_description.html">
               <div class="page-info">
                 <div class="context">
                   <span>Next</span>
                 </div>
-                <div class="title">TUTORIAL</div>
+                <div class="title">Bayesian multi-model comparison</div>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
@@ -383,9 +491,28 @@
         
       </footer>
     </div>
-    <aside class="toc-drawer no-toc">
+    <aside class="toc-drawer">
       
       
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">Bayesian inference</a><ul>
+<li><a class="reference internal" href="#example">Example</a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
       
     </aside>
   </div>
diff --git a/docs/build/html/beam.html b/docs/build/html/beam.html
index 6c82f54b9c2f2bca66cd21adf154c9aa11a04319..64c4a4c02961b651df6c1cc9c11ae1648000a38b 100644
--- a/docs/build/html/beam.html
+++ b/docs/build/html/beam.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/bmc_description.html b/docs/build/html/bmc_description.html
new file mode 100644
index 0000000000000000000000000000000000000000..15dc599433ada04bae09746e0b0a1d7444a92ea8
--- /dev/null
+++ b/docs/build/html/bmc_description.html
@@ -0,0 +1,431 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="./">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="TUTORIAL" href="tutorial.html" /><link rel="prev" title="Bayesian inference" href="bayes_description.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>Bayesian multi-model comparison - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 current has-children"><a class="reference internal" href="packagedescription.html">USER GUIDE</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2"><a class="reference internal" href="input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="api.html">API</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.html">bayesvalidrox</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="bayesian-multi-model-comparison">
+<h1>Bayesian multi-model comparison<a class="headerlink" href="#bayesian-multi-model-comparison" title="Link to this heading">¶</a></h1>
+<div class="twocol docutils container">
+<div class="leftside docutils container">
+<p>Bayesvalidrox provides three distinct methods to compare sets of models against each other given some observation of the outputs, Bayes’ Factors, model weights and confusion matrices.
+These are contained within the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</span></code></a> and can be called one-at-a-time with their respective functions, or consecutively with the function <code class="docutils literal notranslate"><span class="pre">model_comparison_all()</span></code>.</p>
+</div>
+<div class="rightside docutils container">
+<a class="reference internal image-reference" href="_images/bayesian_model_comparison.png"><img alt="UML diagram for classes related to Bayesian multi-model comparison." src="_images/bayesian_model_comparison.png" style="width: 400px;" /></a>
+</div>
+</div>
+<section id="example">
+<h2>Example<a class="headerlink" href="#example" title="Link to this heading">¶</a></h2>
+<p>To perform model comparison, we first need to define the set of competing models.
+For this, we create two additional models based on the example model from <a class="reference internal" href="model_description.html"><span class="doc">Models</span></a>.
+The first of these models</p>
+</section>
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="tutorial.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">TUTORIAL</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayes_description.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">Bayesian inference</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">Bayesian multi-model comparison</a><ul>
+<li><a class="reference internal" href="#example">Example</a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="_static/doctools.js?v=9a2dae69"></script>
+    <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/docs/build/html/borehole.html b/docs/build/html/borehole.html
index eafbe8618ff8d0757196ae0777a1cf723a5fffbe..683c27d0e04ec78a166d826a129aac151452cda5 100644
--- a/docs/build/html/borehole.html
+++ b/docs/build/html/borehole.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/examples.html b/docs/build/html/examples.html
index 9d6b6cce855166cfe6ef716ab177457dbfa207cc..4c621310a3263574de929c0bdd7f0468c73256fb 100644
--- a/docs/build/html/examples.html
+++ b/docs/build/html/examples.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html
index 2b0791a3b4af33fa58bd71d15659bc6600d809eb..67a702598c7ef269e4c7bd789daf188a8d2611a0 100644
--- a/docs/build/html/genindex.html
+++ b/docs/build/html/genindex.html
@@ -168,7 +168,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/index.html b/docs/build/html/index.html
index 460cf3cb78de9b9cd652a03cf2a89b74f44b34af..dcad29fd053e5f804ccff50405434996036a710f 100644
--- a/docs/build/html/index.html
+++ b/docs/build/html/index.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/input_description.html b/docs/build/html/input_description.html
index 39e16d2b9c9ebbb21b05daa969ec7defe54b2f01..15276ff89db8a4735a131a0ee6fd8defc947bba0 100644
--- a/docs/build/html/input_description.html
+++ b/docs/build/html/input_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/ishigami.html b/docs/build/html/ishigami.html
index 06d5b7d8c9adcb37841b53c2a5e31c6cdb19a142..dcf8bda0beb013af407cfc2bc09692aa9e5f66e9 100644
--- a/docs/build/html/ishigami.html
+++ b/docs/build/html/ishigami.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/model_description.html b/docs/build/html/model_description.html
index 2dbaeed956d41cede70ba75d52434aab60a16698..da41e466709a96f632cca9cccb79f6e51e129f7f 100644
--- a/docs/build/html/model_description.html
+++ b/docs/build/html/model_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -339,12 +340,10 @@
 <h1>Models<a class="headerlink" href="#models" title="Link to this heading">¶</a></h1>
 <div class="twocol docutils container">
 <div class="leftside docutils container">
-<dl>
-<dt>BayesValidRox gives options to create interfaces for a variety of models with the class <a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="bayesvalidrox.pylink.pylink.PyLinkForwardModel"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.pylink.pylink.PyLinkForwardModel</span></code></a>.</dt><dd><p>Its main function is to run the model on given samples and to read in and contain MC references and observations.</p>
+<p>BayesValidRox gives options to create interfaces for a variety of models with the class <a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="bayesvalidrox.pylink.pylink.PyLinkForwardModel"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.pylink.pylink.PyLinkForwardModel</span></code></a>.
+Its main function is to run the model on given samples and to read in and contain MC references and observations.</p>
 <p>Models can be defined via python functions, shell commands or as general executables.
 This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.</p>
-</dd>
-</dl>
 </div>
 <div class="rightside docutils container">
 <a class="reference internal image-reference" href="_images/model.png"><img alt="UML diagram for the bayesvalidrox class :any:`bayesvalidrox.pylink.pylink.PyLinkForwardModel`." src="_images/model.png" style="width: 150px;" /></a>
diff --git a/docs/build/html/modelcomparison.html b/docs/build/html/modelcomparison.html
index 723a66ed173227b1716a63d607f17305a2b44e17..472be01bb69119cbebd70a3d8d3d1a7eee0e5028 100644
--- a/docs/build/html/modelcomparison.html
+++ b/docs/build/html/modelcomparison.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv
index b24151365f5b50ce51d7b5ed10cfdff340f22cf1..9269935a85e887aac2b1b3f13b91a4a9385002b6 100644
Binary files a/docs/build/html/objects.inv and b/docs/build/html/objects.inv differ
diff --git a/docs/build/html/ohaganfunction.html b/docs/build/html/ohaganfunction.html
index cfe645ff03aebcd76205c1fc126f95d245425524..e7b7558755f9fd027a76475797e0e6836f331103 100644
--- a/docs/build/html/ohaganfunction.html
+++ b/docs/build/html/ohaganfunction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/packagedescription.html b/docs/build/html/packagedescription.html
index c76923ed2587b0b106908c8890e2adb48ed50353..875119c2724b77d8943b9bd3cb9f76be9c293d0e 100644
--- a/docs/build/html/packagedescription.html
+++ b/docs/build/html/packagedescription.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -382,7 +383,8 @@ If multiple (surrogate) models are given, they can be compared against each othe
 <li class="toctree-l1"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l1"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l1"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l1"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l1"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l1"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </div>
 </section>
diff --git a/docs/build/html/pollution.html b/docs/build/html/pollution.html
index 4b71758ef44c4e45b163bb5f6e68271803fd1f39..e7ae39a11f7ac73ca57387256cb01bde1e73b773 100644
--- a/docs/build/html/pollution.html
+++ b/docs/build/html/pollution.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/post_description.html b/docs/build/html/post_description.html
index d5eb2c29ef5a75b1b970f1b6d38b047b0d36cb55..33fa48a7a24fbaac8fc4bbd44531c37642a64171 100644
--- a/docs/build/html/post_description.html
+++ b/docs/build/html/post_description.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="Bayesian inference and multi-model comparison" href="bayes_description.html" /><link rel="prev" title="Active learning: iteratively expanding the training set" href="al_description.html" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="Bayesian inference" href="bayes_description.html" /><link rel="prev" title="Active learning: iteratively expanding the training set" href="al_description.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>Postprocessing - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -341,12 +342,10 @@
 <div class="leftside docutils container">
 <p>Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
 The BayesValidRox class <a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html#bayesvalidrox.post_processing.post_processing.PostProcessing" title="bayesvalidrox.post_processing.post_processing.PostProcessing"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.post_processing.post_processing.PostProcessing</span></code></a> includes functions that are applicable to all types of surrogate model.</p>
-<blockquote>
-<div><ul class="simple">
+<ul class="simple">
 <li><p><code class="docutils literal notranslate"><span class="pre">valid_metamodel</span></code>: visualizing some metamodel runs against the corresponding model runs</p></li>
 <li><p><code class="docutils literal notranslate"><span class="pre">check_accuracy</span></code>: computing the RMSE error of the surrogate model</p></li>
 </ul>
-</div></blockquote>
 </div>
 <div class="rightside docutils container">
 <a class="reference internal image-reference" href="_images/postprocessing.png"><img alt="UML diagram for the classes and functions used in active learning in BayesValidRox." src="_images/postprocessing.png" style="width: 300px;" /></a>
@@ -407,7 +406,7 @@ The BayesValidRox class <a class="reference internal" href="_autosummary/bayesva
                 <div class="context">
                   <span>Next</span>
                 </div>
-                <div class="title">Bayesian inference and multi-model comparison</div>
+                <div class="title">Bayesian inference</div>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
diff --git a/docs/build/html/py-modindex.html b/docs/build/html/py-modindex.html
index a10614c9b79526a3d472e0d16dc897c071d4208e..9246a7ee0e6c25f120eaa3824bf53a47106fd299 100644
--- a/docs/build/html/py-modindex.html
+++ b/docs/build/html/py-modindex.html
@@ -168,7 +168,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/search.html b/docs/build/html/search.html
index 8fe37498ef5854389bf8baad867f2b6e492744ad..5e4d1ba200ec4a1600843d12c68bcc37c194c2f4 100644
--- a/docs/build/html/search.html
+++ b/docs/build/html/search.html
@@ -167,7 +167,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js
index 3aaa01c41f479cebaf4856492681920308cc6705..a142440bea3e1c65614a859aa3c0c7fd6477d370 100644
--- a/docs/build/html/searchindex.js
+++ b/docs/build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"API": [[66, "api"]], "Active learning: iteratively expanding the training set": [[64, "active-learning-iteratively-expanding-the-training-set"]], "Arguments": [[29, "arguments"], [42, "arguments"], [42, "id2"]], "Attributes": [[3, "attributes"], [5, "attributes"], [7, "attributes"], [9, "attributes"], [13, "attributes"], [16, "attributes"], [25, "attributes"], [26, "attributes"], [39, "attributes"], [42, "attributes"], [47, "attributes"], [49, "attributes"], [50, "attributes"], [52, "attributes"], [55, "attributes"], [58, "attributes"], [60, "attributes"]], "Bayesian Inference": [[81, "bayesian-inference"]], "Bayesian inference and multi-model comparison": [[67, "bayesian-inference-and-multi-model-comparison"]], "Contribution": [[71, "contribution"]], "Define probabilistic input model": [[81, "define-probabilistic-input-model"]], "Define surrogate (meta) model": [[81, "define-surrogate-meta-model"]], "Define the data uncertainty": [[81, "define-the-data-uncertainty"]], "Define the model with PyLinkForwardModel": [[81, "define-the-model-with-pylinkforwardmodel"]], "Discrepancy": [[65, "id3"], [68, "id3"]], "EXAMPLES": [[70, "examples"]], "Example": [[64, "example"], [72, "example"], [74, "example"], [79, "example"], [80, "example"]], "Example: Analytical function": [[65, "example-analytical-function"]], "Example: OHagan-function": [[76, "example-ohagan-function"]], "Example: beam": [[68, "example-beam"]], "Example: borehole": [[69, "example-borehole"]], "Example: ishigami": [[73, "example-ishigami"]], "Example: model comparison": [[75, "example-model-comparison"]], "Example: pollution": [[78, "example-pollution"]], "Examples": [[49, "examples"]], "Exploration, exploitation and tradeoff": [[64, "exploration-exploitation-and-tradeoff"]], "Further contents": [[71, "further-contents"]], "Import necessary libraries": [[81, "import-necessary-libraries"]], "Indices and tables": [[71, "indices-and-tables"]], "Installation": [[71, "installation"], [77, "installation"]], "License": [[71, "license"]], "Links": [[71, "links"]], "MetaModel options": [[80, "metamodel-options"]], "MetaModel settings": [[65, "id4"], [68, "id4"], [69, "id3"], [73, "id3"], [75, "id7"], [76, "id3"], [78, "id3"]], "Model 1: L2_model": [[75, "model-1-l2-model"]], "Model 1: NL2_model": [[75, "model-1-nl2-model"]], "Model 1: NL4_model": [[75, "model-1-nl4-model"]], "Model and Data": [[65, "model-and-data"], [68, "model-and-data"], [69, "model-and-data"], [73, "model-and-data"], [76, "model-and-data"], [78, "model-and-data"]], "Models": [[74, "models"]], "Note": [[39, "note"], [60, "note"]], "Notes": [[24, "notes"], [25, "notes"], [26, "notes"], [52, "notes"], [55, "notes"]], "Overview": [[77, "overview"]], "Parameters": [[3, "parameters"], [3, "id2"], [3, "id4"], [3, "id7"], [5, "parameters"], [5, "id1"], [5, "id3"], [5, "id5"], [5, "id7"], [5, "id9"], [5, "id11"], [5, "id13"], [5, "id15"], [7, "parameters"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id5"], [9, "id7"], [9, "id9"], [9, "id11"], [10, "parameters"], [13, "parameters"], [13, "id1"], [13, "id4"], [13, "id6"], [13, "id8"], [13, "id10"], [16, "parameters"], [16, "id2"], [16, "id4"], [16, "id6"], [16, "id8"], [16, "id10"], [16, "id12"], [17, "parameters"], [22, "parameters"], [24, "parameters"], [24, "id2"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id12"], [25, "id1"], [25, "id3"], [25, "id5"], [25, "id7"], [25, "id9"], [25, "id11"], [25, "id15"], [25, "id17"], [26, "id1"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [26, "id11"], [26, "id15"], [26, "id17"], [27, "parameters"], [29, "parameters"], [29, "id1"], [29, "id3"], [29, "id5"], [29, "id8"], [29, "id14"], [29, "id16"], [29, "id18"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [39, "parameters"], [39, "id2"], [39, "id4"], [39, "id6"], [39, "id8"], [39, "id10"], [39, "id12"], [39, "id14"], [39, "id16"], [40, "parameters"], [47, "parameters"], [47, "id2"], [47, "id4"], [52, "parameters"], [52, "id1"], [52, "id2"], [52, "id5"], [52, "id7"], [52, "id9"], [52, "id11"], [52, "id13"], [52, "id17"], [55, "parameters"], [55, "id1"], [55, "id3"], [55, "id5"], [55, "id8"], [55, "id10"], [55, "id14"], [55, "id16"], [58, "parameters"], [58, "id1"], [60, "parameters"], [60, "id4"], [60, "id6"], [60, "id8"], [60, "id10"], [60, "id12"], [60, "id14"], [60, "id16"], [60, "id18"], [60, "id20"], [61, "parameters"], [62, "parameters"], [63, "parameters"]], "Parameters:": [[25, "parameters"], [26, "parameters"]], "Post-processing": [[81, "post-processing"]], "Postprocessing": [[79, "postprocessing"]], "Priors": [[65, "id2"], [68, "id2"], [69, "id2"], [73, "id2"], [76, "id2"], [78, "id2"]], "Priors, input space and experimental design": [[72, "priors-input-space-and-experimental-design"]], "Priors1": [[75, "id2"], [75, "id4"], [75, "id6"]], "Pylink model": [[65, "id1"], [68, "id1"], [69, "id1"], [73, "id1"], [76, "id1"], [78, "id1"]], "Pylink model1": [[75, "id1"], [75, "id3"], [75, "id5"]], "Quickstart": [[71, "quickstart"]], "Raises": [[13, "raises"], [29, "raises"], [62, "raises"]], "References": [[52, "references"], [55, "references"], [55, "id7"], [58, "references"], [58, "id2"]], "Returns": [[3, "returns"], [3, "id1"], [3, "id3"], [3, "id5"], [3, "id6"], [3, "id8"], [5, "returns"], [5, "id2"], [5, "id4"], [5, "id6"], [5, "id8"], [5, "id10"], [5, "id12"], [5, "id14"], [5, "id16"], [5, "id17"], [7, "returns"], [9, "returns"], [9, "id2"], [9, "id4"], [9, "id6"], [9, "id8"], [9, "id10"], [9, "id12"], [10, "returns"], [13, "returns"], [13, "id2"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [13, "id11"], [16, "returns"], [16, "id1"], [16, "id3"], [16, "id5"], [16, "id7"], [16, "id9"], [16, "id11"], [16, "id13"], [17, "returns"], [22, "returns"], [24, "returns"], [24, "id1"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id11"], [24, "id13"], [25, "returns"], [25, "id2"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [25, "id14"], [25, "id16"], [25, "id18"], [26, "returns"], [26, "id2"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [26, "id14"], [26, "id16"], [26, "id18"], [27, "returns"], [29, "returns"], [29, "id2"], [29, "id4"], [29, "id6"], [29, "id7"], [29, "id9"], [29, "id10"], [29, "id11"], [29, "id12"], [29, "id13"], [29, "id15"], [29, "id17"], [29, "id19"], [30, "returns"], [31, "returns"], [32, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [39, "returns"], [39, "id1"], [39, "id3"], [39, "id5"], [39, "id7"], [39, "id9"], [39, "id11"], [39, "id13"], [39, "id15"], [39, "id17"], [40, "returns"], [42, "returns"], [42, "id1"], [42, "id3"], [42, "id4"], [47, "returns"], [47, "id1"], [47, "id3"], [47, "id5"], [49, "returns"], [52, "returns"], [52, "id3"], [52, "id4"], [52, "id6"], [52, "id8"], [52, "id10"], [52, "id12"], [52, "id16"], [52, "id18"], [55, "returns"], [55, "id2"], [55, "id4"], [55, "id6"], [55, "id9"], [55, "id13"], [55, "id15"], [55, "id17"], [58, "returns"], [60, "returns"], [60, "id1"], [60, "id2"], [60, "id3"], [60, "id5"], [60, "id7"], [60, "id9"], [60, "id11"], [60, "id13"], [60, "id15"], [60, "id17"], [60, "id19"], [60, "id21"], [61, "returns"], [62, "returns"], [63, "returns"]], "Sequential training": [[81, "sequential-training"]], "Set the experimental design": [[81, "set-the-experimental-design"]], "Surrogate": [[65, "surrogate"], [68, "surrogate"], [69, "surrogate"], [73, "surrogate"], [76, "surrogate"], [78, "surrogate"]], "Surrogate-assisted\u00a0Bayesian validation of computational models": [[71, "surrogate-assisted-bayesian-validation-of-computational-models"]], "Surrogates 1-3": [[75, "surrogates-1-3"]], "TUTORIAL": [[81, "tutorial"]], "Train the surrogate with an engine": [[81, "train-the-surrogate-with-an-engine"]], "Training choices": [[65, "id5"], [68, "id5"], [69, "id4"], [73, "id4"], [75, "id8"], [76, "id4"], [78, "id4"]], "Training surrogate models": [[80, "training-surrogate-models"]], "Training with the engine": [[80, "training-with-the-engine"]], "USER GUIDE": [[77, "user-guide"]], "bayesvalidrox": [[0, "module-bayesvalidrox"]], "bayesvalidrox.bayes_inference": [[1, "module-bayesvalidrox.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference": [[2, "module-bayesvalidrox.bayes_inference.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, "bayesvalidrox-bayes-inference-bayes-inference-bayesinference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[4, "module-bayesvalidrox.bayes_inference.bayes_model_comparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, "bayesvalidrox-bayes-inference-bayes-model-comparison-bayesmodelcomparison"]], "bayesvalidrox.bayes_inference.discrepancy": [[6, "module-bayesvalidrox.bayes_inference.discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, "bayesvalidrox-bayes-inference-discrepancy-discrepancy"]], "bayesvalidrox.bayes_inference.mcmc": [[8, "module-bayesvalidrox.bayes_inference.mcmc"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, "bayesvalidrox-bayes-inference-mcmc-mcmc"]], "bayesvalidrox.bayes_inference.mcmc.gelman_rubin": [[10, "bayesvalidrox-bayes-inference-mcmc-gelman-rubin"]], "bayesvalidrox.post_processing": [[11, "module-bayesvalidrox.post_processing"]], "bayesvalidrox.post_processing.post_processing": [[12, "module-bayesvalidrox.post_processing.post_processing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, "bayesvalidrox-post-processing-post-processing-postprocessing"]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink"]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, "bayesvalidrox-pylink-pylink-pylinkforwardmodel"]], "bayesvalidrox.pylink.pylink.within_range": [[17, "bayesvalidrox-pylink-pylink-within-range"]], "bayesvalidrox.surrogate_models": [[18, "module-bayesvalidrox.surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[19, "module-bayesvalidrox.surrogate_models.adaptPlot"]], "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot": [[20, "bayesvalidrox-surrogate-models-adaptplot-adaptplot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[21, "module-bayesvalidrox.surrogate_models.apoly_construction"]], "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction": [[22, "bayesvalidrox-surrogate-models-apoly-construction-apoly-construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[23, "module-bayesvalidrox.surrogate_models.bayes_linear"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, "bayesvalidrox-surrogate-models-bayes-linear-bayesianlinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, "bayesvalidrox-surrogate-models-bayes-linear-eblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, "bayesvalidrox-surrogate-models-bayes-linear-vblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean": [[27, "bayesvalidrox-surrogate-models-bayes-linear-gamma-mean"]], "bayesvalidrox.surrogate_models.engine": [[28, "module-bayesvalidrox.surrogate_models.engine"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, "bayesvalidrox-surrogate-models-engine-engine"]], "bayesvalidrox.surrogate_models.engine.hellinger_distance": [[30, "bayesvalidrox-surrogate-models-engine-hellinger-distance"]], "bayesvalidrox.surrogate_models.engine.logpdf": [[31, "bayesvalidrox-surrogate-models-engine-logpdf"]], "bayesvalidrox.surrogate_models.engine.subdomain": [[32, "bayesvalidrox-surrogate-models-engine-subdomain"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[33, "module-bayesvalidrox.surrogate_models.eval_rec_rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule": [[34, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary": [[35, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule-arbitrary"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis": [[36, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-univ-basis"]], "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs": [[37, "bayesvalidrox-surrogate-models-eval-rec-rule-poly-rec-coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[38, "module-bayesvalidrox.surrogate_models.exp_designs"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, "bayesvalidrox-surrogate-models-exp-designs-expdesigns"]], "bayesvalidrox.surrogate_models.exp_designs.check_ranges": [[40, "bayesvalidrox-surrogate-models-exp-designs-check-ranges"]], "bayesvalidrox.surrogate_models.exploration": [[41, "module-bayesvalidrox.surrogate_models.exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, "bayesvalidrox-surrogate-models-exploration-exploration"]], "bayesvalidrox.surrogate_models.glexindex": [[43, "module-bayesvalidrox.surrogate_models.glexindex"]], "bayesvalidrox.surrogate_models.glexindex.cross_truncate": [[44, "bayesvalidrox-surrogate-models-glexindex-cross-truncate"]], "bayesvalidrox.surrogate_models.glexindex.glexindex": [[45, "bayesvalidrox-surrogate-models-glexindex-glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[46, "module-bayesvalidrox.surrogate_models.input_space"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, "bayesvalidrox-surrogate-models-input-space-inputspace"]], "bayesvalidrox.surrogate_models.inputs": [[48, "module-bayesvalidrox.surrogate_models.inputs"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, "bayesvalidrox-surrogate-models-inputs-input"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, "bayesvalidrox-surrogate-models-inputs-marginal"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[51, "module-bayesvalidrox.surrogate_models.orthogonal_matching_pursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-orthogonalmatchingpursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr": [[53, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-corr"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[54, "module-bayesvalidrox.surrogate_models.reg_fast_ard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, "bayesvalidrox-surrogate-models-reg-fast-ard-regressionfastard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions": [[56, "bayesvalidrox-surrogate-models-reg-fast-ard-update-precisions"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[57, "module-bayesvalidrox.surrogate_models.reg_fast_laplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, "bayesvalidrox-surrogate-models-reg-fast-laplace-regressionfastlaplace"]], "bayesvalidrox.surrogate_models.surrogate_models": [[59, "module-bayesvalidrox.surrogate_models.surrogate_models"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[60, "bayesvalidrox-surrogate-models-surrogate-models-metamodel"]], "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error": [[61, "bayesvalidrox-surrogate-models-surrogate-models-corr-loocv-error"]], "bayesvalidrox.surrogate_models.surrogate_models.create_psi": [[62, "bayesvalidrox-surrogate-models-surrogate-models-create-psi"]], "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator": [[63, "bayesvalidrox-surrogate-models-surrogate-models-gaussian-process-emulator"]]}, "docnames": ["_autosummary/bayesvalidrox", "_autosummary/bayesvalidrox.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "_autosummary/bayesvalidrox.bayes_inference.discrepancy", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "_autosummary/bayesvalidrox.bayes_inference.mcmc", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "_autosummary/bayesvalidrox.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing", "_autosummary/bayesvalidrox.pylink", "_autosummary/bayesvalidrox.pylink.pylink", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel", "_autosummary/bayesvalidrox.pylink.pylink.within_range", "_autosummary/bayesvalidrox.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "_autosummary/bayesvalidrox.surrogate_models.engine", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges", "_autosummary/bayesvalidrox.surrogate_models.exploration", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration", "_autosummary/bayesvalidrox.surrogate_models.glexindex", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex", "_autosummary/bayesvalidrox.surrogate_models.input_space", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace", "_autosummary/bayesvalidrox.surrogate_models.inputs", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "al_description", "analyticalfunction", "api", "bayes_description", "beam", "borehole", "examples", "index", "input_description", "ishigami", "model_description", "modelcomparison", "ohaganfunction", "packagedescription", "pollution", "post_description", "surrogate_description", "tutorial"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["_autosummary/bayesvalidrox.rst", "_autosummary/bayesvalidrox.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.rst", "_autosummary/bayesvalidrox.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.rst", "_autosummary/bayesvalidrox.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.rst", "_autosummary/bayesvalidrox.pylink.pylink.within_range.rst", "_autosummary/bayesvalidrox.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.rst", "al_description.rst", "analyticalfunction.rst", "api.rst", "bayes_description.rst", "beam.rst", "borehole.rst", "examples.rst", "index.rst", "input_description.rst", "ishigami.rst", "model_description.rst", "modelcomparison.rst", "ohaganfunction.rst", "packagedescription.rst", "pollution.rst", "post_description.rst", "surrogate_description.rst", "tutorial.rst"], "indexentries": {}, "objects": {"": [[0, 0, 0, "-", "bayesvalidrox"]], "bayesvalidrox": [[1, 0, 0, "-", "bayes_inference"], [11, 0, 0, "-", "post_processing"], [14, 0, 0, "-", "pylink"], [18, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.bayes_inference": [[2, 0, 0, "-", "bayes_inference"], [4, 0, 0, "-", "bayes_model_comparison"], [6, 0, 0, "-", "discrepancy"], [8, 0, 0, "-", "mcmc"]], "bayesvalidrox.bayes_inference.bayes_inference": [[3, 1, 1, "", "BayesInference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, 2, 1, "", "__init__"], [3, 2, 1, "", "create_error_model"], [3, 2, 1, "", "create_inference"], [3, 2, 1, "", "normpdf"], [3, 2, 1, "", "perform_bootstrap"], [3, 2, 1, "", "plot_log_BME"], [3, 2, 1, "", "plot_post_params"], [3, 2, 1, "", "setup_inference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[5, 1, 1, "", "BayesModelComparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, 2, 1, "", "__init__"], [5, 2, 1, "", "cal_model_weight"], [5, 2, 1, "", "calc_bayes_factors"], [5, 2, 1, "", "calc_justifiability_analysis"], [5, 2, 1, "", "calc_model_weights"], [5, 2, 1, "", "generate_dataset"], [5, 2, 1, "", "model_comparison_all"], [5, 2, 1, "", "plot_bayes_factor"], [5, 2, 1, "", "plot_just_analysis"], [5, 2, 1, "", "plot_model_weights"], [5, 2, 1, "", "setup"]], "bayesvalidrox.bayes_inference.discrepancy": [[7, 1, 1, "", "Discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, 2, 1, "", "__init__"], [7, 2, 1, "", "get_sample"]], "bayesvalidrox.bayes_inference.mcmc": [[9, 1, 1, "", "MCMC"], [10, 3, 1, "", "gelman_rubin"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, 2, 1, "", "__init__"], [9, 2, 1, "", "eval_model"], [9, 2, 1, "", "log_likelihood"], [9, 2, 1, "", "log_posterior"], [9, 2, 1, "", "log_prior"], [9, 2, 1, "", "normpdf"], [9, 2, 1, "", "run_sampler"], [9, 2, 1, "", "train_error_model"]], "bayesvalidrox.post_processing": [[12, 0, 0, "-", "post_processing"]], "bayesvalidrox.post_processing.post_processing": [[13, 1, 1, "", "PostProcessing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, 2, 1, "", "__init__"], [13, 2, 1, "", "check_accuracy"], [13, 2, 1, "", "check_reg_quality"], [13, 2, 1, "", "compute_pce_moments"], [13, 2, 1, "", "plot_moments"], [13, 2, 1, "", "plot_seq_design_diagnostics"], [13, 2, 1, "", "sobol_indices"], [13, 2, 1, "", "valid_metamodel"]], "bayesvalidrox.pylink": [[15, 0, 0, "-", "pylink"]], "bayesvalidrox.pylink.pylink": [[16, 1, 1, "", "PyLinkForwardModel"], [17, 3, 1, "", "within_range"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, 1, 1, "", "OutputData"], [16, 2, 1, "", "__init__"], [16, 2, 1, "", "read_observation"], [16, 2, 1, "", "read_output"], [16, 2, 1, "", "run_command"], [16, 2, 1, "", "run_forwardmodel"], [16, 2, 1, "", "run_model_parallel"], [16, 2, 1, "", "uMBridge_model"], [16, 2, 1, "", "update_input_params"], [16, 2, 1, "", "zip_subdirs"]], "bayesvalidrox.surrogate_models": [[19, 0, 0, "-", "adaptPlot"], [21, 0, 0, "-", "apoly_construction"], [23, 0, 0, "-", "bayes_linear"], [28, 0, 0, "-", "engine"], [33, 0, 0, "-", "eval_rec_rule"], [38, 0, 0, "-", "exp_designs"], [41, 0, 0, "-", "exploration"], [43, 0, 0, "-", "glexindex"], [46, 0, 0, "-", "input_space"], [48, 0, 0, "-", "inputs"], [51, 0, 0, "-", "orthogonal_matching_pursuit"], [54, 0, 0, "-", "reg_fast_ard"], [57, 0, 0, "-", "reg_fast_laplace"], [59, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[20, 3, 1, "", "adaptPlot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[22, 3, 1, "", "apoly_construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[24, 1, 1, "", "BayesianLinearRegression"], [25, 1, 1, "", "EBLinearRegression"], [26, 1, 1, "", "VBLinearRegression"], [27, 3, 1, "", "gamma_mean"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, 2, 1, "", "__init__"], [24, 2, 1, "", "fit"], [24, 2, 1, "", "get_metadata_routing"], [24, 2, 1, "", "get_params"], [24, 2, 1, "", "predict"], [24, 2, 1, "", "predict_dist"], [24, 2, 1, "", "score"], [24, 2, 1, "", "set_params"], [24, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, 2, 1, "", "__init__"], [25, 2, 1, "", "fit"], [25, 2, 1, "", "get_metadata_routing"], [25, 2, 1, "", "get_params"], [25, 2, 1, "", "predict"], [25, 2, 1, "", "predict_dist"], [25, 2, 1, "", "score"], [25, 2, 1, "", "set_params"], [25, 2, 1, "", "set_predict_request"], [25, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, 2, 1, "", "__init__"], [26, 2, 1, "", "fit"], [26, 2, 1, "", "get_metadata_routing"], [26, 2, 1, "", "get_params"], [26, 2, 1, "", "predict"], [26, 2, 1, "", "predict_dist"], [26, 2, 1, "", "score"], [26, 2, 1, "", "set_params"], [26, 2, 1, "", "set_predict_request"], [26, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.engine": [[29, 1, 1, "", "Engine"], [30, 3, 1, "", "hellinger_distance"], [31, 3, 1, "", "logpdf"], [32, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, 2, 1, "", "__init__"], [29, 2, 1, "", "choose_next_sample"], [29, 2, 1, "", "dual_annealing"], [29, 2, 1, "", "eval_metamodel"], [29, 2, 1, "", "run_util_func"], [29, 2, 1, "", "start_engine"], [29, 2, 1, "", "tradeoff_weights"], [29, 2, 1, "", "train_normal"], [29, 2, 1, "", "train_seq_design"], [29, 2, 1, "", "train_sequential"], [29, 2, 1, "", "util_AlphOptDesign"], [29, 2, 1, "", "util_BayesianActiveDesign"], [29, 2, 1, "", "util_BayesianDesign"], [29, 2, 1, "", "util_VarBasedDesign"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[34, 3, 1, "", "eval_rec_rule"], [35, 3, 1, "", "eval_rec_rule_arbitrary"], [36, 3, 1, "", "eval_univ_basis"], [37, 3, 1, "", "poly_rec_coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[39, 1, 1, "", "ExpDesigns"], [40, 3, 1, "", "check_ranges"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, 2, 1, "", "__init__"], [39, 2, 1, "", "build_polytypes"], [39, 2, 1, "", "check_valid_inputs"], [39, 2, 1, "", "generate_ED"], [39, 2, 1, "", "generate_samples"], [39, 2, 1, "", "init_param_space"], [39, 2, 1, "", "pcm_sampler"], [39, 2, 1, "", "plot_samples"], [39, 2, 1, "", "random_sampler"], [39, 2, 1, "", "read_from_file"], [39, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.exploration": [[42, 1, 1, "", "Exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, 2, 1, "", "__init__"], [42, 2, 1, "", "approximate_voronoi"], [42, 2, 1, "", "get_exploration_samples"], [42, 2, 1, "", "get_mc_samples"], [42, 2, 1, "", "get_vornoi_samples"]], "bayesvalidrox.surrogate_models.glexindex": [[44, 3, 1, "", "cross_truncate"], [45, 3, 1, "", "glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[47, 1, 1, "", "InputSpace"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, 2, 1, "", "__init__"], [47, 2, 1, "", "build_polytypes"], [47, 2, 1, "", "check_valid_inputs"], [47, 2, 1, "", "init_param_space"], [47, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.inputs": [[49, 1, 1, "", "Input"], [50, 1, 1, "", "Marginal"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, 2, 1, "", "__init__"], [49, 2, 1, "", "add_marginals"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, 2, 1, "", "__init__"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[52, 1, 1, "", "OrthogonalMatchingPursuit"], [53, 3, 1, "", "corr"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, 2, 1, "", "__init__"], [52, 2, 1, "", "blockwise_inverse"], [52, 2, 1, "", "fit"], [52, 2, 1, "", "get_metadata_routing"], [52, 2, 1, "", "get_params"], [52, 2, 1, "", "loo_error"], [52, 2, 1, "", "predict"], [52, 2, 1, "", "score"], [52, 2, 1, "", "set_params"], [52, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[55, 1, 1, "", "RegressionFastARD"], [56, 3, 1, "", "update_precisions"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, 2, 1, "", "__init__"], [55, 2, 1, "", "fit"], [55, 2, 1, "", "get_metadata_routing"], [55, 2, 1, "", "get_params"], [55, 2, 1, "", "log_marginal_like"], [55, 2, 1, "", "predict"], [55, 2, 1, "", "score"], [55, 2, 1, "", "set_params"], [55, 2, 1, "", "set_predict_request"], [55, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[58, 1, 1, "", "RegressionFastLaplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, 2, 1, "", "__init__"], [58, 2, 1, "", "predict"]], "bayesvalidrox.surrogate_models.surrogate_models": [[60, 1, 1, "", "MetaModel"], [61, 3, 1, "", "corr_loocv_error"], [62, 3, 1, "", "create_psi"], [63, 3, 1, "", "gaussian_process_emulator"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "adaptive_regression"], [60, 2, 1, "", "add_InputSpace"], [60, 1, 1, "", "auto_vivification"], [60, 2, 1, "", "build_metamodel"], [60, 2, 1, "", "copy_meta_model_opts"], [60, 2, 1, "", "create_model_error"], [60, 2, 1, "", "eval_metamodel"], [60, 2, 1, "", "eval_model_error"], [60, 2, 1, "", "fit"], [60, 2, 1, "", "generate_polynomials"], [60, 2, 1, "", "pca_transformation"], [60, 2, 1, "", "regression"], [60, 2, 1, "", "univ_basis_vals"], [60, 2, 1, "", "update_pce_coeffs"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel.auto_vivification": [[60, 2, 1, "", "clear"], [60, 2, 1, "", "copy"], [60, 2, 1, "", "fromkeys"], [60, 2, 1, "", "get"], [60, 2, 1, "", "items"], [60, 2, 1, "", "keys"], [60, 2, 1, "", "pop"], [60, 2, 1, "", "popitem"], [60, 2, 1, "", "setdefault"], [60, 2, 1, "", "update"], [60, 2, 1, "", "values"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"": [9, 13, 16, 22, 24, 25, 26, 29, 33, 42, 52, 55, 56, 58, 60, 76, 81], "0": [3, 5, 7, 16, 24, 25, 26, 30, 44, 45, 49, 52, 55, 58, 60, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "0001": 26, "001": [13, 25, 55], "002": 22, "01": 5, "032": 42, "045e": 79, "05": [3, 22, 42, 79], "06": 25, "07": [58, 79], "08": 51, "1": [3, 5, 9, 10, 13, 16, 24, 25, 26, 29, 30, 33, 34, 35, 36, 39, 42, 44, 45, 47, 49, 52, 55, 58, 60, 61, 62, 64, 65, 68, 69, 71, 73, 76, 77, 78, 79, 80, 81], "10": [13, 22, 42, 44, 58, 64, 65, 71, 79, 80, 81], "100": [3, 26, 55, 60, 68, 72, 75, 76, 81], "1000": [5, 13, 58, 64, 65, 81], "10000": 76, "100000": 3, "1016": [13, 22, 42], "104": 33, "106": [22, 29], "106737": 13, "11": [13, 42, 79], "12": [60, 65, 75], "125": 9, "13": 19, "14": [33, 51, 64, 73, 76], "15": [51, 76, 79], "150": [65, 78, 81], "16": [39, 64, 81], "171": 29, "179": 22, "18082457": 60, "182": 29, "19": [54, 58], "190": 22, "195": 13, "1993": 52, "1e": [25, 26, 39, 55, 58, 64, 81], "1e5": 81, "2": [3, 7, 9, 13, 24, 25, 26, 29, 33, 39, 44, 45, 47, 52, 55, 58, 60, 61, 65, 68, 69, 71, 73, 74, 75, 78, 79, 81], "200": [3, 73, 81], "2001": 55, "2002": 81, "2003": [55, 58], "2004": 76, "2006": [55, 58], "2009": [52, 58, 61], "2010": [9, 42], "2011": [13, 42, 52, 61, 81], "2012": [22, 81], "2013": [9, 69, 73, 78], "2014": 33, "2016": 29, "2017": 29, "2018": 29, "2020": [13, 19, 29, 54], "2021": 33, "2022": [33, 51], "2051": 42, "2055": 42, "214": 42, "22": 29, "224e": 79, "23": [24, 25, 26, 52, 55], "230": [52, 61], "2345": [52, 61], "2367": [52, 61], "24": [19, 54], "2554": 33, "2563": 33, "27": 13, "27th": 52, "2_": 81, "2d": [16, 31, 60], "2e": 3, "2nd": 33, "3": [3, 24, 25, 26, 37, 39, 42, 45, 47, 52, 55, 58, 65, 69, 71, 73, 76, 77, 80, 81], "30": 81, "300": [25, 55, 69], "306": 9, "332": 29, "382": 29, "4": [26, 33, 39, 45, 64, 65, 68, 69, 75, 76, 78, 81], "40": 52, "406e": 79, "407": 29, "41": 54, "44": 52, "45": 54, "46": 19, "5": [9, 25, 29, 49, 65, 69, 72, 76, 79, 81], "50": 69, "500": [76, 81], "5000": 69, "500000": 3, "513e": 79, "53": 58, "59": 51, "5a": 22, "6": [45, 52, 61, 68], "61": 33, "63": 58, "65": [9, 76], "651879": 60, "66": 76, "683": 42, "696": 42, "7": [58, 60, 76], "70569": [22, 33], "75": [68, 81], "751": 76, "769": 76, "8": [29, 69, 78], "80": 9, "85": [65, 71, 80], "890": 29, "9": [71, 77, 80, 81], "925": 9, "99": 60, "999": 60, "A": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 33, 39, 42, 47, 49, 52, 55, 56, 58, 60, 65, 69, 73, 74, 75, 78, 79, 81], "As": [64, 81], "FOR": [69, 73, 78], "For": [7, 10, 13, 24, 25, 26, 39, 52, 55, 60, 64, 69, 71, 73, 74, 78, 80, 81], "If": [3, 7, 9, 13, 16, 24, 25, 26, 39, 40, 45, 47, 49, 52, 55, 58, 60, 69, 71, 72, 73, 77, 78, 80, 81], "In": [3, 7, 42, 60, 64, 72, 74, 80, 81], "It": [16, 29, 60, 71, 77], "Its": 74, "NO": [69, 73, 78], "NOT": [69, 73, 78], "No": [29, 69, 73, 75, 76, 78], "OF": [69, 73, 78], "OR": [69, 73, 78], "One": [29, 60], "THE": [69, 73, 78], "THERE": [69, 73, 78], "The": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 40, 42, 44, 45, 47, 50, 52, 55, 60, 61, 63, 64, 68, 70, 71, 72, 74, 75, 77, 79, 80, 81], "Then": [77, 80], "There": 60, "These": [80, 81], "To": [60, 79], "Will": 39, "With": [7, 71, 74, 80, 81], "_": [7, 80], "__": [24, 25, 26, 52, 55], "__init__": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60], "_i": 7, "aa": 55, "ab": [34, 37], "about": 70, "abov": [3, 75], "absolut": [55, 58], "abstract": [24, 55], "accept": [60, 81], "accord": [80, 81], "accordingli": [69, 73, 78], "account": 77, "accuraci": [13, 77, 79, 81], "accuracycheckmetamodel": 81, "achiev": [30, 81], "activ": [3, 29, 39, 56, 65, 68, 73, 77, 78, 79, 80, 81], "active_": [52, 55, 58], "actual": [16, 29, 80, 81], "ad": [24, 25, 26, 52, 55, 56, 72], "adapt": [16, 29, 42, 52, 60, 61, 64], "adapt_verbos": 39, "adaptive_regress": 60, "add": [49, 81], "add_expdesign": [], "add_inputspac": 60, "add_margin": [49, 71, 72, 81], "addit": [7, 16, 64, 81], "addition": [69, 72, 73, 78], "adopt": 81, "advwatr": 13, "affin": 9, "after": 64, "again": [16, 81], "against": [17, 72, 77, 79], "ai": 9, "ainv": 52, "al": [3, 64, 65, 69, 76], "al_descript": [], "alc": 29, "alg": 58, "algorithm": [29, 52, 55, 58, 60], "alia": [24, 25, 26, 52, 55], "all": [3, 5, 13, 16, 17, 24, 25, 26, 29, 36, 39, 47, 52, 55, 60, 62, 64, 71, 72, 75, 77, 79, 81], "all_candid": 42, "all_just_data": 5, "all_output": 16, "allow": [16, 24, 25, 26, 52, 55, 74, 79, 81], "alm": 29, "almost": 76, "along": [29, 36, 60, 81], "alpha": 25, "alpha_": [25, 26, 55, 58], "alphabet": [29, 39], "alreadi": [52, 55, 58], "also": [29, 39, 60, 64, 71, 80, 81], "altern": [29, 80], "alwai": [24, 25, 26, 45, 52, 55], "amazaspshumik": 55, "an": [3, 7, 9, 10, 13, 16, 24, 25, 26, 29, 39, 42, 47, 50, 52, 55, 60, 64, 68, 71, 72, 74, 75, 77, 78, 79, 80], "analysi": [3, 5, 13, 16, 33, 52, 55, 60, 61, 69, 73, 76, 77, 80, 81], "analyt": [70, 81], "analytical_funct": 81, "analyticfunc": 81, "anaylsi": 13, "angl": [52, 60, 61, 80], "ani": [3, 52, 60, 64, 69, 73, 78, 81], "anneal": [39, 64], "anoth": [16, 42, 71, 81], "apc": [22, 59, 60, 65, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81], "api": 71, "apoly_coeff": 36, "app": 39, "appli": [9, 29, 60, 72, 80], "applic": [13, 37, 52, 79], "apply_constraint": 60, "approach": [10, 29, 76], "approxim": [3, 9, 26, 42, 52, 79, 80, 81], "approximate_voronoi": 42, "ar": [3, 5, 7, 9, 10, 13, 16, 17, 24, 25, 26, 29, 34, 35, 39, 44, 45, 52, 55, 60, 64, 70, 72, 74, 75, 76, 77, 79, 80, 81], "arang": 81, "arbitrari": [22, 60, 71, 80, 81], "arbitrarili": [24, 25, 26, 52, 55], "ard": [55, 60, 80], "area": 42, "arg": [3, 44, 45], "argument": [3, 16, 62, 81], "around": 81, "arrai": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 42, 44, 45, 47, 50, 52, 55, 58, 60, 61, 62, 63, 74], "array_lik": 31, "asilomar": 52, "askei": 37, "aspect": 77, "assembl": [62, 64], "asset": 10, "assign": [3, 30, 39], "assist": [65, 78], "associ": [38, 42, 64, 65, 68, 69, 72, 73, 75, 76, 78, 80, 81], "assum": [16, 26, 45, 69, 73, 78, 81], "astronom": 9, "asumpt": 5, "attribut": 72, "aug": 19, "author": [19, 22, 33, 51, 54, 69, 73, 78], "auto_vivif": 60, "automat": [55, 72, 81], "autoselect": 63, "autovivif": 60, "aux_fil": 16, "auxiliari": 16, "avail": [3, 7, 16, 39, 47, 50, 60, 64, 68, 71, 77, 80, 81], "avali": 49, "averag": 5, "avoid": 81, "axi": [13, 45, 74], "b": [3, 7, 10, 13, 26, 27, 33, 52, 60, 61, 74, 76, 79], "b_i": 44, "babacan": 58, "bal": [29, 65], "bar": 13, "barro": 13, "base": [3, 5, 7, 9, 13, 16, 22, 24, 25, 26, 29, 31, 33, 35, 36, 39, 42, 47, 49, 50, 52, 55, 56, 58, 60, 61, 64, 72, 75, 77, 78, 80, 81], "basi": [22, 62], "basic": 81, "basis_indic": [60, 62], "bay": [3, 5, 9, 24, 25, 55, 77], "bayes_": 81, "bayes_env": 77, "bayes_inf": [], "bayes_infer": 81, "bayes_loocv": 3, "bayes_pc": 81, "bayesactdesign": [29, 39, 81], "bayesfactor": 5, "bayesian": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 55, 58, 60, 64, 65, 73, 76, 77, 78, 80], "bayesian3": [29, 64], "bayesianlinearregress": [25, 26], "bayesinfer": [5, 81], "bayesopt": [9, 81], "bayesoptdesign": [29, 39], "bayesvalidrox": [64, 66, 68, 70, 71, 72, 74, 77, 79, 80, 81], "bc": [58, 73, 78], "beam": [70, 74], "beam9point": 68, "becaus": [24, 25, 26, 52, 55], "beck": 29, "becom": 81, "been": [16, 39], "befor": [16, 29, 60, 80, 81], "beforehand": 39, "behaviour": 80, "being": [3, 9, 16, 64], "below": [55, 58], "best": [24, 25, 26, 52, 55, 60, 63, 77], "beta": [55, 72], "beta_": [25, 26], "better": 25, "between": [10, 17, 30, 60, 64, 81], "bia": [25, 26], "bias_input": [9, 81], "bias_term": 58, "biasinput": 9, "bin": 77, "binder": 16, "bingham": [69, 73, 78], "bishop": [55, 58], "bit": 81, "blatman": [52, 61, 81], "blob": [10, 43, 55], "blockwise_invers": 52, "bm": 5, "bmc": 3, "bme": [3, 5, 13, 81], "bme_dict": 5, "bonu": [], "bool": [3, 5, 16, 17, 24, 25, 26, 29, 39, 40, 45, 47, 49, 52, 55, 58, 60, 63], "boolean": [25, 44, 52, 55, 58], "bootstrap": [3, 5, 60, 65, 78, 80], "bootstrap_method": 60, "bootstrap_nois": 3, "borehol": 70, "both": [10, 44, 45, 79, 81], "bound": [17, 29, 32, 39, 44, 45, 47], "bound_tupl": [39, 47], "boundari": 29, "bridg": 74, "brief": 77, "broad": [25, 74, 80], "brr": [60, 80], "bug": [], "build": [29, 60, 71, 72, 77, 80], "build_metamodel": 60, "build_polytyp": [39, 47], "built": [46, 80], "burn": 3, "bvr": [], "c": [24, 26, 40, 52, 55, 58], "c_point": 16, "ca": [69, 73, 78], "cai": 29, "cal_model_weight": 5, "calc_bayes_factor": 5, "calc_justifiability_analysi": 5, "calc_model_weight": 5, "calcul": [3, 5, 9, 24, 25, 26, 29, 39, 47, 52, 55, 58, 61, 72, 77, 79, 81], "calib": [3, 13, 16], "calibr": [3, 7, 13, 16, 65, 78, 81], "call": [10, 15, 16, 24, 25, 26, 52, 55, 60, 64, 71, 80, 81], "calss": 16, "cambridg": 42, "can": [3, 7, 13, 16, 24, 25, 26, 29, 44, 49, 52, 55, 60, 64, 66, 68, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81], "candid": [29, 39, 42], "captur": 80, "carlo": [3, 9, 16, 42, 81], "case": [3, 7, 13, 16, 25, 42, 60], "cd": 77, "cell": 42, "center": [42, 52, 55, 58], "central": 71, "chain": [3, 9, 10], "chair": 33, "chang": [13, 24, 25, 26, 52, 55, 58, 64], "chao": [13, 22, 29, 33, 52, 60, 61, 71, 79, 80, 81], "chaospi": [39, 47], "characteris": [25, 26, 55, 58], "characterist": [65, 68], "chart": 13, "cheap": 81, "chebyshev": [39, 72], "check": [3, 13, 16, 17, 24, 25, 26, 39, 40, 47, 52, 55, 69, 71, 72, 73, 76, 77, 79, 81], "check_accuraci": [13, 79], "check_reg_qu": 13, "check_valid_input": [39, 47], "chemic": 29, "choic": 64, "choos": [29, 64, 77, 81], "choose_next_sampl": 29, "chosen": [3, 64, 76, 80, 81], "cite": [], "class": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 23, 24, 25, 26, 28, 29, 38, 39, 41, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 64, 71, 72, 74, 77, 79, 80, 81], "classic": 37, "clear": 60, "clearli": [69, 73, 78], "clermont": [52, 61], "clf": 61, "clf_bia": 56, "clone": 77, "code": [16, 81], "coef_": [25, 26, 52, 55, 58], "coeff": [52, 61], "coeffic": 60, "coeffici": [22, 24, 25, 26, 35, 36, 37, 52, 55, 58, 60, 61, 76, 81], "coffici": [52, 61], "cohn": 29, "collaps": 42, "colloc": [16, 39], "column": [16, 81], "com": [10, 13, 43, 55, 58, 60], "combin": [10, 52, 60, 71, 80, 81], "come": 64, "command": [16, 42, 68, 74], "comment": [69, 73, 78], "common": 49, "commun": 9, "compar": [3, 9, 16, 60, 77, 79], "comparison": [5, 39, 70, 71, 77, 79, 81], "complet": 74, "complex": 76, "compon": [13, 24, 25, 26, 52, 55, 60, 80], "compress": [58, 73, 78], "comput": [9, 13, 25, 26, 27, 29, 31, 35, 36, 37, 42, 52, 55, 58, 60, 61, 77, 79, 81], "compute_pce_mo": 13, "compute_scor": 55, "computed_scor": 55, "condit": 64, "conf": 33, "confer": 52, "confus": 5, "confusion_matrix": 5, "consid": [7, 45, 72, 80, 81], "consist": [24, 25, 26, 52, 55, 80], "consol": 79, "constant": [24, 25, 26, 52, 55], "constraint": 60, "construct": [22, 72], "contact": 71, "contain": [3, 5, 9, 16, 24, 25, 26, 29, 39, 47, 50, 52, 55, 60, 71, 72, 74, 77, 78, 81], "context": 7, "contibut": 71, "continu": 30, "contribut": 76, "converg": [10, 25, 26, 81], "convini": 60, "coordin": [16, 60], "copi": [16, 25, 52, 55, 58, 60], "copy_meta_model_opt": 60, "copy_x": [24, 25, 26, 52, 55, 58], "copyright": [69, 73, 78], "core": 81, "corner": 3, "corner_title_fmt": 3, "correct": [52, 61], "correl": 75, "correspond": [13, 16, 24, 25, 26, 34, 42, 50, 60, 72, 77, 79, 80], "cosin": 75, "cost": 80, "couckuyt": 42, "count": 45, "cov": 31, "covari": [3, 7, 9, 25, 26, 31, 55, 58], "cpu": 16, "creat": [3, 5, 16, 19, 33, 39, 42, 47, 51, 54, 60, 68, 71, 72, 74, 77, 80, 81], "create_error_model": 3, "create_infer": [3, 81], "create_metamodel": [], "create_model_error": 60, "credit": 43, "crieterion": 42, "criteria": 44, "criterion": 29, "crombecq": 42, "cross": [3, 39, 45, 60, 64], "cross_trunc": 45, "csv": 16, "currecnt": 16, "current": [16, 22, 64, 77], "d": [9, 26, 29, 39, 42, 52, 58, 60, 78, 80], "data": [3, 5, 9, 16, 17, 22, 24, 25, 26, 31, 39, 47, 49, 50, 52, 55, 58, 60, 64, 72, 75, 77, 80], "data_noise_level": 5, "datafram": [3, 7, 9, 16, 81], "dataset": 80, "dbingham": [69, 73, 78], "de": [13, 22, 33, 71, 77], "deafault": 25, "deal": [69, 73, 76], "decai": 29, "decomposit": 52, "decreas": [29, 64, 78], "dedic": 81, "deep": [24, 25, 26, 52, 55], "def": [71, 74], "default": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 50, 52, 55, 58, 60, 63], "defin": [3, 5, 7, 10, 16, 24, 25, 26, 32, 34, 39, 42, 49, 52, 55, 60, 64, 71, 72, 74, 77, 80], "definit": [7, 22, 71, 72, 81], "deflect": 68, "degre": [22, 34, 35, 36, 37, 39, 47, 60, 65, 68, 69, 73, 75, 76, 78, 80, 81], "delet": 56, "demeest": 42, "denot": 74, "depart": [22, 33], "depend": [25, 26, 49, 65, 68, 69, 71, 73, 75, 76, 78, 80], "deprec": 81, "depth": 71, "derek": [69, 73, 78], "deriv": [69, 73, 78], "describ": [58, 71, 72, 77, 81], "descrip": 7, "descript": [3, 5, 9, 16, 29, 31, 60, 71], "design": [13, 16, 29, 38, 39, 42, 60, 62, 64, 65, 71, 74, 77, 78, 80], "detail": [13, 65, 69, 71, 72, 73, 75, 78], "determin": [24, 25, 26, 52, 55], "deviat": [13, 16, 60, 64, 80, 81], "deviatioon": [29, 60], "dhaen": 42, "diagnost": 79, "diagon": [3, 7, 9], "dict": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 35, 36, 37, 52, 55, 60], "dictionari": [3, 5, 9, 13, 16, 29, 60, 74, 81], "differ": [30, 60, 71, 75, 81], "dim": 60, "dim_red_method": 60, "dimens": [45, 52], "dimension": [25, 26, 55, 58, 60, 74, 80], "dir_nam": 16, "direct": [36, 60, 80], "directi": 81, "directli": [72, 80, 81], "directori": [13, 16, 81], "disc_typ": 7, "discoutputopt": 81, "discrep": [3, 9, 81], "discrepancyopt": 81, "discuss": 81, "displai": [13, 81], "disregard": [24, 25, 26, 52, 55], "disrep": 7, "dissert": [52, 61], "dist": [3, 39, 47], "dist_typ": [49, 50, 71, 72, 81], "distanc": 30, "distibut": 5, "distribut": [3, 7, 9, 24, 25, 26, 27, 30, 31, 39, 46, 47, 48, 50, 52, 55, 58, 60, 65, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81], "diverg": [3, 13, 39], "divid": 32, "dkl": [29, 39, 65, 81], "do": [13, 29, 62, 64, 69, 71, 73, 77, 78, 81], "doc": [], "doctor": [52, 61], "document": 71, "doe": [16, 60], "doi": [13, 22, 42], "domain": [32, 42], "done": [16, 39, 60, 81], "doostan": 29, "dot": 80, "dpp": 39, "dr": 22, "drainag": 13, "drawn": [3, 81], "driven": 22, "dtype": [52, 55, 58], "dual": [39, 64], "dual_ann": 29, "due": [], "dump": 81, "dure": [60, 79], "e": [3, 7, 9, 16, 22, 24, 25, 26, 33, 39, 42, 45, 47, 52, 55, 58, 60, 63, 71, 74], "each": [3, 5, 7, 9, 13, 16, 24, 25, 26, 32, 39, 42, 44, 45, 50, 52, 55, 58, 60, 64, 70, 74, 77, 81], "earlier": 81, "easi": 74, "easili": 81, "ebl": [60, 80], "ed_i": 60, "effect": [7, 24, 25, 26, 52, 55, 56, 76], "effici": [13, 42], "eigenvalu": [25, 26], "eigenvector": [25, 26], "eigf": [39, 64], "eigvals_": [25, 26], "eigvecs_": [25, 26], "either": [3, 16, 25, 39, 47, 59, 60, 65, 72, 81], "ejor": 42, "els": [39, 40, 47, 52, 55, 58, 60], "elsevi": 22, "em": 25, "email": [69, 73, 78], "emce": [3, 9, 10, 81], "emper": [60, 80], "empir": [24, 25], "empti": 60, "emul": [3, 5, 9, 29, 63, 81], "en": 9, "enable_metadata_rout": [24, 25, 26, 52, 55], "encapsul": [24, 25, 26, 52, 55], "end": 16, "engin": [3, 9, 13, 22, 64, 71, 79], "engine_": [64, 79, 80], "enrich": 29, "ensampl": 10, "ensembl": 9, "entri": [3, 7, 9], "entropi": [3, 29, 39, 78], "environ": 77, "environment": [22, 33, 78], "epsilon": [7, 29, 64, 78, 81], "eq": 13, "equal": [5, 7, 29, 64], "erro": 61, "error": [3, 7, 9, 13, 24, 25, 26, 29, 52, 55, 60, 61, 79, 81], "error_metamodel": 9, "error_model": 9, "especi": [25, 81], "ess": 10, "estim": [3, 10, 16, 24, 25, 26, 30, 52, 55, 58, 60, 61, 63, 64, 77, 79, 81], "eth": 33, "european": 42, "eval_metamodel": [29, 60, 80], "eval_model": 9, "eval_model_error": 60, "evalu": [5, 9, 13, 15, 29, 34, 35, 36, 52, 60, 62, 74, 77, 79, 80, 81], "evaul": 39, "even": [69, 73, 78], "evereyth": 29, "everi": 30, "evid": [3, 13], "exact": 80, "exampl": [13, 16, 44, 45, 71, 77, 81], "except": [13, 24, 25, 26, 52, 55, 60], "exe_path": 16, "execut": [16, 68, 74], "exist": [24, 25, 26, 52, 55], "exlor": 29, "exp_design": [64, 72], "expand": [77, 79, 80], "expans": [13, 22, 29, 33, 45, 52, 60, 61, 71, 79, 80, 81], "expd": [29, 71], "expdesign": [29, 42, 64, 71, 72, 80, 81], "expect": [7, 13, 16, 24, 25, 26, 29, 39, 52, 55, 58, 71, 79], "experi": 29, "experiment": [29, 38, 39, 42, 60, 64, 71, 74, 77, 80], "explain": [60, 81], "explan": [65, 75], "explanatori": [25, 26, 52, 55, 58], "explicitli": 60, "exploit": [29, 39, 65, 69, 76, 81], "exploit_method": [39, 64, 81], "exploitaiton": [69, 76, 81], "exploitation_weight": 29, "explor": [29, 39, 65, 69, 76, 81], "exploration_scor": 42, "exploration_weight": 29, "explore_method": [39, 64, 81], "expon": [43, 45, 72], "exponenti": [29, 75], "express": [69, 73, 78], "extens": [16, 74, 81], "extra": 75, "extract": [16, 60], "f": [13, 60, 81], "fa61759ff685": 13, "factor": [5, 10, 77], "fals": [3, 5, 10, 20, 24, 25, 26, 29, 39, 40, 45, 52, 55, 58, 60, 63, 81], "far": 7, "farid": [19, 29, 33, 51, 54], "fast": [55, 58, 60, 78, 80], "fast_rvm": 55, "fastard": [60, 65, 68, 71, 76, 80, 81], "faster": [25, 81], "fastsbl": [55, 58], "faul": [55, 58], "featur": [24, 25, 26, 52, 55, 56, 60, 71], "feinberg": 43, "ferrand": [52, 61], "field": 26, "file": [16, 29, 39, 68, 71, 74, 75, 78, 81], "file_nam": 16, "filenam": 74, "fill": [39, 42, 64, 69, 76], "final": 80, "final_out_dict": 60, "find": [16, 29, 60, 66], "first": [13, 16, 29, 45, 60, 80, 81], "fit": [24, 25, 26, 39, 52, 55, 58, 60, 61, 63, 69, 73, 78, 80], "fit_intercept": [24, 25, 26, 52, 55, 58], "fix": [25, 58], "flag": [39, 47], "flexibl": 13, "float": [3, 5, 9, 10, 24, 25, 26, 27, 29, 30, 31, 39, 44, 45, 52, 55, 58, 60, 61, 63], "flow": [69, 73], "folder": [71, 72, 77, 79, 81], "follow": [3, 7, 22, 29, 39, 44, 49, 60, 70, 72, 81], "followin": 7, "forc": 60, "foreman": 9, "form": [24, 25, 26, 52, 55, 71, 81], "format": [3, 7, 13, 71], "formul": 72, "formula": 58, "forward": 16, "found": [60, 70, 71, 74, 81], "foundat": [69, 73, 78], "four": 72, "fp": 25, "frac": [9, 24, 25, 26, 52, 55], "framework": [13, 33], "fraser": [69, 73, 78], "free": [69, 73, 78], "fri": [33, 51], "from": [3, 5, 13, 16, 24, 25, 26, 29, 34, 39, 46, 47, 52, 55, 58, 60, 62, 64, 71, 72, 74, 77, 79, 80, 81], "fromkei": 60, "ft": [39, 72], "full": [79, 80, 81], "fulli": 10, "func": 16, "func_arg": 16, "function": [3, 8, 13, 15, 16, 19, 21, 23, 28, 29, 33, 38, 39, 40, 42, 43, 44, 51, 52, 54, 59, 60, 62, 64, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81], "functtion": 60, "further": [39, 47], "futur": 75, "g": [16, 24, 25, 26, 45, 52, 55, 58, 61, 71, 74], "gain": [79, 81], "gamma": [26, 27, 39, 47, 72], "gaussian": [7, 9, 24, 25, 26, 29, 55, 58, 60, 63, 65, 68, 76, 80, 81], "gaussian_kd": [39, 47], "gelman": 10, "gener": [5, 7, 16, 24, 25, 26, 29, 39, 42, 45, 47, 52, 55, 60, 61, 69, 72, 73, 74, 78, 80, 81], "generate_": 39, "generate_dataset": 5, "generate_polynomi": 60, "generate_sampl": [39, 72], "get": [3, 24, 25, 26, 52, 55, 60, 71, 79], "get_exploration_sampl": 42, "get_mc_sampl": 42, "get_metadata_rout": [24, 25, 26, 52, 55], "get_param": [24, 25, 26, 52, 55], "get_sampl": 7, "get_vornoi_sampl": 42, "git": [70, 71, 77], "github": [10, 43, 55, 71], "gitlab": 71, "give": [74, 77, 80, 81], "given": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 40, 47, 49, 52, 55, 60, 62, 63, 64, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "global": [13, 39, 42, 81], "gnu": [69, 73, 78], "go": 3, "goal": 80, "goe": 71, "goodman": 9, "gorissen": 42, "gp": [63, 80], "gpe": [59, 60], "grade": 45, "greater": 10, "grid": [39, 72], "group": [7, 39], "guid": [24, 25, 26, 52, 55, 71, 81], "guidelin": 71, "guilla": 29, "gull": 25, "h5py": 39, "h_l": 69, "h_u": 69, "ha": [9, 24, 25, 26, 39, 45, 47, 52, 55, 60, 80, 81], "habil": 22, "hadigol": 29, "hagan": 76, "haitao": 29, "halton": [39, 72], "hammer": 9, "hammerslei": [39, 72], "handi": 81, "happi": 71, "have": [7, 10, 16, 24, 25, 26, 39, 47, 52, 55, 56, 74, 76, 81], "hdf5": [29, 39], "hdf5_file": 39, "head": 71, "height": 68, "helling": 30, "help": 81, "helper": 13, "here": [3, 16, 60, 64, 66, 70, 71, 74, 77, 78, 80, 81], "hermit": 72, "highest": [60, 81], "histogram": 81, "hogg": 9, "hold": 44, "holder": 16, "hope": [69, 73, 78], "how": [13, 24, 25, 26, 52, 55, 60, 68, 69, 73, 75, 76, 81], "howev": [], "htm": 55, "html": [10, 69, 73], "http": [9, 10, 13, 22, 42, 43, 55, 58, 60, 69, 71, 73, 77, 78], "hydraul": [22, 33], "hydrogeologi": 13, "hydromechan": 33, "hydrosystem": [22, 33], "hyperbol": [45, 60], "hypercub": [64, 65, 68, 69, 72, 73, 75, 76, 78], "i": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 58, 60, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "icvram2014": 33, "id": 16, "ident": 30, "ieee": 58, "ifram": 81, "ignor": [24, 25, 26, 52, 55], "ii": [25, 81], "iii": 81, "ilja": 29, "illustr": 68, "imag": 58, "implement": [24, 26, 33, 42, 59, 60, 81], "impli": [69, 73, 78], "implment": 81, "import": [13, 71, 72, 74, 79, 80], "importantli": [], "improv": 39, "inaccuraci": 7, "includ": [5, 16, 25, 26, 44, 45, 64, 71, 72, 77, 79, 80, 81], "increas": [29, 64], "independ": 7, "index": [29, 44, 45, 60, 62, 63, 71, 79], "indic": [3, 10, 13, 43, 44, 45, 60, 62, 69, 73, 74, 76, 77, 79, 81], "induc": [60, 81], "inf": 45, "inf_entropi": 3, "infer": [3, 7, 9, 13, 16, 68, 71, 77, 78], "inference_method": [3, 81], "influenc": [24, 25, 26, 29, 52, 55], "inform": [3, 24, 25, 26, 29, 52, 55, 60, 69, 73, 78, 81], "ing": 22, "init_param_spac": [39, 47], "init_sampl": 3, "initi": [3, 5, 25, 39, 47, 55, 64, 81], "input": [3, 7, 13, 16, 24, 25, 26, 29, 36, 39, 42, 46, 47, 52, 55, 60, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 80], "input0": 71, "input1": 71, "input_data": [49, 50, 72, 81], "input_descript": [], "input_fil": 16, "input_obj": 60, "input_object": [39, 47], "input_spac": 72, "input_templ": 16, "inputdisc": 7, "inputobj": [39, 47], "inputparam": [65, 72, 81], "inputparameters_2": 81, "inputspac": [39, 60, 71, 72], "insert": 60, "insid": [17, 24, 25, 26, 52, 55, 77], "insight": [], "instanc": [24, 25, 26, 52, 55, 60], "instanci": 60, "instanti": 81, "instead": [24, 25, 26, 45, 52, 55], "institut": [22, 33], "instruct": [60, 81], "int": [3, 5, 7, 13, 16, 17, 22, 25, 26, 29, 32, 33, 34, 35, 36, 37, 39, 42, 44, 45, 47, 55, 58, 60, 63], "intec": 42, "intercept": [52, 55, 58], "intercept_": [25, 26], "interconnect": [], "interest": 74, "interfac": [71, 74, 77], "intersit": 42, "intro": [], "introduc": [], "introduct": 70, "introductori": [71, 81], "inv_inf_matrix": 52, "invari": 9, "invers": [7, 52, 81], "inversemodel": [71, 77], "io": [9, 10], "ipython": 81, "ishigami": [69, 70], "isoprobabilist": [39, 47, 72], "issu": 71, "item": [3, 16, 60], "iter": [3, 5, 25, 26, 29, 55, 58, 60, 65, 69, 72, 76, 77, 79, 80, 81], "its": [16, 71, 74, 77, 79, 80, 81], "itself": 80, "iw": [22, 33, 71, 77], "j": [9, 13, 22, 42, 76], "jacobi": 34, "jan": 33, "jdist": [39, 47], "jianfei": 29, "jobe": 16, "joblib": 81, "joergdietrich": 10, "jointli": [3, 7, 9, 78, 80], "jonathan": 43, "jonathf": 43, "journal": [42, 52, 61], "jul": 51, "just": [39, 47, 81], "just_analysi": 3, "justifi": [3, 5, 77], "jwalton3141": 10, "k": [3, 9, 39, 42, 58, 60], "k_w": 69, "karniadaki": 81, "katsaggelo": 58, "kdemov": 81, "keep": [24, 25, 26, 52, 55, 81], "kei": [16, 39, 60, 74], "kernel": [24, 25, 26, 52, 55, 63, 80], "key_str": 16, "keyerror": 60, "keyword": 16, "kingdom": 33, "kl": 26, "kld": [3, 13], "known": [3, 7, 9, 39, 81], "krige": 29, "krishnaprasad": 52, "kroeker": 29, "kullback": [3, 13, 39], "l": [69, 78], "l_0": 44, "l_inf": 44, "l_p": 44, "label": [13, 74], "lack": 60, "laerman": 42, "laguerr": [37, 39, 47], "lambda": 81, "lambda_": [55, 58], "lang": 9, "laplac": 58, "lar": [60, 80], "larg": 81, "larger": [44, 45], "largest": 45, "last": 60, "lastli": 74, "later": 81, "latest": 77, "latin": [64, 65, 68, 69, 72, 73, 75, 76, 78], "latin_hypercub": [39, 72, 81], "latter": [24, 25, 26, 45, 52, 55, 81], "lead": 77, "learn": [29, 39, 42, 55, 58, 60, 68, 73, 77, 78, 79, 80, 81], "least": [29, 52, 60, 61, 72, 80], "leav": [3, 39, 60, 64], "leibler": [3, 13, 39], "length": [3, 25, 26, 55, 58, 74], "leq": 44, "less": 81, "let": 81, "level": [3, 5], "lexicograph": 45, "lh2": 33, "li": 40, "liabil": [69, 73, 78], "lib": 58, "librari": [], "licens": [69, 73, 78], "lie": 17, "lifo": 60, "like": [3, 24, 25, 26, 52, 55, 58, 60, 61, 80, 81], "likelihood": [3, 7, 9, 25, 30, 31, 55, 56, 58, 81], "line": 13, "linear": [24, 25, 26, 71, 75], "linearmodel": [24, 52, 55], "link": [68, 74, 77, 81], "link_typ": [16, 71, 74, 81], "list": [3, 16, 17, 24, 25, 26, 29, 32, 36, 37, 39, 40, 42, 45, 47, 50, 52, 55, 58, 60, 71, 74, 75, 81], "littl": 81, "liu": 29, "liverpool": 33, "load": [68, 81], "locat": [29, 39], "log": [9, 31, 55, 56], "log_bm": 3, "log_lik": [9, 31], "log_likelihood": 9, "log_marginal_lik": 55, "log_posterior": 9, "log_prior": 9, "logarithm": 3, "loglik": [3, 9], "lognorm": [68, 69, 72], "logprior": 9, "loo": [52, 60, 61], "loo_error": 52, "loocv": [3, 39, 52, 61], "loocvscor": 60, "loop": 63, "low": 45, "lower": [17, 29, 32, 39, 45, 47], "lowest": 60, "ls3": 22, "l\u00fcthen": 33, "m": [7, 29, 33, 52, 55, 58, 68, 69, 73, 77, 78, 80], "machin": [42, 55, 58], "mackai": [25, 29], "mackei": 9, "mai": [24, 25, 26, 52, 55, 58], "mail": [22, 33], "main": [71, 74, 80], "mainli": [64, 72], "make": [9, 64, 80, 81], "manag": 33, "mani": 13, "manner": [29, 64, 72, 77], "manual": 33, "manuscript": 22, "map": [24, 25, 26, 52, 55, 60, 74], "mar": 54, "marelli": 33, "margin": [7, 39, 42, 47, 48, 49, 55, 56, 58, 71, 72, 77, 81], "mark": [69, 73, 78], "markov": [3, 9], "mass": 42, "master": [10, 43, 55, 71, 77], "match": [52, 62, 69, 75, 80, 81], "math": 44, "mathcal": [7, 9, 80], "mathemat": 9, "matlab": [33, 42], "matrix": [3, 5, 7, 24, 25, 26, 31, 34, 52, 55, 58, 61, 62], "max": [65, 68, 69, 73, 76, 78], "max_a_post": [39, 81], "max_a_posteriori": 3, "max_deg": [34, 35, 36, 39, 47, 60], "max_func_itr": 39, "max_pce_deg": 39, "maxdepth": [], "maxim": [25, 29, 30, 55, 80], "maximis": [55, 58], "maximum": [3, 22, 25, 26, 30, 34, 35, 36, 37, 39, 45, 47, 55, 58, 60], "maxout": 17, "mc": [42, 65, 68, 69, 73, 74, 75, 76, 78, 81], "mc_criterion": 42, "mc_ref": 16, "mc_ref_dict": 16, "mc_ref_fil": 16, "mc_refer": 81, "mcmc": [3, 77, 81], "mcmc_param": [3, 9, 81], "md": [], "mean": [3, 7, 9, 13, 16, 24, 25, 26, 27, 29, 31, 45, 52, 55, 58, 60, 80, 81], "mean_2": 81, "mean_pr": [9, 29, 60], "meas_fil": 16, "meas_file_valid": 16, "measur": [3, 7, 13, 16, 29, 81], "measured_data": 3, "measureddata": 60, "measurement_error": 81, "mechan": [24, 25, 26, 29, 52, 55], "merchant": [69, 73, 78], "messag": [], "met": [55, 58], "meta": [3, 9, 13, 16, 24, 25, 26, 29, 52, 55, 60], "meta_model_engin": [], "meta_model_typ": [39, 47, 60, 71, 80, 81], "metadata": [24, 25, 26, 52, 55], "metadata_rout": [24, 25, 26, 52, 55], "metadatarequest": [24, 25, 26, 52, 55], "metamod": [29, 64, 71, 80], "metamodel": [3, 5, 13, 29, 39, 41, 47, 59, 71, 72, 79, 81], "metamodel_train": 81, "metamodelengin": [], "metamodelopt": [60, 81], "method": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 38, 39, 42, 47, 49, 50, 52, 55, 58, 60, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81], "metric": [3, 81], "mgrid": 44, "mice": 29, "might": [], "miketip": [55, 58], "minim": [26, 71], "minout": 17, "mit": 71, "mix": 72, "mmse": 39, "mod_loo_threshold": [39, 64, 81], "mode": [3, 52, 55, 58], "model": [3, 5, 7, 9, 13, 15, 16, 22, 24, 25, 26, 29, 33, 39, 42, 52, 55, 56, 58, 60, 64, 70, 72, 77, 79], "model_comparison_al": 5, "model_dict": 5, "model_out_dict": 13, "model_weight": 5, "model_weights_dict": 5, "modelnam": 81, "modifi": [39, 52, 69, 73, 78], "modul": [0, 1, 11, 14, 18, 71], "modulu": 68, "mohammadi": [29, 33], "molina": 58, "moment": [13, 16, 35, 36, 50, 77, 79, 81], "monomi": [43, 45], "mont": [3, 9, 16, 42, 81], "more": [13, 29, 60, 69, 71, 73, 78, 81], "most": 81, "move": [3, 81], "mp": 16, "mu_pr": [24, 25, 26], "much": 76, "multi": [43, 45, 60, 62, 75, 77, 81], "multi_process": 16, "multioutput": [24, 25, 26, 52, 55], "multioutputregressor": [24, 25, 26, 52, 55], "multipl": [7, 77, 80, 81], "multipli": 7, "multiprocess": [3, 16, 81], "multivar": 3, "multivari": [3, 7, 31, 60, 61, 62], "must": 16, "mutual": 29, "n": [7, 33], "n_": 7, "n_bootstrap": 5, "n_bootstrap_itr": [3, 5, 60], "n_burn": 3, "n_cand_group": [39, 64, 65, 69, 76, 81], "n_canddid": [39, 64, 81], "n_candid": [29, 42, 65, 69, 76], "n_cpu": 16, "n_featu": [25, 26], "n_featur": [24, 25, 26, 52, 55, 58, 60, 61], "n_init_sampl": [60, 71, 80, 81], "n_input": 60, "n_iter": [24, 25, 26, 55, 58], "n_iter_": 55, "n_kfold": 58, "n_m": 5, "n_max": [37, 60, 62], "n_max_sampl": [39, 64, 81], "n_measur": [3, 9], "n_new_sampl": [32, 39, 64, 81], "n_ob": [3, 5, 16], "n_out": 60, "n_output": [16, 24, 25, 26, 52, 55, 60], "n_param": [3, 7, 9, 10, 13, 16, 29, 36, 39, 42, 47, 60, 62, 63], "n_pca_compon": 60, "n_prior_sampl": 3, "n_replic": 39, "n_sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 34, 35, 36, 39, 47, 52, 55, 56, 60, 61, 62, 63, 79, 81], "n_samples_fit": [24, 25, 26, 52, 55], "n_samples_test": [25, 26, 52, 55, 58], "n_step": [3, 10, 81], "n_term": [60, 62], "n_test_sampl": [24, 25, 26], "n_walker": [3, 10, 81], "nagel": 13, "name": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 47, 49, 50, 52, 55, 71, 72, 74, 77, 81], "nameerror": 29, "ndarrai": 45, "ndim": 81, "necessari": [16, 77], "need": [3, 5, 7, 16, 29, 60, 64, 71, 80, 81], "neg": [24, 25, 26, 52, 55], "neither": 13, "nest": [24, 25, 26, 40, 52, 55], "new": [16, 29, 39, 42, 49, 52, 60, 64, 71, 74, 81], "new_c_point": 16, "new_input_fil": 16, "new_metamodelopt": 60, "new_sampl": 42, "next": [16, 77], "nips01": 55, "nnme": 81, "nois": [3, 5, 7, 25, 26, 55, 58, 78], "non": [42, 52, 55, 58], "none": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 60, 63, 64, 65, 69, 71, 76, 81], "nonlinear": 75, "nor": 13, "norm": [44, 60, 65, 68, 69, 72, 73, 75, 76, 78, 80, 81], "normal": [3, 5, 7, 25, 31, 52, 55, 60], "normpdf": [3, 9], "notat": [], "note": [7, 16, 81], "now": [39, 71, 74, 80, 81], "nowak": [13, 22, 29, 81], "np": [16, 52, 55, 58, 60, 72, 74, 81], "npy": 81, "nsampl": [29, 60, 80, 81], "nu": 58, "nug_term": 63, "nugget": 63, "number": [3, 5, 7, 13, 16, 24, 25, 26, 29, 32, 39, 42, 45, 52, 55, 58, 60, 63, 64, 65, 68, 69, 72, 73, 75, 76, 78, 80], "numer": 25, "numpi": [24, 25, 26, 44, 45, 52, 55, 58, 81], "numpoli": [43, 45], "o": 76, "oaklei": 76, "obj": [3, 7, 9, 13, 39, 42, 47, 49, 60], "object": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 61, 63, 71, 72, 74, 79, 80, 81], "obs_data": [3, 9], "obs_dict": 16, "obs_dict_valid": 16, "obsdata": 81, "observ": [3, 5, 7, 9, 16, 31, 74, 81], "obtain": [10, 60, 81], "off": [29, 39], "ohagan": 70, "ol": [60, 80], "oladyshkin": [13, 22, 29, 81], "old": [29, 42], "old_edi": 29, "old_edx": 29, "omit": 45, "omp": [69, 75], "onc": [64, 81], "one": [3, 9, 10, 16, 25, 26, 32, 39, 45, 55, 56, 58, 60, 64, 71, 72, 81], "ong": 29, "onli": [3, 7, 9, 16, 24, 25, 26, 29, 39, 45, 52, 55, 58, 60, 72, 75, 81], "open": [71, 81], "oper": 42, "opposit": 45, "opt": [29, 39], "opt_col_point": 39, "opt_sigma": 3, "optim": [25, 29, 39, 55, 78], "optimi": 29, "optimum": 29, "option": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 52, 55, 58, 60, 63, 71, 72, 74, 77, 81], "opts_dict": 5, "order": [45, 60, 77], "ordinari": [60, 80], "org": [13, 42, 71], "orig_space_dist": [39, 47], "origin": [24, 25, 26, 52, 55, 60, 74, 79], "origmodeloutput_": 81, "orthogon": [37, 52, 61, 69, 75], "orthonorm": 22, "other": [3, 24, 25, 26, 52, 55, 74, 77, 80], "otherwis": [9, 16, 24, 25, 26, 52, 55, 58, 60], "our": [71, 74, 80, 81], "out": [3, 7, 17, 25, 26, 29, 39, 60, 64, 71, 79], "out_dict": 60, "out_dir": [3, 5, 9, 39], "out_nam": 39, "outpust": 13, "output": [3, 7, 9, 13, 16, 29, 39, 60, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "output_bayes_": 81, "output_file_nam": 16, "output_nam": 16, "output_pars": 16, "outputdata": 16, "outputmatrix": 60, "outputs_comparison": 5, "outputs_postprocess": 13, "outputs_postprocessing_": 81, "outputs_postprocessing_calib": 79, "outputs_prior": 72, "over": [39, 63, 72], "overal": 71, "overfit": 81, "overflow": 25, "overview": [], "overwritten": [52, 55, 58], "own": [], "p": [7, 9, 13, 22, 30, 42, 44, 52], "pacif": 9, "packag": [3, 9, 66, 68, 70, 71, 77], "page": [71, 77, 81], "pair": [5, 60], "pairwis": 77, "panda": [7, 81], "paper": [29, 55, 58], "parallel": [16, 29, 39, 60], "param": [16, 24, 25, 26, 37, 39, 47, 52, 55], "param_set": 16, "paramet": [49, 50, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "parameterset": 9, "paramethr": 7, "paramt": 25, "paras": 16, "parmet": 3, "parser": [16, 68, 74], "part": [32, 60, 75, 76, 81], "parti": 16, "particular": [69, 73, 78], "pass": [3, 16, 24, 25, 26, 39, 47, 52, 55, 81], "path": 16, "pati": 52, "pattern": [16, 55, 58], "pc": 59, "pca": [60, 80], "pca_transform": 60, "pce": [13, 39, 47, 60, 68, 79, 80, 81], "pce_deg": [60, 71, 80, 81], "pce_mean": 13, "pce_q_norm": [60, 71, 80, 81], "pce_reg_method": [60, 71, 80, 81], "pceengine_": 81, "pcemodel": [13, 20], "pcemodel_": [], "pcm_sampler": 39, "pd": 81, "pdf": [13, 55, 58], "peopl": [], "per": [65, 69, 76], "percentag": 60, "percis": 39, "perfect": 25, "perfect_fit_tol": 25, "perform": [3, 5, 9, 13, 64, 68, 69, 73, 75, 76, 77, 78, 79, 80, 81], "perform_bootstrap": 3, "perl": 60, "perturb": [3, 5], "perturbed_data": [3, 5], "pfaffenwaldr": [22, 33], "physic": [52, 61], "pip": [71, 77], "pipelin": [24, 25, 26, 52, 55], "pkl": 81, "place": 16, "pleas": [24, 25, 26, 52, 55, 69, 73, 78], "plot": [3, 5, 13, 39, 81], "plot_bayes_factor": 5, "plot_just_analysi": 5, "plot_log_bm": 3, "plot_map_pr": 3, "plot_model_weight": 5, "plot_moment": [13, 79, 81], "plot_nam": 5, "plot_post_param": 3, "plot_post_pr": [3, 81], "plot_sampl": [39, 72], "plot_seq_design_diagnost": [13, 79], "plot_typ": 13, "plote": 20, "plotmoment": [], "point": [3, 7, 16, 24, 25, 26, 29, 34, 35, 39, 42, 55, 58, 63, 72, 81], "poli": 37, "pollut": 70, "poly_coeff": 35, "poly_typ": [34, 36, 37, 39, 47], "polynom": 60, "polynomi": [13, 22, 29, 33, 34, 35, 36, 37, 39, 47, 52, 60, 61, 62, 71, 72, 79, 80, 81], "pop": 60, "popitem": 60, "posit": 30, "possibl": [24, 25, 26, 52, 55, 72], "post": [10, 13, 16, 77], "post_descript": [], "post_process": [79, 81], "post_snapshot": [39, 81], "posterior": [3, 9, 25, 26, 39, 52, 55, 58, 81], "posterior_df": 9, "posteriori": [3, 39], "postpc": 81, "postproc": 79, "postprocess": [71, 74, 77, 81], "potenti": 10, "pp": [9, 42, 52, 61, 76], "practic": [72, 77], "precis": [25, 26, 55, 58], "precomput": [24, 25, 26, 52, 55], "predict": [3, 9, 24, 25, 26, 29, 52, 55, 58, 60, 61, 81], "predict_dist": [24, 25, 26], "predit": 60, "prefer": [77, 81], "prepar": [16, 29, 80], "prescrib": 39, "prescript": 60, "present": [22, 60, 80], "prevent": 25, "previou": [16, 81], "previous": 80, "prevrun_no": 16, "princip": [13, 60, 80], "print": [25, 26, 29, 60], "prior": [3, 5, 7, 9, 26, 39, 46, 47, 58, 74, 77, 80, 81], "prior_": 81, "prior_output": 81, "prior_sampl": 3, "probabilist": 76, "probabl": [30, 72], "probablist": 3, "proc": 33, "procedur": 3, "proceed": 52, "process": [9, 13, 16, 29, 58, 60, 63, 77, 80], "produc": [69, 73, 78], "program": [69, 73, 78], "progress": [25, 26], "proj": 42, "project": 71, "propag": [52, 61], "properti": [64, 65, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81], "propos": [9, 40, 64, 71], "provid": [13, 24, 25, 26, 29, 39, 45, 47, 52, 55, 60, 65, 70, 71, 75, 77, 80, 81], "psi": [52, 61, 62], "psrf": 10, "public": [9, 69, 73, 78], "publish": [69, 73, 78], "purpos": [69, 73, 78], "pursuit": [52, 69, 75], "py": [10, 16, 43, 55, 71, 74, 81], "py_fil": [16, 71, 74, 81], "pylink": [74, 77, 81], "pylinkforwardmodel": [71, 74], "pypi": 71, "python": [3, 13, 16, 71, 74, 77, 81], "python3": 77, "q": [30, 56, 60, 65, 68, 69, 73, 75, 76, 78, 80, 81], "qualiti": [13, 69, 73, 76, 79], "qualt": 3, "quantif": [22, 33], "question": [69, 73, 78], "quit": [], "r": [7, 24, 25, 26, 52, 55, 58, 69, 76], "r2_score": [24, 25, 26, 52, 55], "r_2": 61, "r_hat": 10, "r_w": 69, "rais": [24, 25, 26, 52, 55, 60], "random": [29, 39, 42, 64, 65, 71, 72, 81], "random_sampl": 39, "randomli": [39, 81], "rang": [17, 37, 40, 74, 80, 81], "rate": [26, 27, 69, 73], "ratio": 10, "raw": [16, 22, 39, 47], "raw_data": [39, 47], "read": [16, 29, 39, 74, 81], "read_from_fil": 39, "read_observ": 16, "read_output": 16, "readthedoc": 9, "realiti": 7, "realiz": [7, 64, 72, 74], "realli": 3, "recalcul": 60, "recheck": 72, "reciev": 16, "recognit": [55, 58], "recomput": 56, "recurr": 37, "recurs": [37, 52], "redidu": 7, "redistribut": [69, 73, 78], "reduc": [45, 80], "reduct": [10, 60, 80], "ref": [29, 55, 58], "ref_bme_kld": 13, "ref_typ": 71, "refer": [7, 13, 16, 30, 33, 60, 65, 68, 69, 73, 74, 75, 76, 78, 79, 81], "refin": 29, "refit": 29, "reg_method": 60, "regress": [9, 13, 24, 25, 26, 52, 55, 58, 60, 61, 65, 68, 69, 73, 75, 76, 78, 80, 81], "regressor": [24, 25, 26, 36, 52, 55, 60, 61, 62], "regressormixin": [24, 52, 55], "regresssor": 52, "reject": [3, 77, 81], "relat": [48, 72], "releas": 77, "relev": [24, 25, 26, 52, 55, 72], "reli": 81, "reliabl": [13, 22], "remain": 76, "remov": [16, 60], "renam": 16, "repeat": 81, "replac": [16, 77, 80], "replic": 39, "report": [25, 26, 33, 71], "repositori": [70, 77], "repres": 7, "represent": 80, "reproduc": 9, "req_output": [3, 9], "request": [3, 16, 24, 25, 26, 29, 39, 52, 55, 60], "requir": [3, 16, 37, 49], "research": [22, 42], "reshap": [44, 81], "residu": [7, 24, 25, 26, 52, 55, 61], "respect": [5, 60, 81], "respons": [24, 25, 26, 29, 39, 60], "ress": 22, "rest": 16, "result": [5, 16, 39, 60, 64, 72, 74, 79, 80, 81], "retain": [24, 25, 26, 52, 55], "retrain": 81, "retun": 29, "return": [44, 45, 71, 74, 80, 81], "return_out_dict": 60, "return_sampl": 29, "return_std": [25, 26, 55, 58], "return_var": 10, "returnvar": 60, "revers": 45, "review": 29, "rework": 64, "rezaiifar": 52, "ridg": [60, 80], "rieckermann": 13, "risk": 33, "rmse": [13, 79, 81], "robin": 10, "root": [3, 9, 10, 13, 39, 81], "root_sampl": 80, "rosenblatt": [39, 47, 49, 72], "rossenblatt": 49, "rout": [24, 25, 26, 52, 55], "row": [9, 16], "rss": 25, "rst": [], "run": [9, 13, 16, 29, 39, 60, 68, 71, 74, 77, 78, 79, 81], "run_command": 16, "run_forwardmodel": 16, "run_model_parallel": [16, 74], "run_no": 29, "run_sampl": 9, "run_util_func": 29, "runtim": 60, "rvm_ard_model": 55, "rwmh": 10, "safeti": [13, 22, 33], "same": [16, 29, 39, 47, 71, 72, 74, 75], "sampel": 72, "sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 32, 35, 36, 38, 39, 42, 47, 52, 55, 60, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "sample_weight": [24, 25, 26, 52, 55], "sampler": [3, 9], "sampling_method": [29, 39, 71, 72, 80, 81], "save": [29, 39, 72, 79, 81], "savefig": 20, "sc": 33, "scalar": 7, "scale": 10, "scheme": [29, 39, 45, 60, 64, 65, 69, 76, 78, 80], "scienc": 9, "scope": 16, "score": [24, 25, 26, 29, 39, 42, 52, 55, 60, 61], "scores_": 55, "script": [16, 22, 81], "search": [16, 29, 71], "second": [16, 72, 81], "section": [39, 55, 58, 81], "see": [13, 24, 25, 26, 39, 49, 52, 55, 69, 71, 73, 75, 76, 78], "select": [3, 13, 16, 29, 42, 52, 55, 56, 60, 63], "selected_indic": [3, 9], "self": [24, 25, 26, 52, 55, 60], "sens": [58, 73, 78], "sensit": [13, 52, 61, 69, 73, 76, 81], "separ": [16, 39, 81], "sequenc": 44, "sequenti": [13, 16, 29, 39, 41, 42, 55, 60, 64, 69, 76, 79], "sergei": [22, 29], "serv": 16, "set": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 30, 32, 39, 40, 42, 45, 46, 52, 55, 58, 60, 62, 70, 71, 72, 74, 77, 79, 80], "set_config": [24, 25, 26, 52, 55], "set_param": [24, 25, 26, 52, 55], "set_predict_request": [25, 26, 55], "set_score_request": [24, 25, 26, 52, 55], "setdefault": 60, "setup": [5, 75], "setup_infer": 3, "sfu": [69, 73, 78], "shall": 60, "shallow": 60, "shape": [3, 5, 7, 9, 13, 16, 24, 25, 26, 27, 29, 34, 35, 36, 39, 42, 45, 47, 52, 55, 58, 60, 61, 62, 63], "share": 75, "shceme": 81, "shell": [16, 68, 74], "shell_command": 16, "short": 70, "shot": 60, "should": [3, 10, 16, 24, 25, 26, 44, 52, 55, 60, 64, 69, 72, 73, 74, 78, 80, 81], "show": [65, 68, 71, 75, 78, 81], "shown": 3, "sigma": [3, 7, 9, 29, 58, 81], "sigma2": [3, 9, 29, 58], "sigma2_prior": 7, "sigma2dict": 29, "sigma_": [55, 58], "sigma_f": 81, "signal": 52, "significantli": 76, "sim": 7, "simillar": 16, "simon": [69, 73, 78], "simpl": [24, 25, 26, 52, 55, 71, 74, 80], "simpli": 3, "simplic": 7, "simul": [3, 9, 13, 16, 22, 42, 60, 81], "simulation_output": 16, "sinc": 81, "singl": [7, 9, 13, 74, 81], "singular": 52, "size": [24, 25, 26, 52, 55, 58, 81], "skbay": 55, "sklearn": [24, 25, 26, 52, 55], "sklearnpca": 60, "smaller": [25, 45, 76, 81], "smallest": 25, "so": [7, 24, 25, 26, 52, 55, 76, 77, 81], "sobol": [13, 39, 69, 72, 73, 76, 77, 79, 81], "sobol_cel": 13, "sobol_indic": [13, 79], "sobolindicespc": 81, "soc": 76, "societi": 9, "softwar": [16, 69, 73, 78], "solut": 81, "solver": 16, "some": [24, 25, 26, 39, 47, 52, 55, 63, 79, 81], "sonja": [69, 73, 78], "soon": 29, "sort": 45, "sourc": [10, 60, 71, 77], "space": [29, 39, 42, 46, 47, 60, 64, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 80, 81], "sparemulti": 60, "spars": [13, 24, 25, 26, 52, 55, 58, 61, 80], "sparsex": 60, "sparsiti": [60, 81], "specif": [50, 60, 79], "specifi": [17, 29, 39, 60, 71, 72, 80], "sphinx_new": [], "split": [64, 77, 81], "springer": [55, 58], "squar": [3, 9, 10, 13, 24, 25, 26, 29, 52, 55, 60, 74, 80, 81], "ssurjano": [69, 73, 78], "stabl": 9, "stackoverflow": 60, "stand": 3, "standard": [13, 16, 29, 60, 64, 80, 81], "start": [3, 16, 29, 45, 55, 64, 71, 80, 81], "start_engin": [29, 64, 71, 80, 81], "stat": [69, 73, 78], "static": [29, 65, 68, 69, 72, 73, 75, 76, 78, 81], "statist": 76, "std": [3, 9, 16, 29, 81], "std_2": 81, "std_pred": [9, 29, 60], "stdev": [9, 80], "step": [3, 16, 39, 65, 80], "step_snapshot": [39, 81], "still": 64, "stochast": [13, 22], "stop": [39, 45, 64], "store": [16, 81], "str": [3, 5, 7, 13, 16, 24, 25, 26, 29, 39, 42, 47, 52, 55, 60], "straightforward": 77, "strategi": [29, 42, 81], "string": [3, 13, 16, 29, 34, 36, 37, 39, 47, 50, 81], "structur": [64, 77], "stuttgart": [22, 33, 71, 77], "sub": [24, 25, 26, 52, 55], "subdirectori": 16, "submatrix": 52, "subobject": [24, 25, 26, 52, 55], "successfulli": 16, "sudret": [13, 33, 52, 61, 81], "sum": [10, 24, 25, 26, 45, 52, 55], "sum_i": 44, "summari": [29, 60], "sumo": 42, "superclass": 24, "support": [3, 7, 39, 44, 60, 71, 72], "surjanov": [69, 73, 78], "surrog": [16, 28, 29, 42, 60, 64, 72, 77, 79], "surrogate_descript": [], "surrogate_model": [64, 72, 77, 80, 81], "switzerland": 33, "sy": 81, "system": [13, 22, 33, 52], "t": [24, 25, 26, 42, 44, 52, 55], "t_l": 69, "t_u": 69, "tag": 81, "take": [64, 74, 77, 81], "taken": 29, "target": [25, 26, 29, 52, 55, 58, 60, 61, 63], "tau": 78, "teach": 70, "tell": 80, "templat": 16, "term": [7, 25, 26, 37, 45, 63, 69, 73, 78, 81], "termin": [55, 58], "test": [24, 25, 26, 52, 55, 58, 69, 78], "test_": 78, "test_analytical_funct": 81, "text": [7, 16], "textbf": 7, "th": 42, "than": [10, 44, 45], "thei": [72, 77, 81], "them": [16, 29, 64, 71, 77], "themselv": 81, "theorem": 9, "theori": 29, "therefor": [24, 25, 26, 45, 55, 58], "theta": [7, 9, 10, 40], "theta_": 7, "thi": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 40, 42, 47, 52, 55, 58, 60, 62, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "thing": 80, "third": 16, "though": [68, 81], "three": [5, 60, 75, 80, 81], "threshold": [25, 26, 39, 55, 58, 60], "through": [77, 81], "thu": 19, "time": [5, 13, 16, 64, 65, 68, 69, 73, 75, 76, 78, 81], "timestep": [60, 74], "tip": [55, 58], "titl": 3, "toctre": [], "todo": [3, 29, 72], "tol": [24, 25, 26, 55, 56, 58], "tolist": 45, "tom": [3, 81], "toolbox": 42, "topic": 77, "total": [3, 13, 24, 25, 26, 45, 52, 55, 65, 68, 69, 73, 75, 76, 78, 79, 81], "total_sigma2": [3, 9], "total_sobol": [13, 81], "towardsdatasci": 13, "tpl": 16, "tr_x": [39, 47], "trade": [29, 39], "tradeoff": [65, 69, 76, 78, 81], "tradeoff_schem": [29, 39, 64, 81], "tradeoff_weight": 29, "train": [3, 9, 13, 16, 28, 29, 36, 39, 41, 42, 52, 55, 60, 63, 71, 72, 77, 79], "train_error_model": 9, "train_norm": [29, 71, 80, 81], "train_seq_design": 29, "train_sequenti": [29, 64, 79, 81], "transact": 58, "transform": [16, 39, 47, 49, 60, 72], "transpos": 52, "tree": 71, "trine": 39, "true": [3, 5, 16, 17, 20, 24, 25, 26, 39, 40, 44, 52, 55, 58, 60, 72, 81], "truncat": [44, 45, 60, 65, 68, 69, 73, 75, 76, 78, 80, 81], "try": 25, "tsunami": 29, "tue": 54, "tupl": [16, 29, 32, 39, 45, 47, 60], "tutori": [65, 71, 75], "two": [13, 24, 25, 26, 30, 45, 55, 58, 60, 71, 74, 78, 80, 81], "type": [3, 5, 7, 9, 13, 16, 25, 29, 31, 34, 36, 37, 39, 47, 50, 60, 65, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81], "type_": 3, "typic": [10, 81], "u": [24, 25, 26, 52, 55, 71, 80, 81], "ugent": 42, "um": 74, "umbridg": 16, "umbridge_model": 16, "uncertain": [7, 49, 50, 60, 72, 74, 77, 80], "uncertainti": [3, 22, 33, 52, 61, 72, 77], "unchang": [24, 25, 26, 52, 55], "under": [69, 71, 73, 74, 77, 78], "underli": [], "understand": 79, "uni": [22, 33, 71, 77], "unif": [71, 72, 81], "uniform": [49, 65, 68, 69, 72, 73, 78, 81], "uniform_averag": [24, 25, 26, 52, 55], "union": 45, "uniqu": [24, 25, 26], "unit": 33, "univ_basi": 60, "univ_basis_v": [39, 47, 60], "univ_p_v": 62, "univ_v": 36, "univari": [22, 35, 36, 60, 62], "univers": [33, 69, 73, 78], "universitaet": 22, "unknown": [3, 7, 9, 29], "unstabl": 25, "until": 39, "up": [3, 60, 62, 80], "updat": [16, 24, 25, 26, 52, 55, 58, 60], "update_input_param": 16, "update_pce_coeff": 60, "upper": [17, 29, 32, 39, 45, 47], "uq_bsc": 58, "uq_regress": 58, "uqlab": [33, 58], "urban": 13, "us": [3, 7, 9, 13, 16, 22, 24, 25, 26, 29, 39, 42, 44, 45, 47, 52, 55, 58, 60, 64, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81], "use_bayes_set": 5, "useag": 80, "user": [3, 5, 16, 24, 25, 26, 33, 39, 47, 52, 55, 71, 72, 80, 81], "util": [24, 25, 26, 29, 39, 43, 52, 55], "util_alphoptdesign": 29, "util_bayesianactivedesign": 29, "util_bayesiandesign": 29, "util_func": [29, 39, 64, 81], "util_varbaseddesign": 29, "utilii": 39, "v": [3, 22, 24, 25, 26, 39, 47, 52, 55, 60], "v1": 33, "valid": [3, 13, 16, 39, 47, 60, 61, 64, 72, 77, 79, 81], "valid_error": 13, "valid_metamodel": [13, 79, 81], "valid_metr": 3, "valid_model_run": 81, "valid_sampl": 81, "validlikelihoods_": 81, "valu": [3, 5, 7, 9, 10, 16, 17, 24, 25, 26, 34, 35, 45, 52, 55, 56, 58, 60, 61, 63, 65, 68, 72, 74, 80, 81], "valueerror": 62, "var": 29, "var_hat": [25, 26, 55, 58], "var_pca_threshold": 60, "var_pr": [24, 25, 26], "varbasedoptdesign": 39, "variabl": [25, 26, 52, 55, 58, 76, 81], "varianc": [3, 7, 10, 24, 25, 26, 55, 58, 60, 63, 64, 65, 68, 76, 78], "variant": 80, "variat": [24, 26, 60, 80], "varidx": [60, 63], "varieti": 74, "variou": [60, 81], "varoptdesign": [29, 39, 64], "vbl": [60, 80], "vector": [25, 26, 60], "venv": 77, "verbos": [3, 16, 24, 25, 26, 29, 52, 55, 58, 60, 81], "veri": [25, 74], "versa": 30, "version": [24, 25, 26, 42, 52, 55, 60, 69, 71, 73, 77, 78], "via": [5, 7, 9, 39, 47, 60, 68, 69, 72, 73, 74, 76, 77, 80, 81], "vice": 30, "view": 60, "virtual": 77, "visual": [5, 39, 72, 77, 79, 81], "voronoi": [39, 42, 64, 81], "vulner": 33, "w": [9, 10, 13, 22, 24, 25, 26, 42, 52, 55], "wa": 60, "wai": [29, 60, 80, 81], "walker": 3, "want": [71, 72, 79, 80, 81], "warranti": [69, 73, 78], "wavelet": 52, "wb": 81, "we": [7, 25, 64, 69, 70, 71, 73, 74, 78, 79, 80, 81], "wear": 9, "websit": [], "weibul": 72, "weight": [5, 10, 24, 25, 26, 29, 39, 52, 55, 58, 64, 77], "well": [10, 24, 25, 26, 52, 55], "were": 79, "what": [3, 7, 70, 80], "when": [3, 7, 9, 13, 16, 24, 25, 26, 30, 39, 52, 55, 58, 72, 81], "where": [5, 7, 24, 25, 26, 34, 35, 39, 44, 52, 55, 60, 72, 81], "whether": [5, 16, 39, 52, 55, 58], "which": [3, 16, 22, 24, 25, 26, 30, 58, 81], "while": [45, 64, 77, 79, 80, 81], "width": 68, "wiener": 37, "wight": 5, "wish": 16, "witch": 44, "within": [10, 16, 70], "without": [16, 64, 68, 69, 71, 73, 78, 81], "wolfgang": 29, "word": 16, "work": [16, 24, 25, 26, 52, 55, 69, 71, 73, 78, 81], "workflow": [71, 81], "wors": [24, 25, 26, 52, 55], "would": [24, 25, 26, 52, 55, 71], "wrapper": 16, "write": [], "written": 16, "wrong": 29, "www": [22, 33, 55, 58, 69, 73, 78], "x": [13, 16, 24, 25, 26, 31, 34, 35, 36, 39, 44, 47, 52, 53, 55, 58, 60, 63, 72, 74, 80, 81], "x1": 16, "x_1": [49, 50, 73, 81], "x_2": [73, 81], "x_3": 73, "x_axi": 13, "x_can": 29, "x_i": [44, 80], "x_mc": 29, "x_new": 29, "x_valu": [16, 20, 71, 74, 80], "xi": 16, "xiu": 81, "xlabel": 13, "xnew": 29, "xx": 16, "xxa": 55, "xya": 55, "y": [7, 9, 24, 25, 26, 39, 52, 53, 55, 60, 61, 63], "y_hat": [25, 26, 29, 52, 55, 58], "y_i": 80, "y_pc_val": 20, "y_pc_val_std": 20, "y_pred": [24, 25, 26, 52, 55, 60], "y_true": [24, 25, 26, 52, 55], "y_val": 20, "ye": [16, 65, 68, 78], "yet": 10, "yew": 29, "you": [7, 13, 16, 24, 25, 26, 52, 55, 66, 69, 71, 73, 75, 76, 78], "young": 68, "your": [13, 69, 73, 76, 77], "yr": [69, 73], "z": [71, 81], "zero": [30, 52, 55, 58], "zeromean": 7, "zip": 16, "zip_subdir": 16, "zurich": 33}, "titles": ["bayesvalidrox", "bayesvalidrox.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "bayesvalidrox.bayes_inference.bayes_model_comparison", "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "bayesvalidrox.bayes_inference.discrepancy", "bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "bayesvalidrox.bayes_inference.mcmc", "bayesvalidrox.bayes_inference.mcmc.MCMC", "bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "bayesvalidrox.post_processing", "bayesvalidrox.post_processing.post_processing", "bayesvalidrox.post_processing.post_processing.PostProcessing", "bayesvalidrox.pylink", "bayesvalidrox.pylink.pylink", "bayesvalidrox.pylink.pylink.PyLinkForwardModel", "bayesvalidrox.pylink.pylink.within_range", "bayesvalidrox.surrogate_models", "bayesvalidrox.surrogate_models.adaptPlot", "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "bayesvalidrox.surrogate_models.apoly_construction", "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "bayesvalidrox.surrogate_models.bayes_linear", "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "bayesvalidrox.surrogate_models.engine", "bayesvalidrox.surrogate_models.engine.Engine", "bayesvalidrox.surrogate_models.engine.hellinger_distance", "bayesvalidrox.surrogate_models.engine.logpdf", "bayesvalidrox.surrogate_models.engine.subdomain", "bayesvalidrox.surrogate_models.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "bayesvalidrox.surrogate_models.exp_designs", "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "bayesvalidrox.surrogate_models.exp_designs.check_ranges", "bayesvalidrox.surrogate_models.exploration", "bayesvalidrox.surrogate_models.exploration.Exploration", "bayesvalidrox.surrogate_models.glexindex", "bayesvalidrox.surrogate_models.glexindex.cross_truncate", "bayesvalidrox.surrogate_models.glexindex.glexindex", "bayesvalidrox.surrogate_models.input_space", "bayesvalidrox.surrogate_models.input_space.InputSpace", "bayesvalidrox.surrogate_models.inputs", "bayesvalidrox.surrogate_models.inputs.Input", "bayesvalidrox.surrogate_models.inputs.Marginal", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "bayesvalidrox.surrogate_models.reg_fast_ard", "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "bayesvalidrox.surrogate_models.reg_fast_laplace", "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "bayesvalidrox.surrogate_models.surrogate_models", "bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "bayesvalidrox.surrogate_models.surrogate_models.create_psi", "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "Active learning: iteratively expanding the training set", "Example: Analytical function", "API", "Bayesian inference and multi-model comparison", "Example: beam", "Example: borehole", "EXAMPLES", "Surrogate-assisted\u00a0Bayesian validation of computational models", "Priors, input space and experimental design", "Example: ishigami", "Models", "Example: model comparison", "Example: OHagan-function", "USER GUIDE", "Example: pollution", "Postprocessing", "Training surrogate models", "TUTORIAL"], "titleterms": {"1": 75, "3": 75, "activ": 64, "adaptplot": [19, 20], "also": [], "an": 81, "analyt": 65, "api": 66, "apoly_construct": [21, 22], "argument": [29, 42], "assist": 71, "attribut": [3, 5, 7, 9, 13, 16, 25, 26, 39, 42, 47, 49, 50, 52, 55, 58, 60], "bay": [], "bayes_infer": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "bayes_linear": [23, 24, 25, 26, 27], "bayes_model_comparison": [4, 5], "bayesian": [67, 71, 81], "bayesianlinearregress": 24, "bayesinfer": 3, "bayesmodelcomparison": 5, "bayesvalidrox": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "beam": 68, "borehol": 69, "check_rang": 40, "choic": [65, 68, 69, 73, 75, 76, 78], "class": [], "comparison": [67, 75], "comput": 71, "contact": [], "content": 71, "contribut": 71, "corr": 53, "corr_loocv_error": 61, "create_psi": 62, "cross_trunc": 44, "data": [65, 68, 69, 73, 76, 78, 81], "defin": 81, "descript": [], "design": [72, 81], "discrep": [6, 7, 65, 68], "eblinearregress": 25, "engin": [28, 29, 30, 31, 32, 80, 81], "eval_rec_rul": [33, 34, 35, 36, 37], "eval_rec_rule_arbitrari": 35, "eval_univ_basi": 36, "exampl": [49, 64, 65, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80], "exp_design": [38, 39, 40], "expand": 64, "expdesign": 39, "experiment": [72, 81], "exploit": 64, "explor": [41, 42, 64], "function": [65, 76], "further": 71, "gamma_mean": 27, "gaussian_process_emul": 63, "gelman_rubin": 10, "glexindex": [43, 44, 45], "guid": 77, "hellinger_dist": 30, "import": 81, "indic": 71, "infer": [67, 81], "input": [48, 49, 50, 72, 81], "input_spac": [46, 47], "inputspac": 47, "instal": [71, 77], "introductori": [], "ishigami": 73, "iter": 64, "l2_model": 75, "learn": 64, "librari": 81, "licens": 71, "link": 71, "logpdf": 31, "margin": 50, "mcmc": [8, 9, 10], "meta": 81, "meta_model_engin": [], "metamodel": [60, 65, 68, 69, 73, 75, 76, 78, 80], "model": [65, 67, 68, 69, 71, 73, 74, 75, 76, 78, 80, 81], "model1": 75, "multi": 67, "necessari": 81, "nl2_model": 75, "nl4_model": 75, "note": [24, 25, 26, 39, 52, 55, 60], "ohagan": 76, "option": 80, "orthogonal_matching_pursuit": [51, 52, 53], "orthogonalmatchingpursuit": 52, "overview": 77, "packag": [], "paramet": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 47, 52, 55, 58, 60, 61, 62, 63], "pollut": 78, "poly_rec_coeff": 37, "post": 81, "post_process": [11, 12, 13], "postprocess": [13, 79], "prior": [65, 68, 69, 72, 73, 76, 78], "priors1": 75, "probabilist": 81, "process": 81, "pylink": [14, 15, 16, 17, 65, 68, 69, 73, 75, 76, 78], "pylinkforwardmodel": [16, 81], "quickstart": 71, "rais": [13, 29, 62], "refer": [52, 55, 58], "reg_fast_ard": [54, 55, 56], "reg_fast_laplac": [57, 58], "regressionfastard": 55, "regressionfastlaplac": 58, "return": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 42, 47, 49, 52, 55, 58, 60, 61, 62, 63], "see": [], "sequenti": 81, "set": [64, 65, 68, 69, 73, 75, 76, 78, 81], "space": 72, "subdomain": 32, "surrog": [65, 68, 69, 71, 73, 75, 76, 78, 80, 81], "surrogate_model": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "tabl": 71, "theori": [], "tradeoff": 64, "train": [64, 65, 68, 69, 73, 75, 76, 78, 80, 81], "tutori": 81, "uncertainti": 81, "update_precis": 56, "user": 77, "valid": 71, "vblinearregress": 26, "within_rang": 17}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"API": [[66, "api"]], "Active learning: iteratively expanding the training set": [[64, "active-learning-iteratively-expanding-the-training-set"]], "Arguments": [[29, "arguments"], [42, "arguments"], [42, "id2"]], "Attributes": [[3, "attributes"], [5, "attributes"], [7, "attributes"], [9, "attributes"], [13, "attributes"], [16, "attributes"], [25, "attributes"], [26, "attributes"], [39, "attributes"], [42, "attributes"], [47, "attributes"], [49, "attributes"], [50, "attributes"], [52, "attributes"], [55, "attributes"], [58, "attributes"], [60, "attributes"]], "Bayesian Inference": [[82, "bayesian-inference"]], "Bayesian inference": [[67, "bayesian-inference"]], "Bayesian multi-model comparison": [[69, "bayesian-multi-model-comparison"]], "Contribution": [[72, "contribution"]], "Define probabilistic input model": [[82, "define-probabilistic-input-model"]], "Define surrogate (meta) model": [[82, "define-surrogate-meta-model"]], "Define the data uncertainty": [[82, "define-the-data-uncertainty"]], "Define the model with PyLinkForwardModel": [[82, "define-the-model-with-pylinkforwardmodel"]], "Discrepancy": [[65, "id3"], [68, "id3"]], "EXAMPLES": [[71, "examples"]], "Example": [[64, "example"], [67, "example"], [69, "example"], [73, "example"], [75, "example"], [80, "example"], [81, "example"]], "Example: Analytical function": [[65, "example-analytical-function"]], "Example: OHagan-function": [[77, "example-ohagan-function"]], "Example: beam": [[68, "example-beam"]], "Example: borehole": [[70, "example-borehole"]], "Example: ishigami": [[74, "example-ishigami"]], "Example: model comparison": [[76, "example-model-comparison"]], "Example: pollution": [[79, "example-pollution"]], "Examples": [[49, "examples"]], "Exploration, exploitation and tradeoff": [[64, "exploration-exploitation-and-tradeoff"]], "Further contents": [[72, "further-contents"]], "Import necessary libraries": [[82, "import-necessary-libraries"]], "Indices and tables": [[72, "indices-and-tables"]], "Installation": [[72, "installation"], [78, "installation"]], "License": [[72, "license"]], "Links": [[72, "links"]], "MetaModel options": [[81, "metamodel-options"]], "MetaModel settings": [[65, "id4"], [68, "id4"], [70, "id3"], [74, "id3"], [76, "id7"], [77, "id3"], [79, "id3"]], "Model 1: L2_model": [[76, "model-1-l2-model"]], "Model 1: NL2_model": [[76, "model-1-nl2-model"]], "Model 1: NL4_model": [[76, "model-1-nl4-model"]], "Model and Data": [[65, "model-and-data"], [68, "model-and-data"], [70, "model-and-data"], [74, "model-and-data"], [77, "model-and-data"], [79, "model-and-data"]], "Models": [[75, "models"]], "Note": [[39, "note"], [60, "note"]], "Notes": [[24, "notes"], [25, "notes"], [26, "notes"], [52, "notes"], [55, "notes"]], "Overview": [[78, "overview"]], "Parameters": [[3, "parameters"], [3, "id2"], [3, "id4"], [3, "id7"], [5, "parameters"], [5, "id1"], [5, "id3"], [5, "id5"], [5, "id7"], [5, "id9"], [5, "id11"], [5, "id13"], [5, "id15"], [7, "parameters"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id5"], [9, "id7"], [9, "id9"], [9, "id11"], [10, "parameters"], [13, "parameters"], [13, "id1"], [13, "id4"], [13, "id6"], [13, "id8"], [13, "id10"], [16, "parameters"], [16, "id2"], [16, "id4"], [16, "id6"], [16, "id8"], [16, "id10"], [16, "id12"], [17, "parameters"], [22, "parameters"], [24, "parameters"], [24, "id2"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id12"], [25, "id1"], [25, "id3"], [25, "id5"], [25, "id7"], [25, "id9"], [25, "id11"], [25, "id15"], [25, "id17"], [26, "id1"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [26, "id11"], [26, "id15"], [26, "id17"], [27, "parameters"], [29, "parameters"], [29, "id1"], [29, "id3"], [29, "id5"], [29, "id8"], [29, "id14"], [29, "id16"], [29, "id18"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [39, "parameters"], [39, "id2"], [39, "id4"], [39, "id6"], [39, "id8"], [39, "id10"], [39, "id12"], [39, "id14"], [39, "id16"], [40, "parameters"], [47, "parameters"], [47, "id2"], [47, "id4"], [52, "parameters"], [52, "id1"], [52, "id2"], [52, "id5"], [52, "id7"], [52, "id9"], [52, "id11"], [52, "id13"], [52, "id17"], [55, "parameters"], [55, "id1"], [55, "id3"], [55, "id5"], [55, "id8"], [55, "id10"], [55, "id14"], [55, "id16"], [58, "parameters"], [58, "id1"], [60, "parameters"], [60, "id4"], [60, "id6"], [60, "id8"], [60, "id10"], [60, "id12"], [60, "id14"], [60, "id16"], [60, "id18"], [60, "id20"], [61, "parameters"], [62, "parameters"], [63, "parameters"]], "Parameters:": [[25, "parameters"], [26, "parameters"]], "Post-processing": [[82, "post-processing"]], "Postprocessing": [[80, "postprocessing"]], "Priors": [[65, "id2"], [68, "id2"], [70, "id2"], [74, "id2"], [77, "id2"], [79, "id2"]], "Priors, input space and experimental design": [[73, "priors-input-space-and-experimental-design"]], "Priors1": [[76, "id2"], [76, "id4"], [76, "id6"]], "Pylink model": [[65, "id1"], [68, "id1"], [70, "id1"], [74, "id1"], [77, "id1"], [79, "id1"]], "Pylink model1": [[76, "id1"], [76, "id3"], [76, "id5"]], "Quickstart": [[72, "quickstart"]], "Raises": [[13, "raises"], [29, "raises"], [62, "raises"]], "References": [[52, "references"], [55, "references"], [55, "id7"], [58, "references"], [58, "id2"]], "Returns": [[3, "returns"], [3, "id1"], [3, "id3"], [3, "id5"], [3, "id6"], [3, "id8"], [5, "returns"], [5, "id2"], [5, "id4"], [5, "id6"], [5, "id8"], [5, "id10"], [5, "id12"], [5, "id14"], [5, "id16"], [5, "id17"], [7, "returns"], [9, "returns"], [9, "id2"], [9, "id4"], [9, "id6"], [9, "id8"], [9, "id10"], [9, "id12"], [10, "returns"], [13, "returns"], [13, "id2"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [13, "id11"], [16, "returns"], [16, "id1"], [16, "id3"], [16, "id5"], [16, "id7"], [16, "id9"], [16, "id11"], [16, "id13"], [17, "returns"], [22, "returns"], [24, "returns"], [24, "id1"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id11"], [24, "id13"], [25, "returns"], [25, "id2"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [25, "id14"], [25, "id16"], [25, "id18"], [26, "returns"], [26, "id2"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [26, "id14"], [26, "id16"], [26, "id18"], [27, "returns"], [29, "returns"], [29, "id2"], [29, "id4"], [29, "id6"], [29, "id7"], [29, "id9"], [29, "id10"], [29, "id11"], [29, "id12"], [29, "id13"], [29, "id15"], [29, "id17"], [29, "id19"], [30, "returns"], [31, "returns"], [32, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [39, "returns"], [39, "id1"], [39, "id3"], [39, "id5"], [39, "id7"], [39, "id9"], [39, "id11"], [39, "id13"], [39, "id15"], [39, "id17"], [40, "returns"], [42, "returns"], [42, "id1"], [42, "id3"], [42, "id4"], [47, "returns"], [47, "id1"], [47, "id3"], [47, "id5"], [49, "returns"], [52, "returns"], [52, "id3"], [52, "id4"], [52, "id6"], [52, "id8"], [52, "id10"], [52, "id12"], [52, "id16"], [52, "id18"], [55, "returns"], [55, "id2"], [55, "id4"], [55, "id6"], [55, "id9"], [55, "id13"], [55, "id15"], [55, "id17"], [58, "returns"], [60, "returns"], [60, "id1"], [60, "id2"], [60, "id3"], [60, "id5"], [60, "id7"], [60, "id9"], [60, "id11"], [60, "id13"], [60, "id15"], [60, "id17"], [60, "id19"], [60, "id21"], [61, "returns"], [62, "returns"], [63, "returns"]], "Sequential training": [[82, "sequential-training"]], "Set the experimental design": [[82, "set-the-experimental-design"]], "Surrogate": [[65, "surrogate"], [68, "surrogate"], [70, "surrogate"], [74, "surrogate"], [77, "surrogate"], [79, "surrogate"]], "Surrogate-assisted\u00a0Bayesian validation of computational models": [[72, "surrogate-assisted-bayesian-validation-of-computational-models"]], "Surrogates 1-3": [[76, "surrogates-1-3"]], "TUTORIAL": [[82, "tutorial"]], "Train the surrogate with an engine": [[82, "train-the-surrogate-with-an-engine"]], "Training choices": [[65, "id5"], [68, "id5"], [70, "id4"], [74, "id4"], [76, "id8"], [77, "id4"], [79, "id4"]], "Training surrogate models": [[81, "training-surrogate-models"]], "Training with the engine": [[81, "training-with-the-engine"]], "USER GUIDE": [[78, "user-guide"]], "bayesvalidrox": [[0, "module-bayesvalidrox"]], "bayesvalidrox.bayes_inference": [[1, "module-bayesvalidrox.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference": [[2, "module-bayesvalidrox.bayes_inference.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, "bayesvalidrox-bayes-inference-bayes-inference-bayesinference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[4, "module-bayesvalidrox.bayes_inference.bayes_model_comparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, "bayesvalidrox-bayes-inference-bayes-model-comparison-bayesmodelcomparison"]], "bayesvalidrox.bayes_inference.discrepancy": [[6, "module-bayesvalidrox.bayes_inference.discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, "bayesvalidrox-bayes-inference-discrepancy-discrepancy"]], "bayesvalidrox.bayes_inference.mcmc": [[8, "module-bayesvalidrox.bayes_inference.mcmc"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, "bayesvalidrox-bayes-inference-mcmc-mcmc"]], "bayesvalidrox.bayes_inference.mcmc.gelman_rubin": [[10, "bayesvalidrox-bayes-inference-mcmc-gelman-rubin"]], "bayesvalidrox.post_processing": [[11, "module-bayesvalidrox.post_processing"]], "bayesvalidrox.post_processing.post_processing": [[12, "module-bayesvalidrox.post_processing.post_processing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, "bayesvalidrox-post-processing-post-processing-postprocessing"]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink"]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, "bayesvalidrox-pylink-pylink-pylinkforwardmodel"]], "bayesvalidrox.pylink.pylink.within_range": [[17, "bayesvalidrox-pylink-pylink-within-range"]], "bayesvalidrox.surrogate_models": [[18, "module-bayesvalidrox.surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[19, "module-bayesvalidrox.surrogate_models.adaptPlot"]], "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot": [[20, "bayesvalidrox-surrogate-models-adaptplot-adaptplot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[21, "module-bayesvalidrox.surrogate_models.apoly_construction"]], "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction": [[22, "bayesvalidrox-surrogate-models-apoly-construction-apoly-construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[23, "module-bayesvalidrox.surrogate_models.bayes_linear"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, "bayesvalidrox-surrogate-models-bayes-linear-bayesianlinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, "bayesvalidrox-surrogate-models-bayes-linear-eblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, "bayesvalidrox-surrogate-models-bayes-linear-vblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean": [[27, "bayesvalidrox-surrogate-models-bayes-linear-gamma-mean"]], "bayesvalidrox.surrogate_models.engine": [[28, "module-bayesvalidrox.surrogate_models.engine"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, "bayesvalidrox-surrogate-models-engine-engine"]], "bayesvalidrox.surrogate_models.engine.hellinger_distance": [[30, "bayesvalidrox-surrogate-models-engine-hellinger-distance"]], "bayesvalidrox.surrogate_models.engine.logpdf": [[31, "bayesvalidrox-surrogate-models-engine-logpdf"]], "bayesvalidrox.surrogate_models.engine.subdomain": [[32, "bayesvalidrox-surrogate-models-engine-subdomain"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[33, "module-bayesvalidrox.surrogate_models.eval_rec_rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule": [[34, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary": [[35, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule-arbitrary"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis": [[36, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-univ-basis"]], "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs": [[37, "bayesvalidrox-surrogate-models-eval-rec-rule-poly-rec-coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[38, "module-bayesvalidrox.surrogate_models.exp_designs"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, "bayesvalidrox-surrogate-models-exp-designs-expdesigns"]], "bayesvalidrox.surrogate_models.exp_designs.check_ranges": [[40, "bayesvalidrox-surrogate-models-exp-designs-check-ranges"]], "bayesvalidrox.surrogate_models.exploration": [[41, "module-bayesvalidrox.surrogate_models.exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, "bayesvalidrox-surrogate-models-exploration-exploration"]], "bayesvalidrox.surrogate_models.glexindex": [[43, "module-bayesvalidrox.surrogate_models.glexindex"]], "bayesvalidrox.surrogate_models.glexindex.cross_truncate": [[44, "bayesvalidrox-surrogate-models-glexindex-cross-truncate"]], "bayesvalidrox.surrogate_models.glexindex.glexindex": [[45, "bayesvalidrox-surrogate-models-glexindex-glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[46, "module-bayesvalidrox.surrogate_models.input_space"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, "bayesvalidrox-surrogate-models-input-space-inputspace"]], "bayesvalidrox.surrogate_models.inputs": [[48, "module-bayesvalidrox.surrogate_models.inputs"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, "bayesvalidrox-surrogate-models-inputs-input"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, "bayesvalidrox-surrogate-models-inputs-marginal"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[51, "module-bayesvalidrox.surrogate_models.orthogonal_matching_pursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-orthogonalmatchingpursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr": [[53, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-corr"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[54, "module-bayesvalidrox.surrogate_models.reg_fast_ard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, "bayesvalidrox-surrogate-models-reg-fast-ard-regressionfastard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions": [[56, "bayesvalidrox-surrogate-models-reg-fast-ard-update-precisions"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[57, "module-bayesvalidrox.surrogate_models.reg_fast_laplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, "bayesvalidrox-surrogate-models-reg-fast-laplace-regressionfastlaplace"]], "bayesvalidrox.surrogate_models.surrogate_models": [[59, "module-bayesvalidrox.surrogate_models.surrogate_models"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[60, "bayesvalidrox-surrogate-models-surrogate-models-metamodel"]], "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error": [[61, "bayesvalidrox-surrogate-models-surrogate-models-corr-loocv-error"]], "bayesvalidrox.surrogate_models.surrogate_models.create_psi": [[62, "bayesvalidrox-surrogate-models-surrogate-models-create-psi"]], "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator": [[63, "bayesvalidrox-surrogate-models-surrogate-models-gaussian-process-emulator"]]}, "docnames": ["_autosummary/bayesvalidrox", "_autosummary/bayesvalidrox.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "_autosummary/bayesvalidrox.bayes_inference.discrepancy", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "_autosummary/bayesvalidrox.bayes_inference.mcmc", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "_autosummary/bayesvalidrox.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing", "_autosummary/bayesvalidrox.pylink", "_autosummary/bayesvalidrox.pylink.pylink", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel", "_autosummary/bayesvalidrox.pylink.pylink.within_range", "_autosummary/bayesvalidrox.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "_autosummary/bayesvalidrox.surrogate_models.engine", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges", "_autosummary/bayesvalidrox.surrogate_models.exploration", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration", "_autosummary/bayesvalidrox.surrogate_models.glexindex", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex", "_autosummary/bayesvalidrox.surrogate_models.input_space", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace", "_autosummary/bayesvalidrox.surrogate_models.inputs", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "al_description", "analyticalfunction", "api", "bayes_description", "beam", "bmc_description", "borehole", "examples", "index", "input_description", "ishigami", "model_description", "modelcomparison", "ohaganfunction", "packagedescription", "pollution", "post_description", "surrogate_description", "tutorial"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["_autosummary/bayesvalidrox.rst", "_autosummary/bayesvalidrox.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.rst", "_autosummary/bayesvalidrox.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.rst", "_autosummary/bayesvalidrox.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.rst", "_autosummary/bayesvalidrox.pylink.pylink.within_range.rst", "_autosummary/bayesvalidrox.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.rst", "al_description.rst", "analyticalfunction.rst", "api.rst", "bayes_description.rst", "beam.rst", "bmc_description.rst", "borehole.rst", "examples.rst", "index.rst", "input_description.rst", "ishigami.rst", "model_description.rst", "modelcomparison.rst", "ohaganfunction.rst", "packagedescription.rst", "pollution.rst", "post_description.rst", "surrogate_description.rst", "tutorial.rst"], "indexentries": {"__init__() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__", false]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink", false]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink", false]], "module": [[14, "module-bayesvalidrox.pylink", false], [15, "module-bayesvalidrox.pylink.pylink", false]], "pylinkforwardmodel (class in bayesvalidrox.pylink.pylink)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel", false]], "pylinkforwardmodel.outputdata (class in bayesvalidrox.pylink.pylink)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.OutputData", false]], "read_observation() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.read_observation", false]], "read_output() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.read_output", false]], "run_command() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.run_command", false]], "run_forwardmodel() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.run_forwardmodel", false]], "run_model_parallel() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.run_model_parallel", false]], "umbridge_model() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.uMBridge_model", false]], "update_input_params() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.update_input_params", false]], "within_range() (in module bayesvalidrox.pylink.pylink)": [[17, "bayesvalidrox.pylink.pylink.within_range", false]], "zip_subdirs() (bayesvalidrox.pylink.pylink.pylinkforwardmodel method)": [[16, "bayesvalidrox.pylink.pylink.PyLinkForwardModel.zip_subdirs", false]]}, "objects": {"": [[0, 0, 0, "-", "bayesvalidrox"]], "bayesvalidrox": [[1, 0, 0, "-", "bayes_inference"], [11, 0, 0, "-", "post_processing"], [14, 0, 0, "-", "pylink"], [18, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.bayes_inference": [[2, 0, 0, "-", "bayes_inference"], [4, 0, 0, "-", "bayes_model_comparison"], [6, 0, 0, "-", "discrepancy"], [8, 0, 0, "-", "mcmc"]], "bayesvalidrox.bayes_inference.bayes_inference": [[3, 1, 1, "", "BayesInference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, 2, 1, "", "__init__"], [3, 2, 1, "", "create_error_model"], [3, 2, 1, "", "create_inference"], [3, 2, 1, "", "normpdf"], [3, 2, 1, "", "perform_bootstrap"], [3, 2, 1, "", "plot_log_BME"], [3, 2, 1, "", "plot_post_params"], [3, 2, 1, "", "setup_inference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[5, 1, 1, "", "BayesModelComparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, 2, 1, "", "__init__"], [5, 2, 1, "", "cal_model_weight"], [5, 2, 1, "", "calc_bayes_factors"], [5, 2, 1, "", "calc_justifiability_analysis"], [5, 2, 1, "", "calc_model_weights"], [5, 2, 1, "", "generate_dataset"], [5, 2, 1, "", "model_comparison_all"], [5, 2, 1, "", "plot_bayes_factor"], [5, 2, 1, "", "plot_just_analysis"], [5, 2, 1, "", "plot_model_weights"], [5, 2, 1, "", "setup"]], "bayesvalidrox.bayes_inference.discrepancy": [[7, 1, 1, "", "Discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, 2, 1, "", "__init__"], [7, 2, 1, "", "get_sample"]], "bayesvalidrox.bayes_inference.mcmc": [[9, 1, 1, "", "MCMC"], [10, 3, 1, "", "gelman_rubin"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, 2, 1, "", "__init__"], [9, 2, 1, "", "eval_model"], [9, 2, 1, "", "log_likelihood"], [9, 2, 1, "", "log_posterior"], [9, 2, 1, "", "log_prior"], [9, 2, 1, "", "normpdf"], [9, 2, 1, "", "run_sampler"], [9, 2, 1, "", "train_error_model"]], "bayesvalidrox.post_processing": [[12, 0, 0, "-", "post_processing"]], "bayesvalidrox.post_processing.post_processing": [[13, 1, 1, "", "PostProcessing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, 2, 1, "", "__init__"], [13, 2, 1, "", "check_accuracy"], [13, 2, 1, "", "check_reg_quality"], [13, 2, 1, "", "compute_pce_moments"], [13, 2, 1, "", "plot_moments"], [13, 2, 1, "", "plot_seq_design_diagnostics"], [13, 2, 1, "", "sobol_indices"], [13, 2, 1, "", "valid_metamodel"]], "bayesvalidrox.pylink": [[15, 0, 0, "-", "pylink"]], "bayesvalidrox.pylink.pylink": [[16, 1, 1, "", "PyLinkForwardModel"], [17, 3, 1, "", "within_range"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, 1, 1, "", "OutputData"], [16, 2, 1, "", "__init__"], [16, 2, 1, "", "read_observation"], [16, 2, 1, "", "read_output"], [16, 2, 1, "", "run_command"], [16, 2, 1, "", "run_forwardmodel"], [16, 2, 1, "", "run_model_parallel"], [16, 2, 1, "", "uMBridge_model"], [16, 2, 1, "", "update_input_params"], [16, 2, 1, "", "zip_subdirs"]], "bayesvalidrox.surrogate_models": [[19, 0, 0, "-", "adaptPlot"], [21, 0, 0, "-", "apoly_construction"], [23, 0, 0, "-", "bayes_linear"], [28, 0, 0, "-", "engine"], [33, 0, 0, "-", "eval_rec_rule"], [38, 0, 0, "-", "exp_designs"], [41, 0, 0, "-", "exploration"], [43, 0, 0, "-", "glexindex"], [46, 0, 0, "-", "input_space"], [48, 0, 0, "-", "inputs"], [51, 0, 0, "-", "orthogonal_matching_pursuit"], [54, 0, 0, "-", "reg_fast_ard"], [57, 0, 0, "-", "reg_fast_laplace"], [59, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[20, 3, 1, "", "adaptPlot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[22, 3, 1, "", "apoly_construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[24, 1, 1, "", "BayesianLinearRegression"], [25, 1, 1, "", "EBLinearRegression"], [26, 1, 1, "", "VBLinearRegression"], [27, 3, 1, "", "gamma_mean"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, 2, 1, "", "__init__"], [24, 2, 1, "", "fit"], [24, 2, 1, "", "get_metadata_routing"], [24, 2, 1, "", "get_params"], [24, 2, 1, "", "predict"], [24, 2, 1, "", "predict_dist"], [24, 2, 1, "", "score"], [24, 2, 1, "", "set_params"], [24, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, 2, 1, "", "__init__"], [25, 2, 1, "", "fit"], [25, 2, 1, "", "get_metadata_routing"], [25, 2, 1, "", "get_params"], [25, 2, 1, "", "predict"], [25, 2, 1, "", "predict_dist"], [25, 2, 1, "", "score"], [25, 2, 1, "", "set_params"], [25, 2, 1, "", "set_predict_request"], [25, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, 2, 1, "", "__init__"], [26, 2, 1, "", "fit"], [26, 2, 1, "", "get_metadata_routing"], [26, 2, 1, "", "get_params"], [26, 2, 1, "", "predict"], [26, 2, 1, "", "predict_dist"], [26, 2, 1, "", "score"], [26, 2, 1, "", "set_params"], [26, 2, 1, "", "set_predict_request"], [26, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.engine": [[29, 1, 1, "", "Engine"], [30, 3, 1, "", "hellinger_distance"], [31, 3, 1, "", "logpdf"], [32, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, 2, 1, "", "__init__"], [29, 2, 1, "", "choose_next_sample"], [29, 2, 1, "", "dual_annealing"], [29, 2, 1, "", "eval_metamodel"], [29, 2, 1, "", "run_util_func"], [29, 2, 1, "", "start_engine"], [29, 2, 1, "", "tradeoff_weights"], [29, 2, 1, "", "train_normal"], [29, 2, 1, "", "train_seq_design"], [29, 2, 1, "", "train_sequential"], [29, 2, 1, "", "util_AlphOptDesign"], [29, 2, 1, "", "util_BayesianActiveDesign"], [29, 2, 1, "", "util_BayesianDesign"], [29, 2, 1, "", "util_VarBasedDesign"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[34, 3, 1, "", "eval_rec_rule"], [35, 3, 1, "", "eval_rec_rule_arbitrary"], [36, 3, 1, "", "eval_univ_basis"], [37, 3, 1, "", "poly_rec_coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[39, 1, 1, "", "ExpDesigns"], [40, 3, 1, "", "check_ranges"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, 2, 1, "", "__init__"], [39, 2, 1, "", "build_polytypes"], [39, 2, 1, "", "check_valid_inputs"], [39, 2, 1, "", "generate_ED"], [39, 2, 1, "", "generate_samples"], [39, 2, 1, "", "init_param_space"], [39, 2, 1, "", "pcm_sampler"], [39, 2, 1, "", "plot_samples"], [39, 2, 1, "", "random_sampler"], [39, 2, 1, "", "read_from_file"], [39, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.exploration": [[42, 1, 1, "", "Exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, 2, 1, "", "__init__"], [42, 2, 1, "", "approximate_voronoi"], [42, 2, 1, "", "get_exploration_samples"], [42, 2, 1, "", "get_mc_samples"], [42, 2, 1, "", "get_vornoi_samples"]], "bayesvalidrox.surrogate_models.glexindex": [[44, 3, 1, "", "cross_truncate"], [45, 3, 1, "", "glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[47, 1, 1, "", "InputSpace"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, 2, 1, "", "__init__"], [47, 2, 1, "", "build_polytypes"], [47, 2, 1, "", "check_valid_inputs"], [47, 2, 1, "", "init_param_space"], [47, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.inputs": [[49, 1, 1, "", "Input"], [50, 1, 1, "", "Marginal"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, 2, 1, "", "__init__"], [49, 2, 1, "", "add_marginals"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, 2, 1, "", "__init__"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[52, 1, 1, "", "OrthogonalMatchingPursuit"], [53, 3, 1, "", "corr"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, 2, 1, "", "__init__"], [52, 2, 1, "", "blockwise_inverse"], [52, 2, 1, "", "fit"], [52, 2, 1, "", "get_metadata_routing"], [52, 2, 1, "", "get_params"], [52, 2, 1, "", "loo_error"], [52, 2, 1, "", "predict"], [52, 2, 1, "", "score"], [52, 2, 1, "", "set_params"], [52, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[55, 1, 1, "", "RegressionFastARD"], [56, 3, 1, "", "update_precisions"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, 2, 1, "", "__init__"], [55, 2, 1, "", "fit"], [55, 2, 1, "", "get_metadata_routing"], [55, 2, 1, "", "get_params"], [55, 2, 1, "", "log_marginal_like"], [55, 2, 1, "", "predict"], [55, 2, 1, "", "score"], [55, 2, 1, "", "set_params"], [55, 2, 1, "", "set_predict_request"], [55, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[58, 1, 1, "", "RegressionFastLaplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, 2, 1, "", "__init__"], [58, 2, 1, "", "predict"]], "bayesvalidrox.surrogate_models.surrogate_models": [[60, 1, 1, "", "MetaModel"], [61, 3, 1, "", "corr_loocv_error"], [62, 3, 1, "", "create_psi"], [63, 3, 1, "", "gaussian_process_emulator"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "adaptive_regression"], [60, 2, 1, "", "add_InputSpace"], [60, 1, 1, "", "auto_vivification"], [60, 2, 1, "", "build_metamodel"], [60, 2, 1, "", "copy_meta_model_opts"], [60, 2, 1, "", "create_model_error"], [60, 2, 1, "", "eval_metamodel"], [60, 2, 1, "", "eval_model_error"], [60, 2, 1, "", "fit"], [60, 2, 1, "", "generate_polynomials"], [60, 2, 1, "", "pca_transformation"], [60, 2, 1, "", "regression"], [60, 2, 1, "", "univ_basis_vals"], [60, 2, 1, "", "update_pce_coeffs"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel.auto_vivification": [[60, 2, 1, "", "clear"], [60, 2, 1, "", "copy"], [60, 2, 1, "", "fromkeys"], [60, 2, 1, "", "get"], [60, 2, 1, "", "items"], [60, 2, 1, "", "keys"], [60, 2, 1, "", "pop"], [60, 2, 1, "", "popitem"], [60, 2, 1, "", "setdefault"], [60, 2, 1, "", "update"], [60, 2, 1, "", "values"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"": [9, 13, 16, 22, 24, 25, 26, 29, 33, 42, 52, 55, 56, 58, 60, 77, 82], "0": [3, 5, 7, 16, 24, 25, 26, 30, 44, 45, 49, 52, 55, 58, 60, 65, 67, 68, 70, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "0001": 26, "001": [13, 25, 55, 67], "002": 22, "01": 5, "032": 42, "045e": 80, "05": [3, 22, 42, 80], "057": 67, "06": 25, "07": [58, 80], "08": 51, "1": [3, 5, 9, 10, 13, 16, 24, 25, 26, 29, 30, 33, 34, 35, 36, 39, 42, 44, 45, 47, 49, 52, 55, 58, 60, 61, 62, 64, 65, 67, 68, 70, 72, 74, 77, 78, 79, 80, 81, 82], "10": [13, 22, 42, 44, 58, 64, 65, 72, 80, 81, 82], "100": [3, 26, 55, 60, 68, 73, 76, 77, 82], "1000": [5, 13, 58, 64, 65, 82], "10000": 77, "100000": 3, "1016": [13, 22, 42], "104": 33, "106": [22, 29], "106737": 13, "11": [13, 42, 80], "12": [60, 65, 76], "125": 9, "13": 19, "13380": 67, "14": [33, 51, 64, 74, 77], "15": [51, 77, 80], "150": [65, 79, 82], "16": [39, 64, 82], "171": 29, "179": 22, "18082457": 60, "182": 29, "19": [54, 58], "190": 22, "195": 13, "1993": 52, "1d": 67, "1e": [25, 26, 39, 55, 58, 64, 82], "1e4": 67, "1e5": 82, "2": [3, 7, 9, 13, 24, 25, 26, 29, 33, 39, 44, 45, 47, 52, 55, 58, 60, 61, 65, 67, 68, 70, 72, 74, 75, 76, 79, 80, 82], "200": [3, 74, 82], "2001": 55, "2002": 82, "2003": [55, 58], "2004": 77, "2006": [55, 58], "2009": [52, 58, 61], "2010": [9, 42], "2011": [13, 42, 52, 61, 82], "2012": [22, 82], "2013": [9, 70, 74, 79], "2014": 33, "2016": 29, "2017": 29, "2018": 29, "2020": [13, 19, 29, 54], "2021": 33, "2022": [33, 51], "2051": 42, "2055": 42, "214": 42, "22": 29, "224e": 80, "23": [24, 25, 26, 52, 55], "230": [52, 61], "234": 67, "2345": [52, 61], "2367": [52, 61], "24": [19, 54], "2554": 33, "2563": 33, "27": 13, "27th": 52, "2_": 82, "2d": [16, 31, 60], "2e": 3, "2nd": 33, "3": [3, 24, 25, 26, 37, 39, 42, 45, 47, 52, 55, 58, 65, 70, 72, 74, 77, 78, 81, 82], "30": [67, 82], "300": [25, 55, 70], "306": 9, "332": 29, "382": 29, "4": [26, 33, 39, 45, 64, 65, 67, 68, 70, 76, 77, 79, 82], "40": 52, "406e": 80, "407": 29, "41": 54, "44": 52, "45": 54, "46": 19, "5": [9, 25, 29, 49, 65, 67, 70, 73, 77, 80, 82], "50": 70, "500": [67, 77, 82], "5000": 70, "500000": 3, "513e": 80, "53": 58, "59": 51, "5a": 22, "6": [45, 52, 61, 68], "61": 33, "63": 58, "65": [9, 77], "651879": 60, "66": 77, "683": 42, "696": 42, "7": [58, 60, 77], "70569": [22, 33], "75": [68, 82], "751": 77, "752": 67, "769": 77, "8": [29, 70, 79], "80": 9, "85": [65, 72, 81], "890": 29, "9": [72, 78, 81, 82], "925": 9, "99": 60, "999": 60, "A": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 33, 39, 42, 47, 49, 52, 55, 56, 58, 60, 65, 70, 74, 75, 76, 79, 80, 82], "As": [64, 67, 82], "FOR": [70, 74, 79], "For": [7, 10, 13, 24, 25, 26, 39, 52, 55, 60, 64, 67, 69, 70, 72, 74, 75, 79, 81, 82], "If": [3, 7, 9, 13, 16, 24, 25, 26, 39, 40, 45, 47, 49, 52, 55, 58, 60, 67, 70, 72, 73, 74, 78, 79, 81, 82], "In": [3, 7, 42, 60, 64, 67, 73, 75, 81, 82], "It": [16, 29, 60, 72, 78], "Its": 75, "NO": [70, 74, 79], "NOT": [70, 74, 79], "No": [29, 70, 74, 76, 77, 79], "OF": [70, 74, 79], "OR": [70, 74, 79], "One": [29, 60], "THE": [70, 74, 79], "THERE": [70, 74, 79], "The": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 40, 42, 44, 45, 47, 50, 52, 55, 60, 61, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81, 82], "Then": [67, 78, 81], "There": 60, "These": [60, 67, 69, 81, 82], "To": [60, 69, 80], "Will": 39, "With": [7, 67, 72, 75, 81, 82], "_": [7, 81], "__": [24, 25, 26, 52, 55], "__init__": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60], "_i": 7, "aa": 55, "ab": [34, 37], "about": 71, "abov": [3, 76], "absolut": [55, 58], "abstract": [24, 55], "accept": [60, 67, 82], "accord": [81, 82], "accordingli": [67, 70, 74, 79], "account": 78, "accuraci": [13, 78, 80, 82], "accuracycheckmetamodel": 82, "achiev": [30, 82], "activ": [3, 29, 39, 56, 65, 68, 74, 78, 79, 80, 81, 82], "active_": [52, 55, 58], "actual": [16, 29, 81, 82], "ad": [24, 25, 26, 52, 55, 56, 73], "adapt": [16, 29, 42, 52, 60, 61, 64], "adapt_verbos": 39, "adaptive_regress": 60, "add": [49, 67, 82], "add_expdesign": [], "add_inputspac": 60, "add_margin": [49, 72, 73, 82], "addit": [7, 16, 64, 67, 69, 82], "addition": [70, 73, 74, 79], "adopt": 82, "advwatr": 13, "affin": 9, "after": 64, "again": [16, 82], "against": [17, 69, 73, 78, 80], "ai": 9, "ainv": 52, "al": [3, 64, 65, 70, 77], "al_descript": [], "alc": 29, "alg": 58, "algorithm": [29, 52, 55, 58, 60], "alia": [24, 25, 26, 52, 55], "all": [3, 5, 13, 16, 17, 24, 25, 26, 29, 36, 39, 47, 52, 55, 60, 62, 64, 67, 72, 73, 76, 78, 80, 82], "all_candid": 42, "all_just_data": 5, "all_output": 16, "allow": [16, 24, 25, 26, 52, 55, 75, 80, 82], "alm": 29, "almost": 77, "along": [29, 36, 60, 82], "alpha": 25, "alpha_": [25, 26, 55, 58], "alphabet": [29, 39], "alreadi": [52, 55, 58, 60], "also": [29, 39, 60, 64, 67, 72, 81, 82], "alt": [], "altern": [29, 81], "alwai": [24, 25, 26, 45, 52, 55], "amazaspshumik": 55, "an": [3, 7, 9, 10, 13, 16, 24, 25, 26, 29, 39, 42, 47, 50, 52, 55, 60, 64, 67, 68, 72, 73, 75, 76, 78, 79, 80, 81], "analysi": [3, 5, 13, 16, 33, 52, 55, 60, 61, 70, 74, 77, 78, 81, 82], "analyt": [71, 82], "analytical_funct": 82, "analyticfunc": 82, "anaylsi": 13, "angl": [52, 60, 61, 81], "ani": [3, 52, 60, 64, 70, 74, 79, 82], "anneal": [39, 64], "anoth": [16, 42, 72, 82], "apc": [22, 59, 60, 65, 70, 72, 73, 74, 76, 77, 79, 80, 81, 82], "api": 72, "apoly_coeff": 36, "app": 39, "appli": [9, 29, 60, 73, 81], "applic": [13, 37, 52, 80], "apply_constraint": 60, "approach": [10, 29, 77], "approxim": [3, 9, 26, 42, 52, 80, 81, 82], "approximate_voronoi": 42, "ar": [3, 5, 7, 9, 10, 13, 16, 17, 24, 25, 26, 29, 34, 35, 39, 44, 45, 52, 55, 60, 64, 67, 69, 71, 73, 75, 76, 77, 78, 80, 81, 82], "arang": 82, "arbitrari": [22, 60, 72, 81, 82], "arbitrarili": [24, 25, 26, 52, 55], "ard": [55, 60, 81], "area": 42, "arg": [3, 44, 45], "argument": [3, 16, 62, 82], "around": 82, "arrai": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 42, 44, 45, 47, 50, 52, 55, 58, 60, 61, 62, 63, 67, 75], "array_lik": 31, "asilomar": 52, "ask": 67, "askei": 37, "aspect": 78, "assembl": [62, 64], "asset": 10, "assign": [3, 30, 39], "assist": [65, 79], "associ": [38, 42, 64, 65, 67, 68, 70, 73, 74, 76, 77, 79, 81, 82], "assum": [16, 26, 45, 70, 74, 79, 82], "astronom": 9, "asumpt": 5, "attribut": 73, "aug": 19, "author": [19, 22, 33, 51, 54, 70, 74, 79], "auto": 67, "auto_vivif": 60, "automat": [55, 73, 82], "autoselect": 63, "autovivif": 60, "aux_fil": 16, "auxiliari": 16, "avail": [3, 7, 16, 39, 47, 50, 60, 64, 68, 72, 78, 81, 82], "avali": 49, "averag": 5, "avoid": 82, "axi": [13, 45, 75], "b": [3, 7, 10, 13, 26, 27, 33, 52, 60, 61, 75, 77, 80], "b_i": 44, "babacan": 58, "bal": [29, 65], "bar": 13, "barro": 13, "base": [3, 5, 7, 9, 13, 16, 22, 24, 25, 26, 29, 31, 33, 35, 36, 39, 42, 47, 49, 50, 52, 55, 56, 58, 60, 61, 64, 67, 69, 73, 76, 78, 79, 81, 82], "basi": [22, 62], "basic": 82, "basis_indic": [60, 62], "bay": [3, 5, 9, 24, 25, 55, 69, 78], "bayes_": 82, "bayes_env": 78, "bayes_inf": [], "bayes_infer": [67, 69, 82], "bayes_loocv": 3, "bayes_model_comparison": 69, "bayes_pc": 82, "bayesactdesign": [29, 39, 82], "bayesfactor": 5, "bayesian": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 55, 58, 60, 64, 65, 74, 77, 78, 79, 81], "bayesian3": [29, 64], "bayesianlinearregress": [25, 26], "bayesinfer": [5, 67, 82], "bayesmodelcomparison": 69, "bayesobj": 67, "bayesopt": [9, 82], "bayesoptdesign": [29, 39], "bayesvalidrox": [64, 66, 67, 68, 69, 71, 72, 73, 75, 78, 80, 81, 82], "bc": [58, 74, 79], "beam": [71, 75], "beam9point": 68, "becaus": [24, 25, 26, 52, 55], "beck": 29, "becom": 82, "been": [16, 39], "befor": [16, 29, 60, 81, 82], "beforehand": 39, "behaviour": 81, "being": [3, 9, 16, 64], "below": [55, 58], "best": [24, 25, 26, 52, 55, 60, 63, 78], "beta": [55, 73], "beta_": [25, 26], "better": 25, "between": [10, 17, 30, 60, 64, 67, 82], "bia": [25, 26], "bias_input": [9, 82], "bias_term": 58, "biasinput": 9, "bin": 78, "binder": 16, "bingham": [70, 74, 79], "bishop": [55, 58], "bit": 82, "blatman": [52, 61, 82], "blob": [10, 43, 55], "blockwise_invers": 52, "bm": 5, "bmc": 3, "bme": [3, 5, 13, 82], "bme_dict": 5, "bonu": [], "bool": [3, 5, 16, 17, 24, 25, 26, 29, 39, 40, 45, 47, 49, 52, 55, 58, 60, 63], "boolean": [25, 44, 52, 55, 58], "bootstrap": [3, 5, 60, 65, 67, 79, 81], "bootstrap_method": 60, "bootstrap_nois": [3, 67], "borehol": 71, "both": [10, 44, 45, 80, 82], "bound": [17, 29, 32, 39, 44, 45, 47], "bound_tupl": [39, 47], "boundari": 29, "bridg": 75, "brief": 78, "broad": [25, 75, 81], "brr": [60, 81], "bug": [], "build": [29, 60, 72, 73, 78, 81], "build_metamodel": 60, "build_polytyp": [39, 47], "built": [46, 81], "burn": [3, 67], "bvr": [], "c": [24, 26, 40, 52, 55, 58], "c_point": 16, "ca": [70, 74, 79], "cai": 29, "cal_model_weight": 5, "calc_bayes_factor": 5, "calc_justifiability_analysi": 5, "calc_model_weight": 5, "calcul": [3, 5, 9, 24, 25, 26, 29, 39, 47, 52, 55, 58, 61, 73, 78, 80, 82], "calib": [3, 13, 16], "calibr": [3, 7, 13, 16, 65, 79, 82], "call": [10, 15, 16, 24, 25, 26, 52, 55, 64, 67, 69, 72, 81, 82], "calss": 16, "cambridg": 42, "can": [3, 7, 13, 16, 24, 25, 26, 29, 44, 49, 52, 55, 60, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82], "candid": [29, 39, 42], "captur": 81, "carlo": [3, 9, 16, 42, 82], "case": [3, 7, 13, 16, 25, 42, 60], "cd": 78, "cell": 42, "center": [42, 52, 55, 58], "central": 72, "chain": [3, 9, 10, 67], "chair": 33, "chang": [13, 24, 25, 26, 52, 55, 58, 64, 67], "chao": [13, 22, 29, 33, 52, 60, 61, 72, 80, 81, 82], "chaospi": [39, 47], "characteris": [25, 26, 55, 58], "characterist": [65, 68], "chart": 13, "cheap": 82, "chebyshev": [39, 73], "check": [3, 13, 16, 17, 24, 25, 26, 39, 40, 47, 52, 55, 70, 72, 73, 74, 77, 78, 80, 82], "check_accuraci": [13, 80], "check_reg_qu": 13, "check_valid_input": [39, 47], "chemic": 29, "choic": 64, "choos": [29, 64, 78, 82], "choose_next_sampl": 29, "chosen": [3, 64, 67, 77, 81, 82], "cite": [], "class": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 23, 24, 25, 26, 28, 29, 38, 39, 41, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 64, 67, 69, 72, 73, 75, 78, 80, 81, 82], "classic": 37, "clear": 60, "clearli": [70, 74, 79], "clermont": [52, 61], "clf": 61, "clf_bia": 56, "clone": 78, "code": [16, 82], "coef_": [25, 26, 52, 55, 58], "coeff": [52, 61], "coeffic": 60, "coeffici": [22, 24, 25, 26, 35, 36, 37, 52, 55, 58, 60, 61, 77, 82], "coffici": [52, 61], "cohn": 29, "collaps": 42, "colloc": [16, 39], "column": [16, 67, 82], "com": [10, 13, 43, 55, 58, 60], "combin": [10, 52, 60, 72, 81, 82], "come": 64, "command": [16, 42, 68, 75], "comment": [70, 74, 79], "common": 49, "commun": 9, "compar": [3, 9, 16, 60, 69, 78, 80], "comparison": [5, 39, 71, 72, 78, 80, 82], "compet": 69, "complet": 75, "complex": 77, "compon": [13, 24, 25, 26, 52, 55, 60, 81], "compress": [58, 74, 79], "comput": [9, 13, 25, 26, 27, 29, 31, 35, 36, 37, 42, 52, 55, 58, 60, 61, 78, 80, 82], "compute_pce_mo": 13, "compute_scor": 55, "computed_scor": 55, "condit": 64, "conf": 33, "confer": 52, "confus": [5, 69], "confusion_matrix": 5, "consecut": 69, "consid": [7, 45, 73, 81, 82], "consist": [24, 25, 26, 52, 55, 81], "consol": [67, 80], "constant": [24, 25, 26, 52, 55], "constraint": 60, "construct": [22, 73], "contact": 72, "contain": [3, 5, 9, 16, 24, 25, 26, 29, 39, 47, 50, 52, 55, 60, 67, 69, 72, 73, 75, 78, 79, 82], "context": 7, "contibut": 72, "continu": 30, "contribut": 77, "converg": [10, 25, 26, 82], "convini": 60, "coordin": [16, 60], "copi": [16, 25, 52, 55, 58, 60], "copy_meta_model_opt": 60, "copy_x": [24, 25, 26, 52, 55, 58], "copyright": [70, 74, 79], "core": 82, "corner": 3, "corner_title_fmt": 3, "correct": [52, 61], "correl": [67, 76], "correspond": [13, 16, 24, 25, 26, 34, 42, 50, 60, 73, 78, 80, 81], "cosin": 76, "cost": 81, "couckuyt": 42, "count": 45, "cov": 31, "covari": [3, 7, 9, 25, 26, 31, 55, 58], "cpu": 16, "creat": [3, 5, 16, 19, 33, 39, 42, 47, 51, 54, 60, 68, 69, 72, 73, 75, 78, 81, 82], "create_error_model": 3, "create_infer": [3, 67, 82], "create_metamodel": [], "create_model_error": 60, "credit": 43, "crieterion": 42, "criteria": 44, "criterion": 29, "crombecq": 42, "cross": [3, 39, 45, 60, 64], "cross_trunc": 45, "csv": 16, "currecnt": 16, "current": [16, 22, 64, 78], "d": [9, 26, 29, 39, 42, 52, 58, 60, 79, 81], "data": [3, 5, 9, 16, 17, 22, 24, 25, 26, 31, 39, 47, 49, 50, 52, 55, 58, 60, 64, 73, 76, 78, 81], "data_noise_level": 5, "datafram": [3, 7, 9, 16, 67, 82], "dataset": 81, "dbingham": [70, 74, 79], "de": [13, 22, 33, 72, 78], "deafault": 25, "deal": [70, 74, 77], "decai": 29, "decomposit": 52, "decreas": [29, 64, 79], "dedic": [67, 82], "deep": [24, 25, 26, 52, 55], "def": [72, 75], "default": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 50, 52, 55, 58, 60, 63], "defin": [3, 5, 7, 10, 16, 24, 25, 26, 32, 34, 39, 42, 49, 52, 55, 60, 64, 67, 69, 72, 73, 75, 78, 81], "definit": [7, 22, 72, 73, 82], "deflect": 68, "degre": [22, 34, 35, 36, 37, 39, 47, 60, 65, 68, 70, 74, 76, 77, 79, 81, 82], "delet": 56, "demeest": 42, "denot": 75, "depart": [22, 33], "depend": [25, 26, 49, 65, 67, 68, 70, 72, 74, 76, 77, 79, 81], "deprec": 82, "depth": 72, "derek": [70, 74, 79], "deriv": [70, 74, 79], "describ": [9, 58, 72, 73, 78, 82], "descrip": 7, "descript": [3, 5, 9, 16, 29, 31, 60, 72], "design": [13, 16, 29, 38, 39, 42, 60, 62, 64, 65, 72, 75, 78, 79, 81], "detail": [13, 65, 70, 72, 73, 74, 76, 79], "determin": [24, 25, 26, 52, 55], "deviat": [13, 16, 60, 64, 81, 82], "deviatioon": [29, 60], "dhaen": 42, "diagnost": [67, 80], "diagon": [3, 7, 9], "diagram": [], "dict": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 35, 36, 37, 52, 55, 60], "dictionari": [3, 5, 9, 13, 16, 29, 60, 67, 75, 82], "differ": [30, 60, 72, 76, 82], "dim": 60, "dim_red_method": 60, "dimens": [45, 52], "dimension": [25, 26, 55, 58, 60, 75, 81], "dir_nam": 16, "direct": [36, 60, 81], "directi": 82, "directli": [67, 73, 81, 82], "directori": [9, 13, 16, 67, 82], "disc_typ": 7, "discoutputopt": 82, "discrep": [3, 9, 67, 82], "discrepancyopt": [67, 82], "discuss": 82, "displai": [13, 82], "disregard": [24, 25, 26, 52, 55], "disrep": 7, "dissert": [52, 61], "dist": [3, 39, 47], "dist_typ": [49, 50, 72, 73, 82], "distanc": 30, "distibut": 5, "distinct": 69, "distribut": [3, 7, 9, 24, 25, 26, 27, 30, 31, 39, 46, 47, 48, 50, 52, 55, 58, 60, 65, 67, 68, 70, 72, 73, 74, 76, 77, 79, 81, 82], "diverg": [3, 13, 39], "divid": 32, "dkl": [29, 39, 65, 82], "do": [13, 29, 62, 64, 70, 72, 74, 78, 79, 82], "doc": [], "doctor": [52, 61], "document": 72, "doe": [16, 60, 67], "doi": [13, 22, 42], "domain": [32, 42], "done": [16, 29, 39, 60, 67, 82], "doostan": 29, "dot": 81, "dpp": 39, "dr": 22, "drainag": 13, "drawn": [3, 82], "driven": 22, "dtype": [52, 55, 58], "dual": [39, 64], "dual_ann": 29, "due": [], "dump": 82, "dure": [60, 67, 80], "e": [3, 7, 9, 16, 22, 24, 25, 26, 33, 39, 42, 45, 47, 52, 55, 58, 60, 63, 67, 72, 75], "each": [3, 5, 7, 9, 13, 16, 24, 25, 26, 32, 39, 42, 44, 45, 50, 52, 55, 58, 60, 64, 67, 69, 71, 75, 78, 82], "earlier": 82, "easi": 75, "easili": 82, "ebl": [60, 81], "ed_i": 60, "effect": [7, 24, 25, 26, 52, 55, 56, 77], "effici": [13, 42], "eigenvalu": [25, 26], "eigenvector": [25, 26], "eigf": [39, 64], "eigvals_": [25, 26], "eigvecs_": [25, 26], "either": [3, 16, 25, 39, 47, 59, 60, 65, 73, 82], "ejor": 42, "els": [39, 40, 47, 52, 55, 58, 60, 67], "elsevi": 22, "em": 25, "email": [70, 74, 79], "emce": [3, 9, 10, 67, 82], "emper": [60, 81], "empir": [24, 25], "empti": 60, "emul": [3, 5, 9, 29, 63, 67, 82], "en": 9, "enable_metadata_rout": [24, 25, 26, 52, 55], "encapsul": [24, 25, 26, 52, 55], "end": 16, "engin": [3, 9, 13, 22, 64, 67, 72, 80], "engine_": [64, 67, 80, 81], "enrich": 29, "ensampl": 10, "ensembl": 9, "entri": [3, 7, 9], "entropi": [3, 29, 39, 79], "environ": 78, "environment": [22, 33, 79], "epsilon": [7, 29, 64, 79, 82], "eq": 13, "equal": [5, 7, 29, 64], "erro": 61, "error": [3, 7, 9, 13, 24, 25, 26, 29, 52, 55, 60, 61, 80, 82], "error_metamodel": 9, "error_model": 9, "especi": [25, 82], "ess": 10, "estim": [3, 10, 16, 24, 25, 26, 30, 52, 55, 58, 60, 61, 63, 64, 67, 78, 80, 82], "eth": 33, "european": 42, "eval_metamodel": [29, 60, 81], "eval_model": 9, "eval_model_error": 60, "evalu": [5, 9, 13, 15, 29, 34, 35, 36, 52, 60, 62, 67, 75, 78, 80, 81, 82], "evaul": 39, "even": [70, 74, 79], "evereyth": 29, "everi": 30, "evid": [3, 13], "exact": 81, "exampl": [13, 16, 44, 45, 72, 78, 82], "except": [13, 24, 25, 26, 52, 55, 60], "exe_path": 16, "execut": [16, 68, 75], "exist": [24, 25, 26, 52, 55], "exlor": 29, "exp_design": [64, 73], "expand": [78, 80, 81], "expans": [13, 22, 29, 33, 45, 52, 60, 61, 72, 80, 81, 82], "expd": [29, 72], "expdesign": [9, 29, 42, 64, 72, 73, 81, 82], "expect": [7, 13, 16, 24, 25, 26, 29, 39, 52, 55, 58, 67, 72, 80], "experi": 29, "experiment": [29, 38, 39, 42, 60, 64, 72, 75, 78, 81], "explain": [60, 82], "explan": [65, 76], "explanatori": [25, 26, 52, 55, 58], "explicitli": 60, "exploit": [29, 39, 65, 70, 77, 82], "exploit_method": [39, 64, 82], "exploitaiton": [70, 77, 82], "exploitation_weight": 29, "explor": [29, 39, 65, 70, 77, 82], "exploration_scor": 42, "exploration_weight": 29, "explore_method": [39, 64, 82], "expon": [43, 45, 73], "exponenti": [29, 76], "express": [70, 74, 79], "extens": [16, 75, 82], "extra": 76, "extract": [16, 60], "f": [13, 60, 82], "fa61759ff685": 13, "factor": [5, 10, 69, 78], "fals": [3, 5, 10, 20, 24, 25, 26, 29, 39, 40, 45, 52, 55, 58, 60, 63, 67, 82], "far": 7, "farid": [19, 29, 33, 51, 54], "fast": [55, 58, 60, 79, 81], "fast_rvm": 55, "fastard": [60, 65, 68, 72, 77, 81, 82], "faster": [25, 82], "fastsbl": [55, 58], "faul": [55, 58], "featur": [24, 25, 26, 52, 55, 56, 60, 72], "feinberg": 43, "ferrand": [52, 61], "field": 26, "file": [16, 29, 39, 68, 72, 75, 76, 79, 82], "file_nam": 16, "filenam": 75, "fill": [39, 42, 64, 70, 77], "final": 81, "final_out_dict": 60, "find": [16, 29, 60, 66], "first": [13, 16, 29, 45, 60, 67, 69, 81, 82], "fit": [24, 25, 26, 39, 52, 55, 58, 60, 61, 63, 70, 74, 79, 81], "fit_intercept": [24, 25, 26, 52, 55, 58], "fix": [25, 58], "flag": [39, 47], "flat": 67, "flexibl": 13, "float": [3, 5, 9, 10, 24, 25, 26, 27, 29, 30, 31, 39, 44, 45, 52, 55, 58, 60, 61, 63], "flow": [70, 74], "folder": [67, 72, 73, 78, 80, 82], "follow": [3, 7, 22, 29, 39, 44, 49, 60, 67, 71, 73, 82], "followin": 7, "forc": 60, "foreman": 9, "form": [24, 25, 26, 52, 55, 72, 82], "format": [3, 7, 13, 67, 72], "formul": 73, "formula": 58, "forward": 16, "found": [60, 71, 72, 75, 82], "foundat": [70, 74, 79], "four": 73, "fp": 25, "frac": [9, 24, 25, 26, 52, 55], "fraction": 67, "framework": [13, 33], "fraser": [70, 74, 79], "free": [70, 74, 79], "fri": [33, 51], "from": [3, 5, 13, 16, 24, 25, 26, 29, 34, 39, 46, 47, 52, 55, 58, 60, 62, 64, 67, 69, 72, 73, 75, 78, 80, 81, 82], "fromkei": 60, "ft": [39, 73], "full": [80, 81, 82], "fulli": 10, "func": 16, "func_arg": 16, "function": [3, 8, 13, 15, 16, 19, 21, 23, 28, 29, 33, 38, 39, 40, 42, 43, 44, 51, 52, 54, 59, 60, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82], "functtion": [], "further": [39, 47], "futur": 76, "g": [16, 24, 25, 26, 45, 52, 55, 58, 61, 67, 72, 75], "gain": [80, 82], "gamma": [26, 27, 39, 47, 73], "gaussian": [7, 9, 24, 25, 26, 29, 55, 58, 60, 63, 65, 67, 68, 77, 81, 82], "gaussian_kd": [39, 47], "gelman": [10, 67], "gener": [5, 7, 16, 24, 25, 26, 29, 39, 42, 45, 47, 52, 55, 60, 61, 70, 73, 74, 75, 79, 81, 82], "generate_": 39, "generate_dataset": 5, "generate_polynomi": 60, "generate_sampl": [39, 73], "get": [3, 24, 25, 26, 52, 55, 60, 72, 80], "get_exploration_sampl": 42, "get_mc_sampl": 42, "get_metadata_rout": [24, 25, 26, 52, 55], "get_param": [24, 25, 26, 52, 55], "get_sampl": 7, "get_vornoi_sampl": 42, "git": [71, 72, 78], "github": [10, 43, 55, 72], "gitlab": 72, "give": [75, 78, 81, 82], "given": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 40, 47, 49, 52, 55, 60, 62, 63, 64, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "global": [13, 39, 42, 82], "gnu": [70, 74, 79], "go": 3, "goal": 81, "goe": 72, "goodman": 9, "gorissen": 42, "gp": [63, 81], "gpe": [59, 60], "grade": 45, "greater": 10, "grid": [39, 73], "group": [7, 39], "guid": [24, 25, 26, 52, 55, 72, 82], "guidelin": 72, "guilla": 29, "gull": 25, "h5py": 39, "h_l": 70, "h_u": 70, "ha": [9, 24, 25, 26, 39, 45, 47, 52, 55, 60, 67, 81, 82], "habil": 22, "hadigol": 29, "hagan": 77, "haitao": 29, "halton": [39, 73], "hammer": 9, "hammerslei": [39, 73], "handi": 82, "happi": 72, "have": [7, 10, 16, 24, 25, 26, 39, 47, 52, 55, 56, 67, 75, 77, 82], "hdf5": [29, 39], "hdf5_file": 39, "head": 72, "height": 68, "helling": 30, "help": [67, 82], "helper": 13, "here": [3, 16, 60, 64, 66, 71, 72, 75, 78, 79, 81, 82], "hermit": 73, "highest": [60, 82], "histogram": 82, "hogg": 9, "hold": 44, "holder": 16, "hope": [70, 74, 79], "how": [13, 24, 25, 26, 52, 55, 60, 67, 68, 70, 74, 76, 77, 82], "howev": [], "htm": 55, "html": [10, 70, 74], "http": [9, 10, 13, 22, 42, 43, 55, 58, 60, 70, 72, 74, 78, 79], "hydraul": [22, 33], "hydrogeologi": 13, "hydromechan": 33, "hydrosystem": [22, 33], "hyperbol": [45, 60], "hypercub": [64, 65, 68, 70, 73, 74, 76, 77, 79], "i": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 58, 60, 63, 64, 65, 67, 68, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "icvram2014": 33, "id": 16, "ident": 30, "ieee": 58, "ifram": 82, "ignor": [24, 25, 26, 52, 55], "ii": [25, 82], "iii": 82, "ilja": 29, "illustr": 68, "imag": 58, "implement": [24, 26, 33, 42, 59, 60, 82], "impli": [70, 74, 79], "implment": 82, "import": [13, 67, 72, 73, 75, 80, 81], "importantli": [], "improv": 39, "inaccuraci": 7, "includ": [5, 16, 25, 26, 44, 45, 64, 67, 72, 73, 78, 80, 81, 82], "increas": [29, 64], "independ": 7, "index": [29, 44, 45, 60, 62, 63, 72, 80], "indic": [3, 10, 13, 43, 44, 45, 60, 62, 70, 74, 75, 77, 78, 80, 82], "induc": [60, 82], "inf": 45, "inf_entropi": 3, "infer": [3, 7, 9, 13, 16, 68, 72, 78, 79], "inference_method": [3, 67, 82], "influenc": [24, 25, 26, 29, 52, 55], "inform": [3, 24, 25, 26, 29, 52, 55, 60, 70, 74, 79, 82], "ing": 22, "init_param_spac": [39, 47], "init_sampl": [3, 9, 67], "initi": [3, 5, 25, 39, 47, 55, 64, 67, 82], "initsampl": [], "input": [3, 7, 13, 16, 24, 25, 26, 29, 36, 39, 42, 46, 47, 52, 55, 60, 65, 67, 68, 70, 72, 74, 75, 76, 77, 78, 79, 81], "input0": 72, "input1": 72, "input_data": [49, 50, 73, 82], "input_descript": [], "input_fil": 16, "input_obj": 60, "input_object": [39, 47], "input_spac": 73, "input_templ": 16, "inputdisc": 7, "inputobj": [39, 47], "inputparam": [65, 73, 82], "inputparameters_2": 82, "inputspac": [39, 60, 72, 73], "insert": 60, "insid": [17, 24, 25, 26, 52, 55, 78], "insight": [], "instanc": [24, 25, 26, 52, 55, 60], "instanci": 60, "instanti": 82, "instead": [24, 25, 26, 45, 52, 55], "institut": [22, 33], "instruct": [60, 82], "int": [3, 5, 7, 13, 16, 17, 22, 25, 26, 29, 32, 33, 34, 35, 36, 37, 39, 42, 44, 45, 47, 55, 58, 60, 63], "intec": 42, "intercept": [52, 55, 58], "intercept_": [25, 26], "interconnect": [], "interest": 75, "interfac": [72, 75, 78], "intersit": 42, "intro": [], "introduc": [], "introduct": 71, "introductori": [72, 82], "inv_inf_matrix": 52, "invari": 9, "invers": [7, 52, 82], "inversemodel": [72, 78], "io": [9, 10], "ipython": 82, "ishigami": [70, 71], "isoprobabilist": [39, 47, 73], "issu": 72, "item": [3, 16, 60], "iter": [3, 5, 25, 26, 29, 55, 58, 60, 65, 70, 73, 77, 78, 80, 81, 82], "its": [16, 67, 72, 75, 78, 80, 81, 82], "itself": 81, "iw": [22, 33, 72, 78], "j": [9, 13, 22, 42, 77], "jacobi": 34, "jan": 33, "jdist": [39, 47], "jianfei": 29, "jobe": 16, "joblib": 82, "joergdietrich": 10, "jointli": [3, 7, 9, 79, 81], "jonathan": 43, "jonathf": 43, "journal": [42, 52, 61], "jul": 51, "just": [39, 47, 82], "just_analysi": 3, "justifi": [3, 5, 78], "jwalton3141": 10, "k": [3, 9, 39, 42, 58, 60], "k_w": 70, "karniadaki": 82, "katsaggelo": 58, "kdemov": [67, 82], "keep": [24, 25, 26, 52, 55, 82], "kei": [16, 39, 60, 67, 75], "kernel": [24, 25, 26, 52, 55, 63, 81], "key_str": 16, "keyerror": 60, "keyword": 16, "kingdom": 33, "kl": 26, "kld": [3, 13], "known": [3, 7, 9, 39, 82], "krige": 29, "krishnaprasad": 52, "kroeker": 29, "kullback": [3, 13, 39], "l": [70, 79], "l_0": 44, "l_inf": 44, "l_p": 44, "label": [13, 75], "lack": 60, "laerman": 42, "laguerr": [37, 39, 47], "lai": 67, "lambda": 82, "lambda_": [55, 58], "lang": 9, "laplac": 58, "lar": [60, 81], "larg": 82, "larger": [44, 45, 67], "largest": 45, "last": 60, "lastli": 75, "later": 82, "latest": 78, "latin": [64, 65, 68, 70, 73, 74, 76, 77, 79], "latin_hypercub": [39, 73, 82], "latter": [24, 25, 26, 45, 52, 55, 82], "lead": 78, "learn": [29, 39, 42, 55, 58, 60, 68, 74, 78, 79, 80, 81, 82], "least": [29, 52, 60, 61, 73, 81], "leav": [3, 39, 60, 64], "leibler": [3, 13, 39], "length": [3, 25, 26, 55, 58, 67, 75], "leq": 44, "less": 82, "let": 82, "level": [3, 5], "lexicograph": 45, "lh2": 33, "li": 40, "liabil": [70, 74, 79], "lib": 58, "librari": [], "licens": [70, 74, 79], "lie": 17, "lifo": 60, "like": [3, 24, 25, 26, 52, 55, 58, 60, 61, 81, 82], "likelihood": [3, 7, 9, 25, 30, 31, 55, 56, 58, 67, 82], "line": 13, "linear": [24, 25, 26, 72, 76], "linearmodel": [24, 52, 55], "link": [68, 75, 78, 82], "link_typ": [16, 72, 75, 82], "list": [3, 16, 17, 24, 25, 26, 29, 32, 36, 37, 39, 40, 42, 45, 47, 50, 52, 55, 58, 60, 72, 75, 76, 82], "littl": 82, "liu": 29, "liverpool": 33, "load": [68, 82], "locat": [29, 39], "log": [9, 31, 55, 56], "log_bm": 3, "log_lik": [9, 31], "log_likelihood": 9, "log_marginal_lik": 55, "log_posterior": 9, "log_prior": 9, "logarithm": 3, "loglik": [3, 9], "lognorm": [68, 70, 73], "logprior": 9, "loo": [52, 60, 61], "loo_error": 52, "loocv": [3, 39, 52, 61], "loocvscor": 60, "loop": 63, "low": 45, "lower": [17, 29, 32, 39, 45, 47], "lowest": 60, "ls3": 22, "l\u00fcthen": 33, "m": [7, 29, 33, 52, 55, 58, 68, 70, 74, 78, 79, 81], "machin": [42, 55, 58], "mackai": [25, 29], "mackei": 9, "mai": [24, 25, 26, 52, 55, 58], "mail": [22, 33], "main": [72, 75, 81], "mainli": [64, 73], "make": [9, 64, 81, 82], "manag": 33, "mani": 13, "manner": [29, 64, 73, 78], "manual": 33, "manuscript": 22, "map": [24, 25, 26, 52, 55, 60, 75], "mar": 54, "marelli": 33, "margin": [7, 39, 42, 47, 48, 49, 55, 56, 58, 72, 73, 78, 82], "mark": [70, 74, 79], "markov": [3, 9], "mass": 42, "master": [10, 43, 55, 72, 78], "match": [52, 62, 70, 76, 81, 82], "math": 44, "mathcal": [7, 9, 81], "mathemat": 9, "matlab": [33, 42], "matric": 69, "matrix": [3, 5, 7, 24, 25, 26, 31, 34, 52, 55, 58, 61, 62], "max": [65, 68, 70, 74, 77, 79], "max_a_post": [39, 82], "max_a_posteriori": 3, "max_deg": [34, 35, 36, 39, 47, 60], "max_func_itr": 39, "max_pce_deg": 39, "maxdepth": [], "maxim": [25, 29, 30, 55, 81], "maximis": [55, 58], "maximum": [3, 22, 25, 26, 30, 34, 35, 36, 37, 39, 45, 47, 55, 58, 60], "maxout": 17, "mc": [42, 65, 68, 70, 74, 75, 76, 77, 79, 82], "mc_criterion": 42, "mc_ref": 16, "mc_ref_dict": 16, "mc_ref_fil": 16, "mc_refer": 82, "mcmc": [3, 67, 78, 82], "mcmc_param": [3, 9, 67, 82], "md": [], "mean": [3, 7, 9, 13, 16, 24, 25, 26, 27, 29, 31, 45, 52, 55, 58, 60, 67, 81, 82], "mean_2": 82, "mean_pr": [9, 29, 60], "meas_fil": 16, "meas_file_valid": 16, "measur": [3, 7, 13, 16, 29, 82], "measured_data": 3, "measureddata": 60, "measurement_error": 82, "mechan": [24, 25, 26, 29, 52, 55], "merchant": [70, 74, 79], "messag": [], "met": [55, 58], "meta": [3, 9, 13, 16, 24, 25, 26, 29, 52, 55, 60], "meta_model_engin": [], "meta_model_typ": [39, 47, 60, 72, 81, 82], "metadata": [24, 25, 26, 52, 55], "metadata_rout": [24, 25, 26, 52, 55], "metadatarequest": [24, 25, 26, 52, 55], "metamod": [29, 64, 72, 81], "metamodel": [3, 5, 13, 29, 39, 41, 47, 59, 72, 73, 80, 82], "metamodel_train": 82, "metamodelengin": [], "metamodelopt": [60, 82], "method": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 38, 39, 42, 47, 49, 50, 52, 55, 58, 60, 64, 65, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82], "metric": [3, 82], "mgrid": 44, "mice": 29, "might": [], "miketip": [55, 58], "minim": [26, 72], "minout": 17, "mit": 72, "mix": 73, "mmse": 39, "mod_loo_threshold": [39, 64, 82], "mode": [3, 52, 55, 58], "model": [3, 5, 7, 9, 13, 15, 16, 22, 24, 25, 26, 29, 33, 39, 42, 52, 55, 56, 58, 60, 64, 67, 71, 73, 78, 80], "model_comparison_al": [5, 69], "model_dict": 5, "model_out_dict": 13, "model_weight": 5, "model_weights_dict": 5, "modelnam": 82, "modifi": [39, 52, 70, 74, 79], "modul": [0, 1, 11, 14, 18, 72], "modulu": 68, "mohammadi": [29, 33], "molina": 58, "moment": [13, 16, 35, 36, 50, 78, 80, 82], "monomi": [43, 45], "mont": [3, 9, 16, 42, 82], "more": [13, 29, 60, 70, 72, 74, 79, 82], "most": 82, "move": [3, 9, 67, 82], "mp": 16, "mu_pr": [24, 25, 26], "much": 77, "multi": [43, 45, 60, 62, 76, 78], "multi_process": 16, "multioutput": [24, 25, 26, 52, 55], "multioutputregressor": [24, 25, 26, 52, 55], "multipl": [7, 78, 81, 82], "multipli": 7, "multiplrocess": 9, "multiprocess": [3, 16, 67, 82], "multivar": 3, "multivari": [3, 7, 31, 60, 61, 62], "must": [16, 67], "mutual": 29, "n": [7, 33], "n_": 7, "n_bootstrap": 5, "n_bootstrap_itr": [3, 5, 60, 67], "n_burn": [3, 9, 67], "n_cand_group": [39, 64, 65, 70, 77, 82], "n_canddid": [39, 64, 82], "n_candid": [29, 42, 65, 70, 77], "n_cpu": 16, "n_featu": [25, 26], "n_featur": [24, 25, 26, 52, 55, 58, 60, 61], "n_init_sampl": [60, 72, 81, 82], "n_input": 60, "n_iter": [24, 25, 26, 55, 58], "n_iter_": 55, "n_kfold": 58, "n_m": 5, "n_max": [37, 60, 62], "n_max_sampl": [39, 64, 82], "n_measur": [3, 9], "n_new_sampl": [32, 39, 64, 82], "n_ob": [3, 5, 16], "n_out": 60, "n_output": [16, 24, 25, 26, 52, 55, 60], "n_param": [3, 7, 9, 10, 13, 16, 29, 36, 39, 42, 47, 60, 62, 63], "n_pca_compon": 60, "n_prior_sampl": 3, "n_replic": 39, "n_sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 34, 35, 36, 39, 47, 52, 55, 56, 60, 61, 62, 63, 80, 82], "n_samples_fit": [24, 25, 26, 52, 55], "n_samples_test": [25, 26, 52, 55, 58], "n_step": [3, 9, 10, 67, 82], "n_term": [60, 62], "n_test_sampl": [24, 25, 26], "n_walker": [3, 9, 10, 67, 82], "nagel": 13, "name": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 47, 49, 50, 52, 55, 67, 72, 73, 75, 78, 82], "nameerror": 29, "ndarrai": 45, "ndim": 82, "necessari": [16, 78], "need": [3, 5, 7, 16, 29, 60, 64, 67, 69, 72, 81, 82], "neg": [24, 25, 26, 52, 55], "neither": 13, "nest": [24, 25, 26, 40, 52, 55], "new": [16, 29, 39, 42, 49, 52, 60, 64, 72, 75, 82], "new_c_point": 16, "new_input_fil": 16, "new_metamodelopt": 60, "new_sampl": 42, "next": [16, 67, 78], "nips01": 55, "nnme": 82, "nois": [3, 5, 7, 25, 26, 55, 58, 79], "non": [42, 52, 55, 58], "none": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 60, 63, 64, 65, 70, 72, 77, 82], "nonlinear": 76, "nor": 13, "norm": [44, 60, 65, 68, 70, 73, 74, 76, 77, 79, 81, 82], "normal": [3, 5, 7, 25, 31, 52, 55, 60], "normpdf": [3, 9], "notat": [], "note": [7, 16, 82], "now": [39, 67, 72, 75, 81, 82], "nowak": [13, 22, 29, 82], "np": [16, 52, 55, 58, 60, 73, 75, 82], "npy": 82, "nsampl": [29, 60, 81, 82], "nu": 58, "nug_term": 63, "nugget": 63, "number": [3, 5, 7, 13, 16, 24, 25, 26, 29, 32, 39, 42, 45, 52, 55, 58, 60, 63, 64, 65, 67, 68, 70, 73, 74, 76, 77, 79, 81], "numer": 25, "numpi": [24, 25, 26, 44, 45, 52, 55, 58, 82], "numpoli": [43, 45], "o": 77, "oaklei": 77, "obj": [3, 7, 9, 13, 39, 42, 47, 49, 60], "object": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 61, 63, 67, 72, 73, 75, 80, 81, 82], "obs_data": [3, 9], "obs_dict": 16, "obs_dict_valid": 16, "obsdata": [67, 82], "observ": [3, 5, 7, 9, 16, 31, 67, 69, 75, 82], "obtain": [10, 60, 82], "off": [29, 39], "ohagan": 71, "ol": [60, 81], "oladyshkin": [13, 22, 29, 82], "old": [29, 42], "old_edi": 29, "old_edx": 29, "omit": 45, "omp": [70, 76], "onc": [64, 82], "one": [3, 9, 10, 16, 25, 26, 32, 39, 45, 55, 56, 58, 60, 64, 69, 72, 73, 82], "ong": 29, "onli": [3, 7, 9, 16, 24, 25, 26, 29, 39, 45, 52, 55, 58, 60, 73, 76, 82], "open": [72, 82], "oper": 42, "opposit": 45, "opt": [29, 39], "opt_col_point": 39, "opt_sigma": 3, "optim": [25, 29, 39, 55, 79], "optimi": 29, "optimum": 29, "option": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 52, 55, 58, 60, 63, 72, 73, 75, 78, 82], "opts_dict": 5, "order": [45, 60, 67, 78], "ordinari": [60, 81], "org": [13, 42, 72], "orig_space_dist": [39, 47], "origin": [24, 25, 26, 52, 55, 60, 75, 80], "origmodeloutput_": 82, "orthogon": [37, 52, 61, 70, 76], "orthonorm": 22, "other": [3, 24, 25, 26, 52, 55, 69, 75, 78, 81], "otherwis": [9, 16, 24, 25, 26, 52, 55, 58, 60, 67], "our": [67, 72, 75, 81, 82], "out": [3, 7, 17, 25, 26, 29, 39, 60, 64, 67, 72, 80], "out_dict": 60, "out_dir": [3, 5, 9, 16, 39, 67], "out_nam": 39, "outpust": 13, "output": [3, 7, 9, 13, 16, 29, 39, 60, 65, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82], "output_bayes_": 82, "output_file_nam": 16, "output_nam": 16, "output_pars": 16, "outputdata": 16, "outputmatrix": 60, "outputs_bayes_model_calib": 67, "outputs_comparison": 5, "outputs_postprocess": 13, "outputs_postprocessing_": 82, "outputs_postprocessing_calib": 80, "outputs_prior": 73, "over": [39, 63, 73], "overal": 72, "overfit": 82, "overflow": 25, "overview": [], "overwritten": [52, 55, 58], "own": [], "p": [7, 9, 13, 22, 30, 42, 44, 52], "pacif": 9, "packag": [3, 9, 66, 67, 68, 71, 72, 78], "page": [72, 78, 82], "pair": [5, 60], "pairwis": 78, "panda": [7, 82], "paper": [29, 55, 58], "parallel": [16, 29, 39, 60], "param": [16, 24, 25, 26, 37, 39, 47, 52, 55], "param_set": 16, "paramet": [49, 50, 64, 65, 67, 68, 70, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "parameterset": 9, "paramethr": 7, "paramt": 25, "paras": 16, "parmet": 3, "parser": [16, 68, 75], "part": [32, 60, 76, 77, 82], "parti": 16, "particular": [70, 74, 79], "pass": [3, 16, 24, 25, 26, 39, 47, 52, 55, 82], "path": 16, "pati": 52, "pattern": [16, 55, 58], "pc": 59, "pca": [60, 81], "pca_transform": 60, "pce": [13, 39, 47, 60, 68, 80, 81, 82], "pce_deg": [60, 72, 81, 82], "pce_mean": 13, "pce_q_norm": [60, 72, 81, 82], "pce_reg_method": [60, 72, 81, 82], "pceengine_": 82, "pcemodel": [13, 20], "pcemodel_": [], "pcm_sampler": 39, "pd": [67, 82], "pdf": [13, 55, 58], "peopl": [], "per": [65, 70, 77], "percentag": 60, "percis": 39, "perfect": 25, "perfect_fit_tol": 25, "perform": [3, 5, 9, 13, 64, 67, 68, 69, 70, 74, 76, 77, 78, 79, 80, 81, 82], "perform_bootstrap": 3, "perl": 60, "perturb": [3, 5], "perturbed_data": [3, 5], "pfaffenwaldr": [22, 33], "physic": [52, 61], "pip": [72, 78], "pipelin": [24, 25, 26, 52, 55], "pkl": 82, "place": 16, "pleas": [24, 25, 26, 52, 55, 70, 74, 79], "plot": [3, 5, 13, 39, 82], "plot_bayes_factor": 5, "plot_just_analysi": 5, "plot_log_bm": 3, "plot_map_pr": 3, "plot_model_weight": 5, "plot_moment": [13, 80, 82], "plot_nam": 5, "plot_post_param": 3, "plot_post_pr": [3, 67, 82], "plot_sampl": [39, 73], "plot_seq_design_diagnost": [13, 80], "plot_typ": 13, "plote": 20, "plotmoment": [], "point": [3, 7, 16, 24, 25, 26, 29, 34, 35, 39, 42, 55, 58, 63, 67, 73, 82], "poli": 37, "pollut": 71, "poly_coeff": 35, "poly_typ": [34, 36, 37, 39, 47], "polynom": 60, "polynomi": [13, 22, 29, 33, 34, 35, 36, 37, 39, 47, 52, 60, 61, 62, 72, 73, 80, 81, 82], "pop": 60, "popitem": 60, "posit": 30, "possibl": [24, 25, 26, 52, 55, 73], "post": [10, 13, 16, 78], "post_descript": [], "post_plot_pr": 67, "post_process": [80, 82], "post_snapshot": [39, 82], "posterior": [3, 9, 25, 26, 39, 52, 55, 58, 67, 82], "posterior_df": 9, "posteriori": [3, 39], "postpc": 82, "postproc": 80, "postprocess": [72, 75, 78, 82], "potenti": 10, "pp": [9, 42, 52, 61, 77], "practic": [73, 78], "precis": [25, 26, 55, 58], "precomput": [24, 25, 26, 52, 55], "predict": [3, 9, 24, 25, 26, 29, 52, 55, 58, 60, 61, 67, 82], "predict_dist": [24, 25, 26], "predit": 60, "prefer": [78, 82], "prepar": [16, 29, 81], "prescrib": 39, "prescript": 60, "present": [22, 60, 81], "prevent": 25, "previou": [16, 82], "previous": 81, "prevrun_no": 16, "princip": [13, 60, 81], "print": [25, 26, 29, 60], "prior": [3, 5, 7, 9, 26, 39, 46, 47, 58, 67, 75, 78, 81, 82], "prior_": 82, "prior_output": 82, "prior_sampl": 3, "probabilist": 77, "probabl": [30, 73], "probablist": 3, "proc": 33, "procedur": 3, "proceed": 52, "process": [9, 13, 16, 29, 58, 60, 63, 78, 81], "produc": [70, 74, 79], "program": [70, 74, 79], "progress": [25, 26], "proj": 42, "project": 72, "propag": [52, 61], "properti": [64, 65, 67, 68, 70, 72, 74, 76, 77, 78, 79, 80, 81, 82], "propos": [9, 40, 64, 72], "provid": [13, 24, 25, 26, 29, 39, 45, 47, 52, 55, 60, 65, 67, 69, 71, 72, 76, 78, 81, 82], "psi": [52, 61, 62], "psrf": 10, "public": [9, 70, 74, 79], "publish": [70, 74, 79], "purpos": [70, 74, 79], "pursuit": [52, 70, 76], "py": [10, 16, 43, 55, 72, 75, 82], "py_fil": [16, 72, 75, 82], "pylink": [75, 78, 82], "pylinkforwardmodel": [72, 75], "pypi": 72, "python": [3, 13, 16, 67, 72, 75, 78, 82], "python3": 78, "q": [30, 56, 60, 65, 68, 70, 74, 76, 77, 79, 81, 82], "qualiti": [13, 70, 74, 77, 80], "qualt": 3, "quantif": [22, 33], "question": [67, 70, 74, 79], "quit": [], "r": [7, 24, 25, 26, 52, 55, 58, 70, 77], "r2_score": [24, 25, 26, 52, 55], "r_2": 61, "r_hat": 10, "r_w": 70, "rais": [24, 25, 26, 52, 55, 60], "random": [29, 39, 42, 64, 65, 72, 73, 82], "random_sampl": 39, "randomli": [39, 82], "rang": [17, 37, 40, 75, 81, 82], "rate": [26, 27, 70, 74], "ratio": 10, "raw": [16, 22, 39, 47], "raw_data": [39, 47], "read": [16, 29, 39, 75, 82], "read_from_fil": 39, "read_observ": 16, "read_output": 16, "readthedoc": 9, "realiti": 7, "realiz": [7, 64, 73, 75], "realli": 3, "recalcul": 60, "recheck": 73, "reciev": 16, "recognit": [55, 58], "recomput": 56, "recurr": 37, "recurs": [37, 52], "redidu": 7, "redistribut": [70, 74, 79], "reduc": [45, 81], "reduct": [10, 60, 81], "ref": [29, 55, 58], "ref_bme_kld": 13, "ref_typ": 72, "refer": [7, 13, 16, 30, 33, 60, 65, 68, 70, 74, 75, 76, 77, 79, 80, 82], "refin": 29, "refit": 29, "reg_method": 60, "regress": [9, 13, 24, 25, 26, 52, 55, 58, 60, 61, 65, 68, 70, 74, 76, 77, 79, 81, 82], "regressor": [24, 25, 26, 36, 52, 55, 60, 61, 62], "regressormixin": [24, 52, 55], "regresssor": 52, "reject": [3, 67, 78, 82], "relat": [48, 73], "releas": 78, "relev": [24, 25, 26, 52, 55, 73], "reli": 82, "reliabl": [13, 22], "remain": 77, "remov": [16, 60], "renam": 16, "repeat": 82, "replac": [16, 78, 81], "replic": 39, "report": [25, 26, 33, 72], "repositori": [71, 78], "repres": 7, "represent": 81, "reproduc": 9, "req_output": [3, 9], "request": [3, 16, 24, 25, 26, 29, 39, 52, 55, 60], "requir": [3, 9, 16, 37, 49], "research": [22, 42], "reshap": [44, 82], "residu": [7, 24, 25, 26, 52, 55, 61], "respect": [5, 60, 69, 82], "respons": [24, 25, 26, 29, 39, 60], "ress": 22, "rest": 16, "result": [5, 16, 39, 60, 64, 67, 73, 75, 80, 81, 82], "retain": [24, 25, 26, 52, 55], "retrain": 82, "retun": 29, "return": [44, 45, 72, 75, 81, 82], "return_out_dict": 60, "return_sampl": 29, "return_std": [25, 26, 55, 58], "return_var": 10, "returnvar": 60, "revers": 45, "review": 29, "rework": 64, "rezaiifar": 52, "ridg": [60, 81], "rieckermann": 13, "risk": 33, "rmse": [13, 80, 82], "robin": 10, "root": [3, 9, 10, 13, 39, 82], "root_sampl": 81, "rosenblatt": [39, 47, 49, 73], "rossenblatt": 49, "rout": [24, 25, 26, 52, 55], "row": [9, 16], "rss": 25, "rst": [], "rubin": 67, "run": [9, 13, 16, 29, 39, 60, 67, 68, 72, 75, 78, 79, 80, 82], "run_command": 16, "run_forwardmodel": 16, "run_model_parallel": [16, 67, 75], "run_no": 29, "run_sampl": 9, "run_util_func": 29, "runtim": 60, "rvm_ard_model": 55, "rwmh": 10, "safeti": [13, 22, 33], "same": [16, 29, 39, 47, 72, 73, 75, 76], "sampel": 73, "sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 32, 35, 36, 38, 39, 42, 47, 52, 55, 60, 64, 65, 67, 68, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "sample_weight": [24, 25, 26, 52, 55], "sampler": [3, 9], "sampling_method": [29, 39, 72, 73, 81, 82], "save": [29, 39, 73, 80, 82], "savefig": 20, "sc": 33, "scalar": 7, "scale": 10, "scheme": [29, 39, 45, 60, 64, 65, 70, 77, 79, 81], "scienc": 9, "scope": 16, "score": [24, 25, 26, 29, 39, 42, 52, 55, 60, 61], "scores_": 55, "script": [16, 22, 82], "search": [16, 29, 72], "second": [16, 73, 82], "section": [39, 55, 58, 82], "see": [13, 24, 25, 26, 39, 49, 52, 55, 70, 72, 74, 76, 77, 79], "select": [3, 9, 13, 16, 29, 42, 52, 55, 56, 60, 63], "selected_indic": [3, 9], "self": [24, 25, 26, 52, 55, 60], "sens": [58, 74, 79], "sensit": [13, 52, 61, 70, 74, 77, 82], "separ": [16, 39, 82], "sequenc": 44, "sequenti": [13, 16, 29, 39, 41, 42, 55, 60, 64, 70, 77, 80], "sergei": [22, 29], "serv": 16, "set": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 30, 32, 39, 40, 42, 45, 46, 52, 55, 58, 60, 62, 67, 69, 71, 72, 73, 75, 78, 80, 81], "set_config": [24, 25, 26, 52, 55], "set_param": [24, 25, 26, 52, 55], "set_predict_request": [25, 26, 55], "set_score_request": [24, 25, 26, 52, 55], "setdefault": 60, "setup": [5, 76], "setup_infer": 3, "sfu": [70, 74, 79], "shall": 60, "shallow": 60, "shape": [3, 5, 7, 9, 13, 16, 24, 25, 26, 27, 29, 34, 35, 36, 39, 42, 45, 47, 52, 55, 58, 60, 61, 62, 63, 67], "share": 76, "shceme": 82, "shell": [16, 68, 75], "shell_command": 16, "short": 71, "shot": 60, "should": [3, 10, 16, 24, 25, 26, 29, 44, 52, 55, 60, 64, 67, 70, 73, 74, 75, 79, 81, 82], "show": [65, 68, 72, 76, 79, 82], "shown": 3, "sigma": [3, 7, 9, 29, 58, 82], "sigma2": [3, 9, 29, 58], "sigma2_prior": 7, "sigma2dict": 29, "sigma_": [55, 58], "sigma_f": 82, "signal": 52, "significantli": 77, "sim": 7, "simillar": 16, "simon": [70, 74, 79], "simpl": [24, 25, 26, 52, 55, 72, 75, 81], "simpli": 3, "simplic": 7, "simul": [3, 9, 13, 16, 22, 42, 60, 82], "simulation_output": 16, "sinc": 82, "singl": [7, 9, 13, 75, 82], "singular": 52, "size": [24, 25, 26, 52, 55, 58, 82], "skbay": 55, "sklearn": [24, 25, 26, 52, 55], "sklearnpca": 60, "slightli": 67, "smaller": [25, 45, 67, 77, 82], "smallest": 25, "so": [7, 24, 25, 26, 52, 55, 77, 78, 82], "sobol": [13, 39, 70, 73, 74, 77, 78, 80, 82], "sobol_cel": 13, "sobol_indic": [13, 80], "sobolindicespc": 82, "soc": 77, "societi": 9, "softwar": [16, 70, 74, 79], "solut": 82, "solver": 16, "some": [24, 25, 26, 39, 47, 52, 55, 63, 67, 69, 80, 82], "sonja": [70, 74, 79], "soon": 29, "sort": 45, "sourc": [10, 60, 72, 78], "space": [29, 39, 42, 46, 47, 60, 64, 65, 68, 70, 72, 74, 75, 76, 77, 78, 79, 81, 82], "sparemulti": 60, "spars": [13, 24, 25, 26, 52, 55, 58, 61, 81], "sparsex": 60, "sparsiti": [60, 82], "specif": [50, 60, 67, 80], "specifi": [17, 29, 39, 60, 72, 73, 81], "sphinx_new": [], "split": [64, 78, 82], "springer": [55, 58], "squar": [3, 9, 10, 13, 24, 25, 26, 29, 52, 55, 60, 75, 81, 82], "ssurjano": [70, 74, 79], "stabl": 9, "stackoverflow": 60, "stand": 3, "standard": [13, 16, 29, 60, 64, 81, 82], "start": [3, 16, 29, 45, 55, 64, 72, 81, 82], "start_engin": [29, 64, 72, 81, 82], "stat": [70, 74, 79], "static": [29, 65, 68, 70, 73, 74, 76, 77, 79, 82], "statist": 77, "std": [3, 9, 16, 29, 82], "std_2": 82, "std_pred": [9, 29, 60], "stdev": [9, 81], "step": [3, 16, 39, 65, 67, 81], "step_snapshot": [39, 82], "still": 64, "stochast": [13, 22], "stop": [39, 45, 64], "store": [16, 82], "str": [3, 5, 7, 13, 16, 24, 25, 26, 29, 39, 42, 47, 52, 55, 60], "straightforward": 78, "strategi": [29, 42, 82], "string": [3, 9, 13, 16, 29, 34, 36, 37, 39, 47, 50, 82], "structur": [64, 78], "stuttgart": [22, 33, 72, 78], "sub": [24, 25, 26, 52, 55], "subdirectori": 16, "submatrix": 52, "subobject": [24, 25, 26, 52, 55], "successfulli": 16, "sudret": [13, 33, 52, 61, 82], "sum": [10, 24, 25, 26, 45, 52, 55], "sum_i": 44, "summari": [29, 60], "sumo": 42, "superclass": 24, "support": [3, 7, 39, 44, 60, 72, 73], "surjanov": [70, 74, 79], "surrog": [9, 16, 28, 29, 42, 60, 64, 67, 73, 78, 80], "surrogate_descript": [], "surrogate_model": [64, 73, 78, 81, 82], "switzerland": 33, "sy": 82, "system": [13, 22, 33, 52], "t": [24, 25, 26, 42, 44, 52, 55], "t_l": 70, "t_u": 70, "tag": 82, "take": [64, 67, 75, 78, 82], "taken": [29, 67], "target": [25, 26, 29, 52, 55, 58, 60, 61, 63], "task": 67, "tau": 79, "teach": 71, "tell": 81, "templat": 16, "term": [7, 25, 26, 37, 45, 63, 70, 74, 79, 82], "termin": [55, 58], "test": [24, 25, 26, 52, 55, 58, 67, 70, 79], "test_": 79, "test_analytical_funct": 82, "text": [7, 16], "textbf": 7, "th": 42, "than": [10, 44, 45, 67], "thei": [73, 78, 82], "them": [16, 29, 64, 67, 72, 78], "themselv": 82, "theorem": 9, "theori": 29, "therefor": [24, 25, 26, 45, 55, 58], "theta": [7, 9, 10, 40], "theta_": 7, "thi": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 40, 42, 47, 52, 55, 58, 60, 62, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "thin": 67, "thing": 81, "third": 16, "though": [68, 82], "three": [5, 60, 69, 76, 81, 82], "threshold": [25, 26, 39, 55, 58, 60], "through": [78, 82], "thu": 19, "time": [5, 13, 16, 64, 65, 67, 68, 69, 70, 74, 76, 77, 79, 82], "timestep": [60, 75], "tip": [55, 58], "titl": 3, "toctre": [], "todo": [3, 29, 73], "tol": [24, 25, 26, 55, 56, 58], "tolist": 45, "tom": [3, 82], "toolbox": 42, "topic": 78, "total": [3, 13, 24, 25, 26, 45, 52, 55, 65, 68, 70, 74, 76, 77, 79, 80, 82], "total_sigma2": [3, 9], "total_sobol": [13, 82], "towardsdatasci": 13, "tpl": 16, "tr_x": [39, 47], "trade": [29, 39], "tradeoff": [65, 70, 77, 79, 82], "tradeoff_schem": [29, 39, 64, 82], "tradeoff_weight": 29, "train": [3, 9, 13, 16, 28, 29, 36, 39, 41, 42, 52, 55, 60, 63, 72, 73, 78, 80], "train_error_model": 9, "train_norm": [29, 72, 81, 82], "train_seq_design": 29, "train_sequenti": [29, 64, 80, 82], "transact": 58, "transform": [16, 39, 47, 49, 60, 73], "transpos": 52, "tree": 72, "trine": 39, "true": [3, 5, 16, 17, 20, 24, 25, 26, 29, 39, 40, 44, 52, 55, 58, 60, 67, 73, 82], "true_sampl": 67, "truncat": [44, 45, 60, 65, 68, 70, 74, 76, 77, 79, 81, 82], "try": 25, "tsunami": 29, "tue": 54, "tupl": [16, 29, 32, 39, 45, 47, 60], "tutori": [65, 72, 76], "two": [13, 24, 25, 26, 30, 45, 55, 58, 60, 69, 72, 75, 79, 81, 82], "type": [3, 5, 7, 9, 13, 16, 25, 29, 31, 34, 36, 37, 39, 47, 50, 60, 65, 67, 68, 70, 73, 74, 75, 76, 77, 79, 80, 81, 82], "type_": 3, "typic": [10, 82], "u": [24, 25, 26, 52, 55, 72, 81, 82], "ugent": 42, "um": 75, "umbridg": 16, "umbridge_model": 16, "uml": [], "uncertain": [7, 49, 50, 60, 73, 75, 78, 81], "uncertainti": [3, 9, 22, 33, 52, 61, 67, 73, 78], "unchang": [24, 25, 26, 52, 55], "under": [70, 72, 74, 75, 78, 79], "underli": [], "understand": [67, 80], "uni": [22, 33, 72, 78], "unif": [72, 73, 82], "uniform": [49, 65, 68, 70, 73, 74, 79, 82], "uniform_averag": [24, 25, 26, 52, 55], "union": 45, "uniqu": [24, 25, 26], "unit": 33, "univ_basi": 60, "univ_basis_v": [39, 47, 60], "univ_p_v": 62, "univ_v": 36, "univari": [22, 35, 36, 60, 62], "univers": [33, 70, 74, 79], "universitaet": 22, "unknown": [3, 7, 9, 29], "unstabl": 25, "until": 39, "up": [3, 60, 62, 81], "updat": [16, 24, 25, 26, 52, 55, 58, 60, 67], "update_input_param": 16, "update_pce_coeff": 60, "upper": [17, 29, 32, 39, 45, 47], "uq_bsc": 58, "uq_regress": 58, "uqlab": [33, 58], "urban": 13, "us": [3, 7, 9, 13, 16, 22, 24, 25, 26, 29, 39, 42, 44, 45, 47, 52, 55, 58, 60, 64, 67, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82], "use_bayes_set": 5, "useag": 81, "user": [3, 5, 16, 24, 25, 26, 33, 39, 47, 52, 55, 72, 73, 81, 82], "util": [24, 25, 26, 29, 39, 43, 52, 55], "util_alphoptdesign": 29, "util_bayesianactivedesign": 29, "util_bayesiandesign": 29, "util_func": [29, 39, 64, 82], "util_varbaseddesign": 29, "utilii": 39, "v": [3, 22, 24, 25, 26, 39, 47, 52, 55, 60], "v1": 33, "valid": [3, 13, 16, 39, 47, 60, 61, 64, 73, 78, 80, 82], "valid_error": 13, "valid_metamodel": [13, 80, 82], "valid_metr": 3, "valid_model_run": 82, "valid_sampl": 82, "validlikelihoods_": 82, "valu": [3, 5, 7, 9, 10, 16, 17, 24, 25, 26, 34, 35, 45, 52, 55, 56, 58, 60, 61, 63, 65, 67, 68, 73, 75, 81, 82], "valueerror": 62, "var": 29, "var_hat": [25, 26, 55, 58], "var_pca_threshold": 60, "var_pr": [24, 25, 26], "varbasedoptdesign": 39, "variabl": [25, 26, 52, 55, 58, 77, 82], "varianc": [3, 7, 10, 24, 25, 26, 55, 58, 60, 63, 64, 65, 67, 68, 77, 79], "variant": 81, "variat": [24, 26, 60, 81], "varidx": [60, 63], "varieti": 75, "variou": [60, 82], "varoptdesign": [29, 39, 64], "vbl": [60, 81], "vector": [25, 26, 60], "venv": 78, "verbos": [3, 9, 16, 24, 25, 26, 29, 52, 55, 58, 60, 67, 82], "veri": [25, 75], "versa": 30, "version": [24, 25, 26, 42, 52, 55, 60, 70, 72, 74, 78, 79], "via": [5, 7, 9, 39, 47, 60, 67, 68, 70, 73, 74, 75, 77, 78, 81, 82], "vice": 30, "view": 60, "virtual": 78, "visual": [5, 39, 67, 73, 78, 80, 82], "voronoi": [39, 42, 64, 82], "vulner": 33, "w": [9, 10, 13, 22, 24, 25, 26, 42, 52, 55], "wa": 60, "wai": [29, 60, 81, 82], "walker": [3, 67], "want": [67, 72, 73, 80, 81, 82], "warranti": [70, 74, 79], "wavelet": 52, "wb": 82, "we": [7, 25, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 81, 82], "wear": 9, "websit": [], "weibul": 73, "weight": [5, 10, 24, 25, 26, 29, 39, 52, 55, 58, 64, 69, 78], "well": [10, 24, 25, 26, 52, 55, 67], "were": 80, "what": [3, 7, 71, 81], "when": [3, 7, 9, 13, 16, 24, 25, 26, 30, 39, 52, 55, 58, 73, 82], "where": [5, 7, 24, 25, 26, 34, 35, 39, 44, 52, 55, 60, 73, 82], "whether": [5, 16, 39, 52, 55, 58], "which": [3, 16, 22, 24, 25, 26, 30, 58, 67, 82], "while": [45, 64, 78, 80, 81, 82], "width": 68, "wiener": 37, "wight": 5, "wish": 16, "witch": 44, "within": [10, 16, 69, 71], "without": [16, 64, 68, 70, 72, 74, 79, 82], "wolfgang": 29, "word": 16, "work": [16, 24, 25, 26, 52, 55, 70, 72, 74, 79, 82], "workflow": [72, 82], "wors": [24, 25, 26, 52, 55], "would": [24, 25, 26, 52, 55, 72], "wrapper": 16, "write": 9, "written": [16, 67], "wrong": 29, "www": [22, 33, 55, 58, 70, 74, 79], "x": [13, 16, 24, 25, 26, 31, 34, 35, 36, 39, 44, 47, 52, 53, 55, 58, 60, 63, 73, 75, 81, 82], "x1": 16, "x_1": [49, 50, 74, 82], "x_2": [74, 82], "x_3": 74, "x_axi": 13, "x_can": 29, "x_i": [44, 81], "x_mc": 29, "x_new": 29, "x_valu": [16, 20, 67, 72, 75, 81], "xi": 16, "xiu": 82, "xlabel": 13, "xnew": 29, "xx": 16, "xxa": 55, "xya": 55, "y": [7, 9, 24, 25, 26, 39, 52, 53, 55, 60, 61, 63], "y_hat": [25, 26, 29, 52, 55, 58], "y_i": 81, "y_pc_val": 20, "y_pc_val_std": 20, "y_pred": [24, 25, 26, 52, 55, 60], "y_true": [24, 25, 26, 52, 55], "y_val": 20, "ye": [16, 65, 68, 79], "yet": 10, "yew": 29, "you": [7, 13, 16, 24, 25, 26, 52, 55, 66, 70, 72, 74, 76, 77, 79], "young": 68, "your": [13, 70, 74, 77, 78], "yr": [70, 74], "z": [72, 82], "zero": [30, 52, 55, 58, 67], "zeromean": 7, "zip": 16, "zip_subdir": 16, "zurich": 33}, "titles": ["bayesvalidrox", "bayesvalidrox.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "bayesvalidrox.bayes_inference.bayes_model_comparison", "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "bayesvalidrox.bayes_inference.discrepancy", "bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "bayesvalidrox.bayes_inference.mcmc", "bayesvalidrox.bayes_inference.mcmc.MCMC", "bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "bayesvalidrox.post_processing", "bayesvalidrox.post_processing.post_processing", "bayesvalidrox.post_processing.post_processing.PostProcessing", "bayesvalidrox.pylink", "bayesvalidrox.pylink.pylink", "bayesvalidrox.pylink.pylink.PyLinkForwardModel", "bayesvalidrox.pylink.pylink.within_range", "bayesvalidrox.surrogate_models", "bayesvalidrox.surrogate_models.adaptPlot", "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "bayesvalidrox.surrogate_models.apoly_construction", "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "bayesvalidrox.surrogate_models.bayes_linear", "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "bayesvalidrox.surrogate_models.engine", "bayesvalidrox.surrogate_models.engine.Engine", "bayesvalidrox.surrogate_models.engine.hellinger_distance", "bayesvalidrox.surrogate_models.engine.logpdf", "bayesvalidrox.surrogate_models.engine.subdomain", "bayesvalidrox.surrogate_models.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "bayesvalidrox.surrogate_models.exp_designs", "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "bayesvalidrox.surrogate_models.exp_designs.check_ranges", "bayesvalidrox.surrogate_models.exploration", "bayesvalidrox.surrogate_models.exploration.Exploration", "bayesvalidrox.surrogate_models.glexindex", "bayesvalidrox.surrogate_models.glexindex.cross_truncate", "bayesvalidrox.surrogate_models.glexindex.glexindex", "bayesvalidrox.surrogate_models.input_space", "bayesvalidrox.surrogate_models.input_space.InputSpace", "bayesvalidrox.surrogate_models.inputs", "bayesvalidrox.surrogate_models.inputs.Input", "bayesvalidrox.surrogate_models.inputs.Marginal", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "bayesvalidrox.surrogate_models.reg_fast_ard", "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "bayesvalidrox.surrogate_models.reg_fast_laplace", "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "bayesvalidrox.surrogate_models.surrogate_models", "bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "bayesvalidrox.surrogate_models.surrogate_models.create_psi", "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "Active learning: iteratively expanding the training set", "Example: Analytical function", "API", "Bayesian inference", "Example: beam", "Bayesian multi-model comparison", "Example: borehole", "EXAMPLES", "Surrogate-assisted\u00a0Bayesian validation of computational models", "Priors, input space and experimental design", "Example: ishigami", "Models", "Example: model comparison", "Example: OHagan-function", "USER GUIDE", "Example: pollution", "Postprocessing", "Training surrogate models", "TUTORIAL"], "titleterms": {"1": 76, "3": 76, "activ": 64, "adaptplot": [19, 20], "also": [], "an": 82, "analyt": 65, "api": 66, "apoly_construct": [21, 22], "argument": [29, 42], "assist": 72, "attribut": [3, 5, 7, 9, 13, 16, 25, 26, 39, 42, 47, 49, 50, 52, 55, 58, 60], "bay": [], "bayes_infer": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "bayes_linear": [23, 24, 25, 26, 27], "bayes_model_comparison": [4, 5], "bayesian": [67, 69, 72, 82], "bayesianlinearregress": 24, "bayesinfer": 3, "bayesmodelcomparison": 5, "bayesvalidrox": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "beam": 68, "borehol": 70, "check_rang": 40, "choic": [65, 68, 70, 74, 76, 77, 79], "class": [], "comparison": [69, 76], "comput": 72, "contact": [], "content": 72, "contribut": 72, "corr": 53, "corr_loocv_error": 61, "create_psi": 62, "cross_trunc": 44, "data": [65, 68, 70, 74, 77, 79, 82], "defin": 82, "descript": [], "design": [73, 82], "discrep": [6, 7, 65, 68], "eblinearregress": 25, "engin": [28, 29, 30, 31, 32, 81, 82], "eval_rec_rul": [33, 34, 35, 36, 37], "eval_rec_rule_arbitrari": 35, "eval_univ_basi": 36, "exampl": [49, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81], "exp_design": [38, 39, 40], "expand": 64, "expdesign": 39, "experiment": [73, 82], "exploit": 64, "explor": [41, 42, 64], "function": [65, 77], "further": 72, "gamma_mean": 27, "gaussian_process_emul": 63, "gelman_rubin": 10, "glexindex": [43, 44, 45], "guid": 78, "hellinger_dist": 30, "import": 82, "indic": 72, "infer": [67, 82], "input": [48, 49, 50, 73, 82], "input_spac": [46, 47], "inputspac": 47, "instal": [72, 78], "introductori": [], "ishigami": 74, "iter": 64, "l2_model": 76, "learn": 64, "librari": 82, "licens": 72, "link": 72, "logpdf": 31, "margin": 50, "mcmc": [8, 9, 10], "meta": 82, "meta_model_engin": [], "metamodel": [60, 65, 68, 70, 74, 76, 77, 79, 81], "model": [65, 68, 69, 70, 72, 74, 75, 76, 77, 79, 81, 82], "model1": 76, "multi": 69, "necessari": 82, "nl2_model": 76, "nl4_model": 76, "note": [24, 25, 26, 39, 52, 55, 60], "ohagan": 77, "option": 81, "orthogonal_matching_pursuit": [51, 52, 53], "orthogonalmatchingpursuit": 52, "overview": 78, "packag": [], "paramet": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 47, 52, 55, 58, 60, 61, 62, 63], "pollut": 79, "poly_rec_coeff": 37, "post": 82, "post_process": [11, 12, 13], "postprocess": [13, 80], "prior": [65, 68, 70, 73, 74, 77, 79], "priors1": 76, "probabilist": 82, "process": 82, "pylink": [14, 15, 16, 17, 65, 68, 70, 74, 76, 77, 79], "pylinkforwardmodel": [16, 82], "quickstart": 72, "rais": [13, 29, 62], "refer": [52, 55, 58], "reg_fast_ard": [54, 55, 56], "reg_fast_laplac": [57, 58], "regressionfastard": 55, "regressionfastlaplac": 58, "return": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 42, 47, 49, 52, 55, 58, 60, 61, 62, 63], "see": [], "sequenti": 82, "set": [64, 65, 68, 70, 74, 76, 77, 79, 82], "space": 73, "subdomain": 32, "surrog": [65, 68, 70, 72, 74, 76, 77, 79, 81, 82], "surrogate_model": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "tabl": 72, "theori": [], "tradeoff": 64, "train": [64, 65, 68, 70, 74, 76, 77, 79, 81, 82], "tutori": 82, "uncertainti": 82, "update_precis": 56, "user": 78, "valid": 72, "vblinearregress": 26, "within_rang": 17}})
\ No newline at end of file
diff --git a/docs/build/html/surrogate_description.html b/docs/build/html/surrogate_description.html
index c48db82a4773b839e34ca20dce1c610bb97ffb3a..db4708ce672e7ec6bdb91614f5e36b2b7aabec9a 100644
--- a/docs/build/html/surrogate_description.html
+++ b/docs/build/html/surrogate_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
diff --git a/docs/build/html/tutorial.html b/docs/build/html/tutorial.html
index 820f6d348870c77e961ce0e23f2158a2279322da..f4c9412913a544299343f5beb0e73c9ed9800d0d 100644
--- a/docs/build/html/tutorial.html
+++ b/docs/build/html/tutorial.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="EXAMPLES" href="examples.html" /><link rel="prev" title="Bayesian inference and multi-model comparison" href="bayes_description.html" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="EXAMPLES" href="examples.html" /><link rel="prev" title="Bayesian multi-model comparison" href="bmc_description.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>TUTORIAL - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1 current current-page"><a class="current reference internal" href="#">TUTORIAL</a></li>
@@ -596,7 +597,7 @@ The method <code class="docutils literal notranslate"><span class="pre">sobolInd
 </div>
 <p>If we set <code class="docutils literal notranslate"><span class="pre">emulator</span></code> to be true the Bayesian Inference will be performed based on the emulator.
 Some posterior predictions will be plotted by setting <code class="docutils literal notranslate"><span class="pre">plot_post_pred</span></code>.
-More options for Bayesian inference are listed at <a class="reference internal" href="bayes_description.html"><span class="doc">Bayesian inference and multi-model comparison</span></a>.</p>
+More options for Bayesian inference are listed at <a class="reference internal" href="bayes_description.html"><span class="doc">Bayesian inference</span></a>.</p>
 <div class="admonition note">
 <p class="admonition-title">Note</p>
 <p>Setting <code class="docutils literal notranslate"><span class="pre">emulator</span> <span class="pre">=</span> <span class="pre">False</span></code> means that the inference is based on actual model runs and not the surrogate.
@@ -694,14 +695,14 @@ plots of posterior predictions if wanted.</p>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
-          <a class="prev-page" href="bayes_description.html">
+          <a class="prev-page" href="bmc_description.html">
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
               <div class="page-info">
                 <div class="context">
                   <span>Previous</span>
                 </div>
                 
-                <div class="title">Bayesian inference and multi-model comparison</div>
+                <div class="title">Bayesian multi-model comparison</div>
                 
               </div>
             </a>
diff --git a/docs/diagrams/bayesian_model_comparison.dot b/docs/diagrams/bayesian_model_comparison.dot
new file mode 100644
index 0000000000000000000000000000000000000000..7ed29281a18f49a9b81bff8d06e62bf9c9bb1b05
--- /dev/null
+++ b/docs/diagrams/bayesian_model_comparison.dot
@@ -0,0 +1,18 @@
+digraph pyUML {
+ExpDesigns [label="{ExpDesigns||}", shape=record];
+PyLinkForwardModel [label="{PyLinkForwardModel||}", shape=record];
+MetaModel [label="{MetaModel||}", shape=record];
+Engine [label="{Engine||}", shape=record];
+Engine -> PyLinkForwardModel  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+Engine -> ExpDesigns  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+Engine -> MetaModel  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+Discrepancy [label="{Discrepancy||}", shape=record];
+BayesInference [label="{BayesInference||}", shape=record];
+BayesInference -> Engine  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+BayesInference -> Discrepancy  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+MCMC [label="{MCMC||}", shape=record];
+BayesInference -> MCMC  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+MCMC -> Discrepancy  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+BayesianModelComparison [label="{BayesianModelComparison|+ justifiability : bool\l+ perturbed_data : array\l+ n_bootstrap : int\l+ data_noise_level : float\l+ use_Bayes_settings : bool\l+ emulator : bool\l+ out_dir : string\l|+ setup()\l+ model_comparison_all()\l+ calc_bayes_factors\l+ calc_model_weights()\l+ calc_justifiability_analysis()\l+ generate_dataset()\l+ perturb_data()\l+ cal_model_weight()\l+ plot_just_analysis()\l+ plot_model_weights()\l+ plot_bayes_factor()\l}", shape=record];
+BayesianModelComparison -> BayesInference  [arrowtail=diamond, dir=back, headlabel="\n1..*", taillabel="\n1"];
+}
diff --git a/docs/diagrams/bayesian_validation.dot b/docs/diagrams/bayesian_validation.dot
index 46814289b17c73adefd12d435b34168a20c8dd24..1e66b0c1ae813b3c9adbf101c6f9d761bab8f433 100644
--- a/docs/diagrams/bayesian_validation.dot
+++ b/docs/diagrams/bayesian_validation.dot
@@ -10,4 +10,7 @@ Discrepancy [label="{Discrepancy||}", shape=record];
 BayesInference [label="{BayesInference|+ engine : Engine\l+ discrepancy : Discrepancy\l+ emulator : bool\l+ name : string\l+ bootatrap : bool\l+ req_outputs : list\l+ selected_indices : list\l+ prior_samples : array\l+ n_prior_samples : int\l+ measured_data : dict\l+ inference_method : string\l+ mcmc_params : dict\l+ bayes_loocv : bool\l+ n_bootstrap_itrs : int\l+ perturbed_data : lsit\l+ bootstrap_noise : double\l+ just_analysis : bool\l+ valid_metrics : list\l+ plot_post_pred : bool\l+ plot_map_pred : bool\l+ max_a_posteriori : string\l+ corner_title_fmt : string\l+ out_dir : string\l+ bmc : bool\l|+ setup_inference()\l+ create_inference()\l+ create_error_model()\l+ perform_bootstrap()\l+ _perturb_data()\l+ _eval_model()\l+ normpdf()\l+ _coor_Factor_BME()\l+ _rejection_sampling()\l+ _posterior_predictive()\l+ _plot_max_a_posteriori()\l+ plot_post_params()\l+ plot_log_BME()\l+ _plot_post_predictive()\l}", shape=record];
 BayesInference -> Engine  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
 BayesInference -> Discrepancy  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+MCMC [label="{MCMC|+ engine : Engine\l+ mcmc_params : dict\l+ Discrepancy : Discrepancy\l+ bias_inputs : dict\l+ error_model : MetaModel\l+ req_outputs : list\l+ selected_indices : array\l+ emulator : bool\l+ out_dir : string\l+ name : string\l|+ run_sampler()\l+ log_prior()\l+ log_likelihood()\l+ log_posterior()\l+ eval_model()\l+ train_error_model()\l+ normpdf()\l}", shape=record];
+BayesInference -> MCMC  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
+MCMC -> Discrepancy  [arrowtail=diamond, dir=back, headlabel="\n1", taillabel="\n1"];
 }
diff --git a/docs/diagrams/class_diagram.py b/docs/diagrams/class_diagram.py
index 71567b36193c312d2f627a4f3a3ca04e04bfb350..3c9e17b1854273b1b5161996537fe1a5e9d2b44a 100644
--- a/docs/diagrams/class_diagram.py
+++ b/docs/diagrams/class_diagram.py
@@ -672,7 +672,6 @@ def generate_al_uml():
     
     print_and_save(graph, 'active_learning')
     
-       
 def generate_al_uml_reduced():
     """
     Generates the uml for active learning
@@ -868,11 +867,87 @@ def generate_bayes_uml():
     graph.add_composition(engine, bayesinf, multiplicity_parent = 1, multiplicity_child = 1)
     graph.add_composition(disc, bayesinf, multiplicity_parent = 1, multiplicity_child = 1)
     
+    # MCMC class 
+    mcmc = UMLClass('MCMC', 
+                    attributes = {
+                        'engine':'Engine', 
+                        'mcmc_params':'dict', 
+                        'Discrepancy':'Discrepancy', 
+                        'bias_inputs':'dict', 
+                        'error_model':'MetaModel', 
+                        'req_outputs':'list', 
+                        'selected_indices':'array', 
+                        'emulator':'bool',
+                        'out_dir':'string', 
+                        'name':'string',
+                        },
+                    methods = [
+                        'run_sampler()', 'log_prior()', 'log_likelihood()',
+                        'log_posterior()', 'eval_model()', 'train_error_model()',
+                        'normpdf()'
+                        ]
+                    )
+    graph.add_class(mcmc)
+    graph.add_composition(mcmc, bayesinf, multiplicity_parent=1, multiplicity_child=1)
+    graph.add_composition(disc, mcmc, multiplicity_parent=1, multiplicity_child=1)
+    
     print_and_save(graph, 'bayesian_validation')
                         
+
+def generate_bmc_uml():
+    graph = Graph('pyUML')
+    
+    expdesign = UMLClass('ExpDesigns')
+    graph.add_class(expdesign)
+    
+    model = UMLClass('PyLinkForwardModel')
+    graph.add_class(model)
+    
+    metamod = UMLClass('MetaModel')
+    graph.add_class(metamod)
+    
+    engine = UMLClass('Engine')
+    graph.add_class(engine)
+    graph.add_composition(model, engine, multiplicity_parent = 1, multiplicity_child = 1)
+    graph.add_composition(expdesign, engine, multiplicity_parent = 1, multiplicity_child = 1)
+    graph.add_composition(metamod, engine, multiplicity_parent = 1, multiplicity_child = 1)
     
-     
+    disc = UMLClass('Discrepancy')
+    graph.add_class(disc)
+    
+    bayesinf = UMLClass('BayesInference')
+    graph.add_class(bayesinf)
+    graph.add_composition(engine, bayesinf, multiplicity_parent = 1, multiplicity_child = 1)
+    graph.add_composition(disc, bayesinf, multiplicity_parent = 1, multiplicity_child = 1)
     
+    # MCMC class 
+    mcmc = UMLClass('MCMC')
+    graph.add_class(mcmc)
+    graph.add_composition(mcmc, bayesinf, multiplicity_parent=1, multiplicity_child=1)
+    graph.add_composition(disc, mcmc, multiplicity_parent=1, multiplicity_child=1)
+    
+    
+    # BMC
+    bmc = UMLClass('BayesianModelComparison',
+                   attributes = {'justifiability':'bool', 
+                                 'perturbed_data':'array',
+                                 'n_bootstrap':'int', 
+                                 'data_noise_level':'float',
+                                 'use_Bayes_settings':'bool', 
+                                 'emulator':'bool', 
+                                 'out_dir':'string'
+                                 },
+                   methods = ['setup()', 'model_comparison_all()','calc_bayes_factors',
+                              'calc_model_weights()', 'calc_justifiability_analysis()',
+                              'generate_dataset()', 'perturb_data()','cal_model_weight()',
+                              'plot_just_analysis()','plot_model_weights()', 'plot_bayes_factor()']
+                   )
+    graph.add_class(bmc)
+    graph.add_composition(bayesinf, bmc, multiplicity_parent=1, multiplicity_child='1..*')
+    
+    print_and_save(graph, 'bayesian_model_comparison')
+                        
+
 if __name__ == '__main__':
     
     generate_input_uml()
@@ -883,4 +958,5 @@ if __name__ == '__main__':
     generate_al_uml()
     generate_al_uml_reduced()
     generate_postprocessing_uml()
-    generate_bayes_uml()
\ No newline at end of file
+    generate_bayes_uml()
+    generate_bmc_uml()
\ No newline at end of file
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst
index 21a9e34806d5b3671103d4a334fcdfd92880c1bc..00a9dcd93acecc50c3c0722ecd71d96cd116eab9 100644
--- a/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst
@@ -17,19 +17,11 @@ bayesvalidrox.surrogate\_models.engine.Engine
    .. autosummary::
    
       ~Engine.__init__
-      ~Engine.choose_next_sample
-      ~Engine.dual_annealing
       ~Engine.eval_metamodel
-      ~Engine.run_util_func
       ~Engine.start_engine
-      ~Engine.tradeoff_weights
       ~Engine.train_normal
       ~Engine.train_seq_design
       ~Engine.train_sequential
-      ~Engine.util_AlphOptDesign
-      ~Engine.util_BayesianActiveDesign
-      ~Engine.util_BayesianDesign
-      ~Engine.util_VarBasedDesign
    
    
 
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.rst
index 43998aeade22fc4feb5c04282973e72a1ae1d72e..a73ff3387b3ede34a272edb2f2b95c7730c9d2a6 100644
--- a/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.rst
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.engine.rst
@@ -9,15 +9,6 @@ bayesvalidrox.surrogate\_models.engine
 
    
    
-   .. rubric:: Functions
-
-   .. autosummary::
-      :toctree:     
-   
-      hellinger_distance
-      logpdf
-      subdomain
-   
    
 
    
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.rst
index fbd49ba297a2f28c516c5818e5f844d545986446..19ea8468254de7631be7b80500ebcb44dabf033a 100644
--- a/docs/source/_autosummary/bayesvalidrox.surrogate_models.rst
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.rst
@@ -1,4 +1,4 @@
-bayesvalidrox.surrogate\_models
+bayesvalidrox.surrogate\_models
 ===============================
 
 .. automodule:: bayesvalidrox.surrogate_models
@@ -41,5 +41,6 @@ bayesvalidrox.surrogate\_models
    bayesvalidrox.surrogate_models.orthogonal_matching_pursuit
    bayesvalidrox.surrogate_models.reg_fast_ard
    bayesvalidrox.surrogate_models.reg_fast_laplace
+   bayesvalidrox.surrogate_models.sequential_design
    bayesvalidrox.surrogate_models.surrogate_models
 
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst
new file mode 100644
index 0000000000000000000000000000000000000000..85bf390ce314ff2dcc87557ffd5f13404782ca47
--- /dev/null
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst
@@ -0,0 +1,34 @@
+bayesvalidrox.surrogate\_models.sequential\_design.SequentialDesign
+===================================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autoclass:: SequentialDesign
+   :members:                                   
+   :show-inheritance:                           
+   :inherited-members:                          
+
+   
+   .. automethod:: __init__
+
+   
+   .. rubric:: Methods
+
+   .. autosummary::
+   
+      ~SequentialDesign.__init__
+      ~SequentialDesign.choose_next_sample
+      ~SequentialDesign.dual_annealing
+      ~SequentialDesign.run_util_func
+      ~SequentialDesign.start_seqdesign
+      ~SequentialDesign.tradeoff_weights
+      ~SequentialDesign.util_AlphOptDesign
+      ~SequentialDesign.util_BayesianActiveDesign
+      ~SequentialDesign.util_BayesianDesign
+      ~SequentialDesign.util_VarBasedDesign
+   
+   
+
+   
+   
+   
\ No newline at end of file
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst
new file mode 100644
index 0000000000000000000000000000000000000000..e242998b25145fd1d0320e10f4ebc1503f00a302
--- /dev/null
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst
@@ -0,0 +1,6 @@
+bayesvalidrox.surrogate\_models.sequential\_design.hellinger\_distance
+======================================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autofunction:: hellinger_distance
\ No newline at end of file
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst
new file mode 100644
index 0000000000000000000000000000000000000000..124f9a6d588f053034144a510db677ae96b91da6
--- /dev/null
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst
@@ -0,0 +1,6 @@
+bayesvalidrox.surrogate\_models.sequential\_design.logpdf
+=========================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autofunction:: logpdf
\ No newline at end of file
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst
new file mode 100644
index 0000000000000000000000000000000000000000..2e13f6766e5c85e70fae2f7087baaf350a38b095
--- /dev/null
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst
@@ -0,0 +1,40 @@
+bayesvalidrox.surrogate\_models.sequential\_design
+==================================================
+
+.. automodule:: bayesvalidrox.surrogate_models.sequential_design
+
+   
+   
+   
+
+   
+   
+   .. rubric:: Functions
+
+   .. autosummary::
+      :toctree:     
+   
+      hellinger_distance
+      logpdf
+      subdomain
+   
+   
+
+   
+   
+   .. rubric:: Classes
+
+   .. autosummary::
+      :toctree:     
+      :template: custom-class-template.rst  
+   
+      SequentialDesign
+   
+   
+
+   
+   
+   
+
+
+
diff --git a/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst
new file mode 100644
index 0000000000000000000000000000000000000000..abef419d34e8f934f2fff5d6d4573313336c9ca6
--- /dev/null
+++ b/docs/source/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst
@@ -0,0 +1,6 @@
+bayesvalidrox.surrogate\_models.sequential\_design.subdomain
+============================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autofunction:: subdomain
\ No newline at end of file
diff --git a/docs/source/bayes_description.rst b/docs/source/bayes_description.rst
index 2cfd3a6a8c43868b09f404eafdd36594ed9c3c7d..5017bceeaa28c0b2d4150bebb91437a959c9edd4 100644
--- a/docs/source/bayes_description.rst
+++ b/docs/source/bayes_description.rst
@@ -1,7 +1,125 @@
-Bayesian inference and multi-model comparison
-*********************************************
+Bayesian inference
+******************
+.. container:: twocol
 
+   .. container:: leftside
+   
+      With Bayesian inference we ask the question 'how does our understanding of the inputs change given some observation of the outputs of the model?', i.e. we perform an updating step of the prior distributions to posterior, based on some observations.
+      Bayesvalidrox provides a dedicated class to perform this task, :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference`, which infers the posterior via ``rejection-sampling`` or ``MCMC``.
+      The likelihood in rejection sampling is estimated with the help of ``bootstrapping``.
+      MCMC-specific parameters are to be given as a dictionary called ``mcmc_params`` and can include 
+	  
+      * ``init_samples``: initial samples 
+      * ``n_steps``: number of steps 
+      * ``n_walkers``: number of walkers
+      * ``n_burn``: length of the burn-in 
+      * ``moves``: function to use for the moves, e.g. taken from ``emcee``
+      * ``multiprocessing``: setting for multiprocessing
+      * ``verbose``: verbosity 
+	  
+   .. container:: rightside
+   
+      .. image:: ../diagrams/bayesian_validation.png
+         :width: 300
+         :alt: UML diagram for classes related to Bayesian inference.
 
-.. image:: ../diagrams/bayesian_validation.png
-   :width: 300
-   :alt: UML diagram for classes related to Bayesian inference and multi-model comparison.
+The observation should be set as ``Model.observations`` in the ``Engine``, and an estimation of its uncertainty can be provided as a :any:`bayesvalidrox.bayes_inference.discrepancy.Discrepancy` object.
+
+Example
+=======
+For this example we need to add the following imports.
+
+>>> from bayesvalidrox import Discrepancy, BayesInference
+
+In order to run Bayesian inference we first need to provide an observation.
+For this example we take an evaluation of the model on some chosen sample and add the resulting values as ``Model.observations``.
+As this expects a 1D-array for each output key, we need to change the format slightly.
+
+>>> true_sample = [[2]]
+>>> observation = Model.run_model_parallel(true_sample)
+>>> Model.observations = {}
+>>> for key in observation:
+>>>     if key == 'x_values':
+>>>         Model.observations[key]=observation[key]
+>>>     else:
+>>>         Model.observations[key]=observation[key][0]
+
+Next we define the uncertainty on the observation with the class :any:`bayesvalidrox.bayes_inference.discrepancy.Discrepancy`.
+For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them.
+The ``parameters`` contain the variance for each point in the observation.
+
+.. warning::
+   For models with only a single uncertain input parameter, numerical issues can appear when the discrepancy is set only depending on the observed data.
+   To resolve this, a small value can be added to the variance of the discrepancy.
+
+>>> obsData = pd.DataFrame(Model.observations, columns=Model.Output.names)
+>>> DiscrepancyOpts = Discrepancy('')
+>>> DiscrepancyOpts.type = 'Gaussian'
+>>> DiscrepancyOpts.parameters = obsData**2+0.01
+
+Now we can initialize an object of class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference` with all the wanted properties.
+This object has to be given our ``Engine``.
+If it should use the surrogate during inference, set ``emulator`` to ``True``, otherwise the model will be evaluated directly.
+We also set the defined ``Discrepancy``. and set ``post_plot_pred`` if posterior predictions should be visualized.
+
+>>> BayesObj = BayesInference(Engine_)
+>>> BayesObj.emulator = True
+>>> BayesObj.Discrepancy = DiscrepancyOpts
+>>> BayesObj.plot_post_pred = True
+
+In order to run with rejection sampling, we set the ``inference_method`` accordingly and add properties for ``bootstrap``.
+
+>>> BayesObj.inference_method = 'rejection'
+>>> BayesObj.bootstrap = True
+>>> BayesObj.n_bootstrap_itrs = 500
+>>> BayesObj.bootstrap_noise = 2
+
+If the sampling should be done with MCMC, then this is set as the ``inference_method`` and additional properties are given in ``mcmc_params``.
+For this example we use the python package ``emcee`` to define the MCMC moves.
+
+>>> BayesObj.inference_method = 'MCMC'
+>>> import emcee
+>>> BayesObj.mcmc_params = {
+>>>     'n_steps': 1e4,
+>>>     'n_walkers': 30,
+>>>     'moves': emcee.moves.KDEMove(),
+>>>     'multiprocessing': False,
+>>>     'verbose': False
+>>>     }
+
+Then we run the inference.
+
+>>> BayesObj.create_inference()
+
+If the output directory ``BayesObj.out_dir`` is not set otherwise, the outputs are written into the folder ``Outputs_Bayes_model_Calib``.
+This folder includes the posterior distribution of the input parameters, as well as the predictions resulting from the mean of the posterior.
+For inference with MCMC, chain diagnostics are also written out in the console.
+
+.. container:: twocol
+
+   .. container:: leftside
+   
+      .. code-block:: py
+
+         ---------------Posterior diagnostics---------------
+         Mean auto-correlation time: 2.057
+         Thin: 1
+         Burn-in: 4
+         Flat chain shape: (13380, 1)
+         Mean acceptance fraction*: 0.752
+         Gelman-Rubin Test**:  [1.001]
+
+         * This value must lay between 0.234 and 0.5.
+         ** These values must be smaller than 1.1.
+         --------------------------------------------------
+		 
+   .. container:: rightside
+
+      .. image:: ../../examples/user_guide/Outputs_Bayes_model_Calib/Posterior_Dist_model_emulator.pdf
+         :width: 400
+         :alt: Posterior distribution of the input parameter
+		 
+      .. image:: ../../examples/user_guide/Outputs_Bayes_model_Calib/Post_Prior_Perd_model_emulator_A.pdf
+         :width: 400
+         :alt: Comparison of posterior prediction to the observation
+		 
\ No newline at end of file
diff --git a/docs/source/bmc_description.rst b/docs/source/bmc_description.rst
new file mode 100644
index 0000000000000000000000000000000000000000..3ebd9d5250e3aee50bd1dd9fe9c9fb6845be6d15
--- /dev/null
+++ b/docs/source/bmc_description.rst
@@ -0,0 +1,83 @@
+Bayesian multi-model comparison
+*******************************
+.. container:: twocol
+
+   .. container:: leftside
+   
+      Bayesvalidrox provides three distinct methods to compare sets of models against each other given some observation of the outputs, Bayes' Factors, model weights and confusion matrices.
+      These are contained within the class :any:`bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison` and can be called one-at-a-time with their respective functions, or consecutively with the function ``model_comparison_all()``.
+	  
+      
+   .. container:: rightside
+   
+      .. image:: ../diagrams/bayesian_model_comparison.png
+         :width: 400
+         :alt: UML diagram for classes related to Bayesian multi-model comparison.
+
+
+Example
+=======
+To perform model comparison, we first need to define the set of competing models.
+For this, we create an additional model in the file ``model2.py`` based on the example model from :any:`model_description`.
+
+>>> def model2(samples, x_values):
+>>>     poly = samples[0]*np.power(x_values, 3)
+>>>     outputs = {'A': poly, 'x_values': x_values}
+>>>     return outputs
+
+Then we can build another surrogate for this model, following the same code as for the surrogate in :any:`surrogate_description`.
+
+>>> Model2 = PyLinkForwardModel()
+>>> Model2.link_type = 'Function'
+>>> Model2.py_file = 'model2'
+>>> Model2.name = 'model2'
+>>> Model2.Output.names = ['A']
+>>> Model2.func_args = {'x_values': x_values}
+>>> Model2.store = False
+    
+>>> MetaMod2 = MetaModel(Inputs)
+>>> MetaMod2.meta_model_type = 'aPCE'
+>>> MetaMod2.pce_reg_method = 'FastARD'
+>>> MetaMod2.pce_deg = 3
+>>> MetaMod2.pce_q_norm = 1
+    
+>>> ExpDesign2 = ExpDesigns(Inputs)
+>>> ExpDesign2.n_init_samples = 30
+>>> ExpDesign2.sampling_method = 'random'
+    
+>>> Engine_2 = Engine(MetaMod2, Model2, ExpDesign2)
+>>> Engine_2.train_normal()
+
+To perform model comparison we use the class :any:`bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison`.
+
+>>> from bayesvalidrox import BayesModelComparison`
+
+We collect the engines that should be compared in a dictionary, and assign them names.
+
+>>> meta_models = {
+>>>     "linear": Engine_,
+>>>     "degthree": Engine_2
+>>>     }
+	
+Then we create an object of class ``BayesModelComparison``.
+
+>>> BayesOpts = BayesModelComparison()	
+
+As the comparison uses the class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference`, we can also set the properties for this class as well.
+These are collected in a dictionary and given to the function calls that perform the model comparison.
+In this example we use the following settings.
+
+>>> opts_bootstrap = {
+>>>     "bootstrap": True,
+>>>     "n_samples": 100,
+>>>     "Discrepancy": DiscrepancyOpts,
+>>>     "emulator": True,
+>>>     "plot_post_pred": False
+>>>     }
+
+Now we can run the full model comparison.
+
+>>> output_dict = BayesOpts.model_comparison_all(meta_models, opts_bootstrap)
+
+The created plots are saved in the folder ``Outputs_Comparison``.
+
diff --git a/docs/source/model_description.rst b/docs/source/model_description.rst
index bb719886b9a5a61cfed3f44eebcf810b5ca46ef8..42103caa6f68cf7a71791f0317519f20c563aba0 100644
--- a/docs/source/model_description.rst
+++ b/docs/source/model_description.rst
@@ -6,10 +6,10 @@ Models
    .. container:: leftside
    
       BayesValidRox gives options to create interfaces for a variety of models with the class :any:`bayesvalidrox.pylink.pylink.PyLinkForwardModel`.
-	  Its main function is to run the model on given samples and to read in and contain MC references and observations.
+      Its main function is to run the model on given samples and to read in and contain MC references and observations.
 	  
-	  Models can be defined via python functions, shell commands or as general executables.
-	  This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.
+      Models can be defined via python functions, shell commands or as general executables.
+      This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.
 
    .. container:: rightside
    
@@ -25,9 +25,11 @@ This function takes a single realization of the uncertain parameter as a 2-dimen
 Here we use the key ``A`` for the sample values and ``B`` for their squares.
 Under the key ``x_values`` a list should be given that is of the same length as each output of the model for a single input.
 The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis.
+If we want to set the ``x_values`` outside of the model, it can also be given as an additional parameter
 
->>> def model(sample):
->>>     square = sample*sample
+>>> def model(samples, x_values):
+>>>     sample = samples[0]*x_values
+>>>     square = np.power(samples[0]*x_values, 2)
 >>>     outputs = {'A': sample, 'B': square, 'x_values': [0]}
 >>>     return outputs
 
@@ -43,7 +45,13 @@ Lastly we list the keys of the outputs that we are interested in.
 >>> Model.link_type = 'Function'
 >>> Model.py_file = 'model'
 >>> Model.name = 'model'
->>> Model.Output.names = ['A', 'B']
+>>> Model.Output.names = ['A']
+
+Any parameters to the model function, that are not the samples, can be set via the ``func_args`` argument.
+In this case we define ``x_values`` as a ``np.array`` and include it.
+
+>>> x_values = np.arange(0,1,0.1)
+>>> Model.func_args = {'x_values':x_values}
 
 With this we have completed an interface to our model.
 We can now evaluate this model on the samples created in the input example.
diff --git a/docs/source/packagedescription.rst b/docs/source/packagedescription.rst
index f245959b8d5a4b1d56de4e9cc86cff64b2da9b98..1d1fd65173851b1c5942f7da35568c2fd3e4c696 100644
--- a/docs/source/packagedescription.rst
+++ b/docs/source/packagedescription.rst
@@ -69,3 +69,4 @@ The next pages lead through the topics given in BayesValidRox and describe the a
    al_description
    post_description
    bayes_description
+   bmc_description
diff --git a/docs/source/post_description.rst b/docs/source/post_description.rst
index af2172709f4581abfabdcfd06257edfa808aa501..987f18e7dbf8ea21cc987265bbbac7ac7a8d2ee1 100644
--- a/docs/source/post_description.rst
+++ b/docs/source/post_description.rst
@@ -4,11 +4,11 @@ Postprocessing
 
    .. container:: leftside
    
-         Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
-         The BayesValidRox class :any:`bayesvalidrox.post_processing.post_processing.PostProcessing` includes functions that are applicable to all types of surrogate model.
+      Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
+      The BayesValidRox class :any:`bayesvalidrox.post_processing.post_processing.PostProcessing` includes functions that are applicable to all types of surrogate model.
 		 
-		 * ``valid_metamodel``: visualizing some metamodel runs against the corresponding model runs
-		 * ``check_accuracy``: computing the RMSE error of the surrogate model
+      * ``valid_metamodel``: visualizing some metamodel runs against the corresponding model runs
+      * ``check_accuracy``: computing the RMSE error of the surrogate model
 		 
    .. container:: rightside
 
diff --git a/examples/.coverage b/examples/.coverage
deleted file mode 100644
index 254e10e4371d703eefec0f0437f9c0575be3f5ec..0000000000000000000000000000000000000000
Binary files a/examples/.coverage and /dev/null differ
diff --git a/examples/user_guide/example_user_guide.py b/examples/user_guide/example_user_guide.py
index f118d05a6fb03a1268de0fdfea56b963ce3514a5..aa573997e15f98f30fe48578ab737ed66328bf3a 100644
--- a/examples/user_guide/example_user_guide.py
+++ b/examples/user_guide/example_user_guide.py
@@ -5,6 +5,7 @@ Code that goes along with the 'user guide' in the BVR docs.
 @author: Rebecca Kohlhaas
 """
 
+import copy
 import numpy as np
 import pandas as pd
 import sys
@@ -14,12 +15,7 @@ import matplotlib
 
 # Add BayesValidRox path
 sys.path.append("../../src/")
-from bayesvalidrox.surrogate_models.inputs import Input
-from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns
-from bayesvalidrox.pylink.pylink import PyLinkForwardModel
-from bayesvalidrox.surrogate_models.surrogate_models import MetaModel
-from bayesvalidrox.surrogate_models.engine import Engine
-from bayesvalidrox.post_processing.post_processing import PostProcessing
+from bayesvalidrox import Input, ExpDesigns, PyLinkForwardModel, MetaModel, Engine, PostProcessing, Discrepancy, BayesInference, BayesModelComparison
 
 if __name__ == '__main__':
     #### Priors, input space and experimental design
@@ -47,13 +43,16 @@ if __name__ == '__main__':
     ExpDesign.plot_samples(samples)
     
     #### Models
+    x_values = np.arange(0,1,0.1)
     Model = PyLinkForwardModel()
     Model.link_type = 'Function'
     Model.py_file = 'model'
     Model.name = 'model'
-    Model.Output.names = ['A', 'B']
+    Model.Output.names = ['A']#, 'B']
+    Model.func_args = {'x_values': x_values}
+    Model.store = False
     
-    #output, samples = Model.run_model_parallel(samples, mp = True)
+    output, samples = Model.run_model_parallel(samples, mp = True)
     
     #from model import model
     #out1 = model(samples)
@@ -63,11 +62,12 @@ if __name__ == '__main__':
     MetaMod.meta_model_type = 'aPCE'
     MetaMod.pce_reg_method = 'FastARD'
     MetaMod.pce_deg = 3
-    MetaMod.pce_q_norm = 0.85
+    MetaMod.pce_q_norm = 1
     
-    ExpDesign.n_init_samples = 10
-    ExpDesign.sampling_method = 'user'
-    ExpDesign.X = samples
+    # TODO: add check in Metamod/ExpDesign to ensure that n_init_samples matches the length of the given .X!
+    ExpDesign.n_init_samples = 30
+    ExpDesign.sampling_method = 'random'#'user'
+    #ExpDesign.X = samples
     
     Engine_ = Engine(MetaMod, Model, ExpDesign)
     Engine_.start_engine()
@@ -77,22 +77,22 @@ if __name__ == '__main__':
     mean, stdev = Engine_.MetaModel.eval_metamodel(samples)
     
     #### Active learning
-    ExpDesign.n_new_samples = 1
-    ExpDesign.n_max_samples = 14
-    ExpDesign.mod_LOO_threshold = 1e-16
-    
-    ExpDesign.tradeoff_scheme = None
-    
-    ExpDesign.explore_method = 'random'
-    ExpDesign.n_canddidate = 1000
-    ExpDesign.n_cand_groups = 4
-    
-    ExpDesign.exploit_method = 'VarOptDesign'
-    ExpDesign.util_func = 'EIGF'
-    
-    Engine_ = Engine(MetaMod, Model, ExpDesign)
-    Engine_.start_engine()
-    Engine_.train_sequential()
+    if 0:
+        ExpDesign.n_new_samples = 1
+        ExpDesign.n_max_samples = 14
+        ExpDesign.mod_LOO_threshold = 1e-16
+        
+        ExpDesign.tradeoff_scheme = None
+        
+        ExpDesign.explore_method = 'random'
+        ExpDesign.n_canddidate = 1000
+        ExpDesign.n_cand_groups = 4
+        
+        ExpDesign.exploit_method = 'VarOptDesign'
+        ExpDesign.util_func = 'EIGF'
+        
+        Engine_ = Engine(copy.deepcopy(MetaMod), Model, copy.deepcopy(ExpDesign))
+        Engine_.train_sequential()
     
     #### Postprocessing
     PostProc = PostProcessing(Engine_)
@@ -100,4 +100,106 @@ if __name__ == '__main__':
     PostProc.check_accuracy(n_samples=10)
     PostProc.plot_moments()
     PostProc.sobol_indices()
-    PostProc.plot_seq_design_diagnostics()
\ No newline at end of file
+    #PostProc.plot_seq_design_diagnostics()
+    
+    # Sanity check - test on training data
+    mean, stdev = Engine_.eval_metamodel(Engine_.ExpDesign.X)
+    print(mean['A']-Engine_.ExpDesign.Y['A'])
+    
+    #### BayesInference
+    
+    true_sample = [[2]]
+    observation = Model.run_model_parallel(true_sample)[0]
+    Model.observations = {}
+    for key in observation:
+        if key == 'x_values':
+            Model.observations[key]=observation[key]
+        else:
+            Model.observations[key]=observation[key][0]
+            
+    obsData = pd.DataFrame(Model.observations, columns=Model.Output.names)
+    DiscrepancyOpts = Discrepancy('')
+    DiscrepancyOpts.type = 'Gaussian'
+    DiscrepancyOpts.parameters = obsData**2 + 0.01
+    
+    BayesObj = BayesInference(Engine_)
+    BayesObj.emulator = True
+    BayesObj.Discrepancy = DiscrepancyOpts
+    BayesObj.plot_post_pred = True
+    
+    BayesObj.inference_method = 'MCMC'
+    import emcee
+    BayesObj.mcmc_params = {
+        'n_steps': 1e4,
+        'n_walkers': 30,
+        'moves': emcee.moves.KDEMove(),
+        'multiprocessing': False,
+        'verbose': False
+        }
+    BayesObj.create_inference()
+    
+    
+    #### Model Comparison
+    Model1 = PyLinkForwardModel()
+    Model1.link_type = 'Function'
+    Model1.py_file = 'model'
+    Model1.name = 'model'
+    Model1.Output.names = ['B']
+    Model1.func_args = {'x_values': x_values}
+    Model1.store = False
+    
+    MetaMod1 = MetaModel(Inputs)
+    MetaMod1.meta_model_type = 'aPCE'
+    MetaMod1.pce_reg_method = 'FastARD'
+    MetaMod1.pce_deg = 3
+    MetaMod1.pce_q_norm = 1
+    
+    ExpDesign1 = ExpDesigns(Inputs)
+    ExpDesign1.n_init_samples = 30
+    ExpDesign1.sampling_method = 'random'
+    
+    Engine_1 = Engine(MetaMod1, Model1, ExpDesign1)
+    Engine_1.train_normal()
+    
+    Model2 = PyLinkForwardModel()
+    Model2.link_type = 'Function'
+    Model2.py_file = 'model2'
+    Model2.name = 'model2'
+    Model2.Output.names = ['A']
+    Model2.func_args = {'x_values': x_values}
+    Model2.store = False
+    Model2.observations = Model.observations
+    
+    MetaMod2 = MetaModel(Inputs)
+    MetaMod2.meta_model_type = 'aPCE'
+    MetaMod2.pce_reg_method = 'FastARD'
+    MetaMod2.pce_deg = 3
+    MetaMod2.pce_q_norm = 1
+    
+    ExpDesign2 = ExpDesigns(Inputs)
+    ExpDesign2.n_init_samples = 30
+    ExpDesign2.sampling_method = 'random'
+    
+    Engine_2 = Engine(MetaMod2, Model2, ExpDesign2)
+    Engine_2.train_normal()
+    
+    meta_models = {
+        "linear": Engine_,
+        #"square": Engine_1,
+        "degthree": Engine_2
+        }
+
+    BayesOpts = BayesModelComparison()
+    
+    opts_bootstrap = {
+        "bootstrap": True,
+        "n_samples": 100,
+        "Discrepancy": DiscrepancyOpts,
+        "emulator": True,
+        "plot_post_pred": False
+        }
+
+    output_dict = BayesOpts.model_comparison_all(
+        meta_models,
+        opts_bootstrap
+        )
\ No newline at end of file
diff --git a/examples/user_guide/model.py b/examples/user_guide/model.py
index 2bb1b011fae7c82bf299f4a92ba6787dd58a0f2b..744acc6f0b37957ff98f252ad3e0a734c5cbd633 100644
--- a/examples/user_guide/model.py
+++ b/examples/user_guide/model.py
@@ -6,8 +6,8 @@ A simple model example for the BVR user guide.
 """
 import numpy as np
 
-def model(samples):
-    samples = samples[0]
-    square = np.power(samples, 2)
-    outputs = {'A': samples, 'B': square, 'x_values': [0]}
+def model(samples, x_values):
+    samples = samples[0]*x_values
+    square = np.power(samples[0]*x_values, 2)
+    outputs = {'A': samples, 'B': square, 'x_values': x_values}
     return outputs
\ No newline at end of file
diff --git a/examples/user_guide/model2.py b/examples/user_guide/model2.py
new file mode 100644
index 0000000000000000000000000000000000000000..47a0113b4e0dfb5692b9b27dfe45460bff5bf6e6
--- /dev/null
+++ b/examples/user_guide/model2.py
@@ -0,0 +1,12 @@
+# -*- coding: utf-8 -*-
+"""
+A simple model example for the BVR user guide.
+
+@author: Rebecca Kohlhaas
+"""
+import numpy as np
+
+def model2(samples, x_values):
+    poly = samples[0]*np.power(x_values, 3)
+    outputs = {'A': poly, 'x_values': x_values}
+    return outputs
\ No newline at end of file
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..7f79bb519d61bb64e405f7e5d76209a26b39722f
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..1b40ded18ba818667104ca271e82b485b0d0223f
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c498d90c223a18a1a9f3754b489c483ff6f7fe9c
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..affc7a05a2998c549ad48ec523f6d6842e3d2691
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..df62d1ad23ba30038f5d444f8683d651f934252c
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.discrepancy.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.discrepancy.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..5865c8f18e57941fe46f08db4d6b58dbdbc336e5
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.discrepancy.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d9ccd6f8df8a153f32a071423f221f1ccef43bec
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..f7079c9804bd84e0a6882a2b63c4af54fa843ec9
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..63bb8b251e3af67bd6fba7cd8273a1798bab7805
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.doctree b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..da354329e0ff623d1ac6e82b6e2dcb587942ade4
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.doctree b/public/.doctrees/_autosummary/bayesvalidrox.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c2ec2c7c37e2b420dbd9097a690e2429b9f3894e
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.post_processing.doctree b/public/.doctrees/_autosummary/bayesvalidrox.post_processing.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..7dd9478fe066fbdf76a9f54f127399dbe5fa8a5f
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.post_processing.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.doctree b/public/.doctrees/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..dbd03245fd9c2160c2faa35247dfa78720d8e9c0
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.post_processing.post_processing.doctree b/public/.doctrees/_autosummary/bayesvalidrox.post_processing.post_processing.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..0fb0f93355e260dcaf19ce24a1b5b5a20092ee11
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.post_processing.post_processing.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.pylink.doctree b/public/.doctrees/_autosummary/bayesvalidrox.pylink.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..15024f4bac29c6e49afaf1b43cc03479ea4aa98e
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.pylink.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree b/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..5d041e0d2bdf80ab9614cb6fcefc37404c1ecd49
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.doctree b/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..25874d4dd90ce64cee3b8d4dce441d31b71b2acd
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.within_range.doctree b/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.within_range.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..2936b4a87d684facb3eec135a27e4725a19491d3
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.pylink.pylink.within_range.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..2ca9c80a290068a688b5e3b339446a9aa3535530
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..5591bc35d748a21f229d39b7fc0f1aa660203e2a
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..ec7268f622853a287dda482edb3c36448314c621
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..210276b62bc959683d52d6951efeae90059aa2aa
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..bf9c982e7a3d6e9236bec4f10b0836d0ed0b142e
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d2257d073b2a82c882476cc569e078fbd460a945
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..cdbcc3abe21abd2b6b4866453b5221873f9647ee
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c8eb19057c26d78328d4b8801d80ffc18b086595
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..496ae58398937b5221643fae7c32662ad0885865
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d46f6285bc139be6da26f951f30dfe85f79e3b94
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..2bead1e47a8071819886bcbcde287e2c4fba50d5
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c7e8877d3f1233ac61b08b3e887da0a3c4fc019a
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3d1938fb21b0f2a1e9395ab90ba4f30e0d589765
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..905570941f9f0dee12004b835c520fea3b1a4837
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..cd097b829bfc48ee44c801ab6a81ef1bcbc0474e
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..1de0ff9abdf6340db1d57a0f4730126244795b19
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..82a1b77465fb1f2bfd2db53bbd7272d6712480e8
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..971c23e6fe3b0072e363b74d24863d3f077457f5
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..e535dbcd74da0572abee55936a63b6722117627d
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3ff8161d3fa4d162f8e2569340fe9fa297529798
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..308a36773813ec6eeff34f8fc2e555211ad6a0d7
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c7ac5f4ed2f7420fb6175c37788b9a36d018e423
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d131b16072f650f07fef128dbee53900b4613655
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exp_designs.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..fadb3aa573d85aef6b5bee28533619b2715367c6
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exploration.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exploration.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..1a25d84c9281a01b96752dd3634d1b047eaf94a9
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.exploration.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3d9196755d7f8dfdcdc59c45a8f1d65379e5109d
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..314a26b158facacd212bc579153e87a2c8cd6cc2
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..7d5709d79813d4638d48077826d7246b96c91248
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..6cead39f28cd54d324538feb50417014b8a947db
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..232e49d2a978e77b5291a38485f5fb774d201d7e
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.input_space.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3f48d098fd19d8346ba401a776a706cc99e03077
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..5cf74a5fa08442b03cee30cd503ba883c6f6b7e1
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d4229c3ce27b792ace121b4b504800fce8fb7c6d
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.inputs.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..8e52622aa32c67301e0afce35d2421de833950ec
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..aa978dc97957cdde753a88f990ef7587dae35693
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..8fa4b1639de0eabd77a0e14698e8a1c17a96458e
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..ba57370ffdb3075e9657d7c312e4d679c0d64d30
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..551f92c8df616e6d5dec48f3c21b2723e751cae5
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..9239be681819077865e2e6b338c849e486968b73
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..6f3be63344ffc9ecd4d1227902cb199e714a0af8
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..234cd604cd818d888635e3c70f7fe785514b2313
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..1128482acaaae898ebbf90952992bcc0f9d7064d
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..6bd38de919cdd480bf99ff19ea72472b5cc344eb
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..343dd893399f497589c7b610e12ed6aca7949aa3
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c3ed638b2ffed56c2a98bafbd309c74197248892
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d50226207f793d89398c5b58090f0510fd9d276f
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d8ac431ddf19c175a13a546a445af6960141548c
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..bfa9ea445ef532a50bb903b1f1f6fc6dfe7716d7
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..d3c9ebd60c775a65ef4723322139e8367b947e1a
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..2db030f703006ba6111cd286c06b3e1323ea9faa
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.doctree differ
diff --git a/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.doctree b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..8635d810c3451a2c55c7411476bac6c4a5bbecb4
Binary files /dev/null and b/public/.doctrees/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.doctree differ
diff --git a/public/.doctrees/al_description.doctree b/public/.doctrees/al_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3497b375d5f361ecafaa933676781f64f4ee149c
Binary files /dev/null and b/public/.doctrees/al_description.doctree differ
diff --git a/public/.doctrees/analyticalfunction.doctree b/public/.doctrees/analyticalfunction.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..105d4d6d0bdb3f73a29d018b0a72c4214a90b7b7
Binary files /dev/null and b/public/.doctrees/analyticalfunction.doctree differ
diff --git a/public/.doctrees/api.doctree b/public/.doctrees/api.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..297ecd7b5404bc16c13ead9e320e71e5e155f95e
Binary files /dev/null and b/public/.doctrees/api.doctree differ
diff --git a/public/.doctrees/bayes_description.doctree b/public/.doctrees/bayes_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..8ee53e9e3d382e1d5891222a58e230b40d00780e
Binary files /dev/null and b/public/.doctrees/bayes_description.doctree differ
diff --git a/public/.doctrees/beam.doctree b/public/.doctrees/beam.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..c0ed275a3a2fcee42c764d1a99ffd21099a2fbd2
Binary files /dev/null and b/public/.doctrees/beam.doctree differ
diff --git a/public/.doctrees/bmc_description.doctree b/public/.doctrees/bmc_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3b984aa62b15d57cd00a7b209edc71cd6e9fa588
Binary files /dev/null and b/public/.doctrees/bmc_description.doctree differ
diff --git a/public/.doctrees/borehole.doctree b/public/.doctrees/borehole.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..5237760ad0f786ea1d5e35ee059cfcc43653ecd6
Binary files /dev/null and b/public/.doctrees/borehole.doctree differ
diff --git a/public/.doctrees/environment.pickle b/public/.doctrees/environment.pickle
new file mode 100644
index 0000000000000000000000000000000000000000..843d0427e670bb319e1d388bd972ea8d98897a99
Binary files /dev/null and b/public/.doctrees/environment.pickle differ
diff --git a/public/.doctrees/examples.doctree b/public/.doctrees/examples.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..145d825c9bad6278468e3abc2082e2645e612265
Binary files /dev/null and b/public/.doctrees/examples.doctree differ
diff --git a/public/.doctrees/index.doctree b/public/.doctrees/index.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..349a6ca0b84e48523ec2856e19f621bf6b359d0c
Binary files /dev/null and b/public/.doctrees/index.doctree differ
diff --git a/public/.doctrees/input_description.doctree b/public/.doctrees/input_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..61209f8ad8ed7fc965fe0424cdaec7ab2c31f862
Binary files /dev/null and b/public/.doctrees/input_description.doctree differ
diff --git a/public/.doctrees/ishigami.doctree b/public/.doctrees/ishigami.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..84ebe3445fd1429e546ee221fd8b67616134f396
Binary files /dev/null and b/public/.doctrees/ishigami.doctree differ
diff --git a/public/.doctrees/model_description.doctree b/public/.doctrees/model_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..e2fd9c867479134e716db2feefd9e9e8d22e3b33
Binary files /dev/null and b/public/.doctrees/model_description.doctree differ
diff --git a/public/.doctrees/modelcomparison.doctree b/public/.doctrees/modelcomparison.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..9471b205fe3887df605f9859073a2aadfe4afbe8
Binary files /dev/null and b/public/.doctrees/modelcomparison.doctree differ
diff --git a/public/.doctrees/ohaganfunction.doctree b/public/.doctrees/ohaganfunction.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..35c482c058b13215166765ac96f1da5fa012b69e
Binary files /dev/null and b/public/.doctrees/ohaganfunction.doctree differ
diff --git a/public/.doctrees/packagedescription.doctree b/public/.doctrees/packagedescription.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..38b5cbd7ea50fbbf4b6ccf407b7dedfcc50c1019
Binary files /dev/null and b/public/.doctrees/packagedescription.doctree differ
diff --git a/public/.doctrees/pollution.doctree b/public/.doctrees/pollution.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..2f6b1b49d5c3cfa22ae648a93fd36a1e295f7a83
Binary files /dev/null and b/public/.doctrees/pollution.doctree differ
diff --git a/public/.doctrees/post_description.doctree b/public/.doctrees/post_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..3bbfa73976df88e9dc41825b21c64fd75311bca5
Binary files /dev/null and b/public/.doctrees/post_description.doctree differ
diff --git a/public/.doctrees/surrogate_description.doctree b/public/.doctrees/surrogate_description.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..7b7518d3e0d9631f3042c19d50f5ee96a0818653
Binary files /dev/null and b/public/.doctrees/surrogate_description.doctree differ
diff --git a/public/.doctrees/tutorial.doctree b/public/.doctrees/tutorial.doctree
new file mode 100644
index 0000000000000000000000000000000000000000..833e4dc22bef16f11722f47cb0b4fc93478530fc
Binary files /dev/null and b/public/.doctrees/tutorial.doctree differ
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html
index a8fbf99526166e7a511815115a03b9f56209f850..d61827eafe17061d12a603ed7dba62c059d62745 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html
index d5f4bdc76f24d30fb6c49cd17b346870ba53c969..1d8d9fe8fdfa62b6b74d71613a75c40b715d4b22 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html
index 2b9f5ffba8dc6c97279d7eaa505046c32f5ad279..eacbefdddc7cf00e5726f4c5b283eb258d1ce68b 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -388,7 +393,7 @@
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_bayes_factor" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_bayes_factor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_bayes_factor</span></code></a>(BME_dict[, plot_name])</p></td>
 <td><p>Plots the Bayes factor distibutions in a <span class="math notranslate nohighlight">\(N_m \times N_m\)</span> matrix, where <span class="math notranslate nohighlight">\(N_m\)</span> is the number of the models.</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_just_analysis</span></code></a>(model_weights_dict)</p></td>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_just_analysis</span></code></a>()</p></td>
 <td><p>Visualizes the confusion matrix and the model wights for the justifiability analysis.</p></td>
 </tr>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_model_weights" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_model_weights"><code class="xref py py-obj docutils literal notranslate"><span class="pre">plot_model_weights</span></code></a>(model_weights, plot_name)</p></td>
@@ -559,7 +564,7 @@ matrix, where <span class="math notranslate nohighlight">\(N_m\)</span> is the n
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis">
-<span class="sig-name descname"><span class="pre">plot_just_analysis</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_weights_dict</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">plot_just_analysis</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.plot_just_analysis" title="Link to this definition">¶</a></dt>
 <dd><p>Visualizes the confusion matrix and the model wights for the
 justifiability analysis.</p>
 <section id="id13">
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html
index 83a0521261114677d67c27b655eecf6180c73dad..33dd94b0b9282b5d0b233c37844401a329d4947e 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html b/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html
index 012f9ca7b1f4452085bbb1d49a37dc995a03c7ef..ece812c4f3e732ae9e6b145c6f4ba8905adddac2 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html b/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html
index 3335850940b773ac5fb5ad777466f1be6e2d63fc..40faddf214d1034fab8b2cb37917f4a74fb12e2d 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.discrepancy.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.html b/public/_autosummary/bayesvalidrox.bayes_inference.html
index c7fdddf41ddfa00abc595774d5e201de4af10b93..5d3e8a988e4d7823f0e1bd0aaa600ec8c9f4d3cd 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html b/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html
index 1c766909b66ee0fbeee63c3605370175ed825f8a..936138f762665b18493970d89552385759d8582c 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -362,6 +367,32 @@ science, 5(1), pp.65-80.</p>
 <dl class="simple">
 <dt>BayesOpts<span class="classifier">obj</span></dt><dd><p>Bayes object.</p>
 </dd>
+<dt>engine<span class="classifier">bayesvalidrox.Engine</span></dt><dd><p>Engine object that contains the surrogate, model and expdesign</p>
+</dd>
+<dt>mcmc_params<span class="classifier">dict</span></dt><dd><p>Dictionary of parameters for the mcmc. Required are
+- init_samples
+- n_steps
+- n_walkers
+- n_burn
+- moves
+- multiplrocessing
+- verbose</p>
+</dd>
+<dt>Discrepancy<span class="classifier">bayesvalidrox.Discrepancy</span></dt><dd><p>Discrepancy object that described the uncertainty of the data.</p>
+</dd>
+</dl>
+<p>bias_inputs :</p>
+<p>error_model :</p>
+<p>req_outputs :</p>
+<p>selected_indices :</p>
+<p>emulator :</p>
+<dl class="simple">
+<dt>out_dir<span class="classifier">string</span></dt><dd><p>Directory to write the outputs to.</p>
+</dd>
+<dt>name<span class="classifier">string</span></dt><dd><p>Name of this MCMC selection (?)</p>
+</dd>
+<dt>BiasInputs<span class="classifier"></span></dt><dd><p>The default is None.</p>
+</dd>
 </dl>
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.bayes_inference.mcmc.MCMC.__init__">
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html b/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html
index d00bc5717899bfaeeff4c2839d4f6277d56ea7ea..19d1f22fdc6035e6c3e40cb3d2f5a08e77e8cc03 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.html b/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.html
index 29b44ce99ee43c3613f96fa97f2bbdff3c0e6f26..6fb2fcc1a7f642ca321d2565de13742d5b7642c2 100644
--- a/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.html
+++ b/public/_autosummary/bayesvalidrox.bayes_inference.mcmc.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.html b/public/_autosummary/bayesvalidrox.html
index 5c9c7d22e068d7b356e4b7f7f377a4aa656e5f35..a30086dc8ebca1d6a29f2b3ac68fb0a26ada894e 100644
--- a/public/_autosummary/bayesvalidrox.html
+++ b/public/_autosummary/bayesvalidrox.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.post_processing.html b/public/_autosummary/bayesvalidrox.post_processing.html
index ee8c181766d5eb03d89369af04eeff8cd7430279..3d478abc761e7dc5793634c9952e652753ecc014 100644
--- a/public/_autosummary/bayesvalidrox.post_processing.html
+++ b/public/_autosummary/bayesvalidrox.post_processing.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html b/public/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html
index 1e9cfdbeccd952605a0e0af15ea2bbc7674dc461..9bd8e93f7066dca8d36680bce42a7c1bc268bdb7 100644
--- a/public/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html
+++ b/public/_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.post_processing.post_processing.html b/public/_autosummary/bayesvalidrox.post_processing.post_processing.html
index 1c0ee07983681c2921eb574305c332b34e5b33e1..30b5ea0854579f3a80d2773bf15efd1fe3b2e1cd 100644
--- a/public/_autosummary/bayesvalidrox.post_processing.post_processing.html
+++ b/public/_autosummary/bayesvalidrox.post_processing.post_processing.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.pylink.html b/public/_autosummary/bayesvalidrox.pylink.html
index d3b4ddb9d22a55fa65b74b8480ed483ad79e5ebc..65db669e178d5e6640fc5fbf53b54e07044b5406 100644
--- a/public/_autosummary/bayesvalidrox.pylink.html
+++ b/public/_autosummary/bayesvalidrox.pylink.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html b/public/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html
index 868fd803201d3bf3f5b07955c8755ebf4ecd837f..d396389d815960ef5deaaaf92cf7cf6f7ec50e63 100644
--- a/public/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html
+++ b/public/_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -339,7 +344,7 @@
 <h1>bayesvalidrox.pylink.pylink.PyLinkForwardModel<a class="headerlink" href="#bayesvalidrox-pylink-pylink-pylinkforwardmodel" title="Link to this heading">¶</a></h1>
 <dl class="py class">
 <dt class="sig sig-object py" id="bayesvalidrox.pylink.pylink.PyLinkForwardModel">
-<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">bayesvalidrox.pylink.pylink.</span></span><span class="sig-name descname"><span class="pre">PyLinkForwardModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="Link to this definition">¶</a></dt>
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">bayesvalidrox.pylink.pylink.</span></span><span class="sig-name descname"><span class="pre">PyLinkForwardModel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">store</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">out_dir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="Link to this definition">¶</a></dt>
 <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
 <p>A forward model binder</p>
 <p>This calss serves as a code wrapper. This wrapper allows the execution of
@@ -428,7 +433,7 @@ This is only available for one output.</p>
 </dl>
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__">
-<span class="sig-name descname"><span class="pre">__init__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">__init__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">link_type</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pylink'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">func_args</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shell_command</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">input_template</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">aux_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">exe_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_file_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_names</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">output_parser</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_process</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_cpus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meas_file_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obs_dict_valid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mc_ref_dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">store</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">out_dir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">''</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.pylink.pylink.PyLinkForwardModel.__init__" title="Link to this definition">¶</a></dt>
 <dd></dd></dl>
 
 <p class="rubric">Methods</p>
diff --git a/public/_autosummary/bayesvalidrox.pylink.pylink.html b/public/_autosummary/bayesvalidrox.pylink.pylink.html
index fd29ae01185ad77c3ba5c349b2f79b87053dbe87..f5f81e165e235a3ddda2e3ab608471526b312640 100644
--- a/public/_autosummary/bayesvalidrox.pylink.pylink.html
+++ b/public/_autosummary/bayesvalidrox.pylink.pylink.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.pylink.pylink.within_range.html b/public/_autosummary/bayesvalidrox.pylink.pylink.within_range.html
index d13e5d7afc4d30a74815716be03c5a653f7a8b2d..9a99499c5972d19248a8b9d31d4e54dfc3c7985d 100644
--- a/public/_autosummary/bayesvalidrox.pylink.pylink.within_range.html
+++ b/public/_autosummary/bayesvalidrox.pylink.pylink.within_range.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html b/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html
index 88166ae557a8ac4d2c5b58049ce6421b53f6da77..b974a84eeb3aca192deffe6393a5652cf415f1e8 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html b/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html
index dc183669e991009b0b317be369c56cfe4877392b..3cbbb48551ae35415ffb73f56394c6baec9bfbd8 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html b/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html
index 7fd894a2b05c2238263ca95d94ebe67ef701af04..aa225b005fb113652e2da7d1aaf58142b4c6c457 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html b/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html
index bb8064c4ace44d3d188f6170d24d3752ab531710..017e0d2217132e8342a1270d753db602da21aec8 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html
index e3f16fb5c421af8aef20e6ad48e17acc12af2cc3..2818f4f25a12c5ad44240304aab9066abaf70ce9 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html
index 1e19d36659a9f0e61251e9a2df51a7390a84e03a..ebc86c08711ce3193a4b105f49f6b7e73059d9bd 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html
index 3ba8a66cb906826dceb78ad5e49f2025a5b042d7..c21f568b02eaef7f640e906ec45051478b108e4f 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html
index c3b2d56673133ba59dd38d065605a6d4e5a67186..29308d2bf65584a6feb9ae800d731ff2f7324a60 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html
index 5d1164c23b955450a470d7b3109840c264c7255e..4b07afedc86d73254a2fc0e48700649a3465b3d3 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html b/public/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html
index d9bc2a754cec48165661ad78b544fd137effc6c1..d85a0febe21f1217fc76c9722c45b9447228d770 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.eval_rec_rule" href="bayesvalidrox.surrogate_models.eval_rec_rule.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.engine.subdomain" href="bayesvalidrox.surrogate_models.engine.subdomain.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.eval_rec_rule" href="bayesvalidrox.surrogate_models.eval_rec_rule.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.engine" href="bayesvalidrox.surrogate_models.engine.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.engine.Engine - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -353,24 +358,12 @@
 <tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.__init__" title="bayesvalidrox.surrogate_models.engine.Engine.__init__"><code class="xref py py-obj docutils literal notranslate"><span class="pre">__init__</span></code></a>(MetaMod, Model, ExpDes)</p></td>
 <td><p></p></td>
 </tr>
-<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.choose_next_sample" title="bayesvalidrox.surrogate_models.engine.Engine.choose_next_sample"><code class="xref py py-obj docutils literal notranslate"><span class="pre">choose_next_sample</span></code></a>([sigma2, n_candidates, var])</p></td>
-<td><p>Runs optimal sequential design.</p></td>
-</tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.dual_annealing" title="bayesvalidrox.surrogate_models.engine.Engine.dual_annealing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dual_annealing</span></code></a>(method, Bounds, sigma2Dict, ...)</p></td>
-<td><p>Exploration algorithm to find the optimum parameter space.</p></td>
-</tr>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel" title="bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel"><code class="xref py py-obj docutils literal notranslate"><span class="pre">eval_metamodel</span></code></a>([samples, nsamples, ...])</p></td>
 <td><p>Evaluates metamodel at the requested samples.</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.run_util_func" title="bayesvalidrox.surrogate_models.engine.Engine.run_util_func"><code class="xref py py-obj docutils literal notranslate"><span class="pre">run_util_func</span></code></a>(method, candidates, index[, ...])</p></td>
-<td><p>Runs the utility function based on the given method.</p></td>
-</tr>
-<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.start_engine" title="bayesvalidrox.surrogate_models.engine.Engine.start_engine"><code class="xref py py-obj docutils literal notranslate"><span class="pre">start_engine</span></code></a>()</p></td>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.start_engine" title="bayesvalidrox.surrogate_models.engine.Engine.start_engine"><code class="xref py py-obj docutils literal notranslate"><span class="pre">start_engine</span></code></a>()</p></td>
 <td><p>Do all the preparations that need to be run before the actual training</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.tradeoff_weights" title="bayesvalidrox.surrogate_models.engine.Engine.tradeoff_weights"><code class="xref py py-obj docutils literal notranslate"><span class="pre">tradeoff_weights</span></code></a>(tradeoff_scheme, old_EDX, ...)</p></td>
-<td><p>Calculates weights for exploration scores based on the requested scheme: <cite>None</cite>, <cite>equal</cite>, <cite>epsilon-decreasing</cite> and <cite>adaptive</cite>.</p></td>
-</tr>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.train_normal" title="bayesvalidrox.surrogate_models.engine.Engine.train_normal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">train_normal</span></code></a>([parallel, verbose, save])</p></td>
 <td><p>Trains surrogate on static samples only.</p></td>
 </tr>
@@ -380,96 +373,16 @@
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.train_sequential" title="bayesvalidrox.surrogate_models.engine.Engine.train_sequential"><code class="xref py py-obj docutils literal notranslate"><span class="pre">train_sequential</span></code></a>([parallel, verbose])</p></td>
 <td><p>Train the surrogate in a sequential manner.</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_AlphOptDesign" title="bayesvalidrox.surrogate_models.engine.Engine.util_AlphOptDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_AlphOptDesign</span></code></a>(candidates[, var])</p></td>
-<td><p>Enriches the Experimental design with the requested alphabetic criterion based on exploring the space with number of sampling points.</p></td>
-</tr>
-<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianActiveDesign" title="bayesvalidrox.surrogate_models.engine.Engine.util_BayesianActiveDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_BayesianActiveDesign</span></code></a>(y_hat, std, sigma2Dict)</p></td>
-<td><p>Computes scores based on Bayesian active design criterion (var).</p></td>
-</tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianDesign" title="bayesvalidrox.surrogate_models.engine.Engine.util_BayesianDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_BayesianDesign</span></code></a>(X_can, X_MC, sigma2Dict)</p></td>
-<td><p>Computes scores based on Bayesian sequential design criterion (var).</p></td>
-</tr>
-<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_VarBasedDesign" title="bayesvalidrox.surrogate_models.engine.Engine.util_VarBasedDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_VarBasedDesign</span></code></a>(X_can, index[, util_func])</p></td>
-<td><p>Computes the exploitation scores based on: active learning MacKay(ALM) and active learning Cohn (ALC) Paper: Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas (2016)</p></td>
-</tr>
 </tbody>
 </table>
 </div>
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.choose_next_sample">
-<span class="sig-name descname"><span class="pre">choose_next_sample</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sigma2</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_candidates</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'DKL'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.choose_next_sample" title="Link to this definition">¶</a></dt>
-<dd><p>Runs optimal sequential design.</p>
-<section id="parameters">
-<h2>Parameters<a class="headerlink" href="#parameters" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>sigma2<span class="classifier">dict, optional</span></dt><dd><p>A dictionary containing the measurement errors (sigma^2). The
-default is None.</p>
-</dd>
-<dt>n_candidates<span class="classifier">int, optional</span></dt><dd><p>Number of candidate samples. The default is 5.</p>
-</dd>
-<dt>var<span class="classifier">string, optional</span></dt><dd><p>Utility function. The default is None. # TODO: default is set to DKL, not none</p>
-</dd>
-</dl>
-</section>
-<section id="raises">
-<h2>Raises<a class="headerlink" href="#raises" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>NameError</dt><dd><p>Wrong utility function.</p>
-</dd>
-</dl>
-</section>
-<section id="returns">
-<h2>Returns<a class="headerlink" href="#returns" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>Xnew<span class="classifier">array (n_samples, n_params)</span></dt><dd><p>Selected new training point(s).</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.dual_annealing">
-<span class="sig-name descname"><span class="pre">dual_annealing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">method</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Bounds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Run_No</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.dual_annealing" title="Link to this definition">¶</a></dt>
-<dd><p>Exploration algorithm to find the optimum parameter space.</p>
-<section id="id1">
-<h2>Parameters<a class="headerlink" href="#id1" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>method<span class="classifier">string</span></dt><dd><p>Exploitation method: <cite>VarOptDesign</cite>, <cite>BayesActDesign</cite> and
-<cite>BayesOptDesign</cite>.</p>
-</dd>
-<dt>Bounds<span class="classifier">list of tuples</span></dt><dd><p>List of lower and upper boundaries of parameters.</p>
-</dd>
-<dt>sigma2Dict<span class="classifier">dict</span></dt><dd><p>A dictionary containing the measurement errors (sigma^2).</p>
-</dd>
-</dl>
-<p>var : unknown
-Run_No : int</p>
-<blockquote>
-<div><p>Run number.</p>
-</div></blockquote>
-<dl class="simple">
-<dt>verbose<span class="classifier">bool, optional</span></dt><dd><p>Print out a summary. The default is False.</p>
-</dd>
-</dl>
-</section>
-<section id="id2">
-<h2>Returns<a class="headerlink" href="#id2" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>Run_No<span class="classifier">int</span></dt><dd><p>Run number.</p>
-</dd>
-<dt>array</dt><dd><p>Optimial candidate.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel">
-<span class="sig-name descname"><span class="pre">eval_metamodel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nsamples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sampling_method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'random'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">eval_metamodel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nsamples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sampling_method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'random'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel" title="Link to this definition">¶</a></dt>
 <dd><p>Evaluates metamodel at the requested samples. One can also generate
 nsamples.</p>
-<section id="id3">
-<h2>Parameters<a class="headerlink" href="#id3" title="Link to this heading">¶</a></h2>
+<section id="parameters">
+<h2>Parameters<a class="headerlink" href="#parameters" title="Link to this heading">¶</a></h2>
 <dl class="simple">
 <dt>samples<span class="classifier">array of shape (n_samples, n_params), optional</span></dt><dd><p>Samples to evaluate metamodel at. The default is None.</p>
 </dd>
@@ -481,10 +394,13 @@ default is None.</p>
 </dd>
 <dt>return_samples<span class="classifier">bool, optional</span></dt><dd><p>Retun samples, if no <cite>samples</cite> is provided. The default is False.</p>
 </dd>
+<dt>parallel<span class="classifier">bool, optional</span></dt><dd><p>Set to true if the evaluations should be done in parallel.
+The default is False.</p>
+</dd>
 </dl>
 </section>
-<section id="id4">
-<h2>Returns<a class="headerlink" href="#id4" title="Link to this heading">¶</a></h2>
+<section id="returns">
+<h2>Returns<a class="headerlink" href="#returns" title="Link to this heading">¶</a></h2>
 <dl class="simple">
 <dt>mean_pred<span class="classifier">dict</span></dt><dd><p>Mean of the predictions.</p>
 </dd>
@@ -494,90 +410,16 @@ default is None.</p>
 </section>
 </dd></dl>
 
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.run_util_func">
-<span class="sig-name descname"><span class="pre">run_util_func</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">method</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidates</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">index</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">X_MC</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.run_util_func" title="Link to this definition">¶</a></dt>
-<dd><p>Runs the utility function based on the given method.</p>
-<section id="id5">
-<h2>Parameters<a class="headerlink" href="#id5" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>method<span class="classifier">string</span></dt><dd><p>Exploitation method: <cite>VarOptDesign</cite>, <cite>BayesActDesign</cite> and
-<cite>BayesOptDesign</cite>.</p>
-</dd>
-<dt>candidates<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>All candidate parameter sets.</p>
-</dd>
-<dt>index<span class="classifier">int</span></dt><dd><p>ExpDesign index.</p>
-</dd>
-<dt>sigma2Dict<span class="classifier">dict, optional</span></dt><dd><p>A dictionary containing the measurement errors (sigma^2). The
-default is None.</p>
-</dd>
-<dt>var<span class="classifier">string, optional</span></dt><dd><p>Utility function. The default is None.</p>
-</dd>
-<dt>X_MC<span class="classifier">TYPE, optional</span></dt><dd><p>DESCRIPTION. The default is None.</p>
-</dd>
-</dl>
-</section>
-<section id="id6">
-<h2>Returns<a class="headerlink" href="#id6" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>index<span class="classifier">TYPE</span></dt><dd><p>DESCRIPTION.</p>
-</dd>
-<dt>List</dt><dd><p>Scores.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.start_engine">
 <span class="sig-name descname"><span class="pre">start_engine</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.start_engine" title="Link to this definition">¶</a></dt>
 <dd><p>Do all the preparations that need to be run before the actual training</p>
-<section id="id7">
-<h2>Returns<a class="headerlink" href="#id7" title="Link to this heading">¶</a></h2>
+<section id="id1">
+<h2>Returns<a class="headerlink" href="#id1" title="Link to this heading">¶</a></h2>
 <p>None</p>
 </section>
 </dd></dl>
 
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.tradeoff_weights">
-<span class="sig-name descname"><span class="pre">tradeoff_weights</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tradeoff_scheme</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">old_EDX</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">old_EDY</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.tradeoff_weights" title="Link to this definition">¶</a></dt>
-<dd><p>Calculates weights for exploration scores based on the requested
-scheme: <cite>None</cite>, <cite>equal</cite>, <cite>epsilon-decreasing</cite> and <cite>adaptive</cite>.</p>
-<p><cite>None</cite>: No exploration.
-<cite>equal</cite>: Same weights for exploration and exploitation scores.
-<cite>epsilon-decreasing</cite>: Start with more exploration and increase the</p>
-<blockquote>
-<div><p>influence of exploitation along the way with an exponential decay
-function</p>
-</div></blockquote>
-<dl class="simple">
-<dt><cite>adaptive</cite>: An adaptive method based on:</dt><dd><p>Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. “An adaptive sampling
-approach for Kriging metamodeling by maximizing expected prediction
-error.” Computers &amp; Chemical Engineering 106 (2017): 171-182.</p>
-</dd>
-</dl>
-<section id="id8">
-<h2>Parameters<a class="headerlink" href="#id8" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>tradeoff_scheme<span class="classifier">string</span></dt><dd><p>Trade-off scheme for exloration and exploitation scores.</p>
-</dd>
-<dt>old_EDX<span class="classifier">array (n_samples, n_params)</span></dt><dd><p>Old experimental design (training points).</p>
-</dd>
-<dt>old_EDY<span class="classifier">dict</span></dt><dd><p>Old model responses (targets).</p>
-</dd>
-</dl>
-</section>
-<section id="id9">
-<h2>Returns<a class="headerlink" href="#id9" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>exploration_weight<span class="classifier">float</span></dt><dd><p>Exploration weight.</p>
-</dd>
-<dt>exploitation_weight: float</dt><dd><p>Exploitation weight.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.train_normal">
 <span class="sig-name descname"><span class="pre">train_normal</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">parallel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.train_normal" title="Link to this definition">¶</a></dt>
@@ -585,8 +427,8 @@ error.” Computers &amp; Chemical Engineering 106 (2017): 171-182.</p>
 Samples are taken from the experimental design and the specified 
 model is run on them.
 Alternatively the samples can be read in from a provided hdf5 file.</p>
-<section id="id10">
-<h2>Returns<a class="headerlink" href="#id10" title="Link to this heading">¶</a></h2>
+<section id="id2">
+<h2>Returns<a class="headerlink" href="#id2" title="Link to this heading">¶</a></h2>
 <p>None</p>
 </section>
 </dd></dl>
@@ -596,8 +438,8 @@ Alternatively the samples can be read in from a provided hdf5 file.</p>
 <span class="sig-name descname"><span class="pre">train_seq_design</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">parallel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.train_seq_design" title="Link to this definition">¶</a></dt>
 <dd><p>Starts the adaptive sequential design for refining the surrogate model
 by selecting training points in a sequential manner.</p>
-<section id="id11">
-<h2>Returns<a class="headerlink" href="#id11" title="Link to this heading">¶</a></h2>
+<section id="id3">
+<h2>Returns<a class="headerlink" href="#id3" title="Link to this heading">¶</a></h2>
 <dl class="simple">
 <dt>MetaModel<span class="classifier">object</span></dt><dd><p>Meta model object.</p>
 </dd>
@@ -611,125 +453,12 @@ by selecting training points in a sequential manner.</p>
 <dd><p>Train the surrogate in a sequential manner.
 First build and train evereything on the static samples, then iterate
 choosing more samples and refitting the surrogate on them.</p>
-<section id="id12">
-<h2>Returns<a class="headerlink" href="#id12" title="Link to this heading">¶</a></h2>
+<section id="id4">
+<h2>Returns<a class="headerlink" href="#id4" title="Link to this heading">¶</a></h2>
 <p>None</p>
 </section>
 </dd></dl>
 
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.util_AlphOptDesign">
-<span class="sig-name descname"><span class="pre">util_AlphOptDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">candidates</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'D-Opt'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.util_AlphOptDesign" title="Link to this definition">¶</a></dt>
-<dd><p>Enriches the Experimental design with the requested alphabetic
-criterion based on exploring the space with number of sampling points.</p>
-<p>Ref: Hadigol, M., &amp; Doostan, A. (2018). Least squares polynomial chaos
-expansion: A review of sampling strategies., Computer Methods in
-Applied Mechanics and Engineering, 332, 382-407.</p>
-<section id="arguments">
-<h2>Arguments<a class="headerlink" href="#arguments" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>candidates<span class="classifier">int?</span></dt><dd><p>Number of candidate points to be searched</p>
-</dd>
-<dt>var<span class="classifier">string</span></dt><dd><p>Alphabetic optimality criterion</p>
-</dd>
-</dl>
-</section>
-<section id="id13">
-<h2>Returns<a class="headerlink" href="#id13" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>X_new<span class="classifier">array of shape (1, n_params)</span></dt><dd><p>The new sampling location in the input space.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.util_BayesianActiveDesign">
-<span class="sig-name descname"><span class="pre">util_BayesianActiveDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y_hat</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">std</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'DKL'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianActiveDesign" title="Link to this definition">¶</a></dt>
-<dd><p>Computes scores based on Bayesian active design criterion (var).</p>
-<p>It is based on the following paper:
-Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak.
-“Bayesian3 active learning for the gaussian process emulator using
-information theory.” Entropy 22, no. 8 (2020): 890.</p>
-<section id="id14">
-<h2>Parameters<a class="headerlink" href="#id14" title="Link to this heading">¶</a></h2>
-<p>y_hat : unknown
-std : unknown
-sigma2Dict : dict</p>
-<blockquote>
-<div><p>A dictionary containing the measurement errors (sigma^2).</p>
-</div></blockquote>
-<dl class="simple">
-<dt>var<span class="classifier">string, optional</span></dt><dd><p>BAL design criterion. The default is ‘DKL’.</p>
-</dd>
-</dl>
-</section>
-<section id="id15">
-<h2>Returns<a class="headerlink" href="#id15" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>float</dt><dd><p>Score.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.util_BayesianDesign">
-<span class="sig-name descname"><span class="pre">util_BayesianDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X_can</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">X_MC</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'DKL'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianDesign" title="Link to this definition">¶</a></dt>
-<dd><p>Computes scores based on Bayesian sequential design criterion (var).</p>
-<section id="id16">
-<h2>Parameters<a class="headerlink" href="#id16" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>X_can<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Candidate samples.</p>
-</dd>
-</dl>
-<p>X_MC : unknown
-sigma2Dict : dict</p>
-<blockquote>
-<div><p>A dictionary containing the measurement errors (sigma^2).</p>
-</div></blockquote>
-<dl class="simple">
-<dt>var<span class="classifier">string, optional</span></dt><dd><p>Bayesian design criterion. The default is ‘DKL’.</p>
-</dd>
-</dl>
-</section>
-<section id="id17">
-<h2>Returns<a class="headerlink" href="#id17" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>float</dt><dd><p>Score.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
-<dl class="py method">
-<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.engine.Engine.util_VarBasedDesign">
-<span class="sig-name descname"><span class="pre">util_VarBasedDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X_can</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">index</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">util_func</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'Entropy'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.engine.Engine.util_VarBasedDesign" title="Link to this definition">¶</a></dt>
-<dd><p>Computes the exploitation scores based on:
-active learning MacKay(ALM) and active learning Cohn (ALC)
-Paper: Sequential Design with Mutual Information for Computer
-Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas
-(2016)</p>
-<section id="id18">
-<h2>Parameters<a class="headerlink" href="#id18" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>X_can<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Candidate samples.</p>
-</dd>
-<dt>index<span class="classifier">int</span></dt><dd><p>Model output index.</p>
-</dd>
-<dt>util_func<span class="classifier">string, optional</span></dt><dd><p>Exploitation utility function. The default is ‘Entropy’.</p>
-</dd>
-</dl>
-</section>
-<section id="id19">
-<h2>Returns<a class="headerlink" href="#id19" title="Link to this heading">¶</a></h2>
-<dl class="simple">
-<dt>float</dt><dd><p>Score.</p>
-</dd>
-</dl>
-</section>
-</dd></dl>
-
 </dd></dl>
 
 </section>
@@ -748,14 +477,14 @@ Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
-          <a class="prev-page" href="bayesvalidrox.surrogate_models.engine.subdomain.html">
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.engine.html">
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
               <div class="page-info">
                 <div class="context">
                   <span>Previous</span>
                 </div>
                 
-                <div class="title">bayesvalidrox.surrogate_models.engine.subdomain</div>
+                <div class="title">bayesvalidrox.surrogate_models.engine</div>
                 
               </div>
             </a>
@@ -792,19 +521,11 @@ Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas
 <li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.engine.Engine</a><ul>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine"><code class="docutils literal notranslate"><span class="pre">Engine</span></code></a><ul>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.__init__"><code class="docutils literal notranslate"><span class="pre">Engine.__init__()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.choose_next_sample"><code class="docutils literal notranslate"><span class="pre">Engine.choose_next_sample()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.dual_annealing"><code class="docutils literal notranslate"><span class="pre">Engine.dual_annealing()</span></code></a></li>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.eval_metamodel"><code class="docutils literal notranslate"><span class="pre">Engine.eval_metamodel()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.run_util_func"><code class="docutils literal notranslate"><span class="pre">Engine.run_util_func()</span></code></a></li>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.start_engine"><code class="docutils literal notranslate"><span class="pre">Engine.start_engine()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.tradeoff_weights"><code class="docutils literal notranslate"><span class="pre">Engine.tradeoff_weights()</span></code></a></li>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.train_normal"><code class="docutils literal notranslate"><span class="pre">Engine.train_normal()</span></code></a></li>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.train_seq_design"><code class="docutils literal notranslate"><span class="pre">Engine.train_seq_design()</span></code></a></li>
 <li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.train_sequential"><code class="docutils literal notranslate"><span class="pre">Engine.train_sequential()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_AlphOptDesign"><code class="docutils literal notranslate"><span class="pre">Engine.util_AlphOptDesign()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianActiveDesign"><code class="docutils literal notranslate"><span class="pre">Engine.util_BayesianActiveDesign()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianDesign"><code class="docutils literal notranslate"><span class="pre">Engine.util_BayesianDesign()</span></code></a></li>
-<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.engine.Engine.util_VarBasedDesign"><code class="docutils literal notranslate"><span class="pre">Engine.util_VarBasedDesign()</span></code></a></li>
 </ul>
 </li>
 </ul>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html b/public/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html
index d4d269e7f964e73aedd4c9133b33fe1369c8039b..87538b6e27b06b650812f4d22c7d3c40a7e6ab6c 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.engine.logpdf" href="bayesvalidrox.surrogate_models.engine.logpdf.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.engine" href="bayesvalidrox.surrogate_models.engine.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.engine.hellinger_distance - bayesvalidrox 1.0.0 documentation</title>
@@ -163,14 +163,15 @@
   <input type="hidden" name="area" value="default">
 </form>
 <div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
-  <ul class="current">
+  <ul>
 <li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -184,8 +185,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
 </ul>
 </li>
-<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../api.html">API</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2 has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
@@ -221,7 +222,7 @@
 </li>
 </ul>
 </li>
-<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
 </ul>
@@ -237,10 +238,7 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -369,26 +374,8 @@ every set to which Q assigns a positive probability, and vice versa.
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="bayesvalidrox.surrogate_models.engine.logpdf.html">
-              <div class="page-info">
-                <div class="context">
-                  <span>Next</span>
-                </div>
-                <div class="title">bayesvalidrox.surrogate_models.engine.logpdf</div>
-              </div>
-              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
-            </a>
-          <a class="prev-page" href="bayesvalidrox.surrogate_models.engine.html">
-              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
-              <div class="page-info">
-                <div class="context">
-                  <span>Previous</span>
-                </div>
-                
-                <div class="title">bayesvalidrox.surrogate_models.engine</div>
-                
-              </div>
-            </a>
+          
+          
         </div>
         <div class="bottom-of-page">
           <div class="left-details">
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.engine.html b/public/_autosummary/bayesvalidrox.surrogate_models.engine.html
index 885ebd13ab7642895d585e0c0567e2311e89b811..08a778cb37cf7fb6761c86ec87a5e7d26866afef 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.engine.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.engine.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.engine.hellinger_distance" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.engine.Engine" href="bayesvalidrox.surrogate_models.engine.Engine.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.engine - bayesvalidrox 1.0.0 documentation</title>
@@ -141,7 +141,7 @@
           <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
         </button>
       </div>
-      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+      <label class="toc-overlay-icon toc-header-icon no-toc" for="__toc">
         <div class="visually-hidden">Toggle table of contents sidebar</div>
         <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
       </label>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 current has-children current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.engine</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -329,7 +334,7 @@
               <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
             </button>
           </div>
-          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+          <label class="toc-overlay-icon toc-content-icon no-toc" for="__toc">
             <div class="visually-hidden">Toggle table of contents sidebar</div>
             <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
           </label>
@@ -338,22 +343,6 @@
           <section id="module-bayesvalidrox.surrogate_models.engine">
 <span id="bayesvalidrox-surrogate-models-engine"></span><h1>bayesvalidrox.surrogate_models.engine<a class="headerlink" href="#module-bayesvalidrox.surrogate_models.engine" title="Link to this heading">¶</a></h1>
 <p>Engine to train the surrogate</p>
-<p class="rubric">Functions</p>
-<div class="table-wrapper autosummary longtable docutils container">
-<table class="autosummary longtable docutils align-default">
-<tbody>
-<tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html#bayesvalidrox.surrogate_models.engine.hellinger_distance" title="bayesvalidrox.surrogate_models.engine.hellinger_distance"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hellinger_distance</span></code></a>(P, Q)</p></td>
-<td><p>Hellinger distance between two continuous distributions.</p></td>
-</tr>
-<tr class="row-even"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html#bayesvalidrox.surrogate_models.engine.logpdf" title="bayesvalidrox.surrogate_models.engine.logpdf"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logpdf</span></code></a>(x, mean, cov)</p></td>
-<td><p>Computes the likelihood based on a multivariate normal distribution.</p></td>
-</tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html#bayesvalidrox.surrogate_models.engine.subdomain" title="bayesvalidrox.surrogate_models.engine.subdomain"><code class="xref py py-obj docutils literal notranslate"><span class="pre">subdomain</span></code></a>(Bounds, n_new_samples)</p></td>
-<td><p>Divides a domain defined by Bounds into subdomains.</p></td>
-</tr>
-</tbody>
-</table>
-</div>
 <p class="rubric">Classes</p>
 <div class="table-wrapper autosummary longtable docutils container">
 <table class="autosummary longtable docutils align-default">
@@ -371,12 +360,12 @@
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.engine.Engine.html">
               <div class="page-info">
                 <div class="context">
                   <span>Next</span>
                 </div>
-                <div class="title">bayesvalidrox.surrogate_models.engine.hellinger_distance</div>
+                <div class="title">bayesvalidrox.surrogate_models.engine.Engine</div>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
@@ -409,26 +398,8 @@
         
       </footer>
     </div>
-    <aside class="toc-drawer">
-      
+    <aside class="toc-drawer no-toc">
       
-      <div class="toc-sticky toc-scroll">
-        <div class="toc-title-container">
-          <span class="toc-title">
-            On this page
-          </span>
-        </div>
-        <div class="toc-tree-container">
-          <div class="toc-tree">
-            <ul>
-<li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.engine</a><ul>
-</ul>
-</li>
-</ul>
-
-          </div>
-        </div>
-      </div>
       
       
     </aside>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html b/public/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html
index d1ef23527311d72eb2e5481b01d677cc42b604d5..2e1b1766be2ca1a0203eca5857e1b052f15ca7ec 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.engine.subdomain" href="bayesvalidrox.surrogate_models.engine.subdomain.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.engine.hellinger_distance" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.engine.logpdf - bayesvalidrox 1.0.0 documentation</title>
@@ -163,14 +163,15 @@
   <input type="hidden" name="area" value="default">
 </form>
 <div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
-  <ul class="current">
+  <ul>
 <li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -184,8 +185,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
 </ul>
 </li>
-<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../api.html">API</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2 has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
@@ -221,7 +222,7 @@
 </li>
 </ul>
 </li>
-<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
 </ul>
@@ -237,10 +238,7 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -368,26 +373,8 @@
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="bayesvalidrox.surrogate_models.engine.subdomain.html">
-              <div class="page-info">
-                <div class="context">
-                  <span>Next</span>
-                </div>
-                <div class="title">bayesvalidrox.surrogate_models.engine.subdomain</div>
-              </div>
-              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
-            </a>
-          <a class="prev-page" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">
-              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
-              <div class="page-info">
-                <div class="context">
-                  <span>Previous</span>
-                </div>
-                
-                <div class="title">bayesvalidrox.surrogate_models.engine.hellinger_distance</div>
-                
-              </div>
-            </a>
+          
+          
         </div>
         <div class="bottom-of-page">
           <div class="left-details">
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html b/public/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html
index 9e48ba3c35896e8bc02b49c37f91799ef5ab6363..cf5f003b504a329a8a5f6d2ad31a4937f717cf37 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.engine.Engine" href="bayesvalidrox.surrogate_models.engine.Engine.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.engine.logpdf" href="bayesvalidrox.surrogate_models.engine.logpdf.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.engine.subdomain - bayesvalidrox 1.0.0 documentation</title>
@@ -163,14 +163,15 @@
   <input type="hidden" name="area" value="default">
 </form>
 <div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
-  <ul class="current">
+  <ul>
 <li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -184,8 +185,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
 </ul>
 </li>
-<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../api.html">API</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2 has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
@@ -221,7 +222,7 @@
 </li>
 </ul>
 </li>
-<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
 </ul>
@@ -237,10 +238,7 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -366,26 +371,8 @@
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="bayesvalidrox.surrogate_models.engine.Engine.html">
-              <div class="page-info">
-                <div class="context">
-                  <span>Next</span>
-                </div>
-                <div class="title">bayesvalidrox.surrogate_models.engine.Engine</div>
-              </div>
-              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
-            </a>
-          <a class="prev-page" href="bayesvalidrox.surrogate_models.engine.logpdf.html">
-              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
-              <div class="page-info">
-                <div class="context">
-                  <span>Previous</span>
-                </div>
-                
-                <div class="title">bayesvalidrox.surrogate_models.engine.logpdf</div>
-                
-              </div>
-            </a>
+          
+          
         </div>
         <div class="bottom-of-page">
           <div class="left-details">
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html
index cac4d998edd67a7ece45d79cb4b38b85af8d76c4..1ba083de53d78987642ecada3319bbb879d23a6e 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html
index dde4517e0c995b2c29d94649c97c2c919b3a589a..e11660cedc3ef6d0b5d4ba43680f63661df00862 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html
index cc0f1d31cfbdd9bffc41e1755edfb2958379dde0..69b06c5e0f057287abfcf378d3645754e279ef4c 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html
index 58709347de4066cf52315788d2b403067aed34e2..89766ae2077997e3f981eb278c006aac15ff051c 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html
index b13d05c48d065df1dcaea836b0d1ca9fcbdf9064..40ca6675e58b8c6137e02af2307abe515170de45 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html b/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html
index 78f9787e11a1f9ebd7beac6d2f79d1f5dcc303b7..7f9f2e9cf0ccce8df96cfafd361c53b1ffd89340 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -560,12 +565,12 @@ the MetaModel object.</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.init_param_space">
-<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.init_param_space" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.init_param_space" title="Link to this definition">¶</a></dt>
 <dd><p>Initializes parameter space.</p>
 <section id="id6">
 <h3>Parameters<a class="headerlink" href="#id6" title="Link to this heading">¶</a></h3>
 <dl class="simple">
-<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>None</cite>.</p>
+<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>1</cite>.</p>
 </dd>
 </dl>
 </section>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html b/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html
index c9556e4315c0343672ac2692d4c7b940a44de4d1..e98db267f1588830bb426069e734b04da48f6bcb 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html b/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html
index 0a54834e033be55f36faa4bf9341ac15ce40fdf6..ba7b82cbcf141437a1c48406d95b32f5e5315fcc 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.exp_designs.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html b/public/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html
index 4496b2d8f717108f8ae3821169740ccaeae2cbd7..6802ab6b600d19da358f88696f804e48c6dcd508 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.exploration.html b/public/_autosummary/bayesvalidrox.surrogate_models.exploration.html
index 5482569e1e7bd5a8e74fc2b8952952af366bd1d5..4747703402d886e829275e9c36e069947ac120ab 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.exploration.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.exploration.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html b/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html
index 5a03208c86819cc3e68adf1b35a9d5ac9c0ce90b..4f4c8284f6a2494f21eebcc7cbf5dd65087205f5 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html b/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html
index a950df2ff0a2fc8f4c0aa58deb6e0e70982e5e70..92b6a674af2e2d76748534293422892cd2e14d76 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.html b/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.html
index 96400f3335ee9fefce7b8c74b73b5d7b6540132d..258c40d3e0abab45ce8a673a917828567c5abe2c 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.glexindex.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.html b/public/_autosummary/bayesvalidrox.surrogate_models.html
index 4312aa2528b5efb983f248efd68be7c01872f541..ab695f5bf2354bb7f61fda5d9b9d310dc88233ed 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -380,7 +385,10 @@
 <tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html#module-bayesvalidrox.surrogate_models.reg_fast_laplace" title="bayesvalidrox.surrogate_models.reg_fast_laplace"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bayesvalidrox.surrogate_models.reg_fast_laplace</span></code></a></p></td>
 <td><p></p></td>
 </tr>
-<tr class="row-even"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html#module-bayesvalidrox.surrogate_models.surrogate_models" title="bayesvalidrox.surrogate_models.surrogate_models"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bayesvalidrox.surrogate_models.surrogate_models</span></code></a></p></td>
+<tr class="row-even"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html#module-bayesvalidrox.surrogate_models.sequential_design" title="bayesvalidrox.surrogate_models.sequential_design"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bayesvalidrox.surrogate_models.sequential_design</span></code></a></p></td>
+<td><p>Engine to train the surrogate</p></td>
+</tr>
+<tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html#module-bayesvalidrox.surrogate_models.surrogate_models" title="bayesvalidrox.surrogate_models.surrogate_models"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bayesvalidrox.surrogate_models.surrogate_models</span></code></a></p></td>
 <td><p>Implementation of metamodel as either PC, aPC or GPE</p></td>
 </tr>
 </tbody>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html b/public/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html
index b5eb76fa2d343182c07caac085a2d114701e1ff4..3bec67f0e6137d18caea393fdc81089919b75bb8 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -417,12 +422,12 @@ the MetaModel object.</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.input_space.InputSpace.init_param_space">
-<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.input_space.InputSpace.init_param_space" title="Link to this definition">¶</a></dt>
+<span class="sig-name descname"><span class="pre">init_param_space</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">max_deg</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.input_space.InputSpace.init_param_space" title="Link to this definition">¶</a></dt>
 <dd><p>Initializes parameter space.</p>
 <section id="id2">
 <h3>Parameters<a class="headerlink" href="#id2" title="Link to this heading">¶</a></h3>
 <dl class="simple">
-<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>None</cite>.</p>
+<dt>max_deg<span class="classifier">int, optional</span></dt><dd><p>Maximum degree. The default is <cite>1</cite>.</p>
 </dd>
 </dl>
 </section>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.input_space.html b/public/_autosummary/bayesvalidrox.surrogate_models.input_space.html
index cc003dd63acb7bd7dff4be0e618139ff182668c7..c4f268e65c16da970838d35540d980a73ca4bf4d 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.input_space.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.input_space.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html b/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html
index 95f8b8e450bb17bdf54da7c89e48b1e02dea8427..8f225afb9e79f0732af43a17735f71b2dac731b5 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html b/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html
index fca0dcb0d866e58c0d2b0f1754daa5b673b05255..3b96f208b5b4017a21544986c65222879f050b79 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.inputs.html b/public/_autosummary/bayesvalidrox.surrogate_models.inputs.html
index d5c3b12c17f42351a7d5ce1b97793db0d014d893..7e36e52bda6947c00f3bfa4cadceccb6013751e0 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.inputs.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.inputs.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html b/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html
index 43f20bf429b54517e920f5cc4caad9ba94e71352..a289b69c76ebd90b168de6378cc7c447f13bb582 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html b/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html
index 274d8319d15ce6f02bb11570b0f04de5d05ec170..c7881a0ed56f9a24bc6685dd01e7a240016302d9 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html b/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html
index f159c07b7d16bbea3883c98dccd211d0ce7e19a3..3bfd80929fa856909a1fd353d4c92cfc1292f4a3 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html
index 35ea14b81f33c21e5170f9ac5952fb87f1d38449..43ab9115ff8a52bdde744c9ff1415d7ff3b58acc 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html
index f1a15392db7b92fd33289c6a80f192bf29ad688c..afa8fbdce83ad4570bbdbb6c037cab4fcf09b131 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html
index ff1c030d120352eb3d7e6361764305295eb5ea81..bfdad958467794fb03ae4b166f3842373a6d1b5e 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html
index dc6b45be7b458da14c03fc147d90f0fc698b1eab..6b640985c22d445ebcdf51e067923c79c968164f 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.surrogate_models" href="bayesvalidrox.surrogate_models.surrogate_models.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.reg_fast_laplace" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.sequential_design" href="bayesvalidrox.surrogate_models.sequential_design.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.reg_fast_laplace" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -462,12 +467,12 @@ springer.</p>
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="bayesvalidrox.surrogate_models.surrogate_models.html">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.sequential_design.html">
               <div class="page-info">
                 <div class="context">
                   <span>Next</span>
                 </div>
-                <div class="title">bayesvalidrox.surrogate_models.surrogate_models</div>
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design</div>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html
index 39bed6efb714b788a749f3800f756d641d8ab6d8..798f67dc6bc4333b157d666f27b0a61a20897d94 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html
new file mode 100644
index 0000000000000000000000000000000000000000..804ac960adb040d38ff4a632be9003f54d91149c
--- /dev/null
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html
@@ -0,0 +1,751 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="../">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.surrogate_models" href="bayesvalidrox.surrogate_models.surrogate_models.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.sequential_design.subdomain" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>bayesvalidrox.surrogate_models.sequential_design.SequentialDesign - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="../_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="../index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="../index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="../_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="../search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="../examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="bayesvalidrox-surrogate-models-sequential-design-sequentialdesign">
+<h1>bayesvalidrox.surrogate_models.sequential_design.SequentialDesign<a class="headerlink" href="#bayesvalidrox-surrogate-models-sequential-design-sequentialdesign" title="Link to this heading">¶</a></h1>
+<dl class="py class">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign">
+<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">bayesvalidrox.surrogate_models.sequential_design.</span></span><span class="sig-name descname"><span class="pre">SequentialDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">MetaMod</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ExpDes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">engine</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign" title="Link to this definition">¶</a></dt>
+<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
+<p>Contains options for choosing the next training sample iteratively.</p>
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.__init__">
+<span class="sig-name descname"><span class="pre">__init__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">MetaMod</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ExpDes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">engine</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.__init__" title="Link to this definition">¶</a></dt>
+<dd></dd></dl>
+
+<p class="rubric">Methods</p>
+<div class="table-wrapper autosummary longtable docutils container">
+<table class="autosummary longtable docutils align-default">
+<tbody>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.__init__" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.__init__"><code class="xref py py-obj docutils literal notranslate"><span class="pre">__init__</span></code></a>(MetaMod, Model, ExpDes, engine[, ...])</p></td>
+<td><p></p></td>
+</tr>
+<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.choose_next_sample" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.choose_next_sample"><code class="xref py py-obj docutils literal notranslate"><span class="pre">choose_next_sample</span></code></a>([sigma2, n_candidates, var])</p></td>
+<td><p>Runs optimal sequential design.</p></td>
+</tr>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.dual_annealing" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.dual_annealing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dual_annealing</span></code></a>(method, Bounds, sigma2Dict, ...)</p></td>
+<td><p>Exploration algorithm to find the optimum parameter space.</p></td>
+</tr>
+<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.run_util_func" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.run_util_func"><code class="xref py py-obj docutils literal notranslate"><span class="pre">run_util_func</span></code></a>(method, candidates, index[, ...])</p></td>
+<td><p>Runs the utility function based on the given method.</p></td>
+</tr>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.start_seqdesign" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.start_seqdesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">start_seqdesign</span></code></a>()</p></td>
+<td><p>Do all the preparations that need to be run before the actual training</p></td>
+</tr>
+<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.tradeoff_weights" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.tradeoff_weights"><code class="xref py py-obj docutils literal notranslate"><span class="pre">tradeoff_weights</span></code></a>(tradeoff_scheme, old_EDX, ...)</p></td>
+<td><p>Calculates weights for exploration scores based on the requested scheme: <cite>None</cite>, <cite>equal</cite>, <cite>epsilon-decreasing</cite> and <cite>adaptive</cite>.</p></td>
+</tr>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_AlphOptDesign" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_AlphOptDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_AlphOptDesign</span></code></a>(candidates[, var])</p></td>
+<td><p>Enriches the Experimental design with the requested alphabetic criterion based on exploring the space with number of sampling points.</p></td>
+</tr>
+<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianActiveDesign" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianActiveDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_BayesianActiveDesign</span></code></a>(y_hat, std, sigma2Dict)</p></td>
+<td><p>Computes scores based on Bayesian active design criterion (var).</p></td>
+</tr>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianDesign" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_BayesianDesign</span></code></a>(X_can, X_MC, sigma2Dict)</p></td>
+<td><p>Computes scores based on Bayesian sequential design criterion (var).</p></td>
+</tr>
+<tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_VarBasedDesign" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_VarBasedDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">util_VarBasedDesign</span></code></a>(X_can, index[, util_func])</p></td>
+<td><p>Computes the exploitation scores based on: active learning MacKay(ALM) and active learning Cohn (ALC) Paper: Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas (2016)</p></td>
+</tr>
+</tbody>
+</table>
+</div>
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.choose_next_sample">
+<span class="sig-name descname"><span class="pre">choose_next_sample</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sigma2</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_candidates</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'DKL'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.choose_next_sample" title="Link to this definition">¶</a></dt>
+<dd><p>Runs optimal sequential design.</p>
+<section id="parameters">
+<h2>Parameters<a class="headerlink" href="#parameters" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>sigma2<span class="classifier">dict, optional</span></dt><dd><p>A dictionary containing the measurement errors (sigma^2). The
+default is None.</p>
+</dd>
+<dt>n_candidates<span class="classifier">int, optional</span></dt><dd><p>Number of candidate samples. The default is 5.</p>
+</dd>
+<dt>var<span class="classifier">string, optional</span></dt><dd><p>Utility function. The default is None. # TODO: default is set to DKL, not none</p>
+</dd>
+</dl>
+</section>
+<section id="raises">
+<h2>Raises<a class="headerlink" href="#raises" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>NameError</dt><dd><p>Wrong utility function.</p>
+</dd>
+</dl>
+</section>
+<section id="returns">
+<h2>Returns<a class="headerlink" href="#returns" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>Xnew<span class="classifier">array (n_samples, n_params)</span></dt><dd><p>Selected new training point(s).</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.dual_annealing">
+<span class="sig-name descname"><span class="pre">dual_annealing</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">method</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Bounds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Run_No</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.dual_annealing" title="Link to this definition">¶</a></dt>
+<dd><p>Exploration algorithm to find the optimum parameter space.</p>
+<section id="id1">
+<h2>Parameters<a class="headerlink" href="#id1" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>method<span class="classifier">string</span></dt><dd><p>Exploitation method: <cite>VarOptDesign</cite>, <cite>BayesActDesign</cite> and
+<cite>BayesOptDesign</cite>.</p>
+</dd>
+</dl>
+<p># TODO: BayesActDesign has no corresponding function call in this function!
+Bounds : list of tuples</p>
+<blockquote>
+<div><p>List of lower and upper boundaries of parameters.</p>
+</div></blockquote>
+<dl class="simple">
+<dt>sigma2Dict<span class="classifier">dict</span></dt><dd><p>A dictionary containing the measurement errors (sigma^2).</p>
+</dd>
+</dl>
+<p>var : unknown
+Run_No : int</p>
+<blockquote>
+<div><p>Run number.</p>
+</div></blockquote>
+<dl class="simple">
+<dt>verbose<span class="classifier">bool, optional</span></dt><dd><p>Print out a summary. The default is False.</p>
+</dd>
+</dl>
+</section>
+<section id="id2">
+<h2>Returns<a class="headerlink" href="#id2" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>Run_No<span class="classifier">int</span></dt><dd><p>Run number.</p>
+</dd>
+<dt>array</dt><dd><p>Optimial candidate.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.run_util_func">
+<span class="sig-name descname"><span class="pre">run_util_func</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">method</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">candidates</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">index</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">X_MC</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.run_util_func" title="Link to this definition">¶</a></dt>
+<dd><p>Runs the utility function based on the given method.</p>
+<section id="id3">
+<h2>Parameters<a class="headerlink" href="#id3" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>method<span class="classifier">string</span></dt><dd><p>Exploitation method: <cite>VarOptDesign</cite>, <cite>BayesActDesign</cite> and
+<cite>BayesOptDesign</cite>.</p>
+</dd>
+<dt>candidates<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>All candidate parameter sets.</p>
+</dd>
+<dt>index<span class="classifier">int</span></dt><dd><p>ExpDesign index.</p>
+</dd>
+<dt>sigma2Dict<span class="classifier">dict, optional</span></dt><dd><p>A dictionary containing the measurement errors (sigma^2). The
+default is None.</p>
+</dd>
+<dt>var<span class="classifier">string, optional</span></dt><dd><p>Utility function. The default is None.</p>
+</dd>
+<dt>X_MC<span class="classifier">TYPE, optional</span></dt><dd><p>DESCRIPTION. The default is None.</p>
+</dd>
+</dl>
+</section>
+<section id="id4">
+<h2>Returns<a class="headerlink" href="#id4" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>index<span class="classifier">TYPE</span></dt><dd><p>DESCRIPTION.</p>
+</dd>
+<dt>List</dt><dd><p>Scores.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.start_seqdesign">
+<span class="sig-name descname"><span class="pre">start_seqdesign</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">None</span></span></span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.start_seqdesign" title="Link to this definition">¶</a></dt>
+<dd><p>Do all the preparations that need to be run before the actual training</p>
+<section id="id5">
+<h2>Returns<a class="headerlink" href="#id5" title="Link to this heading">¶</a></h2>
+<p>None</p>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.tradeoff_weights">
+<span class="sig-name descname"><span class="pre">tradeoff_weights</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tradeoff_scheme</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">old_EDX</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">old_EDY</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.tradeoff_weights" title="Link to this definition">¶</a></dt>
+<dd><p>Calculates weights for exploration scores based on the requested
+scheme: <cite>None</cite>, <cite>equal</cite>, <cite>epsilon-decreasing</cite> and <cite>adaptive</cite>.</p>
+<p><cite>None</cite>: No exploration.
+<cite>equal</cite>: Same weights for exploration and exploitation scores.
+<cite>epsilon-decreasing</cite>: Start with more exploration and increase the</p>
+<blockquote>
+<div><p>influence of exploitation along the way with an exponential decay
+function</p>
+</div></blockquote>
+<dl class="simple">
+<dt><cite>adaptive</cite>: An adaptive method based on:</dt><dd><p>Liu, Haitao, Jianfei Cai, and Yew-Soon Ong. “An adaptive sampling
+approach for Kriging metamodeling by maximizing expected prediction
+error.” Computers &amp; Chemical Engineering 106 (2017): 171-182.</p>
+</dd>
+</dl>
+<section id="id6">
+<h2>Parameters<a class="headerlink" href="#id6" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>tradeoff_scheme<span class="classifier">string</span></dt><dd><p>Trade-off scheme for exloration and exploitation scores.</p>
+</dd>
+<dt>old_EDX<span class="classifier">array (n_samples, n_params)</span></dt><dd><p>Old experimental design (training points).</p>
+</dd>
+<dt>old_EDY<span class="classifier">dict</span></dt><dd><p>Old model responses (targets).</p>
+</dd>
+</dl>
+</section>
+<section id="id7">
+<h2>Returns<a class="headerlink" href="#id7" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>exploration_weight<span class="classifier">float</span></dt><dd><p>Exploration weight.</p>
+</dd>
+<dt>exploitation_weight: float</dt><dd><p>Exploitation weight.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_AlphOptDesign">
+<span class="sig-name descname"><span class="pre">util_AlphOptDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">candidates</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'D-Opt'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_AlphOptDesign" title="Link to this definition">¶</a></dt>
+<dd><p>Enriches the Experimental design with the requested alphabetic
+criterion based on exploring the space with number of sampling points.</p>
+<p>Ref: Hadigol, M., &amp; Doostan, A. (2018). Least squares polynomial chaos
+expansion: A review of sampling strategies., Computer Methods in
+Applied Mechanics and Engineering, 332, 382-407.</p>
+<section id="arguments">
+<h2>Arguments<a class="headerlink" href="#arguments" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>candidates<span class="classifier">int?</span></dt><dd><p>Number of candidate points to be searched</p>
+</dd>
+<dt>var<span class="classifier">string</span></dt><dd><p>Alphabetic optimality criterion</p>
+</dd>
+</dl>
+</section>
+<section id="id8">
+<h2>Returns<a class="headerlink" href="#id8" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>X_new<span class="classifier">array of shape (1, n_params)</span></dt><dd><p>The new sampling location in the input space.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianActiveDesign">
+<span class="sig-name descname"><span class="pre">util_BayesianActiveDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">y_hat</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">std</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'DKL'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianActiveDesign" title="Link to this definition">¶</a></dt>
+<dd><p>Computes scores based on Bayesian active design criterion (var).</p>
+<p>It is based on the following paper:
+Oladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak.
+“Bayesian3 active learning for the gaussian process emulator using
+information theory.” Entropy 22, no. 8 (2020): 890.</p>
+<section id="id9">
+<h2>Parameters<a class="headerlink" href="#id9" title="Link to this heading">¶</a></h2>
+<p>y_hat : unknown
+std : unknown
+sigma2Dict : dict</p>
+<blockquote>
+<div><p>A dictionary containing the measurement errors (sigma^2).</p>
+</div></blockquote>
+<dl class="simple">
+<dt>var<span class="classifier">string, optional</span></dt><dd><p>BAL design criterion. The default is ‘DKL’.</p>
+</dd>
+</dl>
+</section>
+<section id="id10">
+<h2>Returns<a class="headerlink" href="#id10" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>float</dt><dd><p>Score.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianDesign">
+<span class="sig-name descname"><span class="pre">util_BayesianDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X_can</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">X_MC</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sigma2Dict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'DKL'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianDesign" title="Link to this definition">¶</a></dt>
+<dd><p>Computes scores based on Bayesian sequential design criterion (var).</p>
+<section id="id11">
+<h2>Parameters<a class="headerlink" href="#id11" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>X_can<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Candidate samples.</p>
+</dd>
+</dl>
+<p>X_MC : unknown
+sigma2Dict : dict</p>
+<blockquote>
+<div><p>A dictionary containing the measurement errors (sigma^2).</p>
+</div></blockquote>
+<dl class="simple">
+<dt>var<span class="classifier">string, optional</span></dt><dd><p>Bayesian design criterion. The default is ‘DKL’.</p>
+</dd>
+</dl>
+</section>
+<section id="id12">
+<h2>Returns<a class="headerlink" href="#id12" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>float</dt><dd><p>Score.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+<dl class="py method">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_VarBasedDesign">
+<span class="sig-name descname"><span class="pre">util_VarBasedDesign</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X_can</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">index</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">util_func</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'Entropy'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_VarBasedDesign" title="Link to this definition">¶</a></dt>
+<dd><p>Computes the exploitation scores based on:
+active learning MacKay(ALM) and active learning Cohn (ALC)
+Paper: Sequential Design with Mutual Information for Computer
+Experiments (MICE): Emulation of a Tsunami Model by Beck and Guillas
+(2016)</p>
+<section id="id13">
+<h2>Parameters<a class="headerlink" href="#id13" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>X_can<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Candidate samples.</p>
+</dd>
+<dt>index<span class="classifier">int</span></dt><dd><p>Model output index.</p>
+</dd>
+<dt>util_func<span class="classifier">string, optional</span></dt><dd><p>Exploitation utility function. The default is ‘Entropy’.</p>
+</dd>
+</dl>
+</section>
+<section id="id14">
+<h2>Returns<a class="headerlink" href="#id14" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>float</dt><dd><p>Score.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+</dd></dl>
+
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.surrogate_models.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">bayesvalidrox.surrogate_models.surrogate_models</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.subdomain</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a><ul>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign"><code class="docutils literal notranslate"><span class="pre">SequentialDesign</span></code></a><ul>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.__init__"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.__init__()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.choose_next_sample"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.choose_next_sample()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.dual_annealing"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.dual_annealing()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.run_util_func"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.run_util_func()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.start_seqdesign"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.start_seqdesign()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.tradeoff_weights"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.tradeoff_weights()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_AlphOptDesign"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.util_AlphOptDesign()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianActiveDesign"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.util_BayesianActiveDesign()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianDesign"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.util_BayesianDesign()</span></code></a></li>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_VarBasedDesign"><code class="docutils literal notranslate"><span class="pre">SequentialDesign.util_VarBasedDesign()</span></code></a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="../_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="../_static/doctools.js?v=9a2dae69"></script>
+    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="../_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html
new file mode 100644
index 0000000000000000000000000000000000000000..9b9456b5abd58f893cf7a95bcfe9b768c554ff2b
--- /dev/null
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html
@@ -0,0 +1,445 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="../">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.sequential_design.logpdf" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.sequential_design" href="bayesvalidrox.surrogate_models.sequential_design.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>bayesvalidrox.surrogate_models.sequential_design.hellinger_distance - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="../_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="../index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="../index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="../_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="../search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="../examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="bayesvalidrox-surrogate-models-sequential-design-hellinger-distance">
+<h1>bayesvalidrox.surrogate_models.sequential_design.hellinger_distance<a class="headerlink" href="#bayesvalidrox-surrogate-models-sequential-design-hellinger-distance" title="Link to this heading">¶</a></h1>
+<dl class="py function">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance">
+<span class="sig-prename descclassname"><span class="pre">bayesvalidrox.surrogate_models.sequential_design.</span></span><span class="sig-name descname"><span class="pre">hellinger_distance</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">P</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Q</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.hellinger_distance" title="Link to this definition">¶</a></dt>
+<dd><p>Hellinger distance between two continuous distributions.</p>
+<p>The maximum distance 1 is achieved when P assigns probability zero to
+every set to which Q assigns a positive probability, and vice versa.
+0 (identical) and 1 (maximally different)</p>
+<section id="parameters">
+<h2>Parameters<a class="headerlink" href="#parameters" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>P<span class="classifier">array</span></dt><dd><p>Reference likelihood.</p>
+</dd>
+<dt>Q<span class="classifier">array</span></dt><dd><p>Estimated likelihood.</p>
+</dd>
+</dl>
+</section>
+<section id="returns">
+<h2>Returns<a class="headerlink" href="#returns" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>float</dt><dd><p>Hellinger distance of two distributions.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.logpdf</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.sequential_design.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a><ul>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.hellinger_distance"><code class="docutils literal notranslate"><span class="pre">hellinger_distance()</span></code></a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="../_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="../_static/doctools.js?v=9a2dae69"></script>
+    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="../_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.html b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.html
new file mode 100644
index 0000000000000000000000000000000000000000..fd16786e2f3f5a0cadf8e69f4b73217790324212
--- /dev/null
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.html
@@ -0,0 +1,446 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="../">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>bayesvalidrox.surrogate_models.sequential_design - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="../_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="../index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="../index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="../_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="../search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="../examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="module-bayesvalidrox.surrogate_models.sequential_design">
+<span id="bayesvalidrox-surrogate-models-sequential-design"></span><h1>bayesvalidrox.surrogate_models.sequential_design<a class="headerlink" href="#module-bayesvalidrox.surrogate_models.sequential_design" title="Link to this heading">¶</a></h1>
+<p>Engine to train the surrogate</p>
+<p class="rubric">Functions</p>
+<div class="table-wrapper autosummary longtable docutils container">
+<table class="autosummary longtable docutils align-default">
+<tbody>
+<tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html#bayesvalidrox.surrogate_models.sequential_design.hellinger_distance" title="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hellinger_distance</span></code></a>(P, Q)</p></td>
+<td><p>Hellinger distance between two continuous distributions.</p></td>
+</tr>
+<tr class="row-even"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html#bayesvalidrox.surrogate_models.sequential_design.logpdf" title="bayesvalidrox.surrogate_models.sequential_design.logpdf"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logpdf</span></code></a>(x, mean, cov)</p></td>
+<td><p>Computes the likelihood based on a multivariate normal distribution.</p></td>
+</tr>
+<tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html#bayesvalidrox.surrogate_models.sequential_design.subdomain" title="bayesvalidrox.surrogate_models.sequential_design.subdomain"><code class="xref py py-obj docutils literal notranslate"><span class="pre">subdomain</span></code></a>(Bounds, n_new_samples)</p></td>
+<td><p>Divides a domain defined by Bounds into subdomains.</p></td>
+</tr>
+</tbody>
+</table>
+</div>
+<p class="rubric">Classes</p>
+<div class="table-wrapper autosummary longtable docutils container">
+<table class="autosummary longtable docutils align-default">
+<tbody>
+<tr class="row-odd"><td><p><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">SequentialDesign</span></code></a>(MetaMod, Model, ExpDes, engine)</p></td>
+<td><p>Contains options for choosing the next training sample iteratively.</p></td>
+</tr>
+</tbody>
+</table>
+</div>
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design</a><ul>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="../_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="../_static/doctools.js?v=9a2dae69"></script>
+    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="../_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html
new file mode 100644
index 0000000000000000000000000000000000000000..1768d1152fd3cdb34135d77d68abfe987558017f
--- /dev/null
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html
@@ -0,0 +1,444 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="../">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.sequential_design.subdomain" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>bayesvalidrox.surrogate_models.sequential_design.logpdf - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="../_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="../index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="../index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="../_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="../search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="../examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="bayesvalidrox-surrogate-models-sequential-design-logpdf">
+<h1>bayesvalidrox.surrogate_models.sequential_design.logpdf<a class="headerlink" href="#bayesvalidrox-surrogate-models-sequential-design-logpdf" title="Link to this heading">¶</a></h1>
+<dl class="py function">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.logpdf">
+<span class="sig-prename descclassname"><span class="pre">bayesvalidrox.surrogate_models.sequential_design.</span></span><span class="sig-name descname"><span class="pre">logpdf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mean</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cov</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.logpdf" title="Link to this definition">¶</a></dt>
+<dd><p>Computes the likelihood based on a multivariate normal distribution.</p>
+<section id="parameters">
+<h2>Parameters<a class="headerlink" href="#parameters" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>x<span class="classifier">TYPE</span></dt><dd><p>DESCRIPTION.</p>
+</dd>
+<dt>mean<span class="classifier">array_like</span></dt><dd><p>Observation data.</p>
+</dd>
+<dt>cov<span class="classifier">2d array</span></dt><dd><p>Covariance matrix of the distribution.</p>
+</dd>
+</dl>
+</section>
+<section id="returns">
+<h2>Returns<a class="headerlink" href="#returns" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>log_lik<span class="classifier">float</span></dt><dd><p>Log likelihood.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.subdomain</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.logpdf</a><ul>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.logpdf"><code class="docutils literal notranslate"><span class="pre">logpdf()</span></code></a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="../_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="../_static/doctools.js?v=9a2dae69"></script>
+    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="../_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html
new file mode 100644
index 0000000000000000000000000000000000000000..03abb25d6ae7b561f9085f8dca314533bf5882a7
--- /dev/null
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html
@@ -0,0 +1,442 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="../">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.sequential_design.logpdf" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>bayesvalidrox.surrogate_models.sequential_design.subdomain - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="../_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="../_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="../index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="../index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="../_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="../search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 has-children"><a class="reference internal" href="../packagedescription.html">USER GUIDE</a><input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="../examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="../analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 current has-children"><a class="reference internal" href="../api.html">API</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2 current has-children"><a class="reference internal" href="bayesvalidrox.html">bayesvalidrox</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="bayesvalidrox-surrogate-models-sequential-design-subdomain">
+<h1>bayesvalidrox.surrogate_models.sequential_design.subdomain<a class="headerlink" href="#bayesvalidrox-surrogate-models-sequential-design-subdomain" title="Link to this heading">¶</a></h1>
+<dl class="py function">
+<dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.sequential_design.subdomain">
+<span class="sig-prename descclassname"><span class="pre">bayesvalidrox.surrogate_models.sequential_design.</span></span><span class="sig-name descname"><span class="pre">subdomain</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">Bounds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_new_samples</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.sequential_design.subdomain" title="Link to this definition">¶</a></dt>
+<dd><p>Divides a domain defined by Bounds into subdomains.</p>
+<section id="parameters">
+<h2>Parameters<a class="headerlink" href="#parameters" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>Bounds<span class="classifier">list of tuples</span></dt><dd><p>List of lower and upper bounds.</p>
+</dd>
+<dt>n_new_samples<span class="classifier">int</span></dt><dd><p>Number of samples to divide the domain for.</p>
+</dd>
+</dl>
+</section>
+<section id="returns">
+<h2>Returns<a class="headerlink" href="#returns" title="Link to this heading">¶</a></h2>
+<dl class="simple">
+<dt>Subdomains<span class="classifier">List of tuples of tuples</span></dt><dd><p>Each tuple of tuples divides one set of bounds into n_new_samples parts.</p>
+</dd>
+</dl>
+</section>
+</dd></dl>
+
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.logpdf</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">bayesvalidrox.surrogate_models.sequential_design.subdomain</a><ul>
+<li><a class="reference internal" href="#bayesvalidrox.surrogate_models.sequential_design.subdomain"><code class="docutils literal notranslate"><span class="pre">subdomain()</span></code></a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="../_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="../_static/doctools.js?v=9a2dae69"></script>
+    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="../_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html
index 49744e8097ad29d88b38c04284f137b188ee2946..267d6832f934dddcaae6157633d84d935f047f56 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -449,8 +454,8 @@ For experimental design refer to <cite>InputSpace</cite>.</p>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.generate_polynomials" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.generate_polynomials"><code class="xref py py-obj docutils literal notranslate"><span class="pre">generate_polynomials</span></code></a>([max_deg])</p></td>
 <td><p>Generates (univariate) polynomials.</p></td>
 </tr>
-<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pca_transformation</span></code></a>(target[, verbose])</p></td>
-<td><p>Transforms the targets (outputs) via Principal Component Analysis</p></td>
+<tr class="row-odd"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pca_transformation</span></code></a>(target)</p></td>
+<td><p>Transforms the targets (outputs) via Principal Component Analysis.</p></td>
 </tr>
 <tr class="row-even"><td><p><a class="reference internal" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.regression" title="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.regression"><code class="xref py py-obj docutils literal notranslate"><span class="pre">regression</span></code></a>(X, y, basis_indices[, ...])</p></td>
 <td><p>Fit regression using the regression method provided.</p></td>
@@ -720,16 +725,15 @@ The default is False.</p>
 
 <dl class="py method">
 <dt class="sig sig-object py" id="bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation">
-<span class="sig-name descname"><span class="pre">pca_transformation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="Link to this definition">¶</a></dt>
-<dd><p>Transforms the targets (outputs) via Principal Component Analysis</p>
+<span class="sig-name descname"><span class="pre">pca_transformation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.pca_transformation" title="Link to this definition">¶</a></dt>
+<dd><p>Transforms the targets (outputs) via Principal Component Analysis.
+The number of features is set by <cite>self.n_pca_components</cite>.
+If this is not given, <cite>self.var_pca_threshold</cite> is used as a threshold.</p>
 <section id="id14">
 <h3>Parameters<a class="headerlink" href="#id14" title="Link to this heading">¶</a></h3>
 <dl class="simple">
 <dt>target<span class="classifier">array of shape (n_samples,)</span></dt><dd><p>Target values.</p>
 </dd>
-<dt>verbose<span class="classifier">bool</span></dt><dd><p>Set to True to get more information during functtion call.
-The default is False.</p>
-</dd>
 </dl>
 </section>
 <section id="id15">
@@ -804,7 +808,7 @@ for the fast version of the bootstrapping.</p>
 <section id="id20">
 <h3>Parameters<a class="headerlink" href="#id20" title="Link to this heading">¶</a></h3>
 <dl class="simple">
-<dt>X<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Training set.</p>
+<dt>X<span class="classifier">array of shape (n_samples, n_params)</span></dt><dd><p>Training set. These samples should be already transformed.</p>
 </dd>
 <dt>y<span class="classifier">array of shape (n_samples, n_outs)</span></dt><dd><p>The (transformed) model responses.</p>
 </dd>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html
index a047d2ad8298fa5a806499059658a45f4082a040..92e99cf2965a0bd1e96779cba32b267f4c7de336 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
 <li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html
index 1b72a962cb784fc83d165f7b78c1ff34f2012271..65ecb8ddd51cf52c32032234661dd25c196c4458 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html
index 560f6c733c28d248e12526abe547a64accb91e9f..1024f6651b3de9e7bc77405c99b52e48f961d958 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5 current current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html
index 82a65402e9c73ede08a4a8f24ca6a8bc459dbb98..a94aedc738ffbd78d80c56305c139761b2e99f98 100644
--- a/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html
+++ b/public/_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html" />
+<link rel="index" title="Index" href="../genindex.html" /><link rel="search" title="Search" href="../search.html" /><link rel="next" title="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html" /><link rel="prev" title="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>bayesvalidrox.surrogate_models.surrogate_models - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="../surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="../post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="../bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="../tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 current has-children current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 current has-children current-page"><a class="current reference internal" href="#">bayesvalidrox.surrogate_models.surrogate_models</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -380,14 +385,14 @@
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
-          <a class="prev-page" href="bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">
+          <a class="prev-page" href="bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
               <div class="page-info">
                 <div class="context">
                   <span>Previous</span>
                 </div>
                 
-                <div class="title">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</div>
+                <div class="title">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</div>
                 
               </div>
             </a>
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst.txt
index 21a9e34806d5b3671103d4a334fcdfd92880c1bc..00a9dcd93acecc50c3c0722ecd71d96cd116eab9 100644
--- a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst.txt
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst.txt
@@ -17,19 +17,11 @@ bayesvalidrox.surrogate\_models.engine.Engine
    .. autosummary::
    
       ~Engine.__init__
-      ~Engine.choose_next_sample
-      ~Engine.dual_annealing
       ~Engine.eval_metamodel
-      ~Engine.run_util_func
       ~Engine.start_engine
-      ~Engine.tradeoff_weights
       ~Engine.train_normal
       ~Engine.train_seq_design
       ~Engine.train_sequential
-      ~Engine.util_AlphOptDesign
-      ~Engine.util_BayesianActiveDesign
-      ~Engine.util_BayesianDesign
-      ~Engine.util_VarBasedDesign
    
    
 
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.rst.txt
index 43998aeade22fc4feb5c04282973e72a1ae1d72e..a73ff3387b3ede34a272edb2f2b95c7730c9d2a6 100644
--- a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.rst.txt
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.engine.rst.txt
@@ -9,15 +9,6 @@ bayesvalidrox.surrogate\_models.engine
 
    
    
-   .. rubric:: Functions
-
-   .. autosummary::
-      :toctree:     
-   
-      hellinger_distance
-      logpdf
-      subdomain
-   
    
 
    
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.rst.txt
index fbd49ba297a2f28c516c5818e5f844d545986446..19ea8468254de7631be7b80500ebcb44dabf033a 100644
--- a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.rst.txt
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.rst.txt
@@ -1,4 +1,4 @@
-bayesvalidrox.surrogate\_models
+bayesvalidrox.surrogate\_models
 ===============================
 
 .. automodule:: bayesvalidrox.surrogate_models
@@ -41,5 +41,6 @@ bayesvalidrox.surrogate\_models
    bayesvalidrox.surrogate_models.orthogonal_matching_pursuit
    bayesvalidrox.surrogate_models.reg_fast_ard
    bayesvalidrox.surrogate_models.reg_fast_laplace
+   bayesvalidrox.surrogate_models.sequential_design
    bayesvalidrox.surrogate_models.surrogate_models
 
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..85bf390ce314ff2dcc87557ffd5f13404782ca47
--- /dev/null
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst.txt
@@ -0,0 +1,34 @@
+bayesvalidrox.surrogate\_models.sequential\_design.SequentialDesign
+===================================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autoclass:: SequentialDesign
+   :members:                                   
+   :show-inheritance:                           
+   :inherited-members:                          
+
+   
+   .. automethod:: __init__
+
+   
+   .. rubric:: Methods
+
+   .. autosummary::
+   
+      ~SequentialDesign.__init__
+      ~SequentialDesign.choose_next_sample
+      ~SequentialDesign.dual_annealing
+      ~SequentialDesign.run_util_func
+      ~SequentialDesign.start_seqdesign
+      ~SequentialDesign.tradeoff_weights
+      ~SequentialDesign.util_AlphOptDesign
+      ~SequentialDesign.util_BayesianActiveDesign
+      ~SequentialDesign.util_BayesianDesign
+      ~SequentialDesign.util_VarBasedDesign
+   
+   
+
+   
+   
+   
\ No newline at end of file
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e242998b25145fd1d0320e10f4ebc1503f00a302
--- /dev/null
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst.txt
@@ -0,0 +1,6 @@
+bayesvalidrox.surrogate\_models.sequential\_design.hellinger\_distance
+======================================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autofunction:: hellinger_distance
\ No newline at end of file
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..124f9a6d588f053034144a510db677ae96b91da6
--- /dev/null
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst.txt
@@ -0,0 +1,6 @@
+bayesvalidrox.surrogate\_models.sequential\_design.logpdf
+=========================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autofunction:: logpdf
\ No newline at end of file
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2e13f6766e5c85e70fae2f7087baaf350a38b095
--- /dev/null
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst.txt
@@ -0,0 +1,40 @@
+bayesvalidrox.surrogate\_models.sequential\_design
+==================================================
+
+.. automodule:: bayesvalidrox.surrogate_models.sequential_design
+
+   
+   
+   
+
+   
+   
+   .. rubric:: Functions
+
+   .. autosummary::
+      :toctree:     
+   
+      hellinger_distance
+      logpdf
+      subdomain
+   
+   
+
+   
+   
+   .. rubric:: Classes
+
+   .. autosummary::
+      :toctree:     
+      :template: custom-class-template.rst  
+   
+      SequentialDesign
+   
+   
+
+   
+   
+   
+
+
+
diff --git a/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst.txt b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..abef419d34e8f934f2fff5d6d4573313336c9ca6
--- /dev/null
+++ b/public/_sources/_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst.txt
@@ -0,0 +1,6 @@
+bayesvalidrox.surrogate\_models.sequential\_design.subdomain
+============================================================
+
+.. currentmodule:: bayesvalidrox.surrogate_models.sequential_design
+
+.. autofunction:: subdomain
\ No newline at end of file
diff --git a/public/_sources/bayes_description.rst.txt b/public/_sources/bayes_description.rst.txt
index 2cfd3a6a8c43868b09f404eafdd36594ed9c3c7d..5017bceeaa28c0b2d4150bebb91437a959c9edd4 100644
--- a/public/_sources/bayes_description.rst.txt
+++ b/public/_sources/bayes_description.rst.txt
@@ -1,7 +1,125 @@
-Bayesian inference and multi-model comparison
-*********************************************
+Bayesian inference
+******************
+.. container:: twocol
 
+   .. container:: leftside
+   
+      With Bayesian inference we ask the question 'how does our understanding of the inputs change given some observation of the outputs of the model?', i.e. we perform an updating step of the prior distributions to posterior, based on some observations.
+      Bayesvalidrox provides a dedicated class to perform this task, :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference`, which infers the posterior via ``rejection-sampling`` or ``MCMC``.
+      The likelihood in rejection sampling is estimated with the help of ``bootstrapping``.
+      MCMC-specific parameters are to be given as a dictionary called ``mcmc_params`` and can include 
+	  
+      * ``init_samples``: initial samples 
+      * ``n_steps``: number of steps 
+      * ``n_walkers``: number of walkers
+      * ``n_burn``: length of the burn-in 
+      * ``moves``: function to use for the moves, e.g. taken from ``emcee``
+      * ``multiprocessing``: setting for multiprocessing
+      * ``verbose``: verbosity 
+	  
+   .. container:: rightside
+   
+      .. image:: ../diagrams/bayesian_validation.png
+         :width: 300
+         :alt: UML diagram for classes related to Bayesian inference.
 
-.. image:: ../diagrams/bayesian_validation.png
-   :width: 300
-   :alt: UML diagram for classes related to Bayesian inference and multi-model comparison.
+The observation should be set as ``Model.observations`` in the ``Engine``, and an estimation of its uncertainty can be provided as a :any:`bayesvalidrox.bayes_inference.discrepancy.Discrepancy` object.
+
+Example
+=======
+For this example we need to add the following imports.
+
+>>> from bayesvalidrox import Discrepancy, BayesInference
+
+In order to run Bayesian inference we first need to provide an observation.
+For this example we take an evaluation of the model on some chosen sample and add the resulting values as ``Model.observations``.
+As this expects a 1D-array for each output key, we need to change the format slightly.
+
+>>> true_sample = [[2]]
+>>> observation = Model.run_model_parallel(true_sample)
+>>> Model.observations = {}
+>>> for key in observation:
+>>>     if key == 'x_values':
+>>>         Model.observations[key]=observation[key]
+>>>     else:
+>>>         Model.observations[key]=observation[key][0]
+
+Next we define the uncertainty on the observation with the class :any:`bayesvalidrox.bayes_inference.discrepancy.Discrepancy`.
+For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them.
+The ``parameters`` contain the variance for each point in the observation.
+
+.. warning::
+   For models with only a single uncertain input parameter, numerical issues can appear when the discrepancy is set only depending on the observed data.
+   To resolve this, a small value can be added to the variance of the discrepancy.
+
+>>> obsData = pd.DataFrame(Model.observations, columns=Model.Output.names)
+>>> DiscrepancyOpts = Discrepancy('')
+>>> DiscrepancyOpts.type = 'Gaussian'
+>>> DiscrepancyOpts.parameters = obsData**2+0.01
+
+Now we can initialize an object of class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference` with all the wanted properties.
+This object has to be given our ``Engine``.
+If it should use the surrogate during inference, set ``emulator`` to ``True``, otherwise the model will be evaluated directly.
+We also set the defined ``Discrepancy``. and set ``post_plot_pred`` if posterior predictions should be visualized.
+
+>>> BayesObj = BayesInference(Engine_)
+>>> BayesObj.emulator = True
+>>> BayesObj.Discrepancy = DiscrepancyOpts
+>>> BayesObj.plot_post_pred = True
+
+In order to run with rejection sampling, we set the ``inference_method`` accordingly and add properties for ``bootstrap``.
+
+>>> BayesObj.inference_method = 'rejection'
+>>> BayesObj.bootstrap = True
+>>> BayesObj.n_bootstrap_itrs = 500
+>>> BayesObj.bootstrap_noise = 2
+
+If the sampling should be done with MCMC, then this is set as the ``inference_method`` and additional properties are given in ``mcmc_params``.
+For this example we use the python package ``emcee`` to define the MCMC moves.
+
+>>> BayesObj.inference_method = 'MCMC'
+>>> import emcee
+>>> BayesObj.mcmc_params = {
+>>>     'n_steps': 1e4,
+>>>     'n_walkers': 30,
+>>>     'moves': emcee.moves.KDEMove(),
+>>>     'multiprocessing': False,
+>>>     'verbose': False
+>>>     }
+
+Then we run the inference.
+
+>>> BayesObj.create_inference()
+
+If the output directory ``BayesObj.out_dir`` is not set otherwise, the outputs are written into the folder ``Outputs_Bayes_model_Calib``.
+This folder includes the posterior distribution of the input parameters, as well as the predictions resulting from the mean of the posterior.
+For inference with MCMC, chain diagnostics are also written out in the console.
+
+.. container:: twocol
+
+   .. container:: leftside
+   
+      .. code-block:: py
+
+         ---------------Posterior diagnostics---------------
+         Mean auto-correlation time: 2.057
+         Thin: 1
+         Burn-in: 4
+         Flat chain shape: (13380, 1)
+         Mean acceptance fraction*: 0.752
+         Gelman-Rubin Test**:  [1.001]
+
+         * This value must lay between 0.234 and 0.5.
+         ** These values must be smaller than 1.1.
+         --------------------------------------------------
+		 
+   .. container:: rightside
+
+      .. image:: ../../examples/user_guide/Outputs_Bayes_model_Calib/Posterior_Dist_model_emulator.pdf
+         :width: 400
+         :alt: Posterior distribution of the input parameter
+		 
+      .. image:: ../../examples/user_guide/Outputs_Bayes_model_Calib/Post_Prior_Perd_model_emulator_A.pdf
+         :width: 400
+         :alt: Comparison of posterior prediction to the observation
+		 
\ No newline at end of file
diff --git a/public/_sources/bmc_description.rst.txt b/public/_sources/bmc_description.rst.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3ebd9d5250e3aee50bd1dd9fe9c9fb6845be6d15
--- /dev/null
+++ b/public/_sources/bmc_description.rst.txt
@@ -0,0 +1,83 @@
+Bayesian multi-model comparison
+*******************************
+.. container:: twocol
+
+   .. container:: leftside
+   
+      Bayesvalidrox provides three distinct methods to compare sets of models against each other given some observation of the outputs, Bayes' Factors, model weights and confusion matrices.
+      These are contained within the class :any:`bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison` and can be called one-at-a-time with their respective functions, or consecutively with the function ``model_comparison_all()``.
+	  
+      
+   .. container:: rightside
+   
+      .. image:: ../diagrams/bayesian_model_comparison.png
+         :width: 400
+         :alt: UML diagram for classes related to Bayesian multi-model comparison.
+
+
+Example
+=======
+To perform model comparison, we first need to define the set of competing models.
+For this, we create an additional model in the file ``model2.py`` based on the example model from :any:`model_description`.
+
+>>> def model2(samples, x_values):
+>>>     poly = samples[0]*np.power(x_values, 3)
+>>>     outputs = {'A': poly, 'x_values': x_values}
+>>>     return outputs
+
+Then we can build another surrogate for this model, following the same code as for the surrogate in :any:`surrogate_description`.
+
+>>> Model2 = PyLinkForwardModel()
+>>> Model2.link_type = 'Function'
+>>> Model2.py_file = 'model2'
+>>> Model2.name = 'model2'
+>>> Model2.Output.names = ['A']
+>>> Model2.func_args = {'x_values': x_values}
+>>> Model2.store = False
+    
+>>> MetaMod2 = MetaModel(Inputs)
+>>> MetaMod2.meta_model_type = 'aPCE'
+>>> MetaMod2.pce_reg_method = 'FastARD'
+>>> MetaMod2.pce_deg = 3
+>>> MetaMod2.pce_q_norm = 1
+    
+>>> ExpDesign2 = ExpDesigns(Inputs)
+>>> ExpDesign2.n_init_samples = 30
+>>> ExpDesign2.sampling_method = 'random'
+    
+>>> Engine_2 = Engine(MetaMod2, Model2, ExpDesign2)
+>>> Engine_2.train_normal()
+
+To perform model comparison we use the class :any:`bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison`.
+
+>>> from bayesvalidrox import BayesModelComparison`
+
+We collect the engines that should be compared in a dictionary, and assign them names.
+
+>>> meta_models = {
+>>>     "linear": Engine_,
+>>>     "degthree": Engine_2
+>>>     }
+	
+Then we create an object of class ``BayesModelComparison``.
+
+>>> BayesOpts = BayesModelComparison()	
+
+As the comparison uses the class :any:`bayesvalidrox.bayes_inference.bayes_inference.BayesInference`, we can also set the properties for this class as well.
+These are collected in a dictionary and given to the function calls that perform the model comparison.
+In this example we use the following settings.
+
+>>> opts_bootstrap = {
+>>>     "bootstrap": True,
+>>>     "n_samples": 100,
+>>>     "Discrepancy": DiscrepancyOpts,
+>>>     "emulator": True,
+>>>     "plot_post_pred": False
+>>>     }
+
+Now we can run the full model comparison.
+
+>>> output_dict = BayesOpts.model_comparison_all(meta_models, opts_bootstrap)
+
+The created plots are saved in the folder ``Outputs_Comparison``.
+
diff --git a/public/_sources/model_description.rst.txt b/public/_sources/model_description.rst.txt
index bb719886b9a5a61cfed3f44eebcf810b5ca46ef8..42103caa6f68cf7a71791f0317519f20c563aba0 100644
--- a/public/_sources/model_description.rst.txt
+++ b/public/_sources/model_description.rst.txt
@@ -6,10 +6,10 @@ Models
    .. container:: leftside
    
       BayesValidRox gives options to create interfaces for a variety of models with the class :any:`bayesvalidrox.pylink.pylink.PyLinkForwardModel`.
-	  Its main function is to run the model on given samples and to read in and contain MC references and observations.
+      Its main function is to run the model on given samples and to read in and contain MC references and observations.
 	  
-	  Models can be defined via python functions, shell commands or as general executables.
-	  This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.
+      Models can be defined via python functions, shell commands or as general executables.
+      This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.
 
    .. container:: rightside
    
@@ -25,9 +25,11 @@ This function takes a single realization of the uncertain parameter as a 2-dimen
 Here we use the key ``A`` for the sample values and ``B`` for their squares.
 Under the key ``x_values`` a list should be given that is of the same length as each output of the model for a single input.
 The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis.
+If we want to set the ``x_values`` outside of the model, it can also be given as an additional parameter
 
->>> def model(sample):
->>>     square = sample*sample
+>>> def model(samples, x_values):
+>>>     sample = samples[0]*x_values
+>>>     square = np.power(samples[0]*x_values, 2)
 >>>     outputs = {'A': sample, 'B': square, 'x_values': [0]}
 >>>     return outputs
 
@@ -43,7 +45,13 @@ Lastly we list the keys of the outputs that we are interested in.
 >>> Model.link_type = 'Function'
 >>> Model.py_file = 'model'
 >>> Model.name = 'model'
->>> Model.Output.names = ['A', 'B']
+>>> Model.Output.names = ['A']
+
+Any parameters to the model function, that are not the samples, can be set via the ``func_args`` argument.
+In this case we define ``x_values`` as a ``np.array`` and include it.
+
+>>> x_values = np.arange(0,1,0.1)
+>>> Model.func_args = {'x_values':x_values}
 
 With this we have completed an interface to our model.
 We can now evaluate this model on the samples created in the input example.
diff --git a/public/_sources/packagedescription.rst.txt b/public/_sources/packagedescription.rst.txt
index f245959b8d5a4b1d56de4e9cc86cff64b2da9b98..1d1fd65173851b1c5942f7da35568c2fd3e4c696 100644
--- a/public/_sources/packagedescription.rst.txt
+++ b/public/_sources/packagedescription.rst.txt
@@ -69,3 +69,4 @@ The next pages lead through the topics given in BayesValidRox and describe the a
    al_description
    post_description
    bayes_description
+   bmc_description
diff --git a/public/_sources/post_description.rst.txt b/public/_sources/post_description.rst.txt
index af2172709f4581abfabdcfd06257edfa808aa501..987f18e7dbf8ea21cc987265bbbac7ac7a8d2ee1 100644
--- a/public/_sources/post_description.rst.txt
+++ b/public/_sources/post_description.rst.txt
@@ -4,11 +4,11 @@ Postprocessing
 
    .. container:: leftside
    
-         Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
-         The BayesValidRox class :any:`bayesvalidrox.post_processing.post_processing.PostProcessing` includes functions that are applicable to all types of surrogate model.
+      Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
+      The BayesValidRox class :any:`bayesvalidrox.post_processing.post_processing.PostProcessing` includes functions that are applicable to all types of surrogate model.
 		 
-		 * ``valid_metamodel``: visualizing some metamodel runs against the corresponding model runs
-		 * ``check_accuracy``: computing the RMSE error of the surrogate model
+      * ``valid_metamodel``: visualizing some metamodel runs against the corresponding model runs
+      * ``check_accuracy``: computing the RMSE error of the surrogate model
 		 
    .. container:: rightside
 
diff --git a/public/al_description.html b/public/al_description.html
index 78a5f609efb6ef18b9a5cf743e0927f79504fb15..32fda4d908a509213ce714a451c6dfffb754ad90 100644
--- a/public/al_description.html
+++ b/public/al_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/analyticalfunction.html b/public/analyticalfunction.html
index 42509cf3862f35bffb524e96a08c1519f3cd6267..c1cec1cff008fbaa53c60fb97e26ebacb9d4c15f 100644
--- a/public/analyticalfunction.html
+++ b/public/analyticalfunction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/api.html b/public/api.html
index d853aff4e2794fdef4103a72a3b981e1acafc568..61edd32a2b5a5effd7b68528c7481646baa1bcad 100644
--- a/public/api.html
+++ b/public/api.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/bayes_description.html b/public/bayes_description.html
index 62bb18a5a39b10a142d3caf25cd09dea371f6d75..de6cd6dae9194941c49ac56c009a895528fee9bf 100644
--- a/public/bayes_description.html
+++ b/public/bayes_description.html
@@ -3,10 +3,10 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="TUTORIAL" href="tutorial.html" /><link rel="prev" title="Postprocessing" href="post_description.html" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="Bayesian multi-model comparison" href="bmc_description.html" /><link rel="prev" title="Postprocessing" href="post_description.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
-        <title>Bayesian inference and multi-model comparison - bayesvalidrox 1.0.0 documentation</title>
+        <title>Bayesian inference - bayesvalidrox 1.0.0 documentation</title>
       <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=362ab14a" />
     <link rel="stylesheet" type="text/css" href="_static/styles/furo.css?v=135e06be" />
     <link rel="stylesheet" type="text/css" href="_static/styles/furo-extensions.css?v=36a5483c" />
@@ -141,7 +141,7 @@
           <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
         </button>
       </div>
-      <label class="toc-overlay-icon toc-header-icon no-toc" for="__toc">
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
         <div class="visually-hidden">Toggle table of contents sidebar</div>
         <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
       </label>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -329,15 +334,127 @@
               <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
             </button>
           </div>
-          <label class="toc-overlay-icon toc-content-icon no-toc" for="__toc">
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
             <div class="visually-hidden">Toggle table of contents sidebar</div>
             <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
           </label>
         </div>
         <article role="main">
-          <section id="bayesian-inference-and-multi-model-comparison">
-<h1>Bayesian inference and multi-model comparison<a class="headerlink" href="#bayesian-inference-and-multi-model-comparison" title="Link to this heading">¶</a></h1>
-<a class="reference internal image-reference" href="_images/bayesian_validation.png"><img alt="UML diagram for classes related to Bayesian inference and multi-model comparison." src="_images/bayesian_validation.png" style="width: 300px;" /></a>
+          <section id="bayesian-inference">
+<h1>Bayesian inference<a class="headerlink" href="#bayesian-inference" title="Link to this heading">¶</a></h1>
+<div class="twocol docutils container">
+<div class="leftside docutils container">
+<p>With Bayesian inference we ask the question ‘how does our understanding of the inputs change given some observation of the outputs of the model?’, i.e. we perform an updating step of the prior distributions to posterior, based on some observations.
+Bayesvalidrox provides a dedicated class to perform this task, <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html#bayesvalidrox.bayes_inference.bayes_inference.BayesInference" title="bayesvalidrox.bayes_inference.bayes_inference.BayesInference"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</span></code></a>, which infers the posterior via <code class="docutils literal notranslate"><span class="pre">rejection-sampling</span></code> or <code class="docutils literal notranslate"><span class="pre">MCMC</span></code>.
+The likelihood in rejection sampling is estimated with the help of <code class="docutils literal notranslate"><span class="pre">bootstrapping</span></code>.
+MCMC-specific parameters are to be given as a dictionary called <code class="docutils literal notranslate"><span class="pre">mcmc_params</span></code> and can include</p>
+<ul class="simple">
+<li><p><code class="docutils literal notranslate"><span class="pre">init_samples</span></code>: initial samples</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">n_steps</span></code>: number of steps</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">n_walkers</span></code>: number of walkers</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">n_burn</span></code>: length of the burn-in</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">moves</span></code>: function to use for the moves, e.g. taken from <code class="docutils literal notranslate"><span class="pre">emcee</span></code></p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">multiprocessing</span></code>: setting for multiprocessing</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">verbose</span></code>: verbosity</p></li>
+</ul>
+</div>
+<div class="rightside docutils container">
+<a class="reference internal image-reference" href="_images/bayesian_validation.png"><img alt="UML diagram for classes related to Bayesian inference." src="_images/bayesian_validation.png" style="width: 300px;" /></a>
+</div>
+</div>
+<p>The observation should be set as <code class="docutils literal notranslate"><span class="pre">Model.observations</span></code> in the <code class="docutils literal notranslate"><span class="pre">Engine</span></code>, and an estimation of its uncertainty can be provided as a <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html#bayesvalidrox.bayes_inference.discrepancy.Discrepancy" title="bayesvalidrox.bayes_inference.discrepancy.Discrepancy"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</span></code></a> object.</p>
+<section id="example">
+<h2>Example<a class="headerlink" href="#example" title="Link to this heading">¶</a></h2>
+<p>For this example we need to add the following imports.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">bayesvalidrox</span> <span class="kn">import</span> <span class="n">Discrepancy</span><span class="p">,</span> <span class="n">BayesInference</span>
+</pre></div>
+</div>
+<p>In order to run Bayesian inference we first need to provide an observation.
+For this example we take an evaluation of the model on some chosen sample and add the resulting values as <code class="docutils literal notranslate"><span class="pre">Model.observations</span></code>.
+As this expects a 1D-array for each output key, we need to change the format slightly.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">true_sample</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">2</span><span class="p">]]</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">observation</span> <span class="o">=</span> <span class="n">Model</span><span class="o">.</span><span class="n">run_model_parallel</span><span class="p">(</span><span class="n">true_sample</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">observations</span> <span class="o">=</span> <span class="p">{}</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">observation</span><span class="p">:</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="k">if</span> <span class="n">key</span> <span class="o">==</span> <span class="s1">&#39;x_values&#39;</span><span class="p">:</span>
+<span class="gp">&gt;&gt;&gt; </span>        <span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="o">=</span><span class="n">observation</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="k">else</span><span class="p">:</span>
+<span class="gp">&gt;&gt;&gt; </span>        <span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="o">=</span><span class="n">observation</span><span class="p">[</span><span class="n">key</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
+</pre></div>
+</div>
+<p>Next we define the uncertainty on the observation with the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html#bayesvalidrox.bayes_inference.discrepancy.Discrepancy" title="bayesvalidrox.bayes_inference.discrepancy.Discrepancy"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</span></code></a>.
+For this example we set the uncertainty to be zero-mean gaussian and dependent on the values in the observation, i.e. larger values have a larger uncertainty associated with them.
+The <code class="docutils literal notranslate"><span class="pre">parameters</span></code> contain the variance for each point in the observation.</p>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>For models with only a single uncertain input parameter, numerical issues can appear when the discrepancy is set only depending on the observed data.
+To resolve this, a small value can be added to the variance of the discrepancy.</p>
+</div>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">obsData</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">Model</span><span class="o">.</span><span class="n">observations</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">DiscrepancyOpts</span> <span class="o">=</span> <span class="n">Discrepancy</span><span class="p">(</span><span class="s1">&#39;&#39;</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">type</span> <span class="o">=</span> <span class="s1">&#39;Gaussian&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">DiscrepancyOpts</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">obsData</span><span class="o">**</span><span class="mi">2</span><span class="o">+</span><span class="mf">0.01</span>
+</pre></div>
+</div>
+<p>Now we can initialize an object of class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html#bayesvalidrox.bayes_inference.bayes_inference.BayesInference" title="bayesvalidrox.bayes_inference.bayes_inference.BayesInference"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</span></code></a> with all the wanted properties.
+This object has to be given our <code class="docutils literal notranslate"><span class="pre">Engine</span></code>.
+If it should use the surrogate during inference, set <code class="docutils literal notranslate"><span class="pre">emulator</span></code> to <code class="docutils literal notranslate"><span class="pre">True</span></code>, otherwise the model will be evaluated directly.
+We also set the defined <code class="docutils literal notranslate"><span class="pre">Discrepancy</span></code>. and set <code class="docutils literal notranslate"><span class="pre">post_plot_pred</span></code> if posterior predictions should be visualized.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span> <span class="o">=</span> <span class="n">BayesInference</span><span class="p">(</span><span class="n">Engine_</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">emulator</span> <span class="o">=</span> <span class="kc">True</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">Discrepancy</span> <span class="o">=</span> <span class="n">DiscrepancyOpts</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">plot_post_pred</span> <span class="o">=</span> <span class="kc">True</span>
+</pre></div>
+</div>
+<p>In order to run with rejection sampling, we set the <code class="docutils literal notranslate"><span class="pre">inference_method</span></code> accordingly and add properties for <code class="docutils literal notranslate"><span class="pre">bootstrap</span></code>.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">inference_method</span> <span class="o">=</span> <span class="s1">&#39;rejection&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">bootstrap</span> <span class="o">=</span> <span class="kc">True</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">n_bootstrap_itrs</span> <span class="o">=</span> <span class="mi">500</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">bootstrap_noise</span> <span class="o">=</span> <span class="mi">2</span>
+</pre></div>
+</div>
+<p>If the sampling should be done with MCMC, then this is set as the <code class="docutils literal notranslate"><span class="pre">inference_method</span></code> and additional properties are given in <code class="docutils literal notranslate"><span class="pre">mcmc_params</span></code>.
+For this example we use the python package <code class="docutils literal notranslate"><span class="pre">emcee</span></code> to define the MCMC moves.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">inference_method</span> <span class="o">=</span> <span class="s1">&#39;MCMC&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">emcee</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">mcmc_params</span> <span class="o">=</span> <span class="p">{</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;n_steps&#39;</span><span class="p">:</span> <span class="mf">1e4</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;n_walkers&#39;</span><span class="p">:</span> <span class="mi">30</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;moves&#39;</span><span class="p">:</span> <span class="n">emcee</span><span class="o">.</span><span class="n">moves</span><span class="o">.</span><span class="n">KDEMove</span><span class="p">(),</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;multiprocessing&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s1">&#39;verbose&#39;</span><span class="p">:</span> <span class="kc">False</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="p">}</span>
+</pre></div>
+</div>
+<p>Then we run the inference.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesObj</span><span class="o">.</span><span class="n">create_inference</span><span class="p">()</span>
+</pre></div>
+</div>
+<p>If the output directory <code class="docutils literal notranslate"><span class="pre">BayesObj.out_dir</span></code> is not set otherwise, the outputs are written into the folder <code class="docutils literal notranslate"><span class="pre">Outputs_Bayes_model_Calib</span></code>.
+This folder includes the posterior distribution of the input parameters, as well as the predictions resulting from the mean of the posterior.
+For inference with MCMC, chain diagnostics are also written out in the console.</p>
+<div class="twocol docutils container">
+<div class="leftside docutils container">
+<div class="highlight-py notranslate"><div class="highlight"><pre><span></span><span class="o">---------------</span><span class="n">Posterior</span> <span class="n">diagnostics</span><span class="o">---------------</span>
+<span class="n">Mean</span> <span class="n">auto</span><span class="o">-</span><span class="n">correlation</span> <span class="n">time</span><span class="p">:</span> <span class="mf">2.057</span>
+<span class="n">Thin</span><span class="p">:</span> <span class="mi">1</span>
+<span class="n">Burn</span><span class="o">-</span><span class="ow">in</span><span class="p">:</span> <span class="mi">4</span>
+<span class="n">Flat</span> <span class="n">chain</span> <span class="n">shape</span><span class="p">:</span> <span class="p">(</span><span class="mi">13380</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="n">Mean</span> <span class="n">acceptance</span> <span class="n">fraction</span><span class="o">*</span><span class="p">:</span> <span class="mf">0.752</span>
+<span class="n">Gelman</span><span class="o">-</span><span class="n">Rubin</span> <span class="n">Test</span><span class="o">**</span><span class="p">:</span>  <span class="p">[</span><span class="mf">1.001</span><span class="p">]</span>
+
+<span class="o">*</span> <span class="n">This</span> <span class="n">value</span> <span class="n">must</span> <span class="n">lay</span> <span class="n">between</span> <span class="mf">0.234</span> <span class="ow">and</span> <span class="mf">0.5</span><span class="o">.</span>
+<span class="o">**</span> <span class="n">These</span> <span class="n">values</span> <span class="n">must</span> <span class="n">be</span> <span class="n">smaller</span> <span class="n">than</span> <span class="mf">1.1</span><span class="o">.</span>
+<span class="o">--------------------------------------------------</span>
+</pre></div>
+</div>
+</div>
+<div class="rightside docutils container">
+<a class="reference internal image-reference" href="_images/Posterior_Dist_model_emulator.pdf"><img alt="Posterior distribution of the input parameter" src="_images/Posterior_Dist_model_emulator.pdf" style="width: 400px;" /></a>
+<a class="reference internal image-reference" href="_images/Post_Prior_Perd_model_emulator_A.pdf"><img alt="Comparison of posterior prediction to the observation" src="_images/Post_Prior_Perd_model_emulator_A.pdf" style="width: 400px;" /></a>
+</div>
+</div>
+</section>
 </section>
 
         </article>
@@ -345,12 +462,12 @@
       <footer>
         
         <div class="related-pages">
-          <a class="next-page" href="tutorial.html">
+          <a class="next-page" href="bmc_description.html">
               <div class="page-info">
                 <div class="context">
                   <span>Next</span>
                 </div>
-                <div class="title">TUTORIAL</div>
+                <div class="title">Bayesian multi-model comparison</div>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
@@ -383,8 +500,27 @@
         
       </footer>
     </div>
-    <aside class="toc-drawer no-toc">
+    <aside class="toc-drawer">
+      
       
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">Bayesian inference</a><ul>
+<li><a class="reference internal" href="#example">Example</a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
       
       
     </aside>
diff --git a/public/beam.html b/public/beam.html
index 6c82f54b9c2f2bca66cd21adf154c9aa11a04319..eca8e84faaf8188af80a871655663a39b438d0e9 100644
--- a/public/beam.html
+++ b/public/beam.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/bmc_description.html b/public/bmc_description.html
new file mode 100644
index 0000000000000000000000000000000000000000..9d570df35579b46fb13490db78e5bd5f25b3f2ed
--- /dev/null
+++ b/public/bmc_description.html
@@ -0,0 +1,498 @@
+<!doctype html>
+<html class="no-js" lang="en" data-content_root="./">
+  <head><meta charset="utf-8"/>
+    <meta name="viewport" content="width=device-width,initial-scale=1"/>
+    <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="TUTORIAL" href="tutorial.html" /><link rel="prev" title="Bayesian inference" href="bayes_description.html" />
+
+    <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
+        <title>Bayesian multi-model comparison - bayesvalidrox 1.0.0 documentation</title>
+      <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=362ab14a" />
+    <link rel="stylesheet" type="text/css" href="_static/styles/furo.css?v=135e06be" />
+    <link rel="stylesheet" type="text/css" href="_static/styles/furo-extensions.css?v=36a5483c" />
+    <link rel="stylesheet" type="text/css" href="_static/custom.css?v=3c2b257a" />
+    
+    
+
+
+<style>
+  body {
+    --color-code-background: #f8f8f8;
+  --color-code-foreground: black;
+  --color-brand-primary: #5663a1;
+  --color-brand-content: #5663a1;
+  
+  }
+  @media not print {
+    body[data-theme="dark"] {
+      --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+    }
+    @media (prefers-color-scheme: dark) {
+      body:not([data-theme="light"]) {
+        --color-code-background: #202020;
+  --color-code-foreground: #d0d0d0;
+  --color-brand-primary: #9bb4e3;
+  --color-brand-content: #9bb4e3;
+  
+      }
+    }
+  }
+</style></head>
+  <body>
+    
+    <script>
+      document.body.dataset.theme = localStorage.getItem("theme") || "auto";
+    </script>
+    
+
+<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
+  <symbol id="svg-toc" viewBox="0 0 24 24">
+    <title>Contents</title>
+    <svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 1024 1024">
+      <path d="M408 442h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8zm-8 204c0 4.4 3.6 8 8 8h480c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8H408c-4.4 0-8 3.6-8 8v56zm504-486H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zm0 632H120c-4.4 0-8 3.6-8 8v56c0 4.4 3.6 8 8 8h784c4.4 0 8-3.6 8-8v-56c0-4.4-3.6-8-8-8zM115.4 518.9L271.7 642c5.8 4.6 14.4.5 14.4-6.9V388.9c0-7.4-8.5-11.5-14.4-6.9L115.4 505.1a8.74 8.74 0 0 0 0 13.8z"/>
+    </svg>
+  </symbol>
+  <symbol id="svg-menu" viewBox="0 0 24 24">
+    <title>Menu</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-menu">
+      <line x1="3" y1="12" x2="21" y2="12"></line>
+      <line x1="3" y1="6" x2="21" y2="6"></line>
+      <line x1="3" y1="18" x2="21" y2="18"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-arrow-right" viewBox="0 0 24 24">
+    <title>Expand</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="feather-chevron-right">
+      <polyline points="9 18 15 12 9 6"></polyline>
+    </svg>
+  </symbol>
+  <symbol id="svg-sun" viewBox="0 0 24 24">
+    <title>Light mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather-sun">
+      <circle cx="12" cy="12" r="5"></circle>
+      <line x1="12" y1="1" x2="12" y2="3"></line>
+      <line x1="12" y1="21" x2="12" y2="23"></line>
+      <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line>
+      <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line>
+      <line x1="1" y1="12" x2="3" y2="12"></line>
+      <line x1="21" y1="12" x2="23" y2="12"></line>
+      <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line>
+      <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line>
+    </svg>
+  </symbol>
+  <symbol id="svg-moon" viewBox="0 0 24 24">
+    <title>Dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-moon">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none" />
+      <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z" />
+    </svg>
+  </symbol>
+  <symbol id="svg-sun-half" viewBox="0 0 24 24">
+    <title>Auto light/dark mode</title>
+    <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor"
+      stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="icon-tabler-shadow">
+      <path stroke="none" d="M0 0h24v24H0z" fill="none"/>
+      <circle cx="12" cy="12" r="9" />
+      <path d="M13 12h5" />
+      <path d="M13 15h4" />
+      <path d="M13 18h1" />
+      <path d="M13 9h4" />
+      <path d="M13 6h1" />
+    </svg>
+  </symbol>
+</svg>
+
+<input type="checkbox" class="sidebar-toggle" name="__navigation" id="__navigation">
+<input type="checkbox" class="sidebar-toggle" name="__toc" id="__toc">
+<label class="overlay sidebar-overlay" for="__navigation">
+  <div class="visually-hidden">Hide navigation sidebar</div>
+</label>
+<label class="overlay toc-overlay" for="__toc">
+  <div class="visually-hidden">Hide table of contents sidebar</div>
+</label>
+
+
+
+<div class="page">
+  <header class="mobile-header">
+    <div class="header-left">
+      <label class="nav-overlay-icon" for="__navigation">
+        <div class="visually-hidden">Toggle site navigation sidebar</div>
+        <i class="icon"><svg><use href="#svg-menu"></use></svg></i>
+      </label>
+    </div>
+    <div class="header-center">
+      <a href="index.html"><div class="brand">bayesvalidrox 1.0.0 documentation</div></a>
+    </div>
+    <div class="header-right">
+      <div class="theme-toggle-container theme-toggle-header">
+        <button class="theme-toggle">
+          <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+          <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+          <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+          <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+        </button>
+      </div>
+      <label class="toc-overlay-icon toc-header-icon" for="__toc">
+        <div class="visually-hidden">Toggle table of contents sidebar</div>
+        <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+      </label>
+    </div>
+  </header>
+  <aside class="sidebar-drawer">
+    <div class="sidebar-container">
+      
+      <div class="sidebar-sticky"><a class="sidebar-brand" href="index.html">
+  
+  <div class="sidebar-logo-container">
+    <img class="sidebar-logo" src="_static/BVRLogoV03_shorttext.png" alt="Logo"/>
+  </div>
+  
+  
+</a><form class="sidebar-search-container" method="get" action="search.html" role="search">
+  <input class="sidebar-search" placeholder="Search" name="q" aria-label="Search">
+  <input type="hidden" name="check_keywords" value="yes">
+  <input type="hidden" name="area" value="default">
+</form>
+<div id="searchbox"></div><div class="sidebar-scroll"><div class="sidebar-tree">
+  <ul class="current">
+<li class="toctree-l1 current has-children"><a class="reference internal" href="packagedescription.html">USER GUIDE</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" role="switch" type="checkbox"/><label for="toctree-checkbox-1"><div class="visually-hidden">Toggle navigation of USER GUIDE</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul class="current">
+<li class="toctree-l2"><a class="reference internal" href="input_description.html">Priors, input space and experimental design</a></li>
+<li class="toctree-l2"><a class="reference internal" href="model_description.html">Models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
+<li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
+<li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Bayesian multi-model comparison</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="examples.html">EXAMPLES</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" role="switch" type="checkbox"/><label for="toctree-checkbox-2"><div class="visually-hidden">Toggle navigation of EXAMPLES</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2"><a class="reference internal" href="analyticalfunction.html">Analytical function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="beam.html">Beam</a></li>
+<li class="toctree-l2"><a class="reference internal" href="borehole.html">Borehole</a></li>
+<li class="toctree-l2"><a class="reference internal" href="ishigami.html">Ishigami</a></li>
+<li class="toctree-l2"><a class="reference internal" href="modelcomparison.html">Model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="ohaganfunction.html">OHagan-function</a></li>
+<li class="toctree-l2"><a class="reference internal" href="pollution.html">Pollution</a></li>
+</ul>
+</li>
+<li class="toctree-l1 has-children"><a class="reference internal" href="api.html">API</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" role="switch" type="checkbox"/><label for="toctree-checkbox-3"><div class="visually-hidden">Toggle navigation of API</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l2 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.html">bayesvalidrox</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" role="switch" type="checkbox"/><label for="toctree-checkbox-4"><div class="visually-hidden">Toggle navigation of bayesvalidrox</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.html">bayesvalidrox.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" role="switch" type="checkbox"/><label for="toctree-checkbox-5"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.html">bayesvalidrox.bayes_inference.bayes_inference</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" role="switch" type="checkbox"/><label for="toctree-checkbox-6"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_inference</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" role="switch" type="checkbox"/><label for="toctree-checkbox-7"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.bayes_model_comparison</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.html">bayesvalidrox.bayes_inference.discrepancy</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" role="switch" type="checkbox"/><label for="toctree-checkbox-8"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.discrepancy</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.html">bayesvalidrox.bayes_inference.discrepancy.Discrepancy</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.mcmc.html">bayesvalidrox.bayes_inference.mcmc</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" role="switch" type="checkbox"/><label for="toctree-checkbox-9"><div class="visually-hidden">Toggle navigation of bayesvalidrox.bayes_inference.mcmc</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.html">bayesvalidrox.bayes_inference.mcmc.gelman_rubin</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html">bayesvalidrox.bayes_inference.mcmc.MCMC</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.html">bayesvalidrox.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" role="switch" type="checkbox"/><label for="toctree-checkbox-10"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.post_processing.html">bayesvalidrox.post_processing.post_processing</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" role="switch" type="checkbox"/><label for="toctree-checkbox-11"><div class="visually-hidden">Toggle navigation of bayesvalidrox.post_processing.post_processing</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html">bayesvalidrox.post_processing.post_processing.PostProcessing</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.html">bayesvalidrox.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" role="switch" type="checkbox"/><label for="toctree-checkbox-12"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.html">bayesvalidrox.pylink.pylink</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" role="switch" type="checkbox"/><label for="toctree-checkbox-13"><div class="visually-hidden">Toggle navigation of bayesvalidrox.pylink.pylink</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.within_range.html">bayesvalidrox.pylink.pylink.within_range</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html">bayesvalidrox.pylink.pylink.PyLinkForwardModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l3 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.html">bayesvalidrox.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" role="switch" type="checkbox"/><label for="toctree-checkbox-14"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" role="switch" type="checkbox"/><label for="toctree-checkbox-15"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.adaptPlot</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.html">bayesvalidrox.surrogate_models.adaptPlot.adaptPlot</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" role="switch" type="checkbox"/><label for="toctree-checkbox-16"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.apoly_construction</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.html">bayesvalidrox.surrogate_models.apoly_construction.apoly_construction</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.html">bayesvalidrox.surrogate_models.bayes_linear</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" role="switch" type="checkbox"/><label for="toctree-checkbox-17"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.bayes_linear</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.html">bayesvalidrox.surrogate_models.bayes_linear.gamma_mean</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.html">bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule</a><input class="toctree-checkbox" id="toctree-checkbox-19" name="toctree-checkbox-19" role="switch" type="checkbox"/><label for="toctree-checkbox-19"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.eval_rec_rule</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.html">bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.html">bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exp_designs.html">bayesvalidrox.surrogate_models.exp_designs</a><input class="toctree-checkbox" id="toctree-checkbox-20" name="toctree-checkbox-20" role="switch" type="checkbox"/><label for="toctree-checkbox-20"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exp_designs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.html">bayesvalidrox.surrogate_models.exp_designs.check_ranges</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.html">bayesvalidrox.surrogate_models.exp_designs.ExpDesigns</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exploration.html">bayesvalidrox.surrogate_models.exploration</a><input class="toctree-checkbox" id="toctree-checkbox-21" name="toctree-checkbox-21" role="switch" type="checkbox"/><label for="toctree-checkbox-21"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.exploration</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.html">bayesvalidrox.surrogate_models.exploration.Exploration</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.glexindex.html">bayesvalidrox.surrogate_models.glexindex</a><input class="toctree-checkbox" id="toctree-checkbox-22" name="toctree-checkbox-22" role="switch" type="checkbox"/><label for="toctree-checkbox-22"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.glexindex</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.html">bayesvalidrox.surrogate_models.glexindex.cross_truncate</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.html">bayesvalidrox.surrogate_models.glexindex.glexindex</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.input_space.html">bayesvalidrox.surrogate_models.input_space</a><input class="toctree-checkbox" id="toctree-checkbox-23" name="toctree-checkbox-23" role="switch" type="checkbox"/><label for="toctree-checkbox-23"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.input_space</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html">bayesvalidrox.surrogate_models.input_space.InputSpace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.inputs.html">bayesvalidrox.surrogate_models.inputs</a><input class="toctree-checkbox" id="toctree-checkbox-24" name="toctree-checkbox-24" role="switch" type="checkbox"/><label for="toctree-checkbox-24"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.inputs</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.inputs.Input.html">bayesvalidrox.surrogate_models.inputs.Input</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.html">bayesvalidrox.surrogate_models.inputs.Marginal</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</a><input class="toctree-checkbox" id="toctree-checkbox-25" name="toctree-checkbox-25" role="switch" type="checkbox"/><label for="toctree-checkbox-25"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.orthogonal_matching_pursuit</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html">bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html">bayesvalidrox.surrogate_models.reg_fast_ard</a><input class="toctree-checkbox" id="toctree-checkbox-26" name="toctree-checkbox-26" role="switch" type="checkbox"/><label for="toctree-checkbox-26"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_ard</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html">bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html">bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace</a><input class="toctree-checkbox" id="toctree-checkbox-27" name="toctree-checkbox-27" role="switch" type="checkbox"/><label for="toctree-checkbox-27"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.reg_fast_laplace</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html">bayesvalidrox.surrogate_models.surrogate_models.MetaModel</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+
+</div>
+</div>
+
+      </div>
+      
+    </div>
+  </aside>
+  <div class="main">
+    <div class="content">
+      <div class="article-container">
+        <a href="#" class="back-to-top muted-link">
+          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
+            <path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12z"></path>
+          </svg>
+          <span>Back to top</span>
+        </a>
+        <div class="content-icon-container">
+          
+<div class="theme-toggle-container theme-toggle-content">
+            <button class="theme-toggle">
+              <div class="visually-hidden">Toggle Light / Dark / Auto color theme</div>
+              <svg class="theme-icon-when-auto"><use href="#svg-sun-half"></use></svg>
+              <svg class="theme-icon-when-dark"><use href="#svg-moon"></use></svg>
+              <svg class="theme-icon-when-light"><use href="#svg-sun"></use></svg>
+            </button>
+          </div>
+          <label class="toc-overlay-icon toc-content-icon" for="__toc">
+            <div class="visually-hidden">Toggle table of contents sidebar</div>
+            <i class="icon"><svg><use href="#svg-toc"></use></svg></i>
+          </label>
+        </div>
+        <article role="main">
+          <section id="bayesian-multi-model-comparison">
+<h1>Bayesian multi-model comparison<a class="headerlink" href="#bayesian-multi-model-comparison" title="Link to this heading">¶</a></h1>
+<div class="twocol docutils container">
+<div class="leftside docutils container">
+<p>Bayesvalidrox provides three distinct methods to compare sets of models against each other given some observation of the outputs, Bayes’ Factors, model weights and confusion matrices.
+These are contained within the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</span></code></a> and can be called one-at-a-time with their respective functions, or consecutively with the function <code class="docutils literal notranslate"><span class="pre">model_comparison_all()</span></code>.</p>
+</div>
+<div class="rightside docutils container">
+<a class="reference internal image-reference" href="_images/bayesian_model_comparison.png"><img alt="UML diagram for classes related to Bayesian multi-model comparison." src="_images/bayesian_model_comparison.png" style="width: 400px;" /></a>
+</div>
+</div>
+<section id="example">
+<h2>Example<a class="headerlink" href="#example" title="Link to this heading">¶</a></h2>
+<p>To perform model comparison, we first need to define the set of competing models.
+For this, we create an additional model in the file <code class="docutils literal notranslate"><span class="pre">model2.py</span></code> based on the example model from <a class="reference internal" href="model_description.html"><span class="doc">Models</span></a>.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">def</span> <span class="nf">model2</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">x_values</span><span class="p">):</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="n">poly</span> <span class="o">=</span> <span class="n">samples</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">power</span><span class="p">(</span><span class="n">x_values</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="n">outputs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;A&#39;</span><span class="p">:</span> <span class="n">poly</span><span class="p">,</span> <span class="s1">&#39;x_values&#39;</span><span class="p">:</span> <span class="n">x_values</span><span class="p">}</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="k">return</span> <span class="n">outputs</span>
+</pre></div>
+</div>
+<p>Then we can build another surrogate for this model, following the same code as for the surrogate in <a class="reference internal" href="surrogate_description.html"><span class="doc">Training surrogate models</span></a>.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span> <span class="o">=</span> <span class="n">PyLinkForwardModel</span><span class="p">()</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span><span class="o">.</span><span class="n">link_type</span> <span class="o">=</span> <span class="s1">&#39;Function&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span><span class="o">.</span><span class="n">py_file</span> <span class="o">=</span> <span class="s1">&#39;model2&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;model2&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;A&#39;</span><span class="p">]</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span><span class="o">.</span><span class="n">func_args</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;x_values&#39;</span><span class="p">:</span> <span class="n">x_values</span><span class="p">}</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model2</span><span class="o">.</span><span class="n">store</span> <span class="o">=</span> <span class="kc">False</span>
+</pre></div>
+</div>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">MetaMod2</span> <span class="o">=</span> <span class="n">MetaModel</span><span class="p">(</span><span class="n">Inputs</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">MetaMod2</span><span class="o">.</span><span class="n">meta_model_type</span> <span class="o">=</span> <span class="s1">&#39;aPCE&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">MetaMod2</span><span class="o">.</span><span class="n">pce_reg_method</span> <span class="o">=</span> <span class="s1">&#39;FastARD&#39;</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">MetaMod2</span><span class="o">.</span><span class="n">pce_deg</span> <span class="o">=</span> <span class="mi">3</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">MetaMod2</span><span class="o">.</span><span class="n">pce_q_norm</span> <span class="o">=</span> <span class="mi">1</span>
+</pre></div>
+</div>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">ExpDesign2</span> <span class="o">=</span> <span class="n">ExpDesigns</span><span class="p">(</span><span class="n">Inputs</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">ExpDesign2</span><span class="o">.</span><span class="n">n_init_samples</span> <span class="o">=</span> <span class="mi">30</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">ExpDesign2</span><span class="o">.</span><span class="n">sampling_method</span> <span class="o">=</span> <span class="s1">&#39;random&#39;</span>
+</pre></div>
+</div>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Engine_2</span> <span class="o">=</span> <span class="n">Engine</span><span class="p">(</span><span class="n">MetaMod2</span><span class="p">,</span> <span class="n">Model2</span><span class="p">,</span> <span class="n">ExpDesign2</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Engine_2</span><span class="o">.</span><span class="n">train_normal</span><span class="p">()</span>
+</pre></div>
+</div>
+<p>To perform model comparison we use the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.html#bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison" title="bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison</span></code></a>.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span>&gt;&gt;&gt; from bayesvalidrox import BayesModelComparison`
+</pre></div>
+</div>
+<p>We collect the engines that should be compared in a dictionary, and assign them names.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">meta_models</span> <span class="o">=</span> <span class="p">{</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;linear&quot;</span><span class="p">:</span> <span class="n">Engine_</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;degthree&quot;</span><span class="p">:</span> <span class="n">Engine_2</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="p">}</span>
+</pre></div>
+</div>
+<p>Then we create an object of class <code class="docutils literal notranslate"><span class="pre">BayesModelComparison</span></code>.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">BayesOpts</span> <span class="o">=</span> <span class="n">BayesModelComparison</span><span class="p">()</span>
+</pre></div>
+</div>
+<p>As the comparison uses the class <a class="reference internal" href="_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.html#bayesvalidrox.bayes_inference.bayes_inference.BayesInference" title="bayesvalidrox.bayes_inference.bayes_inference.BayesInference"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.bayes_inference.bayes_inference.BayesInference</span></code></a>, we can also set the properties for this class as well.
+These are collected in a dictionary and given to the function calls that perform the model comparison.
+In this example we use the following settings.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">opts_bootstrap</span> <span class="o">=</span> <span class="p">{</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;bootstrap&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;n_samples&quot;</span><span class="p">:</span> <span class="mi">100</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;Discrepancy&quot;</span><span class="p">:</span> <span class="n">DiscrepancyOpts</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;emulator&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="s2">&quot;plot_post_pred&quot;</span><span class="p">:</span> <span class="kc">False</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="p">}</span>
+</pre></div>
+</div>
+<p>Now we can run the full model comparison.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">output_dict</span> <span class="o">=</span> <span class="n">BayesOpts</span><span class="o">.</span><span class="n">model_comparison_all</span><span class="p">(</span><span class="n">meta_models</span><span class="p">,</span> <span class="n">opts_bootstrap</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>The created plots are saved in the folder <code class="docutils literal notranslate"><span class="pre">Outputs_Comparison</span></code>.</p>
+</section>
+</section>
+
+        </article>
+      </div>
+      <footer>
+        
+        <div class="related-pages">
+          <a class="next-page" href="tutorial.html">
+              <div class="page-info">
+                <div class="context">
+                  <span>Next</span>
+                </div>
+                <div class="title">TUTORIAL</div>
+              </div>
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+            </a>
+          <a class="prev-page" href="bayes_description.html">
+              <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
+              <div class="page-info">
+                <div class="context">
+                  <span>Previous</span>
+                </div>
+                
+                <div class="title">Bayesian inference</div>
+                
+              </div>
+            </a>
+        </div>
+        <div class="bottom-of-page">
+          <div class="left-details">
+            <div class="copyright">
+                Copyright &#169; 2023, Farid Mohammadi, Rebecca Kohlhaas
+            </div>
+            Made with <a href="https://www.sphinx-doc.org/">Sphinx</a> and <a class="muted-link" href="https://pradyunsg.me">@pradyunsg</a>'s
+            
+            <a href="https://github.com/pradyunsg/furo">Furo</a>
+            
+          </div>
+          <div class="right-details">
+            
+          </div>
+        </div>
+        
+      </footer>
+    </div>
+    <aside class="toc-drawer">
+      
+      
+      <div class="toc-sticky toc-scroll">
+        <div class="toc-title-container">
+          <span class="toc-title">
+            On this page
+          </span>
+        </div>
+        <div class="toc-tree-container">
+          <div class="toc-tree">
+            <ul>
+<li><a class="reference internal" href="#">Bayesian multi-model comparison</a><ul>
+<li><a class="reference internal" href="#example">Example</a></li>
+</ul>
+</li>
+</ul>
+
+          </div>
+        </div>
+      </div>
+      
+      
+    </aside>
+  </div>
+</div><script src="_static/documentation_options.js?v=4ebf8126"></script>
+    <script src="_static/doctools.js?v=9a2dae69"></script>
+    <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
+    <script src="_static/scripts/furo.js?v=32e29ea5"></script>
+    </body>
+</html>
\ No newline at end of file
diff --git a/public/borehole.html b/public/borehole.html
index eafbe8618ff8d0757196ae0777a1cf723a5fffbe..014cf87ce0361c67738cab333bef733c074a6ec0 100644
--- a/public/borehole.html
+++ b/public/borehole.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/examples.html b/public/examples.html
index 9d6b6cce855166cfe6ef716ab177457dbfa207cc..396ff2984d8c87b4def851642f1a92d2870613e2 100644
--- a/public/examples.html
+++ b/public/examples.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/genindex.html b/public/genindex.html
index 2b0791a3b4af33fa58bd71d15659bc6600d809eb..efd05e85c6a4584e9962e9d1d0751ddeb168e983 100644
--- a/public/genindex.html
+++ b/public/genindex.html
@@ -168,7 +168,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -236,9 +237,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -286,7 +284,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -377,6 +382,8 @@
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html#bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.__init__">(bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD method)</a>
 </li>
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html#bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.__init__">(bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace method)</a>
+</li>
+          <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.__init__">(bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.html#bayesvalidrox.surrogate_models.surrogate_models.MetaModel.__init__">(bayesvalidrox.surrogate_models.surrogate_models.MetaModel method)</a>
 </li>
@@ -585,6 +592,13 @@
 
         <ul>
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html#module-bayesvalidrox.surrogate_models.reg_fast_laplace">module</a>
+</li>
+        </ul></li>
+        <li>
+    bayesvalidrox.surrogate_models.sequential_design
+
+        <ul>
+          <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html#module-bayesvalidrox.surrogate_models.sequential_design">module</a>
 </li>
         </ul></li>
         <li>
@@ -632,7 +646,7 @@
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.html#bayesvalidrox.surrogate_models.input_space.InputSpace.check_valid_inputs">(bayesvalidrox.surrogate_models.input_space.InputSpace method)</a>
 </li>
         </ul></li>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.choose_next_sample">choose_next_sample() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.choose_next_sample">choose_next_sample() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
     </ul></td>
     <td style="width: 33%; vertical-align: top;"><ul>
@@ -670,7 +684,7 @@
 </li>
     </ul></td>
     <td style="width: 33%; vertical-align: top;"><ul>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.dual_annealing">dual_annealing() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.dual_annealing">dual_annealing() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
     </ul></td>
   </tr></table>
@@ -801,7 +815,11 @@
   <table style="width: 100%" class="indextable genindextable"><tr>
     <td style="width: 33%; vertical-align: top;"><ul>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html#bayesvalidrox.surrogate_models.engine.hellinger_distance">hellinger_distance() (in module bayesvalidrox.surrogate_models.engine)</a>
+
+        <ul>
+          <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html#bayesvalidrox.surrogate_models.sequential_design.hellinger_distance">(in module bayesvalidrox.surrogate_models.sequential_design)</a>
 </li>
+        </ul></li>
     </ul></td>
   </tr></table>
 </section>
@@ -853,7 +871,11 @@
         <li><a href="_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html#bayesvalidrox.bayes_inference.mcmc.MCMC.log_prior">log_prior() (bayesvalidrox.bayes_inference.mcmc.MCMC method)</a>
 </li>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html#bayesvalidrox.surrogate_models.engine.logpdf">logpdf() (in module bayesvalidrox.surrogate_models.engine)</a>
+
+        <ul>
+          <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html#bayesvalidrox.surrogate_models.sequential_design.logpdf">(in module bayesvalidrox.surrogate_models.sequential_design)</a>
 </li>
+        </ul></li>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.html#bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.loo_error">loo_error() (bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit method)</a>
 </li>
     </ul></td>
@@ -925,6 +947,8 @@
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.html#module-bayesvalidrox.surrogate_models.reg_fast_ard">bayesvalidrox.surrogate_models.reg_fast_ard</a>
 </li>
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html#module-bayesvalidrox.surrogate_models.reg_fast_laplace">bayesvalidrox.surrogate_models.reg_fast_laplace</a>
+</li>
+          <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html#module-bayesvalidrox.surrogate_models.sequential_design">bayesvalidrox.surrogate_models.sequential_design</a>
 </li>
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html#module-bayesvalidrox.surrogate_models.surrogate_models">bayesvalidrox.surrogate_models.surrogate_models</a>
 </li>
@@ -1051,7 +1075,7 @@
 </li>
         <li><a href="_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html#bayesvalidrox.bayes_inference.mcmc.MCMC.run_sampler">run_sampler() (bayesvalidrox.bayes_inference.mcmc.MCMC method)</a>
 </li>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.run_util_func">run_util_func() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.run_util_func">run_util_func() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
     </ul></td>
   </tr></table>
@@ -1073,6 +1097,8 @@
           <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.html#bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.score">(bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD method)</a>
 </li>
         </ul></li>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign">SequentialDesign (class in bayesvalidrox.surrogate_models.sequential_design)</a>
+</li>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.html#bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.set_params">set_params() (bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression method)</a>
 
         <ul>
@@ -1116,9 +1142,15 @@
         <li><a href="_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html#bayesvalidrox.post_processing.post_processing.PostProcessing.sobol_indices">sobol_indices() (bayesvalidrox.post_processing.post_processing.PostProcessing method)</a>
 </li>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.start_engine">start_engine() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+</li>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.start_seqdesign">start_seqdesign() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html#bayesvalidrox.surrogate_models.engine.subdomain">subdomain() (in module bayesvalidrox.surrogate_models.engine)</a>
+
+        <ul>
+          <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html#bayesvalidrox.surrogate_models.sequential_design.subdomain">(in module bayesvalidrox.surrogate_models.sequential_design)</a>
 </li>
+        </ul></li>
     </ul></td>
   </tr></table>
 </section>
@@ -1127,7 +1159,7 @@
   <h2>T</h2>
   <table style="width: 100%" class="indextable genindextable"><tr>
     <td style="width: 33%; vertical-align: top;"><ul>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.tradeoff_weights">tradeoff_weights() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.tradeoff_weights">tradeoff_weights() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
         <li><a href="_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.html#bayesvalidrox.bayes_inference.mcmc.MCMC.train_error_model">train_error_model() (bayesvalidrox.bayes_inference.mcmc.MCMC method)</a>
 </li>
@@ -1167,13 +1199,13 @@
     <td style="width: 33%; vertical-align: top;"><ul>
         <li><a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.html#bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions">update_precisions() (in module bayesvalidrox.surrogate_models.reg_fast_ard)</a>
 </li>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.util_AlphOptDesign">util_AlphOptDesign() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_AlphOptDesign">util_AlphOptDesign() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianActiveDesign">util_BayesianActiveDesign() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianActiveDesign">util_BayesianActiveDesign() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.util_BayesianDesign">util_BayesianDesign() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_BayesianDesign">util_BayesianDesign() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
-        <li><a href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html#bayesvalidrox.surrogate_models.engine.Engine.util_VarBasedDesign">util_VarBasedDesign() (bayesvalidrox.surrogate_models.engine.Engine method)</a>
+        <li><a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html#bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.util_VarBasedDesign">util_VarBasedDesign() (bayesvalidrox.surrogate_models.sequential_design.SequentialDesign method)</a>
 </li>
     </ul></td>
   </tr></table>
diff --git a/public/index.html b/public/index.html
index 460cf3cb78de9b9cd652a03cf2a89b74f44b34af..ec005c25c4dabd5114c02937d0d645ccfbee8d74 100644
--- a/public/index.html
+++ b/public/index.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/input_description.html b/public/input_description.html
index 39e16d2b9c9ebbb21b05daa969ec7defe54b2f01..bd280c02abe32071dcb98df357553afe58908086 100644
--- a/public/input_description.html
+++ b/public/input_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/ishigami.html b/public/ishigami.html
index 06d5b7d8c9adcb37841b53c2a5e31c6cdb19a142..84037dab5da9a575a46b80669a15c3b00537e112 100644
--- a/public/ishigami.html
+++ b/public/ishigami.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/model_description.html b/public/model_description.html
index 2dbaeed956d41cede70ba75d52434aab60a16698..16ff2a7b895d814beb149e1b5f70212ee003a84b 100644
--- a/public/model_description.html
+++ b/public/model_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -339,12 +344,10 @@
 <h1>Models<a class="headerlink" href="#models" title="Link to this heading">¶</a></h1>
 <div class="twocol docutils container">
 <div class="leftside docutils container">
-<dl>
-<dt>BayesValidRox gives options to create interfaces for a variety of models with the class <a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="bayesvalidrox.pylink.pylink.PyLinkForwardModel"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.pylink.pylink.PyLinkForwardModel</span></code></a>.</dt><dd><p>Its main function is to run the model on given samples and to read in and contain MC references and observations.</p>
+<p>BayesValidRox gives options to create interfaces for a variety of models with the class <a class="reference internal" href="_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.html#bayesvalidrox.pylink.pylink.PyLinkForwardModel" title="bayesvalidrox.pylink.pylink.PyLinkForwardModel"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.pylink.pylink.PyLinkForwardModel</span></code></a>.
+Its main function is to run the model on given samples and to read in and contain MC references and observations.</p>
 <p>Models can be defined via python functions, shell commands or as general executables.
 This allows for the use of BayesValidRox with a broad range of models and easy extension to models that are defined with e.g. UM-Bridge.</p>
-</dd>
-</dl>
 </div>
 <div class="rightside docutils container">
 <a class="reference internal image-reference" href="_images/model.png"><img alt="UML diagram for the bayesvalidrox class :any:`bayesvalidrox.pylink.pylink.PyLinkForwardModel`." src="_images/model.png" style="width: 150px;" /></a>
@@ -357,9 +360,11 @@ We define this model as a function <code class="docutils literal notranslate"><s
 This function takes a single realization of the uncertain parameter as a 2-dimensional <code class="docutils literal notranslate"><span class="pre">np.array</span></code> and returns a dictionary of model results.
 Here we use the key <code class="docutils literal notranslate"><span class="pre">A</span></code> for the sample values and <code class="docutils literal notranslate"><span class="pre">B</span></code> for their squares.
 Under the key <code class="docutils literal notranslate"><span class="pre">x_values</span></code> a list should be given that is of the same length as each output of the model for a single input.
-The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis.</p>
-<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">sample</span><span class="p">):</span>
-<span class="gp">&gt;&gt;&gt; </span>    <span class="n">square</span> <span class="o">=</span> <span class="n">sample</span><span class="o">*</span><span class="n">sample</span>
+The values in this list can denote e.g. timesteps and are used in postprocessing as labels of the x-axis.
+If we want to set the <code class="docutils literal notranslate"><span class="pre">x_values</span></code> outside of the model, it can also be given as an additional parameter</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">samples</span><span class="p">,</span> <span class="n">x_values</span><span class="p">):</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="n">sample</span> <span class="o">=</span> <span class="n">samples</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x_values</span>
+<span class="gp">&gt;&gt;&gt; </span>    <span class="n">square</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">power</span><span class="p">(</span><span class="n">samples</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">*</span><span class="n">x_values</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span>    <span class="n">outputs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;A&#39;</span><span class="p">:</span> <span class="n">sample</span><span class="p">,</span> <span class="s1">&#39;B&#39;</span><span class="p">:</span> <span class="n">square</span><span class="p">,</span> <span class="s1">&#39;x_values&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">]}</span>
 <span class="gp">&gt;&gt;&gt; </span>    <span class="k">return</span> <span class="n">outputs</span>
 </pre></div>
@@ -375,7 +380,13 @@ Lastly we list the keys of the outputs that we are interested in.</p>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">link_type</span> <span class="o">=</span> <span class="s1">&#39;Function&#39;</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">py_file</span> <span class="o">=</span> <span class="s1">&#39;model&#39;</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;model&#39;</span>
-<span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;A&#39;</span><span class="p">,</span> <span class="s1">&#39;B&#39;</span><span class="p">]</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">Output</span><span class="o">.</span><span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;A&#39;</span><span class="p">]</span>
+</pre></div>
+</div>
+<p>Any parameters to the model function, that are not the samples, can be set via the <code class="docutils literal notranslate"><span class="pre">func_args</span></code> argument.
+In this case we define <code class="docutils literal notranslate"><span class="pre">x_values</span></code> as a <code class="docutils literal notranslate"><span class="pre">np.array</span></code> and include it.</p>
+<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">x_values</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mf">0.1</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">Model</span><span class="o">.</span><span class="n">func_args</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;x_values&#39;</span><span class="p">:</span><span class="n">x_values</span><span class="p">}</span>
 </pre></div>
 </div>
 <p>With this we have completed an interface to our model.
diff --git a/public/modelcomparison.html b/public/modelcomparison.html
index 723a66ed173227b1716a63d607f17305a2b44e17..8375810556027a7ca31f950e084177740a1cee7c 100644
--- a/public/modelcomparison.html
+++ b/public/modelcomparison.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/objects.inv b/public/objects.inv
index b24151365f5b50ce51d7b5ed10cfdff340f22cf1..8582dd8e85df9581e9955c6f5258c8a187283a96 100644
Binary files a/public/objects.inv and b/public/objects.inv differ
diff --git a/public/ohaganfunction.html b/public/ohaganfunction.html
index cfe645ff03aebcd76205c1fc126f95d245425524..b9ef9f5893f6cd64172056ca94e1c2597c92d961 100644
--- a/public/ohaganfunction.html
+++ b/public/ohaganfunction.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/packagedescription.html b/public/packagedescription.html
index c76923ed2587b0b106908c8890e2adb48ed50353..7e93323897ae68898957f25143b24ae3316c96be 100644
--- a/public/packagedescription.html
+++ b/public/packagedescription.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -382,7 +387,8 @@ If multiple (surrogate) models are given, they can be compared against each othe
 <li class="toctree-l1"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l1"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l1"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l1"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l1"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l1"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </div>
 </section>
diff --git a/public/pollution.html b/public/pollution.html
index 4b71758ef44c4e45b163bb5f6e68271803fd1f39..f1bed24b70ed86aa00ec707935bcabeeab1064c4 100644
--- a/public/pollution.html
+++ b/public/pollution.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/post_description.html b/public/post_description.html
index d5eb2c29ef5a75b1b970f1b6d38b047b0d36cb55..ffe29253a3501612393b012e29cd938cc62ea21e 100644
--- a/public/post_description.html
+++ b/public/post_description.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="Bayesian inference and multi-model comparison" href="bayes_description.html" /><link rel="prev" title="Active learning: iteratively expanding the training set" href="al_description.html" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="Bayesian inference" href="bayes_description.html" /><link rel="prev" title="Active learning: iteratively expanding the training set" href="al_description.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>Postprocessing - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -341,12 +346,10 @@
 <div class="leftside docutils container">
 <p>Postprocessing refers to evaluations and checks performed on a model to get an understanding of its properties and estimate its quality.
 The BayesValidRox class <a class="reference internal" href="_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.html#bayesvalidrox.post_processing.post_processing.PostProcessing" title="bayesvalidrox.post_processing.post_processing.PostProcessing"><code class="xref any py py-class docutils literal notranslate"><span class="pre">bayesvalidrox.post_processing.post_processing.PostProcessing</span></code></a> includes functions that are applicable to all types of surrogate model.</p>
-<blockquote>
-<div><ul class="simple">
+<ul class="simple">
 <li><p><code class="docutils literal notranslate"><span class="pre">valid_metamodel</span></code>: visualizing some metamodel runs against the corresponding model runs</p></li>
 <li><p><code class="docutils literal notranslate"><span class="pre">check_accuracy</span></code>: computing the RMSE error of the surrogate model</p></li>
 </ul>
-</div></blockquote>
 </div>
 <div class="rightside docutils container">
 <a class="reference internal image-reference" href="_images/postprocessing.png"><img alt="UML diagram for the classes and functions used in active learning in BayesValidRox." src="_images/postprocessing.png" style="width: 300px;" /></a>
@@ -407,7 +410,7 @@ The BayesValidRox class <a class="reference internal" href="_autosummary/bayesva
                 <div class="context">
                   <span>Next</span>
                 </div>
-                <div class="title">Bayesian inference and multi-model comparison</div>
+                <div class="title">Bayesian inference</div>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
diff --git a/public/py-modindex.html b/public/py-modindex.html
index a10614c9b79526a3d472e0d16dc897c071d4208e..68779e1c21d3aa7c26c71f2eb637d75bae5b970c 100644
--- a/public/py-modindex.html
+++ b/public/py-modindex.html
@@ -168,7 +168,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -236,9 +237,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -286,7 +284,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -489,6 +494,12 @@
         <a href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.html#module-bayesvalidrox.surrogate_models.reg_fast_laplace"><code class="xref">bayesvalidrox.surrogate_models.reg_fast_laplace</code></a></td><td>
     <em></em></td>
   </tr>
+  <tr class="cg-1">
+    <td></td>
+    <td>&#160;&#160;&#160;
+        <a href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html#module-bayesvalidrox.surrogate_models.sequential_design"><code class="xref">bayesvalidrox.surrogate_models.sequential_design</code></a></td><td>
+    <em></em></td>
+  </tr>
   <tr class="cg-1">
     <td></td>
     <td>&#160;&#160;&#160;
diff --git a/public/search.html b/public/search.html
index 8fe37498ef5854389bf8baad867f2b6e492744ad..68bb110a399c028a9669baae8437052d90d35628 100644
--- a/public/search.html
+++ b/public/search.html
@@ -167,7 +167,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -235,9 +236,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -285,7 +283,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/searchindex.js b/public/searchindex.js
index 3aaa01c41f479cebaf4856492681920308cc6705..8fe061015d67a948fa9e5e8fc73242434df6879a 100644
--- a/public/searchindex.js
+++ b/public/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"API": [[66, "api"]], "Active learning: iteratively expanding the training set": [[64, "active-learning-iteratively-expanding-the-training-set"]], "Arguments": [[29, "arguments"], [42, "arguments"], [42, "id2"]], "Attributes": [[3, "attributes"], [5, "attributes"], [7, "attributes"], [9, "attributes"], [13, "attributes"], [16, "attributes"], [25, "attributes"], [26, "attributes"], [39, "attributes"], [42, "attributes"], [47, "attributes"], [49, "attributes"], [50, "attributes"], [52, "attributes"], [55, "attributes"], [58, "attributes"], [60, "attributes"]], "Bayesian Inference": [[81, "bayesian-inference"]], "Bayesian inference and multi-model comparison": [[67, "bayesian-inference-and-multi-model-comparison"]], "Contribution": [[71, "contribution"]], "Define probabilistic input model": [[81, "define-probabilistic-input-model"]], "Define surrogate (meta) model": [[81, "define-surrogate-meta-model"]], "Define the data uncertainty": [[81, "define-the-data-uncertainty"]], "Define the model with PyLinkForwardModel": [[81, "define-the-model-with-pylinkforwardmodel"]], "Discrepancy": [[65, "id3"], [68, "id3"]], "EXAMPLES": [[70, "examples"]], "Example": [[64, "example"], [72, "example"], [74, "example"], [79, "example"], [80, "example"]], "Example: Analytical function": [[65, "example-analytical-function"]], "Example: OHagan-function": [[76, "example-ohagan-function"]], "Example: beam": [[68, "example-beam"]], "Example: borehole": [[69, "example-borehole"]], "Example: ishigami": [[73, "example-ishigami"]], "Example: model comparison": [[75, "example-model-comparison"]], "Example: pollution": [[78, "example-pollution"]], "Examples": [[49, "examples"]], "Exploration, exploitation and tradeoff": [[64, "exploration-exploitation-and-tradeoff"]], "Further contents": [[71, "further-contents"]], "Import necessary libraries": [[81, "import-necessary-libraries"]], "Indices and tables": [[71, "indices-and-tables"]], "Installation": [[71, "installation"], [77, "installation"]], "License": [[71, "license"]], "Links": [[71, "links"]], "MetaModel options": [[80, "metamodel-options"]], "MetaModel settings": [[65, "id4"], [68, "id4"], [69, "id3"], [73, "id3"], [75, "id7"], [76, "id3"], [78, "id3"]], "Model 1: L2_model": [[75, "model-1-l2-model"]], "Model 1: NL2_model": [[75, "model-1-nl2-model"]], "Model 1: NL4_model": [[75, "model-1-nl4-model"]], "Model and Data": [[65, "model-and-data"], [68, "model-and-data"], [69, "model-and-data"], [73, "model-and-data"], [76, "model-and-data"], [78, "model-and-data"]], "Models": [[74, "models"]], "Note": [[39, "note"], [60, "note"]], "Notes": [[24, "notes"], [25, "notes"], [26, "notes"], [52, "notes"], [55, "notes"]], "Overview": [[77, "overview"]], "Parameters": [[3, "parameters"], [3, "id2"], [3, "id4"], [3, "id7"], [5, "parameters"], [5, "id1"], [5, "id3"], [5, "id5"], [5, "id7"], [5, "id9"], [5, "id11"], [5, "id13"], [5, "id15"], [7, "parameters"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id5"], [9, "id7"], [9, "id9"], [9, "id11"], [10, "parameters"], [13, "parameters"], [13, "id1"], [13, "id4"], [13, "id6"], [13, "id8"], [13, "id10"], [16, "parameters"], [16, "id2"], [16, "id4"], [16, "id6"], [16, "id8"], [16, "id10"], [16, "id12"], [17, "parameters"], [22, "parameters"], [24, "parameters"], [24, "id2"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id12"], [25, "id1"], [25, "id3"], [25, "id5"], [25, "id7"], [25, "id9"], [25, "id11"], [25, "id15"], [25, "id17"], [26, "id1"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [26, "id11"], [26, "id15"], [26, "id17"], [27, "parameters"], [29, "parameters"], [29, "id1"], [29, "id3"], [29, "id5"], [29, "id8"], [29, "id14"], [29, "id16"], [29, "id18"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [39, "parameters"], [39, "id2"], [39, "id4"], [39, "id6"], [39, "id8"], [39, "id10"], [39, "id12"], [39, "id14"], [39, "id16"], [40, "parameters"], [47, "parameters"], [47, "id2"], [47, "id4"], [52, "parameters"], [52, "id1"], [52, "id2"], [52, "id5"], [52, "id7"], [52, "id9"], [52, "id11"], [52, "id13"], [52, "id17"], [55, "parameters"], [55, "id1"], [55, "id3"], [55, "id5"], [55, "id8"], [55, "id10"], [55, "id14"], [55, "id16"], [58, "parameters"], [58, "id1"], [60, "parameters"], [60, "id4"], [60, "id6"], [60, "id8"], [60, "id10"], [60, "id12"], [60, "id14"], [60, "id16"], [60, "id18"], [60, "id20"], [61, "parameters"], [62, "parameters"], [63, "parameters"]], "Parameters:": [[25, "parameters"], [26, "parameters"]], "Post-processing": [[81, "post-processing"]], "Postprocessing": [[79, "postprocessing"]], "Priors": [[65, "id2"], [68, "id2"], [69, "id2"], [73, "id2"], [76, "id2"], [78, "id2"]], "Priors, input space and experimental design": [[72, "priors-input-space-and-experimental-design"]], "Priors1": [[75, "id2"], [75, "id4"], [75, "id6"]], "Pylink model": [[65, "id1"], [68, "id1"], [69, "id1"], [73, "id1"], [76, "id1"], [78, "id1"]], "Pylink model1": [[75, "id1"], [75, "id3"], [75, "id5"]], "Quickstart": [[71, "quickstart"]], "Raises": [[13, "raises"], [29, "raises"], [62, "raises"]], "References": [[52, "references"], [55, "references"], [55, "id7"], [58, "references"], [58, "id2"]], "Returns": [[3, "returns"], [3, "id1"], [3, "id3"], [3, "id5"], [3, "id6"], [3, "id8"], [5, "returns"], [5, "id2"], [5, "id4"], [5, "id6"], [5, "id8"], [5, "id10"], [5, "id12"], [5, "id14"], [5, "id16"], [5, "id17"], [7, "returns"], [9, "returns"], [9, "id2"], [9, "id4"], [9, "id6"], [9, "id8"], [9, "id10"], [9, "id12"], [10, "returns"], [13, "returns"], [13, "id2"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [13, "id11"], [16, "returns"], [16, "id1"], [16, "id3"], [16, "id5"], [16, "id7"], [16, "id9"], [16, "id11"], [16, "id13"], [17, "returns"], [22, "returns"], [24, "returns"], [24, "id1"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id11"], [24, "id13"], [25, "returns"], [25, "id2"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [25, "id14"], [25, "id16"], [25, "id18"], [26, "returns"], [26, "id2"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [26, "id14"], [26, "id16"], [26, "id18"], [27, "returns"], [29, "returns"], [29, "id2"], [29, "id4"], [29, "id6"], [29, "id7"], [29, "id9"], [29, "id10"], [29, "id11"], [29, "id12"], [29, "id13"], [29, "id15"], [29, "id17"], [29, "id19"], [30, "returns"], [31, "returns"], [32, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [39, "returns"], [39, "id1"], [39, "id3"], [39, "id5"], [39, "id7"], [39, "id9"], [39, "id11"], [39, "id13"], [39, "id15"], [39, "id17"], [40, "returns"], [42, "returns"], [42, "id1"], [42, "id3"], [42, "id4"], [47, "returns"], [47, "id1"], [47, "id3"], [47, "id5"], [49, "returns"], [52, "returns"], [52, "id3"], [52, "id4"], [52, "id6"], [52, "id8"], [52, "id10"], [52, "id12"], [52, "id16"], [52, "id18"], [55, "returns"], [55, "id2"], [55, "id4"], [55, "id6"], [55, "id9"], [55, "id13"], [55, "id15"], [55, "id17"], [58, "returns"], [60, "returns"], [60, "id1"], [60, "id2"], [60, "id3"], [60, "id5"], [60, "id7"], [60, "id9"], [60, "id11"], [60, "id13"], [60, "id15"], [60, "id17"], [60, "id19"], [60, "id21"], [61, "returns"], [62, "returns"], [63, "returns"]], "Sequential training": [[81, "sequential-training"]], "Set the experimental design": [[81, "set-the-experimental-design"]], "Surrogate": [[65, "surrogate"], [68, "surrogate"], [69, "surrogate"], [73, "surrogate"], [76, "surrogate"], [78, "surrogate"]], "Surrogate-assisted\u00a0Bayesian validation of computational models": [[71, "surrogate-assisted-bayesian-validation-of-computational-models"]], "Surrogates 1-3": [[75, "surrogates-1-3"]], "TUTORIAL": [[81, "tutorial"]], "Train the surrogate with an engine": [[81, "train-the-surrogate-with-an-engine"]], "Training choices": [[65, "id5"], [68, "id5"], [69, "id4"], [73, "id4"], [75, "id8"], [76, "id4"], [78, "id4"]], "Training surrogate models": [[80, "training-surrogate-models"]], "Training with the engine": [[80, "training-with-the-engine"]], "USER GUIDE": [[77, "user-guide"]], "bayesvalidrox": [[0, "module-bayesvalidrox"]], "bayesvalidrox.bayes_inference": [[1, "module-bayesvalidrox.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference": [[2, "module-bayesvalidrox.bayes_inference.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, "bayesvalidrox-bayes-inference-bayes-inference-bayesinference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[4, "module-bayesvalidrox.bayes_inference.bayes_model_comparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, "bayesvalidrox-bayes-inference-bayes-model-comparison-bayesmodelcomparison"]], "bayesvalidrox.bayes_inference.discrepancy": [[6, "module-bayesvalidrox.bayes_inference.discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, "bayesvalidrox-bayes-inference-discrepancy-discrepancy"]], "bayesvalidrox.bayes_inference.mcmc": [[8, "module-bayesvalidrox.bayes_inference.mcmc"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, "bayesvalidrox-bayes-inference-mcmc-mcmc"]], "bayesvalidrox.bayes_inference.mcmc.gelman_rubin": [[10, "bayesvalidrox-bayes-inference-mcmc-gelman-rubin"]], "bayesvalidrox.post_processing": [[11, "module-bayesvalidrox.post_processing"]], "bayesvalidrox.post_processing.post_processing": [[12, "module-bayesvalidrox.post_processing.post_processing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, "bayesvalidrox-post-processing-post-processing-postprocessing"]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink"]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, "bayesvalidrox-pylink-pylink-pylinkforwardmodel"]], "bayesvalidrox.pylink.pylink.within_range": [[17, "bayesvalidrox-pylink-pylink-within-range"]], "bayesvalidrox.surrogate_models": [[18, "module-bayesvalidrox.surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[19, "module-bayesvalidrox.surrogate_models.adaptPlot"]], "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot": [[20, "bayesvalidrox-surrogate-models-adaptplot-adaptplot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[21, "module-bayesvalidrox.surrogate_models.apoly_construction"]], "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction": [[22, "bayesvalidrox-surrogate-models-apoly-construction-apoly-construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[23, "module-bayesvalidrox.surrogate_models.bayes_linear"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, "bayesvalidrox-surrogate-models-bayes-linear-bayesianlinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, "bayesvalidrox-surrogate-models-bayes-linear-eblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, "bayesvalidrox-surrogate-models-bayes-linear-vblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean": [[27, "bayesvalidrox-surrogate-models-bayes-linear-gamma-mean"]], "bayesvalidrox.surrogate_models.engine": [[28, "module-bayesvalidrox.surrogate_models.engine"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, "bayesvalidrox-surrogate-models-engine-engine"]], "bayesvalidrox.surrogate_models.engine.hellinger_distance": [[30, "bayesvalidrox-surrogate-models-engine-hellinger-distance"]], "bayesvalidrox.surrogate_models.engine.logpdf": [[31, "bayesvalidrox-surrogate-models-engine-logpdf"]], "bayesvalidrox.surrogate_models.engine.subdomain": [[32, "bayesvalidrox-surrogate-models-engine-subdomain"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[33, "module-bayesvalidrox.surrogate_models.eval_rec_rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule": [[34, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary": [[35, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule-arbitrary"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis": [[36, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-univ-basis"]], "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs": [[37, "bayesvalidrox-surrogate-models-eval-rec-rule-poly-rec-coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[38, "module-bayesvalidrox.surrogate_models.exp_designs"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, "bayesvalidrox-surrogate-models-exp-designs-expdesigns"]], "bayesvalidrox.surrogate_models.exp_designs.check_ranges": [[40, "bayesvalidrox-surrogate-models-exp-designs-check-ranges"]], "bayesvalidrox.surrogate_models.exploration": [[41, "module-bayesvalidrox.surrogate_models.exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, "bayesvalidrox-surrogate-models-exploration-exploration"]], "bayesvalidrox.surrogate_models.glexindex": [[43, "module-bayesvalidrox.surrogate_models.glexindex"]], "bayesvalidrox.surrogate_models.glexindex.cross_truncate": [[44, "bayesvalidrox-surrogate-models-glexindex-cross-truncate"]], "bayesvalidrox.surrogate_models.glexindex.glexindex": [[45, "bayesvalidrox-surrogate-models-glexindex-glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[46, "module-bayesvalidrox.surrogate_models.input_space"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, "bayesvalidrox-surrogate-models-input-space-inputspace"]], "bayesvalidrox.surrogate_models.inputs": [[48, "module-bayesvalidrox.surrogate_models.inputs"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, "bayesvalidrox-surrogate-models-inputs-input"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, "bayesvalidrox-surrogate-models-inputs-marginal"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[51, "module-bayesvalidrox.surrogate_models.orthogonal_matching_pursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-orthogonalmatchingpursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr": [[53, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-corr"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[54, "module-bayesvalidrox.surrogate_models.reg_fast_ard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, "bayesvalidrox-surrogate-models-reg-fast-ard-regressionfastard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions": [[56, "bayesvalidrox-surrogate-models-reg-fast-ard-update-precisions"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[57, "module-bayesvalidrox.surrogate_models.reg_fast_laplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, "bayesvalidrox-surrogate-models-reg-fast-laplace-regressionfastlaplace"]], "bayesvalidrox.surrogate_models.surrogate_models": [[59, "module-bayesvalidrox.surrogate_models.surrogate_models"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[60, "bayesvalidrox-surrogate-models-surrogate-models-metamodel"]], "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error": [[61, "bayesvalidrox-surrogate-models-surrogate-models-corr-loocv-error"]], "bayesvalidrox.surrogate_models.surrogate_models.create_psi": [[62, "bayesvalidrox-surrogate-models-surrogate-models-create-psi"]], "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator": [[63, "bayesvalidrox-surrogate-models-surrogate-models-gaussian-process-emulator"]]}, "docnames": ["_autosummary/bayesvalidrox", "_autosummary/bayesvalidrox.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "_autosummary/bayesvalidrox.bayes_inference.discrepancy", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "_autosummary/bayesvalidrox.bayes_inference.mcmc", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "_autosummary/bayesvalidrox.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing", "_autosummary/bayesvalidrox.pylink", "_autosummary/bayesvalidrox.pylink.pylink", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel", "_autosummary/bayesvalidrox.pylink.pylink.within_range", "_autosummary/bayesvalidrox.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "_autosummary/bayesvalidrox.surrogate_models.engine", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges", "_autosummary/bayesvalidrox.surrogate_models.exploration", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration", "_autosummary/bayesvalidrox.surrogate_models.glexindex", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex", "_autosummary/bayesvalidrox.surrogate_models.input_space", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace", "_autosummary/bayesvalidrox.surrogate_models.inputs", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "al_description", "analyticalfunction", "api", "bayes_description", "beam", "borehole", "examples", "index", "input_description", "ishigami", "model_description", "modelcomparison", "ohaganfunction", "packagedescription", "pollution", "post_description", "surrogate_description", "tutorial"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["_autosummary/bayesvalidrox.rst", "_autosummary/bayesvalidrox.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.rst", "_autosummary/bayesvalidrox.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.rst", "_autosummary/bayesvalidrox.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.rst", "_autosummary/bayesvalidrox.pylink.pylink.within_range.rst", "_autosummary/bayesvalidrox.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.rst", "al_description.rst", "analyticalfunction.rst", "api.rst", "bayes_description.rst", "beam.rst", "borehole.rst", "examples.rst", "index.rst", "input_description.rst", "ishigami.rst", "model_description.rst", "modelcomparison.rst", "ohaganfunction.rst", "packagedescription.rst", "pollution.rst", "post_description.rst", "surrogate_description.rst", "tutorial.rst"], "indexentries": {}, "objects": {"": [[0, 0, 0, "-", "bayesvalidrox"]], "bayesvalidrox": [[1, 0, 0, "-", "bayes_inference"], [11, 0, 0, "-", "post_processing"], [14, 0, 0, "-", "pylink"], [18, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.bayes_inference": [[2, 0, 0, "-", "bayes_inference"], [4, 0, 0, "-", "bayes_model_comparison"], [6, 0, 0, "-", "discrepancy"], [8, 0, 0, "-", "mcmc"]], "bayesvalidrox.bayes_inference.bayes_inference": [[3, 1, 1, "", "BayesInference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, 2, 1, "", "__init__"], [3, 2, 1, "", "create_error_model"], [3, 2, 1, "", "create_inference"], [3, 2, 1, "", "normpdf"], [3, 2, 1, "", "perform_bootstrap"], [3, 2, 1, "", "plot_log_BME"], [3, 2, 1, "", "plot_post_params"], [3, 2, 1, "", "setup_inference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[5, 1, 1, "", "BayesModelComparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, 2, 1, "", "__init__"], [5, 2, 1, "", "cal_model_weight"], [5, 2, 1, "", "calc_bayes_factors"], [5, 2, 1, "", "calc_justifiability_analysis"], [5, 2, 1, "", "calc_model_weights"], [5, 2, 1, "", "generate_dataset"], [5, 2, 1, "", "model_comparison_all"], [5, 2, 1, "", "plot_bayes_factor"], [5, 2, 1, "", "plot_just_analysis"], [5, 2, 1, "", "plot_model_weights"], [5, 2, 1, "", "setup"]], "bayesvalidrox.bayes_inference.discrepancy": [[7, 1, 1, "", "Discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, 2, 1, "", "__init__"], [7, 2, 1, "", "get_sample"]], "bayesvalidrox.bayes_inference.mcmc": [[9, 1, 1, "", "MCMC"], [10, 3, 1, "", "gelman_rubin"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, 2, 1, "", "__init__"], [9, 2, 1, "", "eval_model"], [9, 2, 1, "", "log_likelihood"], [9, 2, 1, "", "log_posterior"], [9, 2, 1, "", "log_prior"], [9, 2, 1, "", "normpdf"], [9, 2, 1, "", "run_sampler"], [9, 2, 1, "", "train_error_model"]], "bayesvalidrox.post_processing": [[12, 0, 0, "-", "post_processing"]], "bayesvalidrox.post_processing.post_processing": [[13, 1, 1, "", "PostProcessing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, 2, 1, "", "__init__"], [13, 2, 1, "", "check_accuracy"], [13, 2, 1, "", "check_reg_quality"], [13, 2, 1, "", "compute_pce_moments"], [13, 2, 1, "", "plot_moments"], [13, 2, 1, "", "plot_seq_design_diagnostics"], [13, 2, 1, "", "sobol_indices"], [13, 2, 1, "", "valid_metamodel"]], "bayesvalidrox.pylink": [[15, 0, 0, "-", "pylink"]], "bayesvalidrox.pylink.pylink": [[16, 1, 1, "", "PyLinkForwardModel"], [17, 3, 1, "", "within_range"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, 1, 1, "", "OutputData"], [16, 2, 1, "", "__init__"], [16, 2, 1, "", "read_observation"], [16, 2, 1, "", "read_output"], [16, 2, 1, "", "run_command"], [16, 2, 1, "", "run_forwardmodel"], [16, 2, 1, "", "run_model_parallel"], [16, 2, 1, "", "uMBridge_model"], [16, 2, 1, "", "update_input_params"], [16, 2, 1, "", "zip_subdirs"]], "bayesvalidrox.surrogate_models": [[19, 0, 0, "-", "adaptPlot"], [21, 0, 0, "-", "apoly_construction"], [23, 0, 0, "-", "bayes_linear"], [28, 0, 0, "-", "engine"], [33, 0, 0, "-", "eval_rec_rule"], [38, 0, 0, "-", "exp_designs"], [41, 0, 0, "-", "exploration"], [43, 0, 0, "-", "glexindex"], [46, 0, 0, "-", "input_space"], [48, 0, 0, "-", "inputs"], [51, 0, 0, "-", "orthogonal_matching_pursuit"], [54, 0, 0, "-", "reg_fast_ard"], [57, 0, 0, "-", "reg_fast_laplace"], [59, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[20, 3, 1, "", "adaptPlot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[22, 3, 1, "", "apoly_construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[24, 1, 1, "", "BayesianLinearRegression"], [25, 1, 1, "", "EBLinearRegression"], [26, 1, 1, "", "VBLinearRegression"], [27, 3, 1, "", "gamma_mean"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, 2, 1, "", "__init__"], [24, 2, 1, "", "fit"], [24, 2, 1, "", "get_metadata_routing"], [24, 2, 1, "", "get_params"], [24, 2, 1, "", "predict"], [24, 2, 1, "", "predict_dist"], [24, 2, 1, "", "score"], [24, 2, 1, "", "set_params"], [24, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, 2, 1, "", "__init__"], [25, 2, 1, "", "fit"], [25, 2, 1, "", "get_metadata_routing"], [25, 2, 1, "", "get_params"], [25, 2, 1, "", "predict"], [25, 2, 1, "", "predict_dist"], [25, 2, 1, "", "score"], [25, 2, 1, "", "set_params"], [25, 2, 1, "", "set_predict_request"], [25, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, 2, 1, "", "__init__"], [26, 2, 1, "", "fit"], [26, 2, 1, "", "get_metadata_routing"], [26, 2, 1, "", "get_params"], [26, 2, 1, "", "predict"], [26, 2, 1, "", "predict_dist"], [26, 2, 1, "", "score"], [26, 2, 1, "", "set_params"], [26, 2, 1, "", "set_predict_request"], [26, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.engine": [[29, 1, 1, "", "Engine"], [30, 3, 1, "", "hellinger_distance"], [31, 3, 1, "", "logpdf"], [32, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, 2, 1, "", "__init__"], [29, 2, 1, "", "choose_next_sample"], [29, 2, 1, "", "dual_annealing"], [29, 2, 1, "", "eval_metamodel"], [29, 2, 1, "", "run_util_func"], [29, 2, 1, "", "start_engine"], [29, 2, 1, "", "tradeoff_weights"], [29, 2, 1, "", "train_normal"], [29, 2, 1, "", "train_seq_design"], [29, 2, 1, "", "train_sequential"], [29, 2, 1, "", "util_AlphOptDesign"], [29, 2, 1, "", "util_BayesianActiveDesign"], [29, 2, 1, "", "util_BayesianDesign"], [29, 2, 1, "", "util_VarBasedDesign"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[34, 3, 1, "", "eval_rec_rule"], [35, 3, 1, "", "eval_rec_rule_arbitrary"], [36, 3, 1, "", "eval_univ_basis"], [37, 3, 1, "", "poly_rec_coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[39, 1, 1, "", "ExpDesigns"], [40, 3, 1, "", "check_ranges"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, 2, 1, "", "__init__"], [39, 2, 1, "", "build_polytypes"], [39, 2, 1, "", "check_valid_inputs"], [39, 2, 1, "", "generate_ED"], [39, 2, 1, "", "generate_samples"], [39, 2, 1, "", "init_param_space"], [39, 2, 1, "", "pcm_sampler"], [39, 2, 1, "", "plot_samples"], [39, 2, 1, "", "random_sampler"], [39, 2, 1, "", "read_from_file"], [39, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.exploration": [[42, 1, 1, "", "Exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, 2, 1, "", "__init__"], [42, 2, 1, "", "approximate_voronoi"], [42, 2, 1, "", "get_exploration_samples"], [42, 2, 1, "", "get_mc_samples"], [42, 2, 1, "", "get_vornoi_samples"]], "bayesvalidrox.surrogate_models.glexindex": [[44, 3, 1, "", "cross_truncate"], [45, 3, 1, "", "glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[47, 1, 1, "", "InputSpace"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, 2, 1, "", "__init__"], [47, 2, 1, "", "build_polytypes"], [47, 2, 1, "", "check_valid_inputs"], [47, 2, 1, "", "init_param_space"], [47, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.inputs": [[49, 1, 1, "", "Input"], [50, 1, 1, "", "Marginal"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, 2, 1, "", "__init__"], [49, 2, 1, "", "add_marginals"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, 2, 1, "", "__init__"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[52, 1, 1, "", "OrthogonalMatchingPursuit"], [53, 3, 1, "", "corr"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, 2, 1, "", "__init__"], [52, 2, 1, "", "blockwise_inverse"], [52, 2, 1, "", "fit"], [52, 2, 1, "", "get_metadata_routing"], [52, 2, 1, "", "get_params"], [52, 2, 1, "", "loo_error"], [52, 2, 1, "", "predict"], [52, 2, 1, "", "score"], [52, 2, 1, "", "set_params"], [52, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[55, 1, 1, "", "RegressionFastARD"], [56, 3, 1, "", "update_precisions"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, 2, 1, "", "__init__"], [55, 2, 1, "", "fit"], [55, 2, 1, "", "get_metadata_routing"], [55, 2, 1, "", "get_params"], [55, 2, 1, "", "log_marginal_like"], [55, 2, 1, "", "predict"], [55, 2, 1, "", "score"], [55, 2, 1, "", "set_params"], [55, 2, 1, "", "set_predict_request"], [55, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[58, 1, 1, "", "RegressionFastLaplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, 2, 1, "", "__init__"], [58, 2, 1, "", "predict"]], "bayesvalidrox.surrogate_models.surrogate_models": [[60, 1, 1, "", "MetaModel"], [61, 3, 1, "", "corr_loocv_error"], [62, 3, 1, "", "create_psi"], [63, 3, 1, "", "gaussian_process_emulator"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "adaptive_regression"], [60, 2, 1, "", "add_InputSpace"], [60, 1, 1, "", "auto_vivification"], [60, 2, 1, "", "build_metamodel"], [60, 2, 1, "", "copy_meta_model_opts"], [60, 2, 1, "", "create_model_error"], [60, 2, 1, "", "eval_metamodel"], [60, 2, 1, "", "eval_model_error"], [60, 2, 1, "", "fit"], [60, 2, 1, "", "generate_polynomials"], [60, 2, 1, "", "pca_transformation"], [60, 2, 1, "", "regression"], [60, 2, 1, "", "univ_basis_vals"], [60, 2, 1, "", "update_pce_coeffs"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel.auto_vivification": [[60, 2, 1, "", "clear"], [60, 2, 1, "", "copy"], [60, 2, 1, "", "fromkeys"], [60, 2, 1, "", "get"], [60, 2, 1, "", "items"], [60, 2, 1, "", "keys"], [60, 2, 1, "", "pop"], [60, 2, 1, "", "popitem"], [60, 2, 1, "", "setdefault"], [60, 2, 1, "", "update"], [60, 2, 1, "", "values"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"": [9, 13, 16, 22, 24, 25, 26, 29, 33, 42, 52, 55, 56, 58, 60, 76, 81], "0": [3, 5, 7, 16, 24, 25, 26, 30, 44, 45, 49, 52, 55, 58, 60, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "0001": 26, "001": [13, 25, 55], "002": 22, "01": 5, "032": 42, "045e": 79, "05": [3, 22, 42, 79], "06": 25, "07": [58, 79], "08": 51, "1": [3, 5, 9, 10, 13, 16, 24, 25, 26, 29, 30, 33, 34, 35, 36, 39, 42, 44, 45, 47, 49, 52, 55, 58, 60, 61, 62, 64, 65, 68, 69, 71, 73, 76, 77, 78, 79, 80, 81], "10": [13, 22, 42, 44, 58, 64, 65, 71, 79, 80, 81], "100": [3, 26, 55, 60, 68, 72, 75, 76, 81], "1000": [5, 13, 58, 64, 65, 81], "10000": 76, "100000": 3, "1016": [13, 22, 42], "104": 33, "106": [22, 29], "106737": 13, "11": [13, 42, 79], "12": [60, 65, 75], "125": 9, "13": 19, "14": [33, 51, 64, 73, 76], "15": [51, 76, 79], "150": [65, 78, 81], "16": [39, 64, 81], "171": 29, "179": 22, "18082457": 60, "182": 29, "19": [54, 58], "190": 22, "195": 13, "1993": 52, "1e": [25, 26, 39, 55, 58, 64, 81], "1e5": 81, "2": [3, 7, 9, 13, 24, 25, 26, 29, 33, 39, 44, 45, 47, 52, 55, 58, 60, 61, 65, 68, 69, 71, 73, 74, 75, 78, 79, 81], "200": [3, 73, 81], "2001": 55, "2002": 81, "2003": [55, 58], "2004": 76, "2006": [55, 58], "2009": [52, 58, 61], "2010": [9, 42], "2011": [13, 42, 52, 61, 81], "2012": [22, 81], "2013": [9, 69, 73, 78], "2014": 33, "2016": 29, "2017": 29, "2018": 29, "2020": [13, 19, 29, 54], "2021": 33, "2022": [33, 51], "2051": 42, "2055": 42, "214": 42, "22": 29, "224e": 79, "23": [24, 25, 26, 52, 55], "230": [52, 61], "2345": [52, 61], "2367": [52, 61], "24": [19, 54], "2554": 33, "2563": 33, "27": 13, "27th": 52, "2_": 81, "2d": [16, 31, 60], "2e": 3, "2nd": 33, "3": [3, 24, 25, 26, 37, 39, 42, 45, 47, 52, 55, 58, 65, 69, 71, 73, 76, 77, 80, 81], "30": 81, "300": [25, 55, 69], "306": 9, "332": 29, "382": 29, "4": [26, 33, 39, 45, 64, 65, 68, 69, 75, 76, 78, 81], "40": 52, "406e": 79, "407": 29, "41": 54, "44": 52, "45": 54, "46": 19, "5": [9, 25, 29, 49, 65, 69, 72, 76, 79, 81], "50": 69, "500": [76, 81], "5000": 69, "500000": 3, "513e": 79, "53": 58, "59": 51, "5a": 22, "6": [45, 52, 61, 68], "61": 33, "63": 58, "65": [9, 76], "651879": 60, "66": 76, "683": 42, "696": 42, "7": [58, 60, 76], "70569": [22, 33], "75": [68, 81], "751": 76, "769": 76, "8": [29, 69, 78], "80": 9, "85": [65, 71, 80], "890": 29, "9": [71, 77, 80, 81], "925": 9, "99": 60, "999": 60, "A": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 33, 39, 42, 47, 49, 52, 55, 56, 58, 60, 65, 69, 73, 74, 75, 78, 79, 81], "As": [64, 81], "FOR": [69, 73, 78], "For": [7, 10, 13, 24, 25, 26, 39, 52, 55, 60, 64, 69, 71, 73, 74, 78, 80, 81], "If": [3, 7, 9, 13, 16, 24, 25, 26, 39, 40, 45, 47, 49, 52, 55, 58, 60, 69, 71, 72, 73, 77, 78, 80, 81], "In": [3, 7, 42, 60, 64, 72, 74, 80, 81], "It": [16, 29, 60, 71, 77], "Its": 74, "NO": [69, 73, 78], "NOT": [69, 73, 78], "No": [29, 69, 73, 75, 76, 78], "OF": [69, 73, 78], "OR": [69, 73, 78], "One": [29, 60], "THE": [69, 73, 78], "THERE": [69, 73, 78], "The": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 40, 42, 44, 45, 47, 50, 52, 55, 60, 61, 63, 64, 68, 70, 71, 72, 74, 75, 77, 79, 80, 81], "Then": [77, 80], "There": 60, "These": [80, 81], "To": [60, 79], "Will": 39, "With": [7, 71, 74, 80, 81], "_": [7, 80], "__": [24, 25, 26, 52, 55], "__init__": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60], "_i": 7, "aa": 55, "ab": [34, 37], "about": 70, "abov": [3, 75], "absolut": [55, 58], "abstract": [24, 55], "accept": [60, 81], "accord": [80, 81], "accordingli": [69, 73, 78], "account": 77, "accuraci": [13, 77, 79, 81], "accuracycheckmetamodel": 81, "achiev": [30, 81], "activ": [3, 29, 39, 56, 65, 68, 73, 77, 78, 79, 80, 81], "active_": [52, 55, 58], "actual": [16, 29, 80, 81], "ad": [24, 25, 26, 52, 55, 56, 72], "adapt": [16, 29, 42, 52, 60, 61, 64], "adapt_verbos": 39, "adaptive_regress": 60, "add": [49, 81], "add_expdesign": [], "add_inputspac": 60, "add_margin": [49, 71, 72, 81], "addit": [7, 16, 64, 81], "addition": [69, 72, 73, 78], "adopt": 81, "advwatr": 13, "affin": 9, "after": 64, "again": [16, 81], "against": [17, 72, 77, 79], "ai": 9, "ainv": 52, "al": [3, 64, 65, 69, 76], "al_descript": [], "alc": 29, "alg": 58, "algorithm": [29, 52, 55, 58, 60], "alia": [24, 25, 26, 52, 55], "all": [3, 5, 13, 16, 17, 24, 25, 26, 29, 36, 39, 47, 52, 55, 60, 62, 64, 71, 72, 75, 77, 79, 81], "all_candid": 42, "all_just_data": 5, "all_output": 16, "allow": [16, 24, 25, 26, 52, 55, 74, 79, 81], "alm": 29, "almost": 76, "along": [29, 36, 60, 81], "alpha": 25, "alpha_": [25, 26, 55, 58], "alphabet": [29, 39], "alreadi": [52, 55, 58], "also": [29, 39, 60, 64, 71, 80, 81], "altern": [29, 80], "alwai": [24, 25, 26, 45, 52, 55], "amazaspshumik": 55, "an": [3, 7, 9, 10, 13, 16, 24, 25, 26, 29, 39, 42, 47, 50, 52, 55, 60, 64, 68, 71, 72, 74, 75, 77, 78, 79, 80], "analysi": [3, 5, 13, 16, 33, 52, 55, 60, 61, 69, 73, 76, 77, 80, 81], "analyt": [70, 81], "analytical_funct": 81, "analyticfunc": 81, "anaylsi": 13, "angl": [52, 60, 61, 80], "ani": [3, 52, 60, 64, 69, 73, 78, 81], "anneal": [39, 64], "anoth": [16, 42, 71, 81], "apc": [22, 59, 60, 65, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81], "api": 71, "apoly_coeff": 36, "app": 39, "appli": [9, 29, 60, 72, 80], "applic": [13, 37, 52, 79], "apply_constraint": 60, "approach": [10, 29, 76], "approxim": [3, 9, 26, 42, 52, 79, 80, 81], "approximate_voronoi": 42, "ar": [3, 5, 7, 9, 10, 13, 16, 17, 24, 25, 26, 29, 34, 35, 39, 44, 45, 52, 55, 60, 64, 70, 72, 74, 75, 76, 77, 79, 80, 81], "arang": 81, "arbitrari": [22, 60, 71, 80, 81], "arbitrarili": [24, 25, 26, 52, 55], "ard": [55, 60, 80], "area": 42, "arg": [3, 44, 45], "argument": [3, 16, 62, 81], "around": 81, "arrai": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 42, 44, 45, 47, 50, 52, 55, 58, 60, 61, 62, 63, 74], "array_lik": 31, "asilomar": 52, "askei": 37, "aspect": 77, "assembl": [62, 64], "asset": 10, "assign": [3, 30, 39], "assist": [65, 78], "associ": [38, 42, 64, 65, 68, 69, 72, 73, 75, 76, 78, 80, 81], "assum": [16, 26, 45, 69, 73, 78, 81], "astronom": 9, "asumpt": 5, "attribut": 72, "aug": 19, "author": [19, 22, 33, 51, 54, 69, 73, 78], "auto_vivif": 60, "automat": [55, 72, 81], "autoselect": 63, "autovivif": 60, "aux_fil": 16, "auxiliari": 16, "avail": [3, 7, 16, 39, 47, 50, 60, 64, 68, 71, 77, 80, 81], "avali": 49, "averag": 5, "avoid": 81, "axi": [13, 45, 74], "b": [3, 7, 10, 13, 26, 27, 33, 52, 60, 61, 74, 76, 79], "b_i": 44, "babacan": 58, "bal": [29, 65], "bar": 13, "barro": 13, "base": [3, 5, 7, 9, 13, 16, 22, 24, 25, 26, 29, 31, 33, 35, 36, 39, 42, 47, 49, 50, 52, 55, 56, 58, 60, 61, 64, 72, 75, 77, 78, 80, 81], "basi": [22, 62], "basic": 81, "basis_indic": [60, 62], "bay": [3, 5, 9, 24, 25, 55, 77], "bayes_": 81, "bayes_env": 77, "bayes_inf": [], "bayes_infer": 81, "bayes_loocv": 3, "bayes_pc": 81, "bayesactdesign": [29, 39, 81], "bayesfactor": 5, "bayesian": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 55, 58, 60, 64, 65, 73, 76, 77, 78, 80], "bayesian3": [29, 64], "bayesianlinearregress": [25, 26], "bayesinfer": [5, 81], "bayesopt": [9, 81], "bayesoptdesign": [29, 39], "bayesvalidrox": [64, 66, 68, 70, 71, 72, 74, 77, 79, 80, 81], "bc": [58, 73, 78], "beam": [70, 74], "beam9point": 68, "becaus": [24, 25, 26, 52, 55], "beck": 29, "becom": 81, "been": [16, 39], "befor": [16, 29, 60, 80, 81], "beforehand": 39, "behaviour": 80, "being": [3, 9, 16, 64], "below": [55, 58], "best": [24, 25, 26, 52, 55, 60, 63, 77], "beta": [55, 72], "beta_": [25, 26], "better": 25, "between": [10, 17, 30, 60, 64, 81], "bia": [25, 26], "bias_input": [9, 81], "bias_term": 58, "biasinput": 9, "bin": 77, "binder": 16, "bingham": [69, 73, 78], "bishop": [55, 58], "bit": 81, "blatman": [52, 61, 81], "blob": [10, 43, 55], "blockwise_invers": 52, "bm": 5, "bmc": 3, "bme": [3, 5, 13, 81], "bme_dict": 5, "bonu": [], "bool": [3, 5, 16, 17, 24, 25, 26, 29, 39, 40, 45, 47, 49, 52, 55, 58, 60, 63], "boolean": [25, 44, 52, 55, 58], "bootstrap": [3, 5, 60, 65, 78, 80], "bootstrap_method": 60, "bootstrap_nois": 3, "borehol": 70, "both": [10, 44, 45, 79, 81], "bound": [17, 29, 32, 39, 44, 45, 47], "bound_tupl": [39, 47], "boundari": 29, "bridg": 74, "brief": 77, "broad": [25, 74, 80], "brr": [60, 80], "bug": [], "build": [29, 60, 71, 72, 77, 80], "build_metamodel": 60, "build_polytyp": [39, 47], "built": [46, 80], "burn": 3, "bvr": [], "c": [24, 26, 40, 52, 55, 58], "c_point": 16, "ca": [69, 73, 78], "cai": 29, "cal_model_weight": 5, "calc_bayes_factor": 5, "calc_justifiability_analysi": 5, "calc_model_weight": 5, "calcul": [3, 5, 9, 24, 25, 26, 29, 39, 47, 52, 55, 58, 61, 72, 77, 79, 81], "calib": [3, 13, 16], "calibr": [3, 7, 13, 16, 65, 78, 81], "call": [10, 15, 16, 24, 25, 26, 52, 55, 60, 64, 71, 80, 81], "calss": 16, "cambridg": 42, "can": [3, 7, 13, 16, 24, 25, 26, 29, 44, 49, 52, 55, 60, 64, 66, 68, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81], "candid": [29, 39, 42], "captur": 80, "carlo": [3, 9, 16, 42, 81], "case": [3, 7, 13, 16, 25, 42, 60], "cd": 77, "cell": 42, "center": [42, 52, 55, 58], "central": 71, "chain": [3, 9, 10], "chair": 33, "chang": [13, 24, 25, 26, 52, 55, 58, 64], "chao": [13, 22, 29, 33, 52, 60, 61, 71, 79, 80, 81], "chaospi": [39, 47], "characteris": [25, 26, 55, 58], "characterist": [65, 68], "chart": 13, "cheap": 81, "chebyshev": [39, 72], "check": [3, 13, 16, 17, 24, 25, 26, 39, 40, 47, 52, 55, 69, 71, 72, 73, 76, 77, 79, 81], "check_accuraci": [13, 79], "check_reg_qu": 13, "check_valid_input": [39, 47], "chemic": 29, "choic": 64, "choos": [29, 64, 77, 81], "choose_next_sampl": 29, "chosen": [3, 64, 76, 80, 81], "cite": [], "class": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 23, 24, 25, 26, 28, 29, 38, 39, 41, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 64, 71, 72, 74, 77, 79, 80, 81], "classic": 37, "clear": 60, "clearli": [69, 73, 78], "clermont": [52, 61], "clf": 61, "clf_bia": 56, "clone": 77, "code": [16, 81], "coef_": [25, 26, 52, 55, 58], "coeff": [52, 61], "coeffic": 60, "coeffici": [22, 24, 25, 26, 35, 36, 37, 52, 55, 58, 60, 61, 76, 81], "coffici": [52, 61], "cohn": 29, "collaps": 42, "colloc": [16, 39], "column": [16, 81], "com": [10, 13, 43, 55, 58, 60], "combin": [10, 52, 60, 71, 80, 81], "come": 64, "command": [16, 42, 68, 74], "comment": [69, 73, 78], "common": 49, "commun": 9, "compar": [3, 9, 16, 60, 77, 79], "comparison": [5, 39, 70, 71, 77, 79, 81], "complet": 74, "complex": 76, "compon": [13, 24, 25, 26, 52, 55, 60, 80], "compress": [58, 73, 78], "comput": [9, 13, 25, 26, 27, 29, 31, 35, 36, 37, 42, 52, 55, 58, 60, 61, 77, 79, 81], "compute_pce_mo": 13, "compute_scor": 55, "computed_scor": 55, "condit": 64, "conf": 33, "confer": 52, "confus": 5, "confusion_matrix": 5, "consid": [7, 45, 72, 80, 81], "consist": [24, 25, 26, 52, 55, 80], "consol": 79, "constant": [24, 25, 26, 52, 55], "constraint": 60, "construct": [22, 72], "contact": 71, "contain": [3, 5, 9, 16, 24, 25, 26, 29, 39, 47, 50, 52, 55, 60, 71, 72, 74, 77, 78, 81], "context": 7, "contibut": 71, "continu": 30, "contribut": 76, "converg": [10, 25, 26, 81], "convini": 60, "coordin": [16, 60], "copi": [16, 25, 52, 55, 58, 60], "copy_meta_model_opt": 60, "copy_x": [24, 25, 26, 52, 55, 58], "copyright": [69, 73, 78], "core": 81, "corner": 3, "corner_title_fmt": 3, "correct": [52, 61], "correl": 75, "correspond": [13, 16, 24, 25, 26, 34, 42, 50, 60, 72, 77, 79, 80], "cosin": 75, "cost": 80, "couckuyt": 42, "count": 45, "cov": 31, "covari": [3, 7, 9, 25, 26, 31, 55, 58], "cpu": 16, "creat": [3, 5, 16, 19, 33, 39, 42, 47, 51, 54, 60, 68, 71, 72, 74, 77, 80, 81], "create_error_model": 3, "create_infer": [3, 81], "create_metamodel": [], "create_model_error": 60, "credit": 43, "crieterion": 42, "criteria": 44, "criterion": 29, "crombecq": 42, "cross": [3, 39, 45, 60, 64], "cross_trunc": 45, "csv": 16, "currecnt": 16, "current": [16, 22, 64, 77], "d": [9, 26, 29, 39, 42, 52, 58, 60, 78, 80], "data": [3, 5, 9, 16, 17, 22, 24, 25, 26, 31, 39, 47, 49, 50, 52, 55, 58, 60, 64, 72, 75, 77, 80], "data_noise_level": 5, "datafram": [3, 7, 9, 16, 81], "dataset": 80, "dbingham": [69, 73, 78], "de": [13, 22, 33, 71, 77], "deafault": 25, "deal": [69, 73, 76], "decai": 29, "decomposit": 52, "decreas": [29, 64, 78], "dedic": 81, "deep": [24, 25, 26, 52, 55], "def": [71, 74], "default": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 50, 52, 55, 58, 60, 63], "defin": [3, 5, 7, 10, 16, 24, 25, 26, 32, 34, 39, 42, 49, 52, 55, 60, 64, 71, 72, 74, 77, 80], "definit": [7, 22, 71, 72, 81], "deflect": 68, "degre": [22, 34, 35, 36, 37, 39, 47, 60, 65, 68, 69, 73, 75, 76, 78, 80, 81], "delet": 56, "demeest": 42, "denot": 74, "depart": [22, 33], "depend": [25, 26, 49, 65, 68, 69, 71, 73, 75, 76, 78, 80], "deprec": 81, "depth": 71, "derek": [69, 73, 78], "deriv": [69, 73, 78], "describ": [58, 71, 72, 77, 81], "descrip": 7, "descript": [3, 5, 9, 16, 29, 31, 60, 71], "design": [13, 16, 29, 38, 39, 42, 60, 62, 64, 65, 71, 74, 77, 78, 80], "detail": [13, 65, 69, 71, 72, 73, 75, 78], "determin": [24, 25, 26, 52, 55], "deviat": [13, 16, 60, 64, 80, 81], "deviatioon": [29, 60], "dhaen": 42, "diagnost": 79, "diagon": [3, 7, 9], "dict": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 35, 36, 37, 52, 55, 60], "dictionari": [3, 5, 9, 13, 16, 29, 60, 74, 81], "differ": [30, 60, 71, 75, 81], "dim": 60, "dim_red_method": 60, "dimens": [45, 52], "dimension": [25, 26, 55, 58, 60, 74, 80], "dir_nam": 16, "direct": [36, 60, 80], "directi": 81, "directli": [72, 80, 81], "directori": [13, 16, 81], "disc_typ": 7, "discoutputopt": 81, "discrep": [3, 9, 81], "discrepancyopt": 81, "discuss": 81, "displai": [13, 81], "disregard": [24, 25, 26, 52, 55], "disrep": 7, "dissert": [52, 61], "dist": [3, 39, 47], "dist_typ": [49, 50, 71, 72, 81], "distanc": 30, "distibut": 5, "distribut": [3, 7, 9, 24, 25, 26, 27, 30, 31, 39, 46, 47, 48, 50, 52, 55, 58, 60, 65, 68, 69, 71, 72, 73, 75, 76, 78, 80, 81], "diverg": [3, 13, 39], "divid": 32, "dkl": [29, 39, 65, 81], "do": [13, 29, 62, 64, 69, 71, 73, 77, 78, 81], "doc": [], "doctor": [52, 61], "document": 71, "doe": [16, 60], "doi": [13, 22, 42], "domain": [32, 42], "done": [16, 39, 60, 81], "doostan": 29, "dot": 80, "dpp": 39, "dr": 22, "drainag": 13, "drawn": [3, 81], "driven": 22, "dtype": [52, 55, 58], "dual": [39, 64], "dual_ann": 29, "due": [], "dump": 81, "dure": [60, 79], "e": [3, 7, 9, 16, 22, 24, 25, 26, 33, 39, 42, 45, 47, 52, 55, 58, 60, 63, 71, 74], "each": [3, 5, 7, 9, 13, 16, 24, 25, 26, 32, 39, 42, 44, 45, 50, 52, 55, 58, 60, 64, 70, 74, 77, 81], "earlier": 81, "easi": 74, "easili": 81, "ebl": [60, 80], "ed_i": 60, "effect": [7, 24, 25, 26, 52, 55, 56, 76], "effici": [13, 42], "eigenvalu": [25, 26], "eigenvector": [25, 26], "eigf": [39, 64], "eigvals_": [25, 26], "eigvecs_": [25, 26], "either": [3, 16, 25, 39, 47, 59, 60, 65, 72, 81], "ejor": 42, "els": [39, 40, 47, 52, 55, 58, 60], "elsevi": 22, "em": 25, "email": [69, 73, 78], "emce": [3, 9, 10, 81], "emper": [60, 80], "empir": [24, 25], "empti": 60, "emul": [3, 5, 9, 29, 63, 81], "en": 9, "enable_metadata_rout": [24, 25, 26, 52, 55], "encapsul": [24, 25, 26, 52, 55], "end": 16, "engin": [3, 9, 13, 22, 64, 71, 79], "engine_": [64, 79, 80], "enrich": 29, "ensampl": 10, "ensembl": 9, "entri": [3, 7, 9], "entropi": [3, 29, 39, 78], "environ": 77, "environment": [22, 33, 78], "epsilon": [7, 29, 64, 78, 81], "eq": 13, "equal": [5, 7, 29, 64], "erro": 61, "error": [3, 7, 9, 13, 24, 25, 26, 29, 52, 55, 60, 61, 79, 81], "error_metamodel": 9, "error_model": 9, "especi": [25, 81], "ess": 10, "estim": [3, 10, 16, 24, 25, 26, 30, 52, 55, 58, 60, 61, 63, 64, 77, 79, 81], "eth": 33, "european": 42, "eval_metamodel": [29, 60, 80], "eval_model": 9, "eval_model_error": 60, "evalu": [5, 9, 13, 15, 29, 34, 35, 36, 52, 60, 62, 74, 77, 79, 80, 81], "evaul": 39, "even": [69, 73, 78], "evereyth": 29, "everi": 30, "evid": [3, 13], "exact": 80, "exampl": [13, 16, 44, 45, 71, 77, 81], "except": [13, 24, 25, 26, 52, 55, 60], "exe_path": 16, "execut": [16, 68, 74], "exist": [24, 25, 26, 52, 55], "exlor": 29, "exp_design": [64, 72], "expand": [77, 79, 80], "expans": [13, 22, 29, 33, 45, 52, 60, 61, 71, 79, 80, 81], "expd": [29, 71], "expdesign": [29, 42, 64, 71, 72, 80, 81], "expect": [7, 13, 16, 24, 25, 26, 29, 39, 52, 55, 58, 71, 79], "experi": 29, "experiment": [29, 38, 39, 42, 60, 64, 71, 74, 77, 80], "explain": [60, 81], "explan": [65, 75], "explanatori": [25, 26, 52, 55, 58], "explicitli": 60, "exploit": [29, 39, 65, 69, 76, 81], "exploit_method": [39, 64, 81], "exploitaiton": [69, 76, 81], "exploitation_weight": 29, "explor": [29, 39, 65, 69, 76, 81], "exploration_scor": 42, "exploration_weight": 29, "explore_method": [39, 64, 81], "expon": [43, 45, 72], "exponenti": [29, 75], "express": [69, 73, 78], "extens": [16, 74, 81], "extra": 75, "extract": [16, 60], "f": [13, 60, 81], "fa61759ff685": 13, "factor": [5, 10, 77], "fals": [3, 5, 10, 20, 24, 25, 26, 29, 39, 40, 45, 52, 55, 58, 60, 63, 81], "far": 7, "farid": [19, 29, 33, 51, 54], "fast": [55, 58, 60, 78, 80], "fast_rvm": 55, "fastard": [60, 65, 68, 71, 76, 80, 81], "faster": [25, 81], "fastsbl": [55, 58], "faul": [55, 58], "featur": [24, 25, 26, 52, 55, 56, 60, 71], "feinberg": 43, "ferrand": [52, 61], "field": 26, "file": [16, 29, 39, 68, 71, 74, 75, 78, 81], "file_nam": 16, "filenam": 74, "fill": [39, 42, 64, 69, 76], "final": 80, "final_out_dict": 60, "find": [16, 29, 60, 66], "first": [13, 16, 29, 45, 60, 80, 81], "fit": [24, 25, 26, 39, 52, 55, 58, 60, 61, 63, 69, 73, 78, 80], "fit_intercept": [24, 25, 26, 52, 55, 58], "fix": [25, 58], "flag": [39, 47], "flexibl": 13, "float": [3, 5, 9, 10, 24, 25, 26, 27, 29, 30, 31, 39, 44, 45, 52, 55, 58, 60, 61, 63], "flow": [69, 73], "folder": [71, 72, 77, 79, 81], "follow": [3, 7, 22, 29, 39, 44, 49, 60, 70, 72, 81], "followin": 7, "forc": 60, "foreman": 9, "form": [24, 25, 26, 52, 55, 71, 81], "format": [3, 7, 13, 71], "formul": 72, "formula": 58, "forward": 16, "found": [60, 70, 71, 74, 81], "foundat": [69, 73, 78], "four": 72, "fp": 25, "frac": [9, 24, 25, 26, 52, 55], "framework": [13, 33], "fraser": [69, 73, 78], "free": [69, 73, 78], "fri": [33, 51], "from": [3, 5, 13, 16, 24, 25, 26, 29, 34, 39, 46, 47, 52, 55, 58, 60, 62, 64, 71, 72, 74, 77, 79, 80, 81], "fromkei": 60, "ft": [39, 72], "full": [79, 80, 81], "fulli": 10, "func": 16, "func_arg": 16, "function": [3, 8, 13, 15, 16, 19, 21, 23, 28, 29, 33, 38, 39, 40, 42, 43, 44, 51, 52, 54, 59, 60, 62, 64, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81], "functtion": 60, "further": [39, 47], "futur": 75, "g": [16, 24, 25, 26, 45, 52, 55, 58, 61, 71, 74], "gain": [79, 81], "gamma": [26, 27, 39, 47, 72], "gaussian": [7, 9, 24, 25, 26, 29, 55, 58, 60, 63, 65, 68, 76, 80, 81], "gaussian_kd": [39, 47], "gelman": 10, "gener": [5, 7, 16, 24, 25, 26, 29, 39, 42, 45, 47, 52, 55, 60, 61, 69, 72, 73, 74, 78, 80, 81], "generate_": 39, "generate_dataset": 5, "generate_polynomi": 60, "generate_sampl": [39, 72], "get": [3, 24, 25, 26, 52, 55, 60, 71, 79], "get_exploration_sampl": 42, "get_mc_sampl": 42, "get_metadata_rout": [24, 25, 26, 52, 55], "get_param": [24, 25, 26, 52, 55], "get_sampl": 7, "get_vornoi_sampl": 42, "git": [70, 71, 77], "github": [10, 43, 55, 71], "gitlab": 71, "give": [74, 77, 80, 81], "given": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 40, 47, 49, 52, 55, 60, 62, 63, 64, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "global": [13, 39, 42, 81], "gnu": [69, 73, 78], "go": 3, "goal": 80, "goe": 71, "goodman": 9, "gorissen": 42, "gp": [63, 80], "gpe": [59, 60], "grade": 45, "greater": 10, "grid": [39, 72], "group": [7, 39], "guid": [24, 25, 26, 52, 55, 71, 81], "guidelin": 71, "guilla": 29, "gull": 25, "h5py": 39, "h_l": 69, "h_u": 69, "ha": [9, 24, 25, 26, 39, 45, 47, 52, 55, 60, 80, 81], "habil": 22, "hadigol": 29, "hagan": 76, "haitao": 29, "halton": [39, 72], "hammer": 9, "hammerslei": [39, 72], "handi": 81, "happi": 71, "have": [7, 10, 16, 24, 25, 26, 39, 47, 52, 55, 56, 74, 76, 81], "hdf5": [29, 39], "hdf5_file": 39, "head": 71, "height": 68, "helling": 30, "help": 81, "helper": 13, "here": [3, 16, 60, 64, 66, 70, 71, 74, 77, 78, 80, 81], "hermit": 72, "highest": [60, 81], "histogram": 81, "hogg": 9, "hold": 44, "holder": 16, "hope": [69, 73, 78], "how": [13, 24, 25, 26, 52, 55, 60, 68, 69, 73, 75, 76, 81], "howev": [], "htm": 55, "html": [10, 69, 73], "http": [9, 10, 13, 22, 42, 43, 55, 58, 60, 69, 71, 73, 77, 78], "hydraul": [22, 33], "hydrogeologi": 13, "hydromechan": 33, "hydrosystem": [22, 33], "hyperbol": [45, 60], "hypercub": [64, 65, 68, 69, 72, 73, 75, 76, 78], "i": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 58, 60, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "icvram2014": 33, "id": 16, "ident": 30, "ieee": 58, "ifram": 81, "ignor": [24, 25, 26, 52, 55], "ii": [25, 81], "iii": 81, "ilja": 29, "illustr": 68, "imag": 58, "implement": [24, 26, 33, 42, 59, 60, 81], "impli": [69, 73, 78], "implment": 81, "import": [13, 71, 72, 74, 79, 80], "importantli": [], "improv": 39, "inaccuraci": 7, "includ": [5, 16, 25, 26, 44, 45, 64, 71, 72, 77, 79, 80, 81], "increas": [29, 64], "independ": 7, "index": [29, 44, 45, 60, 62, 63, 71, 79], "indic": [3, 10, 13, 43, 44, 45, 60, 62, 69, 73, 74, 76, 77, 79, 81], "induc": [60, 81], "inf": 45, "inf_entropi": 3, "infer": [3, 7, 9, 13, 16, 68, 71, 77, 78], "inference_method": [3, 81], "influenc": [24, 25, 26, 29, 52, 55], "inform": [3, 24, 25, 26, 29, 52, 55, 60, 69, 73, 78, 81], "ing": 22, "init_param_spac": [39, 47], "init_sampl": 3, "initi": [3, 5, 25, 39, 47, 55, 64, 81], "input": [3, 7, 13, 16, 24, 25, 26, 29, 36, 39, 42, 46, 47, 52, 55, 60, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 80], "input0": 71, "input1": 71, "input_data": [49, 50, 72, 81], "input_descript": [], "input_fil": 16, "input_obj": 60, "input_object": [39, 47], "input_spac": 72, "input_templ": 16, "inputdisc": 7, "inputobj": [39, 47], "inputparam": [65, 72, 81], "inputparameters_2": 81, "inputspac": [39, 60, 71, 72], "insert": 60, "insid": [17, 24, 25, 26, 52, 55, 77], "insight": [], "instanc": [24, 25, 26, 52, 55, 60], "instanci": 60, "instanti": 81, "instead": [24, 25, 26, 45, 52, 55], "institut": [22, 33], "instruct": [60, 81], "int": [3, 5, 7, 13, 16, 17, 22, 25, 26, 29, 32, 33, 34, 35, 36, 37, 39, 42, 44, 45, 47, 55, 58, 60, 63], "intec": 42, "intercept": [52, 55, 58], "intercept_": [25, 26], "interconnect": [], "interest": 74, "interfac": [71, 74, 77], "intersit": 42, "intro": [], "introduc": [], "introduct": 70, "introductori": [71, 81], "inv_inf_matrix": 52, "invari": 9, "invers": [7, 52, 81], "inversemodel": [71, 77], "io": [9, 10], "ipython": 81, "ishigami": [69, 70], "isoprobabilist": [39, 47, 72], "issu": 71, "item": [3, 16, 60], "iter": [3, 5, 25, 26, 29, 55, 58, 60, 65, 69, 72, 76, 77, 79, 80, 81], "its": [16, 71, 74, 77, 79, 80, 81], "itself": 80, "iw": [22, 33, 71, 77], "j": [9, 13, 22, 42, 76], "jacobi": 34, "jan": 33, "jdist": [39, 47], "jianfei": 29, "jobe": 16, "joblib": 81, "joergdietrich": 10, "jointli": [3, 7, 9, 78, 80], "jonathan": 43, "jonathf": 43, "journal": [42, 52, 61], "jul": 51, "just": [39, 47, 81], "just_analysi": 3, "justifi": [3, 5, 77], "jwalton3141": 10, "k": [3, 9, 39, 42, 58, 60], "k_w": 69, "karniadaki": 81, "katsaggelo": 58, "kdemov": 81, "keep": [24, 25, 26, 52, 55, 81], "kei": [16, 39, 60, 74], "kernel": [24, 25, 26, 52, 55, 63, 80], "key_str": 16, "keyerror": 60, "keyword": 16, "kingdom": 33, "kl": 26, "kld": [3, 13], "known": [3, 7, 9, 39, 81], "krige": 29, "krishnaprasad": 52, "kroeker": 29, "kullback": [3, 13, 39], "l": [69, 78], "l_0": 44, "l_inf": 44, "l_p": 44, "label": [13, 74], "lack": 60, "laerman": 42, "laguerr": [37, 39, 47], "lambda": 81, "lambda_": [55, 58], "lang": 9, "laplac": 58, "lar": [60, 80], "larg": 81, "larger": [44, 45], "largest": 45, "last": 60, "lastli": 74, "later": 81, "latest": 77, "latin": [64, 65, 68, 69, 72, 73, 75, 76, 78], "latin_hypercub": [39, 72, 81], "latter": [24, 25, 26, 45, 52, 55, 81], "lead": 77, "learn": [29, 39, 42, 55, 58, 60, 68, 73, 77, 78, 79, 80, 81], "least": [29, 52, 60, 61, 72, 80], "leav": [3, 39, 60, 64], "leibler": [3, 13, 39], "length": [3, 25, 26, 55, 58, 74], "leq": 44, "less": 81, "let": 81, "level": [3, 5], "lexicograph": 45, "lh2": 33, "li": 40, "liabil": [69, 73, 78], "lib": 58, "librari": [], "licens": [69, 73, 78], "lie": 17, "lifo": 60, "like": [3, 24, 25, 26, 52, 55, 58, 60, 61, 80, 81], "likelihood": [3, 7, 9, 25, 30, 31, 55, 56, 58, 81], "line": 13, "linear": [24, 25, 26, 71, 75], "linearmodel": [24, 52, 55], "link": [68, 74, 77, 81], "link_typ": [16, 71, 74, 81], "list": [3, 16, 17, 24, 25, 26, 29, 32, 36, 37, 39, 40, 42, 45, 47, 50, 52, 55, 58, 60, 71, 74, 75, 81], "littl": 81, "liu": 29, "liverpool": 33, "load": [68, 81], "locat": [29, 39], "log": [9, 31, 55, 56], "log_bm": 3, "log_lik": [9, 31], "log_likelihood": 9, "log_marginal_lik": 55, "log_posterior": 9, "log_prior": 9, "logarithm": 3, "loglik": [3, 9], "lognorm": [68, 69, 72], "logprior": 9, "loo": [52, 60, 61], "loo_error": 52, "loocv": [3, 39, 52, 61], "loocvscor": 60, "loop": 63, "low": 45, "lower": [17, 29, 32, 39, 45, 47], "lowest": 60, "ls3": 22, "l\u00fcthen": 33, "m": [7, 29, 33, 52, 55, 58, 68, 69, 73, 77, 78, 80], "machin": [42, 55, 58], "mackai": [25, 29], "mackei": 9, "mai": [24, 25, 26, 52, 55, 58], "mail": [22, 33], "main": [71, 74, 80], "mainli": [64, 72], "make": [9, 64, 80, 81], "manag": 33, "mani": 13, "manner": [29, 64, 72, 77], "manual": 33, "manuscript": 22, "map": [24, 25, 26, 52, 55, 60, 74], "mar": 54, "marelli": 33, "margin": [7, 39, 42, 47, 48, 49, 55, 56, 58, 71, 72, 77, 81], "mark": [69, 73, 78], "markov": [3, 9], "mass": 42, "master": [10, 43, 55, 71, 77], "match": [52, 62, 69, 75, 80, 81], "math": 44, "mathcal": [7, 9, 80], "mathemat": 9, "matlab": [33, 42], "matrix": [3, 5, 7, 24, 25, 26, 31, 34, 52, 55, 58, 61, 62], "max": [65, 68, 69, 73, 76, 78], "max_a_post": [39, 81], "max_a_posteriori": 3, "max_deg": [34, 35, 36, 39, 47, 60], "max_func_itr": 39, "max_pce_deg": 39, "maxdepth": [], "maxim": [25, 29, 30, 55, 80], "maximis": [55, 58], "maximum": [3, 22, 25, 26, 30, 34, 35, 36, 37, 39, 45, 47, 55, 58, 60], "maxout": 17, "mc": [42, 65, 68, 69, 73, 74, 75, 76, 78, 81], "mc_criterion": 42, "mc_ref": 16, "mc_ref_dict": 16, "mc_ref_fil": 16, "mc_refer": 81, "mcmc": [3, 77, 81], "mcmc_param": [3, 9, 81], "md": [], "mean": [3, 7, 9, 13, 16, 24, 25, 26, 27, 29, 31, 45, 52, 55, 58, 60, 80, 81], "mean_2": 81, "mean_pr": [9, 29, 60], "meas_fil": 16, "meas_file_valid": 16, "measur": [3, 7, 13, 16, 29, 81], "measured_data": 3, "measureddata": 60, "measurement_error": 81, "mechan": [24, 25, 26, 29, 52, 55], "merchant": [69, 73, 78], "messag": [], "met": [55, 58], "meta": [3, 9, 13, 16, 24, 25, 26, 29, 52, 55, 60], "meta_model_engin": [], "meta_model_typ": [39, 47, 60, 71, 80, 81], "metadata": [24, 25, 26, 52, 55], "metadata_rout": [24, 25, 26, 52, 55], "metadatarequest": [24, 25, 26, 52, 55], "metamod": [29, 64, 71, 80], "metamodel": [3, 5, 13, 29, 39, 41, 47, 59, 71, 72, 79, 81], "metamodel_train": 81, "metamodelengin": [], "metamodelopt": [60, 81], "method": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 38, 39, 42, 47, 49, 50, 52, 55, 58, 60, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81], "metric": [3, 81], "mgrid": 44, "mice": 29, "might": [], "miketip": [55, 58], "minim": [26, 71], "minout": 17, "mit": 71, "mix": 72, "mmse": 39, "mod_loo_threshold": [39, 64, 81], "mode": [3, 52, 55, 58], "model": [3, 5, 7, 9, 13, 15, 16, 22, 24, 25, 26, 29, 33, 39, 42, 52, 55, 56, 58, 60, 64, 70, 72, 77, 79], "model_comparison_al": 5, "model_dict": 5, "model_out_dict": 13, "model_weight": 5, "model_weights_dict": 5, "modelnam": 81, "modifi": [39, 52, 69, 73, 78], "modul": [0, 1, 11, 14, 18, 71], "modulu": 68, "mohammadi": [29, 33], "molina": 58, "moment": [13, 16, 35, 36, 50, 77, 79, 81], "monomi": [43, 45], "mont": [3, 9, 16, 42, 81], "more": [13, 29, 60, 69, 71, 73, 78, 81], "most": 81, "move": [3, 81], "mp": 16, "mu_pr": [24, 25, 26], "much": 76, "multi": [43, 45, 60, 62, 75, 77, 81], "multi_process": 16, "multioutput": [24, 25, 26, 52, 55], "multioutputregressor": [24, 25, 26, 52, 55], "multipl": [7, 77, 80, 81], "multipli": 7, "multiprocess": [3, 16, 81], "multivar": 3, "multivari": [3, 7, 31, 60, 61, 62], "must": 16, "mutual": 29, "n": [7, 33], "n_": 7, "n_bootstrap": 5, "n_bootstrap_itr": [3, 5, 60], "n_burn": 3, "n_cand_group": [39, 64, 65, 69, 76, 81], "n_canddid": [39, 64, 81], "n_candid": [29, 42, 65, 69, 76], "n_cpu": 16, "n_featu": [25, 26], "n_featur": [24, 25, 26, 52, 55, 58, 60, 61], "n_init_sampl": [60, 71, 80, 81], "n_input": 60, "n_iter": [24, 25, 26, 55, 58], "n_iter_": 55, "n_kfold": 58, "n_m": 5, "n_max": [37, 60, 62], "n_max_sampl": [39, 64, 81], "n_measur": [3, 9], "n_new_sampl": [32, 39, 64, 81], "n_ob": [3, 5, 16], "n_out": 60, "n_output": [16, 24, 25, 26, 52, 55, 60], "n_param": [3, 7, 9, 10, 13, 16, 29, 36, 39, 42, 47, 60, 62, 63], "n_pca_compon": 60, "n_prior_sampl": 3, "n_replic": 39, "n_sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 34, 35, 36, 39, 47, 52, 55, 56, 60, 61, 62, 63, 79, 81], "n_samples_fit": [24, 25, 26, 52, 55], "n_samples_test": [25, 26, 52, 55, 58], "n_step": [3, 10, 81], "n_term": [60, 62], "n_test_sampl": [24, 25, 26], "n_walker": [3, 10, 81], "nagel": 13, "name": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 47, 49, 50, 52, 55, 71, 72, 74, 77, 81], "nameerror": 29, "ndarrai": 45, "ndim": 81, "necessari": [16, 77], "need": [3, 5, 7, 16, 29, 60, 64, 71, 80, 81], "neg": [24, 25, 26, 52, 55], "neither": 13, "nest": [24, 25, 26, 40, 52, 55], "new": [16, 29, 39, 42, 49, 52, 60, 64, 71, 74, 81], "new_c_point": 16, "new_input_fil": 16, "new_metamodelopt": 60, "new_sampl": 42, "next": [16, 77], "nips01": 55, "nnme": 81, "nois": [3, 5, 7, 25, 26, 55, 58, 78], "non": [42, 52, 55, 58], "none": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 60, 63, 64, 65, 69, 71, 76, 81], "nonlinear": 75, "nor": 13, "norm": [44, 60, 65, 68, 69, 72, 73, 75, 76, 78, 80, 81], "normal": [3, 5, 7, 25, 31, 52, 55, 60], "normpdf": [3, 9], "notat": [], "note": [7, 16, 81], "now": [39, 71, 74, 80, 81], "nowak": [13, 22, 29, 81], "np": [16, 52, 55, 58, 60, 72, 74, 81], "npy": 81, "nsampl": [29, 60, 80, 81], "nu": 58, "nug_term": 63, "nugget": 63, "number": [3, 5, 7, 13, 16, 24, 25, 26, 29, 32, 39, 42, 45, 52, 55, 58, 60, 63, 64, 65, 68, 69, 72, 73, 75, 76, 78, 80], "numer": 25, "numpi": [24, 25, 26, 44, 45, 52, 55, 58, 81], "numpoli": [43, 45], "o": 76, "oaklei": 76, "obj": [3, 7, 9, 13, 39, 42, 47, 49, 60], "object": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 61, 63, 71, 72, 74, 79, 80, 81], "obs_data": [3, 9], "obs_dict": 16, "obs_dict_valid": 16, "obsdata": 81, "observ": [3, 5, 7, 9, 16, 31, 74, 81], "obtain": [10, 60, 81], "off": [29, 39], "ohagan": 70, "ol": [60, 80], "oladyshkin": [13, 22, 29, 81], "old": [29, 42], "old_edi": 29, "old_edx": 29, "omit": 45, "omp": [69, 75], "onc": [64, 81], "one": [3, 9, 10, 16, 25, 26, 32, 39, 45, 55, 56, 58, 60, 64, 71, 72, 81], "ong": 29, "onli": [3, 7, 9, 16, 24, 25, 26, 29, 39, 45, 52, 55, 58, 60, 72, 75, 81], "open": [71, 81], "oper": 42, "opposit": 45, "opt": [29, 39], "opt_col_point": 39, "opt_sigma": 3, "optim": [25, 29, 39, 55, 78], "optimi": 29, "optimum": 29, "option": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 52, 55, 58, 60, 63, 71, 72, 74, 77, 81], "opts_dict": 5, "order": [45, 60, 77], "ordinari": [60, 80], "org": [13, 42, 71], "orig_space_dist": [39, 47], "origin": [24, 25, 26, 52, 55, 60, 74, 79], "origmodeloutput_": 81, "orthogon": [37, 52, 61, 69, 75], "orthonorm": 22, "other": [3, 24, 25, 26, 52, 55, 74, 77, 80], "otherwis": [9, 16, 24, 25, 26, 52, 55, 58, 60], "our": [71, 74, 80, 81], "out": [3, 7, 17, 25, 26, 29, 39, 60, 64, 71, 79], "out_dict": 60, "out_dir": [3, 5, 9, 39], "out_nam": 39, "outpust": 13, "output": [3, 7, 9, 13, 16, 29, 39, 60, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "output_bayes_": 81, "output_file_nam": 16, "output_nam": 16, "output_pars": 16, "outputdata": 16, "outputmatrix": 60, "outputs_comparison": 5, "outputs_postprocess": 13, "outputs_postprocessing_": 81, "outputs_postprocessing_calib": 79, "outputs_prior": 72, "over": [39, 63, 72], "overal": 71, "overfit": 81, "overflow": 25, "overview": [], "overwritten": [52, 55, 58], "own": [], "p": [7, 9, 13, 22, 30, 42, 44, 52], "pacif": 9, "packag": [3, 9, 66, 68, 70, 71, 77], "page": [71, 77, 81], "pair": [5, 60], "pairwis": 77, "panda": [7, 81], "paper": [29, 55, 58], "parallel": [16, 29, 39, 60], "param": [16, 24, 25, 26, 37, 39, 47, 52, 55], "param_set": 16, "paramet": [49, 50, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "parameterset": 9, "paramethr": 7, "paramt": 25, "paras": 16, "parmet": 3, "parser": [16, 68, 74], "part": [32, 60, 75, 76, 81], "parti": 16, "particular": [69, 73, 78], "pass": [3, 16, 24, 25, 26, 39, 47, 52, 55, 81], "path": 16, "pati": 52, "pattern": [16, 55, 58], "pc": 59, "pca": [60, 80], "pca_transform": 60, "pce": [13, 39, 47, 60, 68, 79, 80, 81], "pce_deg": [60, 71, 80, 81], "pce_mean": 13, "pce_q_norm": [60, 71, 80, 81], "pce_reg_method": [60, 71, 80, 81], "pceengine_": 81, "pcemodel": [13, 20], "pcemodel_": [], "pcm_sampler": 39, "pd": 81, "pdf": [13, 55, 58], "peopl": [], "per": [65, 69, 76], "percentag": 60, "percis": 39, "perfect": 25, "perfect_fit_tol": 25, "perform": [3, 5, 9, 13, 64, 68, 69, 73, 75, 76, 77, 78, 79, 80, 81], "perform_bootstrap": 3, "perl": 60, "perturb": [3, 5], "perturbed_data": [3, 5], "pfaffenwaldr": [22, 33], "physic": [52, 61], "pip": [71, 77], "pipelin": [24, 25, 26, 52, 55], "pkl": 81, "place": 16, "pleas": [24, 25, 26, 52, 55, 69, 73, 78], "plot": [3, 5, 13, 39, 81], "plot_bayes_factor": 5, "plot_just_analysi": 5, "plot_log_bm": 3, "plot_map_pr": 3, "plot_model_weight": 5, "plot_moment": [13, 79, 81], "plot_nam": 5, "plot_post_param": 3, "plot_post_pr": [3, 81], "plot_sampl": [39, 72], "plot_seq_design_diagnost": [13, 79], "plot_typ": 13, "plote": 20, "plotmoment": [], "point": [3, 7, 16, 24, 25, 26, 29, 34, 35, 39, 42, 55, 58, 63, 72, 81], "poli": 37, "pollut": 70, "poly_coeff": 35, "poly_typ": [34, 36, 37, 39, 47], "polynom": 60, "polynomi": [13, 22, 29, 33, 34, 35, 36, 37, 39, 47, 52, 60, 61, 62, 71, 72, 79, 80, 81], "pop": 60, "popitem": 60, "posit": 30, "possibl": [24, 25, 26, 52, 55, 72], "post": [10, 13, 16, 77], "post_descript": [], "post_process": [79, 81], "post_snapshot": [39, 81], "posterior": [3, 9, 25, 26, 39, 52, 55, 58, 81], "posterior_df": 9, "posteriori": [3, 39], "postpc": 81, "postproc": 79, "postprocess": [71, 74, 77, 81], "potenti": 10, "pp": [9, 42, 52, 61, 76], "practic": [72, 77], "precis": [25, 26, 55, 58], "precomput": [24, 25, 26, 52, 55], "predict": [3, 9, 24, 25, 26, 29, 52, 55, 58, 60, 61, 81], "predict_dist": [24, 25, 26], "predit": 60, "prefer": [77, 81], "prepar": [16, 29, 80], "prescrib": 39, "prescript": 60, "present": [22, 60, 80], "prevent": 25, "previou": [16, 81], "previous": 80, "prevrun_no": 16, "princip": [13, 60, 80], "print": [25, 26, 29, 60], "prior": [3, 5, 7, 9, 26, 39, 46, 47, 58, 74, 77, 80, 81], "prior_": 81, "prior_output": 81, "prior_sampl": 3, "probabilist": 76, "probabl": [30, 72], "probablist": 3, "proc": 33, "procedur": 3, "proceed": 52, "process": [9, 13, 16, 29, 58, 60, 63, 77, 80], "produc": [69, 73, 78], "program": [69, 73, 78], "progress": [25, 26], "proj": 42, "project": 71, "propag": [52, 61], "properti": [64, 65, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81], "propos": [9, 40, 64, 71], "provid": [13, 24, 25, 26, 29, 39, 45, 47, 52, 55, 60, 65, 70, 71, 75, 77, 80, 81], "psi": [52, 61, 62], "psrf": 10, "public": [9, 69, 73, 78], "publish": [69, 73, 78], "purpos": [69, 73, 78], "pursuit": [52, 69, 75], "py": [10, 16, 43, 55, 71, 74, 81], "py_fil": [16, 71, 74, 81], "pylink": [74, 77, 81], "pylinkforwardmodel": [71, 74], "pypi": 71, "python": [3, 13, 16, 71, 74, 77, 81], "python3": 77, "q": [30, 56, 60, 65, 68, 69, 73, 75, 76, 78, 80, 81], "qualiti": [13, 69, 73, 76, 79], "qualt": 3, "quantif": [22, 33], "question": [69, 73, 78], "quit": [], "r": [7, 24, 25, 26, 52, 55, 58, 69, 76], "r2_score": [24, 25, 26, 52, 55], "r_2": 61, "r_hat": 10, "r_w": 69, "rais": [24, 25, 26, 52, 55, 60], "random": [29, 39, 42, 64, 65, 71, 72, 81], "random_sampl": 39, "randomli": [39, 81], "rang": [17, 37, 40, 74, 80, 81], "rate": [26, 27, 69, 73], "ratio": 10, "raw": [16, 22, 39, 47], "raw_data": [39, 47], "read": [16, 29, 39, 74, 81], "read_from_fil": 39, "read_observ": 16, "read_output": 16, "readthedoc": 9, "realiti": 7, "realiz": [7, 64, 72, 74], "realli": 3, "recalcul": 60, "recheck": 72, "reciev": 16, "recognit": [55, 58], "recomput": 56, "recurr": 37, "recurs": [37, 52], "redidu": 7, "redistribut": [69, 73, 78], "reduc": [45, 80], "reduct": [10, 60, 80], "ref": [29, 55, 58], "ref_bme_kld": 13, "ref_typ": 71, "refer": [7, 13, 16, 30, 33, 60, 65, 68, 69, 73, 74, 75, 76, 78, 79, 81], "refin": 29, "refit": 29, "reg_method": 60, "regress": [9, 13, 24, 25, 26, 52, 55, 58, 60, 61, 65, 68, 69, 73, 75, 76, 78, 80, 81], "regressor": [24, 25, 26, 36, 52, 55, 60, 61, 62], "regressormixin": [24, 52, 55], "regresssor": 52, "reject": [3, 77, 81], "relat": [48, 72], "releas": 77, "relev": [24, 25, 26, 52, 55, 72], "reli": 81, "reliabl": [13, 22], "remain": 76, "remov": [16, 60], "renam": 16, "repeat": 81, "replac": [16, 77, 80], "replic": 39, "report": [25, 26, 33, 71], "repositori": [70, 77], "repres": 7, "represent": 80, "reproduc": 9, "req_output": [3, 9], "request": [3, 16, 24, 25, 26, 29, 39, 52, 55, 60], "requir": [3, 16, 37, 49], "research": [22, 42], "reshap": [44, 81], "residu": [7, 24, 25, 26, 52, 55, 61], "respect": [5, 60, 81], "respons": [24, 25, 26, 29, 39, 60], "ress": 22, "rest": 16, "result": [5, 16, 39, 60, 64, 72, 74, 79, 80, 81], "retain": [24, 25, 26, 52, 55], "retrain": 81, "retun": 29, "return": [44, 45, 71, 74, 80, 81], "return_out_dict": 60, "return_sampl": 29, "return_std": [25, 26, 55, 58], "return_var": 10, "returnvar": 60, "revers": 45, "review": 29, "rework": 64, "rezaiifar": 52, "ridg": [60, 80], "rieckermann": 13, "risk": 33, "rmse": [13, 79, 81], "robin": 10, "root": [3, 9, 10, 13, 39, 81], "root_sampl": 80, "rosenblatt": [39, 47, 49, 72], "rossenblatt": 49, "rout": [24, 25, 26, 52, 55], "row": [9, 16], "rss": 25, "rst": [], "run": [9, 13, 16, 29, 39, 60, 68, 71, 74, 77, 78, 79, 81], "run_command": 16, "run_forwardmodel": 16, "run_model_parallel": [16, 74], "run_no": 29, "run_sampl": 9, "run_util_func": 29, "runtim": 60, "rvm_ard_model": 55, "rwmh": 10, "safeti": [13, 22, 33], "same": [16, 29, 39, 47, 71, 72, 74, 75], "sampel": 72, "sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 32, 35, 36, 38, 39, 42, 47, 52, 55, 60, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "sample_weight": [24, 25, 26, 52, 55], "sampler": [3, 9], "sampling_method": [29, 39, 71, 72, 80, 81], "save": [29, 39, 72, 79, 81], "savefig": 20, "sc": 33, "scalar": 7, "scale": 10, "scheme": [29, 39, 45, 60, 64, 65, 69, 76, 78, 80], "scienc": 9, "scope": 16, "score": [24, 25, 26, 29, 39, 42, 52, 55, 60, 61], "scores_": 55, "script": [16, 22, 81], "search": [16, 29, 71], "second": [16, 72, 81], "section": [39, 55, 58, 81], "see": [13, 24, 25, 26, 39, 49, 52, 55, 69, 71, 73, 75, 76, 78], "select": [3, 13, 16, 29, 42, 52, 55, 56, 60, 63], "selected_indic": [3, 9], "self": [24, 25, 26, 52, 55, 60], "sens": [58, 73, 78], "sensit": [13, 52, 61, 69, 73, 76, 81], "separ": [16, 39, 81], "sequenc": 44, "sequenti": [13, 16, 29, 39, 41, 42, 55, 60, 64, 69, 76, 79], "sergei": [22, 29], "serv": 16, "set": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 30, 32, 39, 40, 42, 45, 46, 52, 55, 58, 60, 62, 70, 71, 72, 74, 77, 79, 80], "set_config": [24, 25, 26, 52, 55], "set_param": [24, 25, 26, 52, 55], "set_predict_request": [25, 26, 55], "set_score_request": [24, 25, 26, 52, 55], "setdefault": 60, "setup": [5, 75], "setup_infer": 3, "sfu": [69, 73, 78], "shall": 60, "shallow": 60, "shape": [3, 5, 7, 9, 13, 16, 24, 25, 26, 27, 29, 34, 35, 36, 39, 42, 45, 47, 52, 55, 58, 60, 61, 62, 63], "share": 75, "shceme": 81, "shell": [16, 68, 74], "shell_command": 16, "short": 70, "shot": 60, "should": [3, 10, 16, 24, 25, 26, 44, 52, 55, 60, 64, 69, 72, 73, 74, 78, 80, 81], "show": [65, 68, 71, 75, 78, 81], "shown": 3, "sigma": [3, 7, 9, 29, 58, 81], "sigma2": [3, 9, 29, 58], "sigma2_prior": 7, "sigma2dict": 29, "sigma_": [55, 58], "sigma_f": 81, "signal": 52, "significantli": 76, "sim": 7, "simillar": 16, "simon": [69, 73, 78], "simpl": [24, 25, 26, 52, 55, 71, 74, 80], "simpli": 3, "simplic": 7, "simul": [3, 9, 13, 16, 22, 42, 60, 81], "simulation_output": 16, "sinc": 81, "singl": [7, 9, 13, 74, 81], "singular": 52, "size": [24, 25, 26, 52, 55, 58, 81], "skbay": 55, "sklearn": [24, 25, 26, 52, 55], "sklearnpca": 60, "smaller": [25, 45, 76, 81], "smallest": 25, "so": [7, 24, 25, 26, 52, 55, 76, 77, 81], "sobol": [13, 39, 69, 72, 73, 76, 77, 79, 81], "sobol_cel": 13, "sobol_indic": [13, 79], "sobolindicespc": 81, "soc": 76, "societi": 9, "softwar": [16, 69, 73, 78], "solut": 81, "solver": 16, "some": [24, 25, 26, 39, 47, 52, 55, 63, 79, 81], "sonja": [69, 73, 78], "soon": 29, "sort": 45, "sourc": [10, 60, 71, 77], "space": [29, 39, 42, 46, 47, 60, 64, 65, 68, 69, 71, 73, 74, 75, 76, 77, 78, 80, 81], "sparemulti": 60, "spars": [13, 24, 25, 26, 52, 55, 58, 61, 80], "sparsex": 60, "sparsiti": [60, 81], "specif": [50, 60, 79], "specifi": [17, 29, 39, 60, 71, 72, 80], "sphinx_new": [], "split": [64, 77, 81], "springer": [55, 58], "squar": [3, 9, 10, 13, 24, 25, 26, 29, 52, 55, 60, 74, 80, 81], "ssurjano": [69, 73, 78], "stabl": 9, "stackoverflow": 60, "stand": 3, "standard": [13, 16, 29, 60, 64, 80, 81], "start": [3, 16, 29, 45, 55, 64, 71, 80, 81], "start_engin": [29, 64, 71, 80, 81], "stat": [69, 73, 78], "static": [29, 65, 68, 69, 72, 73, 75, 76, 78, 81], "statist": 76, "std": [3, 9, 16, 29, 81], "std_2": 81, "std_pred": [9, 29, 60], "stdev": [9, 80], "step": [3, 16, 39, 65, 80], "step_snapshot": [39, 81], "still": 64, "stochast": [13, 22], "stop": [39, 45, 64], "store": [16, 81], "str": [3, 5, 7, 13, 16, 24, 25, 26, 29, 39, 42, 47, 52, 55, 60], "straightforward": 77, "strategi": [29, 42, 81], "string": [3, 13, 16, 29, 34, 36, 37, 39, 47, 50, 81], "structur": [64, 77], "stuttgart": [22, 33, 71, 77], "sub": [24, 25, 26, 52, 55], "subdirectori": 16, "submatrix": 52, "subobject": [24, 25, 26, 52, 55], "successfulli": 16, "sudret": [13, 33, 52, 61, 81], "sum": [10, 24, 25, 26, 45, 52, 55], "sum_i": 44, "summari": [29, 60], "sumo": 42, "superclass": 24, "support": [3, 7, 39, 44, 60, 71, 72], "surjanov": [69, 73, 78], "surrog": [16, 28, 29, 42, 60, 64, 72, 77, 79], "surrogate_descript": [], "surrogate_model": [64, 72, 77, 80, 81], "switzerland": 33, "sy": 81, "system": [13, 22, 33, 52], "t": [24, 25, 26, 42, 44, 52, 55], "t_l": 69, "t_u": 69, "tag": 81, "take": [64, 74, 77, 81], "taken": 29, "target": [25, 26, 29, 52, 55, 58, 60, 61, 63], "tau": 78, "teach": 70, "tell": 80, "templat": 16, "term": [7, 25, 26, 37, 45, 63, 69, 73, 78, 81], "termin": [55, 58], "test": [24, 25, 26, 52, 55, 58, 69, 78], "test_": 78, "test_analytical_funct": 81, "text": [7, 16], "textbf": 7, "th": 42, "than": [10, 44, 45], "thei": [72, 77, 81], "them": [16, 29, 64, 71, 77], "themselv": 81, "theorem": 9, "theori": 29, "therefor": [24, 25, 26, 45, 55, 58], "theta": [7, 9, 10, 40], "theta_": 7, "thi": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 40, 42, 47, 52, 55, 58, 60, 62, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "thing": 80, "third": 16, "though": [68, 81], "three": [5, 60, 75, 80, 81], "threshold": [25, 26, 39, 55, 58, 60], "through": [77, 81], "thu": 19, "time": [5, 13, 16, 64, 65, 68, 69, 73, 75, 76, 78, 81], "timestep": [60, 74], "tip": [55, 58], "titl": 3, "toctre": [], "todo": [3, 29, 72], "tol": [24, 25, 26, 55, 56, 58], "tolist": 45, "tom": [3, 81], "toolbox": 42, "topic": 77, "total": [3, 13, 24, 25, 26, 45, 52, 55, 65, 68, 69, 73, 75, 76, 78, 79, 81], "total_sigma2": [3, 9], "total_sobol": [13, 81], "towardsdatasci": 13, "tpl": 16, "tr_x": [39, 47], "trade": [29, 39], "tradeoff": [65, 69, 76, 78, 81], "tradeoff_schem": [29, 39, 64, 81], "tradeoff_weight": 29, "train": [3, 9, 13, 16, 28, 29, 36, 39, 41, 42, 52, 55, 60, 63, 71, 72, 77, 79], "train_error_model": 9, "train_norm": [29, 71, 80, 81], "train_seq_design": 29, "train_sequenti": [29, 64, 79, 81], "transact": 58, "transform": [16, 39, 47, 49, 60, 72], "transpos": 52, "tree": 71, "trine": 39, "true": [3, 5, 16, 17, 20, 24, 25, 26, 39, 40, 44, 52, 55, 58, 60, 72, 81], "truncat": [44, 45, 60, 65, 68, 69, 73, 75, 76, 78, 80, 81], "try": 25, "tsunami": 29, "tue": 54, "tupl": [16, 29, 32, 39, 45, 47, 60], "tutori": [65, 71, 75], "two": [13, 24, 25, 26, 30, 45, 55, 58, 60, 71, 74, 78, 80, 81], "type": [3, 5, 7, 9, 13, 16, 25, 29, 31, 34, 36, 37, 39, 47, 50, 60, 65, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81], "type_": 3, "typic": [10, 81], "u": [24, 25, 26, 52, 55, 71, 80, 81], "ugent": 42, "um": 74, "umbridg": 16, "umbridge_model": 16, "uncertain": [7, 49, 50, 60, 72, 74, 77, 80], "uncertainti": [3, 22, 33, 52, 61, 72, 77], "unchang": [24, 25, 26, 52, 55], "under": [69, 71, 73, 74, 77, 78], "underli": [], "understand": 79, "uni": [22, 33, 71, 77], "unif": [71, 72, 81], "uniform": [49, 65, 68, 69, 72, 73, 78, 81], "uniform_averag": [24, 25, 26, 52, 55], "union": 45, "uniqu": [24, 25, 26], "unit": 33, "univ_basi": 60, "univ_basis_v": [39, 47, 60], "univ_p_v": 62, "univ_v": 36, "univari": [22, 35, 36, 60, 62], "univers": [33, 69, 73, 78], "universitaet": 22, "unknown": [3, 7, 9, 29], "unstabl": 25, "until": 39, "up": [3, 60, 62, 80], "updat": [16, 24, 25, 26, 52, 55, 58, 60], "update_input_param": 16, "update_pce_coeff": 60, "upper": [17, 29, 32, 39, 45, 47], "uq_bsc": 58, "uq_regress": 58, "uqlab": [33, 58], "urban": 13, "us": [3, 7, 9, 13, 16, 22, 24, 25, 26, 29, 39, 42, 44, 45, 47, 52, 55, 58, 60, 64, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81], "use_bayes_set": 5, "useag": 80, "user": [3, 5, 16, 24, 25, 26, 33, 39, 47, 52, 55, 71, 72, 80, 81], "util": [24, 25, 26, 29, 39, 43, 52, 55], "util_alphoptdesign": 29, "util_bayesianactivedesign": 29, "util_bayesiandesign": 29, "util_func": [29, 39, 64, 81], "util_varbaseddesign": 29, "utilii": 39, "v": [3, 22, 24, 25, 26, 39, 47, 52, 55, 60], "v1": 33, "valid": [3, 13, 16, 39, 47, 60, 61, 64, 72, 77, 79, 81], "valid_error": 13, "valid_metamodel": [13, 79, 81], "valid_metr": 3, "valid_model_run": 81, "valid_sampl": 81, "validlikelihoods_": 81, "valu": [3, 5, 7, 9, 10, 16, 17, 24, 25, 26, 34, 35, 45, 52, 55, 56, 58, 60, 61, 63, 65, 68, 72, 74, 80, 81], "valueerror": 62, "var": 29, "var_hat": [25, 26, 55, 58], "var_pca_threshold": 60, "var_pr": [24, 25, 26], "varbasedoptdesign": 39, "variabl": [25, 26, 52, 55, 58, 76, 81], "varianc": [3, 7, 10, 24, 25, 26, 55, 58, 60, 63, 64, 65, 68, 76, 78], "variant": 80, "variat": [24, 26, 60, 80], "varidx": [60, 63], "varieti": 74, "variou": [60, 81], "varoptdesign": [29, 39, 64], "vbl": [60, 80], "vector": [25, 26, 60], "venv": 77, "verbos": [3, 16, 24, 25, 26, 29, 52, 55, 58, 60, 81], "veri": [25, 74], "versa": 30, "version": [24, 25, 26, 42, 52, 55, 60, 69, 71, 73, 77, 78], "via": [5, 7, 9, 39, 47, 60, 68, 69, 72, 73, 74, 76, 77, 80, 81], "vice": 30, "view": 60, "virtual": 77, "visual": [5, 39, 72, 77, 79, 81], "voronoi": [39, 42, 64, 81], "vulner": 33, "w": [9, 10, 13, 22, 24, 25, 26, 42, 52, 55], "wa": 60, "wai": [29, 60, 80, 81], "walker": 3, "want": [71, 72, 79, 80, 81], "warranti": [69, 73, 78], "wavelet": 52, "wb": 81, "we": [7, 25, 64, 69, 70, 71, 73, 74, 78, 79, 80, 81], "wear": 9, "websit": [], "weibul": 72, "weight": [5, 10, 24, 25, 26, 29, 39, 52, 55, 58, 64, 77], "well": [10, 24, 25, 26, 52, 55], "were": 79, "what": [3, 7, 70, 80], "when": [3, 7, 9, 13, 16, 24, 25, 26, 30, 39, 52, 55, 58, 72, 81], "where": [5, 7, 24, 25, 26, 34, 35, 39, 44, 52, 55, 60, 72, 81], "whether": [5, 16, 39, 52, 55, 58], "which": [3, 16, 22, 24, 25, 26, 30, 58, 81], "while": [45, 64, 77, 79, 80, 81], "width": 68, "wiener": 37, "wight": 5, "wish": 16, "witch": 44, "within": [10, 16, 70], "without": [16, 64, 68, 69, 71, 73, 78, 81], "wolfgang": 29, "word": 16, "work": [16, 24, 25, 26, 52, 55, 69, 71, 73, 78, 81], "workflow": [71, 81], "wors": [24, 25, 26, 52, 55], "would": [24, 25, 26, 52, 55, 71], "wrapper": 16, "write": [], "written": 16, "wrong": 29, "www": [22, 33, 55, 58, 69, 73, 78], "x": [13, 16, 24, 25, 26, 31, 34, 35, 36, 39, 44, 47, 52, 53, 55, 58, 60, 63, 72, 74, 80, 81], "x1": 16, "x_1": [49, 50, 73, 81], "x_2": [73, 81], "x_3": 73, "x_axi": 13, "x_can": 29, "x_i": [44, 80], "x_mc": 29, "x_new": 29, "x_valu": [16, 20, 71, 74, 80], "xi": 16, "xiu": 81, "xlabel": 13, "xnew": 29, "xx": 16, "xxa": 55, "xya": 55, "y": [7, 9, 24, 25, 26, 39, 52, 53, 55, 60, 61, 63], "y_hat": [25, 26, 29, 52, 55, 58], "y_i": 80, "y_pc_val": 20, "y_pc_val_std": 20, "y_pred": [24, 25, 26, 52, 55, 60], "y_true": [24, 25, 26, 52, 55], "y_val": 20, "ye": [16, 65, 68, 78], "yet": 10, "yew": 29, "you": [7, 13, 16, 24, 25, 26, 52, 55, 66, 69, 71, 73, 75, 76, 78], "young": 68, "your": [13, 69, 73, 76, 77], "yr": [69, 73], "z": [71, 81], "zero": [30, 52, 55, 58], "zeromean": 7, "zip": 16, "zip_subdir": 16, "zurich": 33}, "titles": ["bayesvalidrox", "bayesvalidrox.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "bayesvalidrox.bayes_inference.bayes_model_comparison", "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "bayesvalidrox.bayes_inference.discrepancy", "bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "bayesvalidrox.bayes_inference.mcmc", "bayesvalidrox.bayes_inference.mcmc.MCMC", "bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "bayesvalidrox.post_processing", "bayesvalidrox.post_processing.post_processing", "bayesvalidrox.post_processing.post_processing.PostProcessing", "bayesvalidrox.pylink", "bayesvalidrox.pylink.pylink", "bayesvalidrox.pylink.pylink.PyLinkForwardModel", "bayesvalidrox.pylink.pylink.within_range", "bayesvalidrox.surrogate_models", "bayesvalidrox.surrogate_models.adaptPlot", "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "bayesvalidrox.surrogate_models.apoly_construction", "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "bayesvalidrox.surrogate_models.bayes_linear", "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "bayesvalidrox.surrogate_models.engine", "bayesvalidrox.surrogate_models.engine.Engine", "bayesvalidrox.surrogate_models.engine.hellinger_distance", "bayesvalidrox.surrogate_models.engine.logpdf", "bayesvalidrox.surrogate_models.engine.subdomain", "bayesvalidrox.surrogate_models.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "bayesvalidrox.surrogate_models.exp_designs", "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "bayesvalidrox.surrogate_models.exp_designs.check_ranges", "bayesvalidrox.surrogate_models.exploration", "bayesvalidrox.surrogate_models.exploration.Exploration", "bayesvalidrox.surrogate_models.glexindex", "bayesvalidrox.surrogate_models.glexindex.cross_truncate", "bayesvalidrox.surrogate_models.glexindex.glexindex", "bayesvalidrox.surrogate_models.input_space", "bayesvalidrox.surrogate_models.input_space.InputSpace", "bayesvalidrox.surrogate_models.inputs", "bayesvalidrox.surrogate_models.inputs.Input", "bayesvalidrox.surrogate_models.inputs.Marginal", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "bayesvalidrox.surrogate_models.reg_fast_ard", "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "bayesvalidrox.surrogate_models.reg_fast_laplace", "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "bayesvalidrox.surrogate_models.surrogate_models", "bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "bayesvalidrox.surrogate_models.surrogate_models.create_psi", "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "Active learning: iteratively expanding the training set", "Example: Analytical function", "API", "Bayesian inference and multi-model comparison", "Example: beam", "Example: borehole", "EXAMPLES", "Surrogate-assisted\u00a0Bayesian validation of computational models", "Priors, input space and experimental design", "Example: ishigami", "Models", "Example: model comparison", "Example: OHagan-function", "USER GUIDE", "Example: pollution", "Postprocessing", "Training surrogate models", "TUTORIAL"], "titleterms": {"1": 75, "3": 75, "activ": 64, "adaptplot": [19, 20], "also": [], "an": 81, "analyt": 65, "api": 66, "apoly_construct": [21, 22], "argument": [29, 42], "assist": 71, "attribut": [3, 5, 7, 9, 13, 16, 25, 26, 39, 42, 47, 49, 50, 52, 55, 58, 60], "bay": [], "bayes_infer": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "bayes_linear": [23, 24, 25, 26, 27], "bayes_model_comparison": [4, 5], "bayesian": [67, 71, 81], "bayesianlinearregress": 24, "bayesinfer": 3, "bayesmodelcomparison": 5, "bayesvalidrox": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "beam": 68, "borehol": 69, "check_rang": 40, "choic": [65, 68, 69, 73, 75, 76, 78], "class": [], "comparison": [67, 75], "comput": 71, "contact": [], "content": 71, "contribut": 71, "corr": 53, "corr_loocv_error": 61, "create_psi": 62, "cross_trunc": 44, "data": [65, 68, 69, 73, 76, 78, 81], "defin": 81, "descript": [], "design": [72, 81], "discrep": [6, 7, 65, 68], "eblinearregress": 25, "engin": [28, 29, 30, 31, 32, 80, 81], "eval_rec_rul": [33, 34, 35, 36, 37], "eval_rec_rule_arbitrari": 35, "eval_univ_basi": 36, "exampl": [49, 64, 65, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80], "exp_design": [38, 39, 40], "expand": 64, "expdesign": 39, "experiment": [72, 81], "exploit": 64, "explor": [41, 42, 64], "function": [65, 76], "further": 71, "gamma_mean": 27, "gaussian_process_emul": 63, "gelman_rubin": 10, "glexindex": [43, 44, 45], "guid": 77, "hellinger_dist": 30, "import": 81, "indic": 71, "infer": [67, 81], "input": [48, 49, 50, 72, 81], "input_spac": [46, 47], "inputspac": 47, "instal": [71, 77], "introductori": [], "ishigami": 73, "iter": 64, "l2_model": 75, "learn": 64, "librari": 81, "licens": 71, "link": 71, "logpdf": 31, "margin": 50, "mcmc": [8, 9, 10], "meta": 81, "meta_model_engin": [], "metamodel": [60, 65, 68, 69, 73, 75, 76, 78, 80], "model": [65, 67, 68, 69, 71, 73, 74, 75, 76, 78, 80, 81], "model1": 75, "multi": 67, "necessari": 81, "nl2_model": 75, "nl4_model": 75, "note": [24, 25, 26, 39, 52, 55, 60], "ohagan": 76, "option": 80, "orthogonal_matching_pursuit": [51, 52, 53], "orthogonalmatchingpursuit": 52, "overview": 77, "packag": [], "paramet": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 47, 52, 55, 58, 60, 61, 62, 63], "pollut": 78, "poly_rec_coeff": 37, "post": 81, "post_process": [11, 12, 13], "postprocess": [13, 79], "prior": [65, 68, 69, 72, 73, 76, 78], "priors1": 75, "probabilist": 81, "process": 81, "pylink": [14, 15, 16, 17, 65, 68, 69, 73, 75, 76, 78], "pylinkforwardmodel": [16, 81], "quickstart": 71, "rais": [13, 29, 62], "refer": [52, 55, 58], "reg_fast_ard": [54, 55, 56], "reg_fast_laplac": [57, 58], "regressionfastard": 55, "regressionfastlaplac": 58, "return": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 42, 47, 49, 52, 55, 58, 60, 61, 62, 63], "see": [], "sequenti": 81, "set": [64, 65, 68, 69, 73, 75, 76, 78, 81], "space": 72, "subdomain": 32, "surrog": [65, 68, 69, 71, 73, 75, 76, 78, 80, 81], "surrogate_model": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "tabl": 71, "theori": [], "tradeoff": 64, "train": [64, 65, 68, 69, 73, 75, 76, 78, 80, 81], "tutori": 81, "uncertainti": 81, "update_precis": 56, "user": 77, "valid": 71, "vblinearregress": 26, "within_rang": 17}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"API": [[71, "api"]], "Active learning: iteratively expanding the training set": [[69, "active-learning-iteratively-expanding-the-training-set"]], "Arguments": [[42, "arguments"], [42, "id2"], [60, "arguments"]], "Attributes": [[3, "attributes"], [5, "attributes"], [7, "attributes"], [9, "attributes"], [13, "attributes"], [16, "attributes"], [25, "attributes"], [26, "attributes"], [39, "attributes"], [42, "attributes"], [47, "attributes"], [49, "attributes"], [50, "attributes"], [52, "attributes"], [55, "attributes"], [58, "attributes"], [65, "attributes"]], "Bayesian Inference": [[87, "bayesian-inference"]], "Bayesian inference": [[72, "bayesian-inference"]], "Bayesian multi-model comparison": [[74, "bayesian-multi-model-comparison"]], "Contribution": [[77, "contribution"]], "Define probabilistic input model": [[87, "define-probabilistic-input-model"]], "Define surrogate (meta) model": [[87, "define-surrogate-meta-model"]], "Define the data uncertainty": [[87, "define-the-data-uncertainty"]], "Define the model with PyLinkForwardModel": [[87, "define-the-model-with-pylinkforwardmodel"]], "Discrepancy": [[70, "id3"], [73, "id3"]], "EXAMPLES": [[76, "examples"]], "Example": [[69, "example"], [72, "example"], [74, "example"], [78, "example"], [80, "example"], [85, "example"], [86, "example"]], "Example: Analytical function": [[70, "example-analytical-function"]], "Example: OHagan-function": [[82, "example-ohagan-function"]], "Example: beam": [[73, "example-beam"]], "Example: borehole": [[75, "example-borehole"]], "Example: ishigami": [[79, "example-ishigami"]], "Example: model comparison": [[81, "example-model-comparison"]], "Example: pollution": [[84, "example-pollution"]], "Examples": [[49, "examples"]], "Exploration, exploitation and tradeoff": [[69, "exploration-exploitation-and-tradeoff"]], "Further contents": [[77, "further-contents"]], "Import necessary libraries": [[87, "import-necessary-libraries"]], "Indices and tables": [[77, "indices-and-tables"]], "Installation": [[77, "installation"], [83, "installation"]], "License": [[77, "license"]], "Links": [[77, "links"]], "MetaModel options": [[86, "metamodel-options"]], "MetaModel settings": [[70, "id4"], [73, "id4"], [75, "id3"], [79, "id3"], [81, "id7"], [82, "id3"], [84, "id3"]], "Model 1: L2_model": [[81, "model-1-l2-model"]], "Model 1: NL2_model": [[81, "model-1-nl2-model"]], "Model 1: NL4_model": [[81, "model-1-nl4-model"]], "Model and Data": [[70, "model-and-data"], [73, "model-and-data"], [75, "model-and-data"], [79, "model-and-data"], [82, "model-and-data"], [84, "model-and-data"]], "Models": [[80, "models"]], "Note": [[39, "note"], [65, "note"]], "Notes": [[24, "notes"], [25, "notes"], [26, "notes"], [52, "notes"], [55, "notes"]], "Overview": [[83, "overview"]], "Parameters": [[3, "parameters"], [3, "id2"], [3, "id4"], [3, "id7"], [5, "parameters"], [5, "id1"], [5, "id3"], [5, "id5"], [5, "id7"], [5, "id9"], [5, "id11"], [5, "id13"], [5, "id15"], [7, "parameters"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id5"], [9, "id7"], [9, "id9"], [9, "id11"], [10, "parameters"], [13, "parameters"], [13, "id1"], [13, "id4"], [13, "id6"], [13, "id8"], [13, "id10"], [16, "parameters"], [16, "id2"], [16, "id4"], [16, "id6"], [16, "id8"], [16, "id10"], [16, "id12"], [17, "parameters"], [22, "parameters"], [24, "parameters"], [24, "id2"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id12"], [25, "id1"], [25, "id3"], [25, "id5"], [25, "id7"], [25, "id9"], [25, "id11"], [25, "id15"], [25, "id17"], [26, "id1"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [26, "id11"], [26, "id15"], [26, "id17"], [27, "parameters"], [29, "parameters"], [30, "parameters"], [31, "parameters"], [32, "parameters"], [34, "parameters"], [35, "parameters"], [36, "parameters"], [37, "parameters"], [39, "parameters"], [39, "id2"], [39, "id4"], [39, "id6"], [39, "id8"], [39, "id10"], [39, "id12"], [39, "id14"], [39, "id16"], [40, "parameters"], [47, "parameters"], [47, "id2"], [47, "id4"], [52, "parameters"], [52, "id1"], [52, "id2"], [52, "id5"], [52, "id7"], [52, "id9"], [52, "id11"], [52, "id13"], [52, "id17"], [55, "parameters"], [55, "id1"], [55, "id3"], [55, "id5"], [55, "id8"], [55, "id10"], [55, "id14"], [55, "id16"], [58, "parameters"], [58, "id1"], [60, "parameters"], [60, "id1"], [60, "id3"], [60, "id6"], [60, "id9"], [60, "id11"], [60, "id13"], [61, "parameters"], [62, "parameters"], [63, "parameters"], [65, "parameters"], [65, "id4"], [65, "id6"], [65, "id8"], [65, "id10"], [65, "id12"], [65, "id14"], [65, "id16"], [65, "id18"], [65, "id20"], [66, "parameters"], [67, "parameters"], [68, "parameters"]], "Parameters:": [[25, "parameters"], [26, "parameters"]], "Post-processing": [[87, "post-processing"]], "Postprocessing": [[85, "postprocessing"]], "Priors": [[70, "id2"], [73, "id2"], [75, "id2"], [79, "id2"], [82, "id2"], [84, "id2"]], "Priors, input space and experimental design": [[78, "priors-input-space-and-experimental-design"]], "Priors1": [[81, "id2"], [81, "id4"], [81, "id6"]], "Pylink model": [[70, "id1"], [73, "id1"], [75, "id1"], [79, "id1"], [82, "id1"], [84, "id1"]], "Pylink model1": [[81, "id1"], [81, "id3"], [81, "id5"]], "Quickstart": [[77, "quickstart"]], "Raises": [[13, "raises"], [60, "raises"], [67, "raises"]], "References": [[52, "references"], [55, "references"], [55, "id7"], [58, "references"], [58, "id2"]], "Returns": [[3, "returns"], [3, "id1"], [3, "id3"], [3, "id5"], [3, "id6"], [3, "id8"], [5, "returns"], [5, "id2"], [5, "id4"], [5, "id6"], [5, "id8"], [5, "id10"], [5, "id12"], [5, "id14"], [5, "id16"], [5, "id17"], [7, "returns"], [9, "returns"], [9, "id2"], [9, "id4"], [9, "id6"], [9, "id8"], [9, "id10"], [9, "id12"], [10, "returns"], [13, "returns"], [13, "id2"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [13, "id11"], [16, "returns"], [16, "id1"], [16, "id3"], [16, "id5"], [16, "id7"], [16, "id9"], [16, "id11"], [16, "id13"], [17, "returns"], [22, "returns"], [24, "returns"], [24, "id1"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id11"], [24, "id13"], [25, "returns"], [25, "id2"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [25, "id14"], [25, "id16"], [25, "id18"], [26, "returns"], [26, "id2"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [26, "id14"], [26, "id16"], [26, "id18"], [27, "returns"], [29, "returns"], [29, "id1"], [29, "id2"], [29, "id3"], [29, "id4"], [30, "returns"], [31, "returns"], [32, "returns"], [34, "returns"], [35, "returns"], [36, "returns"], [37, "returns"], [39, "returns"], [39, "id1"], [39, "id3"], [39, "id5"], [39, "id7"], [39, "id9"], [39, "id11"], [39, "id13"], [39, "id15"], [39, "id17"], [40, "returns"], [42, "returns"], [42, "id1"], [42, "id3"], [42, "id4"], [47, "returns"], [47, "id1"], [47, "id3"], [47, "id5"], [49, "returns"], [52, "returns"], [52, "id3"], [52, "id4"], [52, "id6"], [52, "id8"], [52, "id10"], [52, "id12"], [52, "id16"], [52, "id18"], [55, "returns"], [55, "id2"], [55, "id4"], [55, "id6"], [55, "id9"], [55, "id13"], [55, "id15"], [55, "id17"], [58, "returns"], [60, "returns"], [60, "id2"], [60, "id4"], [60, "id5"], [60, "id7"], [60, "id8"], [60, "id10"], [60, "id12"], [60, "id14"], [61, "returns"], [62, "returns"], [63, "returns"], [65, "returns"], [65, "id1"], [65, "id2"], [65, "id3"], [65, "id5"], [65, "id7"], [65, "id9"], [65, "id11"], [65, "id13"], [65, "id15"], [65, "id17"], [65, "id19"], [65, "id21"], [66, "returns"], [67, "returns"], [68, "returns"]], "Sequential training": [[87, "sequential-training"]], "Set the experimental design": [[87, "set-the-experimental-design"]], "Surrogate": [[70, "surrogate"], [73, "surrogate"], [75, "surrogate"], [79, "surrogate"], [82, "surrogate"], [84, "surrogate"]], "Surrogate-assisted\u00a0Bayesian validation of computational models": [[77, "surrogate-assisted-bayesian-validation-of-computational-models"]], "Surrogates 1-3": [[81, "surrogates-1-3"]], "TUTORIAL": [[87, "tutorial"]], "Train the surrogate with an engine": [[87, "train-the-surrogate-with-an-engine"]], "Training choices": [[70, "id5"], [73, "id5"], [75, "id4"], [79, "id4"], [81, "id8"], [82, "id4"], [84, "id4"]], "Training surrogate models": [[86, "training-surrogate-models"]], "Training with the engine": [[86, "training-with-the-engine"]], "USER GUIDE": [[83, "user-guide"]], "bayesvalidrox": [[0, "module-bayesvalidrox"]], "bayesvalidrox.bayes_inference": [[1, "module-bayesvalidrox.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference": [[2, "module-bayesvalidrox.bayes_inference.bayes_inference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, "bayesvalidrox-bayes-inference-bayes-inference-bayesinference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[4, "module-bayesvalidrox.bayes_inference.bayes_model_comparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, "bayesvalidrox-bayes-inference-bayes-model-comparison-bayesmodelcomparison"]], "bayesvalidrox.bayes_inference.discrepancy": [[6, "module-bayesvalidrox.bayes_inference.discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, "bayesvalidrox-bayes-inference-discrepancy-discrepancy"]], "bayesvalidrox.bayes_inference.mcmc": [[8, "module-bayesvalidrox.bayes_inference.mcmc"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, "bayesvalidrox-bayes-inference-mcmc-mcmc"]], "bayesvalidrox.bayes_inference.mcmc.gelman_rubin": [[10, "bayesvalidrox-bayes-inference-mcmc-gelman-rubin"]], "bayesvalidrox.post_processing": [[11, "module-bayesvalidrox.post_processing"]], "bayesvalidrox.post_processing.post_processing": [[12, "module-bayesvalidrox.post_processing.post_processing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, "bayesvalidrox-post-processing-post-processing-postprocessing"]], "bayesvalidrox.pylink": [[14, "module-bayesvalidrox.pylink"]], "bayesvalidrox.pylink.pylink": [[15, "module-bayesvalidrox.pylink.pylink"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, "bayesvalidrox-pylink-pylink-pylinkforwardmodel"]], "bayesvalidrox.pylink.pylink.within_range": [[17, "bayesvalidrox-pylink-pylink-within-range"]], "bayesvalidrox.surrogate_models": [[18, "module-bayesvalidrox.surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[19, "module-bayesvalidrox.surrogate_models.adaptPlot"]], "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot": [[20, "bayesvalidrox-surrogate-models-adaptplot-adaptplot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[21, "module-bayesvalidrox.surrogate_models.apoly_construction"]], "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction": [[22, "bayesvalidrox-surrogate-models-apoly-construction-apoly-construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[23, "module-bayesvalidrox.surrogate_models.bayes_linear"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, "bayesvalidrox-surrogate-models-bayes-linear-bayesianlinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, "bayesvalidrox-surrogate-models-bayes-linear-eblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, "bayesvalidrox-surrogate-models-bayes-linear-vblinearregression"]], "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean": [[27, "bayesvalidrox-surrogate-models-bayes-linear-gamma-mean"]], "bayesvalidrox.surrogate_models.engine": [[28, "module-bayesvalidrox.surrogate_models.engine"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, "bayesvalidrox-surrogate-models-engine-engine"]], "bayesvalidrox.surrogate_models.engine.hellinger_distance": [[30, "bayesvalidrox-surrogate-models-engine-hellinger-distance"]], "bayesvalidrox.surrogate_models.engine.logpdf": [[31, "bayesvalidrox-surrogate-models-engine-logpdf"]], "bayesvalidrox.surrogate_models.engine.subdomain": [[32, "bayesvalidrox-surrogate-models-engine-subdomain"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[33, "module-bayesvalidrox.surrogate_models.eval_rec_rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule": [[34, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary": [[35, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-rec-rule-arbitrary"]], "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis": [[36, "bayesvalidrox-surrogate-models-eval-rec-rule-eval-univ-basis"]], "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs": [[37, "bayesvalidrox-surrogate-models-eval-rec-rule-poly-rec-coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[38, "module-bayesvalidrox.surrogate_models.exp_designs"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, "bayesvalidrox-surrogate-models-exp-designs-expdesigns"]], "bayesvalidrox.surrogate_models.exp_designs.check_ranges": [[40, "bayesvalidrox-surrogate-models-exp-designs-check-ranges"]], "bayesvalidrox.surrogate_models.exploration": [[41, "module-bayesvalidrox.surrogate_models.exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, "bayesvalidrox-surrogate-models-exploration-exploration"]], "bayesvalidrox.surrogate_models.glexindex": [[43, "module-bayesvalidrox.surrogate_models.glexindex"]], "bayesvalidrox.surrogate_models.glexindex.cross_truncate": [[44, "bayesvalidrox-surrogate-models-glexindex-cross-truncate"]], "bayesvalidrox.surrogate_models.glexindex.glexindex": [[45, "bayesvalidrox-surrogate-models-glexindex-glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[46, "module-bayesvalidrox.surrogate_models.input_space"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, "bayesvalidrox-surrogate-models-input-space-inputspace"]], "bayesvalidrox.surrogate_models.inputs": [[48, "module-bayesvalidrox.surrogate_models.inputs"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, "bayesvalidrox-surrogate-models-inputs-input"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, "bayesvalidrox-surrogate-models-inputs-marginal"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[51, "module-bayesvalidrox.surrogate_models.orthogonal_matching_pursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-orthogonalmatchingpursuit"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr": [[53, "bayesvalidrox-surrogate-models-orthogonal-matching-pursuit-corr"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[54, "module-bayesvalidrox.surrogate_models.reg_fast_ard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, "bayesvalidrox-surrogate-models-reg-fast-ard-regressionfastard"]], "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions": [[56, "bayesvalidrox-surrogate-models-reg-fast-ard-update-precisions"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[57, "module-bayesvalidrox.surrogate_models.reg_fast_laplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, "bayesvalidrox-surrogate-models-reg-fast-laplace-regressionfastlaplace"]], "bayesvalidrox.surrogate_models.sequential_design": [[59, "module-bayesvalidrox.surrogate_models.sequential_design"]], "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign": [[60, "bayesvalidrox-surrogate-models-sequential-design-sequentialdesign"]], "bayesvalidrox.surrogate_models.sequential_design.hellinger_distance": [[61, "bayesvalidrox-surrogate-models-sequential-design-hellinger-distance"]], "bayesvalidrox.surrogate_models.sequential_design.logpdf": [[62, "bayesvalidrox-surrogate-models-sequential-design-logpdf"]], "bayesvalidrox.surrogate_models.sequential_design.subdomain": [[63, "bayesvalidrox-surrogate-models-sequential-design-subdomain"]], "bayesvalidrox.surrogate_models.surrogate_models": [[64, "module-bayesvalidrox.surrogate_models.surrogate_models"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[65, "bayesvalidrox-surrogate-models-surrogate-models-metamodel"]], "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error": [[66, "bayesvalidrox-surrogate-models-surrogate-models-corr-loocv-error"]], "bayesvalidrox.surrogate_models.surrogate_models.create_psi": [[67, "bayesvalidrox-surrogate-models-surrogate-models-create-psi"]], "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator": [[68, "bayesvalidrox-surrogate-models-surrogate-models-gaussian-process-emulator"]]}, "docnames": ["_autosummary/bayesvalidrox", "_autosummary/bayesvalidrox.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "_autosummary/bayesvalidrox.bayes_inference.discrepancy", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "_autosummary/bayesvalidrox.bayes_inference.mcmc", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "_autosummary/bayesvalidrox.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing", "_autosummary/bayesvalidrox.pylink", "_autosummary/bayesvalidrox.pylink.pylink", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel", "_autosummary/bayesvalidrox.pylink.pylink.within_range", "_autosummary/bayesvalidrox.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "_autosummary/bayesvalidrox.surrogate_models.engine", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges", "_autosummary/bayesvalidrox.surrogate_models.exploration", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration", "_autosummary/bayesvalidrox.surrogate_models.glexindex", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex", "_autosummary/bayesvalidrox.surrogate_models.input_space", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace", "_autosummary/bayesvalidrox.surrogate_models.inputs", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "_autosummary/bayesvalidrox.surrogate_models.sequential_design", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "al_description", "analyticalfunction", "api", "bayes_description", "beam", "bmc_description", "borehole", "examples", "index", "input_description", "ishigami", "model_description", "modelcomparison", "ohaganfunction", "packagedescription", "pollution", "post_description", "surrogate_description", "tutorial"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["_autosummary/bayesvalidrox.rst", "_autosummary/bayesvalidrox.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_inference.BayesInference.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.rst", "_autosummary/bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.discrepancy.Discrepancy.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.MCMC.rst", "_autosummary/bayesvalidrox.bayes_inference.mcmc.gelman_rubin.rst", "_autosummary/bayesvalidrox.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.rst", "_autosummary/bayesvalidrox.post_processing.post_processing.PostProcessing.rst", "_autosummary/bayesvalidrox.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.rst", "_autosummary/bayesvalidrox.pylink.pylink.PyLinkForwardModel.rst", "_autosummary/bayesvalidrox.pylink.pylink.within_range.rst", "_autosummary/bayesvalidrox.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.adaptPlot.adaptPlot.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.apoly_construction.apoly_construction.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression.rst", "_autosummary/bayesvalidrox.surrogate_models.bayes_linear.gamma_mean.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.Engine.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis.rst", "_autosummary/bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.ExpDesigns.rst", "_autosummary/bayesvalidrox.surrogate_models.exp_designs.check_ranges.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.exploration.Exploration.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.cross_truncate.rst", "_autosummary/bayesvalidrox.surrogate_models.glexindex.glexindex.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.rst", "_autosummary/bayesvalidrox.surrogate_models.input_space.InputSpace.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Input.rst", "_autosummary/bayesvalidrox.surrogate_models.inputs.Marginal.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit.rst", "_autosummary/bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.rst", "_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.rst", "_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.MetaModel.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.rst", "_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.rst", "al_description.rst", "analyticalfunction.rst", "api.rst", "bayes_description.rst", "beam.rst", "bmc_description.rst", "borehole.rst", "examples.rst", "index.rst", "input_description.rst", "ishigami.rst", "model_description.rst", "modelcomparison.rst", "ohaganfunction.rst", "packagedescription.rst", "pollution.rst", "post_description.rst", "surrogate_description.rst", "tutorial.rst"], "indexentries": {}, "objects": {"": [[0, 0, 0, "-", "bayesvalidrox"]], "bayesvalidrox": [[1, 0, 0, "-", "bayes_inference"], [11, 0, 0, "-", "post_processing"], [14, 0, 0, "-", "pylink"], [18, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.bayes_inference": [[2, 0, 0, "-", "bayes_inference"], [4, 0, 0, "-", "bayes_model_comparison"], [6, 0, 0, "-", "discrepancy"], [8, 0, 0, "-", "mcmc"]], "bayesvalidrox.bayes_inference.bayes_inference": [[3, 1, 1, "", "BayesInference"]], "bayesvalidrox.bayes_inference.bayes_inference.BayesInference": [[3, 2, 1, "", "__init__"], [3, 2, 1, "", "create_error_model"], [3, 2, 1, "", "create_inference"], [3, 2, 1, "", "normpdf"], [3, 2, 1, "", "perform_bootstrap"], [3, 2, 1, "", "plot_log_BME"], [3, 2, 1, "", "plot_post_params"], [3, 2, 1, "", "setup_inference"]], "bayesvalidrox.bayes_inference.bayes_model_comparison": [[5, 1, 1, "", "BayesModelComparison"]], "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison": [[5, 2, 1, "", "__init__"], [5, 2, 1, "", "cal_model_weight"], [5, 2, 1, "", "calc_bayes_factors"], [5, 2, 1, "", "calc_justifiability_analysis"], [5, 2, 1, "", "calc_model_weights"], [5, 2, 1, "", "generate_dataset"], [5, 2, 1, "", "model_comparison_all"], [5, 2, 1, "", "plot_bayes_factor"], [5, 2, 1, "", "plot_just_analysis"], [5, 2, 1, "", "plot_model_weights"], [5, 2, 1, "", "setup"]], "bayesvalidrox.bayes_inference.discrepancy": [[7, 1, 1, "", "Discrepancy"]], "bayesvalidrox.bayes_inference.discrepancy.Discrepancy": [[7, 2, 1, "", "__init__"], [7, 2, 1, "", "get_sample"]], "bayesvalidrox.bayes_inference.mcmc": [[9, 1, 1, "", "MCMC"], [10, 3, 1, "", "gelman_rubin"]], "bayesvalidrox.bayes_inference.mcmc.MCMC": [[9, 2, 1, "", "__init__"], [9, 2, 1, "", "eval_model"], [9, 2, 1, "", "log_likelihood"], [9, 2, 1, "", "log_posterior"], [9, 2, 1, "", "log_prior"], [9, 2, 1, "", "normpdf"], [9, 2, 1, "", "run_sampler"], [9, 2, 1, "", "train_error_model"]], "bayesvalidrox.post_processing": [[12, 0, 0, "-", "post_processing"]], "bayesvalidrox.post_processing.post_processing": [[13, 1, 1, "", "PostProcessing"]], "bayesvalidrox.post_processing.post_processing.PostProcessing": [[13, 2, 1, "", "__init__"], [13, 2, 1, "", "check_accuracy"], [13, 2, 1, "", "check_reg_quality"], [13, 2, 1, "", "compute_pce_moments"], [13, 2, 1, "", "plot_moments"], [13, 2, 1, "", "plot_seq_design_diagnostics"], [13, 2, 1, "", "sobol_indices"], [13, 2, 1, "", "valid_metamodel"]], "bayesvalidrox.pylink": [[15, 0, 0, "-", "pylink"]], "bayesvalidrox.pylink.pylink": [[16, 1, 1, "", "PyLinkForwardModel"], [17, 3, 1, "", "within_range"]], "bayesvalidrox.pylink.pylink.PyLinkForwardModel": [[16, 1, 1, "", "OutputData"], [16, 2, 1, "", "__init__"], [16, 2, 1, "", "read_observation"], [16, 2, 1, "", "read_output"], [16, 2, 1, "", "run_command"], [16, 2, 1, "", "run_forwardmodel"], [16, 2, 1, "", "run_model_parallel"], [16, 2, 1, "", "uMBridge_model"], [16, 2, 1, "", "update_input_params"], [16, 2, 1, "", "zip_subdirs"]], "bayesvalidrox.surrogate_models": [[19, 0, 0, "-", "adaptPlot"], [21, 0, 0, "-", "apoly_construction"], [23, 0, 0, "-", "bayes_linear"], [28, 0, 0, "-", "engine"], [33, 0, 0, "-", "eval_rec_rule"], [38, 0, 0, "-", "exp_designs"], [41, 0, 0, "-", "exploration"], [43, 0, 0, "-", "glexindex"], [46, 0, 0, "-", "input_space"], [48, 0, 0, "-", "inputs"], [51, 0, 0, "-", "orthogonal_matching_pursuit"], [54, 0, 0, "-", "reg_fast_ard"], [57, 0, 0, "-", "reg_fast_laplace"], [59, 0, 0, "-", "sequential_design"], [64, 0, 0, "-", "surrogate_models"]], "bayesvalidrox.surrogate_models.adaptPlot": [[20, 3, 1, "", "adaptPlot"]], "bayesvalidrox.surrogate_models.apoly_construction": [[22, 3, 1, "", "apoly_construction"]], "bayesvalidrox.surrogate_models.bayes_linear": [[24, 1, 1, "", "BayesianLinearRegression"], [25, 1, 1, "", "EBLinearRegression"], [26, 1, 1, "", "VBLinearRegression"], [27, 3, 1, "", "gamma_mean"]], "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression": [[24, 2, 1, "", "__init__"], [24, 2, 1, "", "fit"], [24, 2, 1, "", "get_metadata_routing"], [24, 2, 1, "", "get_params"], [24, 2, 1, "", "predict"], [24, 2, 1, "", "predict_dist"], [24, 2, 1, "", "score"], [24, 2, 1, "", "set_params"], [24, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression": [[25, 2, 1, "", "__init__"], [25, 2, 1, "", "fit"], [25, 2, 1, "", "get_metadata_routing"], [25, 2, 1, "", "get_params"], [25, 2, 1, "", "predict"], [25, 2, 1, "", "predict_dist"], [25, 2, 1, "", "score"], [25, 2, 1, "", "set_params"], [25, 2, 1, "", "set_predict_request"], [25, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression": [[26, 2, 1, "", "__init__"], [26, 2, 1, "", "fit"], [26, 2, 1, "", "get_metadata_routing"], [26, 2, 1, "", "get_params"], [26, 2, 1, "", "predict"], [26, 2, 1, "", "predict_dist"], [26, 2, 1, "", "score"], [26, 2, 1, "", "set_params"], [26, 2, 1, "", "set_predict_request"], [26, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.engine": [[29, 1, 1, "", "Engine"], [30, 3, 1, "", "hellinger_distance"], [31, 3, 1, "", "logpdf"], [32, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.engine.Engine": [[29, 2, 1, "", "__init__"], [29, 2, 1, "", "eval_metamodel"], [29, 2, 1, "", "start_engine"], [29, 2, 1, "", "train_normal"], [29, 2, 1, "", "train_seq_design"], [29, 2, 1, "", "train_sequential"]], "bayesvalidrox.surrogate_models.eval_rec_rule": [[34, 3, 1, "", "eval_rec_rule"], [35, 3, 1, "", "eval_rec_rule_arbitrary"], [36, 3, 1, "", "eval_univ_basis"], [37, 3, 1, "", "poly_rec_coeffs"]], "bayesvalidrox.surrogate_models.exp_designs": [[39, 1, 1, "", "ExpDesigns"], [40, 3, 1, "", "check_ranges"]], "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns": [[39, 2, 1, "", "__init__"], [39, 2, 1, "", "build_polytypes"], [39, 2, 1, "", "check_valid_inputs"], [39, 2, 1, "", "generate_ED"], [39, 2, 1, "", "generate_samples"], [39, 2, 1, "", "init_param_space"], [39, 2, 1, "", "pcm_sampler"], [39, 2, 1, "", "plot_samples"], [39, 2, 1, "", "random_sampler"], [39, 2, 1, "", "read_from_file"], [39, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.exploration": [[42, 1, 1, "", "Exploration"]], "bayesvalidrox.surrogate_models.exploration.Exploration": [[42, 2, 1, "", "__init__"], [42, 2, 1, "", "approximate_voronoi"], [42, 2, 1, "", "get_exploration_samples"], [42, 2, 1, "", "get_mc_samples"], [42, 2, 1, "", "get_vornoi_samples"]], "bayesvalidrox.surrogate_models.glexindex": [[44, 3, 1, "", "cross_truncate"], [45, 3, 1, "", "glexindex"]], "bayesvalidrox.surrogate_models.input_space": [[47, 1, 1, "", "InputSpace"]], "bayesvalidrox.surrogate_models.input_space.InputSpace": [[47, 2, 1, "", "__init__"], [47, 2, 1, "", "build_polytypes"], [47, 2, 1, "", "check_valid_inputs"], [47, 2, 1, "", "init_param_space"], [47, 2, 1, "", "transform"]], "bayesvalidrox.surrogate_models.inputs": [[49, 1, 1, "", "Input"], [50, 1, 1, "", "Marginal"]], "bayesvalidrox.surrogate_models.inputs.Input": [[49, 2, 1, "", "__init__"], [49, 2, 1, "", "add_marginals"]], "bayesvalidrox.surrogate_models.inputs.Marginal": [[50, 2, 1, "", "__init__"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit": [[52, 1, 1, "", "OrthogonalMatchingPursuit"], [53, 3, 1, "", "corr"]], "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit": [[52, 2, 1, "", "__init__"], [52, 2, 1, "", "blockwise_inverse"], [52, 2, 1, "", "fit"], [52, 2, 1, "", "get_metadata_routing"], [52, 2, 1, "", "get_params"], [52, 2, 1, "", "loo_error"], [52, 2, 1, "", "predict"], [52, 2, 1, "", "score"], [52, 2, 1, "", "set_params"], [52, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_ard": [[55, 1, 1, "", "RegressionFastARD"], [56, 3, 1, "", "update_precisions"]], "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD": [[55, 2, 1, "", "__init__"], [55, 2, 1, "", "fit"], [55, 2, 1, "", "get_metadata_routing"], [55, 2, 1, "", "get_params"], [55, 2, 1, "", "log_marginal_like"], [55, 2, 1, "", "predict"], [55, 2, 1, "", "score"], [55, 2, 1, "", "set_params"], [55, 2, 1, "", "set_predict_request"], [55, 2, 1, "", "set_score_request"]], "bayesvalidrox.surrogate_models.reg_fast_laplace": [[58, 1, 1, "", "RegressionFastLaplace"]], "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace": [[58, 2, 1, "", "__init__"], [58, 2, 1, "", "predict"]], "bayesvalidrox.surrogate_models.sequential_design": [[60, 1, 1, "", "SequentialDesign"], [61, 3, 1, "", "hellinger_distance"], [62, 3, 1, "", "logpdf"], [63, 3, 1, "", "subdomain"]], "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "choose_next_sample"], [60, 2, 1, "", "dual_annealing"], [60, 2, 1, "", "run_util_func"], [60, 2, 1, "", "start_seqdesign"], [60, 2, 1, "", "tradeoff_weights"], [60, 2, 1, "", "util_AlphOptDesign"], [60, 2, 1, "", "util_BayesianActiveDesign"], [60, 2, 1, "", "util_BayesianDesign"], [60, 2, 1, "", "util_VarBasedDesign"]], "bayesvalidrox.surrogate_models.surrogate_models": [[65, 1, 1, "", "MetaModel"], [66, 3, 1, "", "corr_loocv_error"], [67, 3, 1, "", "create_psi"], [68, 3, 1, "", "gaussian_process_emulator"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel": [[65, 2, 1, "", "__init__"], [65, 2, 1, "", "adaptive_regression"], [65, 2, 1, "", "add_InputSpace"], [65, 1, 1, "", "auto_vivification"], [65, 2, 1, "", "build_metamodel"], [65, 2, 1, "", "copy_meta_model_opts"], [65, 2, 1, "", "create_model_error"], [65, 2, 1, "", "eval_metamodel"], [65, 2, 1, "", "eval_model_error"], [65, 2, 1, "", "fit"], [65, 2, 1, "", "generate_polynomials"], [65, 2, 1, "", "pca_transformation"], [65, 2, 1, "", "regression"], [65, 2, 1, "", "univ_basis_vals"], [65, 2, 1, "", "update_pce_coeffs"]], "bayesvalidrox.surrogate_models.surrogate_models.MetaModel.auto_vivification": [[65, 2, 1, "", "clear"], [65, 2, 1, "", "copy"], [65, 2, 1, "", "fromkeys"], [65, 2, 1, "", "get"], [65, 2, 1, "", "items"], [65, 2, 1, "", "keys"], [65, 2, 1, "", "pop"], [65, 2, 1, "", "popitem"], [65, 2, 1, "", "setdefault"], [65, 2, 1, "", "update"], [65, 2, 1, "", "values"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"": [9, 13, 16, 22, 24, 25, 26, 33, 42, 52, 55, 56, 58, 60, 65, 82, 87], "0": [3, 5, 7, 16, 24, 25, 26, 30, 44, 45, 49, 52, 55, 58, 61, 65, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87], "0001": 26, "001": [13, 25, 55, 72], "002": 22, "01": [5, 72], "032": 42, "045e": 85, "05": [3, 22, 42, 85], "057": 72, "06": 25, "07": [58, 85], "08": 51, "1": [3, 5, 9, 10, 13, 16, 24, 25, 26, 30, 33, 34, 35, 36, 39, 42, 44, 45, 47, 49, 52, 55, 58, 60, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87], "10": [13, 22, 42, 44, 58, 69, 70, 77, 85, 86, 87], "100": [3, 26, 55, 65, 73, 74, 78, 81, 82, 87], "1000": [5, 13, 58, 69, 70, 87], "10000": 82, "100000": 3, "1016": [13, 22, 42], "104": 33, "106": [22, 60], "106737": 13, "11": [13, 42, 85], "12": [65, 70, 81], "125": 9, "13": 19, "13380": 72, "14": [33, 51, 69, 79, 82], "15": [51, 82, 85], "150": [70, 84, 87], "16": [39, 69, 87], "171": 60, "179": 22, "18082457": 65, "182": 60, "19": [54, 58], "190": 22, "195": 13, "1993": 52, "1d": 72, "1e": [25, 26, 39, 55, 58, 69, 87], "1e4": 72, "1e5": 87, "2": [3, 7, 9, 13, 24, 25, 26, 33, 39, 44, 45, 47, 52, 55, 58, 60, 65, 66, 70, 72, 73, 75, 77, 79, 80, 81, 84, 85, 87], "200": [3, 79, 87], "2001": 55, "2002": 87, "2003": [55, 58], "2004": 82, "2006": [55, 58], "2009": [52, 58, 66], "2010": [9, 42], "2011": [13, 42, 52, 66, 87], "2012": [22, 87], "2013": [9, 75, 79, 84], "2014": 33, "2016": 60, "2017": 60, "2018": 60, "2020": [13, 19, 54, 60], "2021": 33, "2022": [33, 51], "2051": 42, "2055": 42, "214": 42, "22": 60, "224e": 85, "23": [24, 25, 26, 52, 55], "230": [52, 66], "234": 72, "2345": [52, 66], "2367": [52, 66], "24": [19, 54], "2554": 33, "2563": 33, "27": 13, "27th": 52, "2_": 87, "2d": [16, 31, 62, 65], "2e": 3, "2nd": 33, "3": [3, 24, 25, 26, 37, 39, 42, 45, 47, 52, 55, 58, 70, 74, 75, 77, 79, 82, 83, 86, 87], "30": [72, 74, 87], "300": [25, 55, 75], "306": 9, "332": 60, "382": 60, "4": [26, 33, 39, 45, 69, 70, 72, 73, 75, 81, 82, 84, 87], "40": 52, "406e": 85, "407": 60, "41": 54, "44": 52, "45": 54, "46": 19, "5": [9, 25, 49, 60, 70, 72, 75, 78, 82, 85, 87], "50": 75, "500": [72, 82, 87], "5000": 75, "500000": 3, "513e": 85, "53": 58, "59": 51, "5a": 22, "6": [45, 52, 66, 73], "61": 33, "63": 58, "65": [9, 82], "651879": 65, "66": 82, "683": 42, "696": 42, "7": [58, 65, 82], "70569": [22, 33], "75": [73, 87], "751": 82, "752": 72, "769": 82, "8": [60, 75, 84], "80": 9, "85": [70, 77, 86], "890": 60, "9": [77, 83, 86, 87], "925": 9, "99": 65, "999": 65, "A": [3, 5, 7, 9, 13, 16, 24, 25, 26, 33, 39, 42, 47, 49, 52, 55, 56, 58, 60, 65, 70, 74, 75, 79, 80, 81, 84, 85, 87], "As": [69, 72, 74, 87], "FOR": [75, 79, 84], "For": [7, 10, 13, 24, 25, 26, 39, 52, 55, 65, 69, 72, 74, 75, 77, 79, 80, 84, 86, 87], "If": [3, 7, 9, 13, 16, 24, 25, 26, 39, 40, 45, 47, 49, 52, 55, 58, 65, 72, 75, 77, 78, 79, 80, 83, 84, 86, 87], "In": [3, 7, 42, 65, 69, 72, 74, 78, 80, 86, 87], "It": [16, 60, 65, 77, 83], "Its": 80, "NO": [75, 79, 84], "NOT": [75, 79, 84], "No": [60, 75, 79, 81, 82, 84], "OF": [75, 79, 84], "OR": [75, 79, 84], "One": [29, 65], "THE": [75, 79, 84], "THERE": [75, 79, 84], "The": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 40, 42, 44, 45, 47, 50, 52, 55, 60, 61, 65, 66, 68, 69, 72, 73, 74, 76, 77, 78, 80, 81, 83, 85, 86, 87], "Then": [72, 74, 83, 86], "There": 65, "These": [65, 72, 74, 86, 87], "To": [65, 72, 74, 85], "Will": 39, "With": [7, 72, 77, 80, 86, 87], "_": [7, 86], "__": [24, 25, 26, 52, 55], "__init__": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65], "_i": 7, "aa": 55, "ab": [34, 37], "about": 76, "abov": [3, 81], "absolut": [55, 58], "abstract": [24, 55], "accept": [65, 72, 87], "accord": [86, 87], "accordingli": [72, 75, 79, 84], "account": 83, "accuraci": [13, 83, 85, 87], "accuracycheckmetamodel": 87, "achiev": [30, 61, 87], "activ": [3, 39, 56, 60, 70, 73, 79, 83, 84, 85, 86, 87], "active_": [52, 55, 58], "actual": [16, 29, 60, 86, 87], "ad": [24, 25, 26, 52, 55, 56, 72, 78], "adapt": [16, 29, 42, 52, 60, 65, 66, 69], "adapt_verbos": 39, "adaptive_regress": 65, "add": [49, 72, 87], "add_expdesign": [], "add_inputspac": 65, "add_margin": [49, 77, 78, 87], "addit": [7, 16, 69, 72, 74, 80, 87], "addition": [75, 78, 79, 84], "adopt": 87, "advwatr": 13, "affin": 9, "after": 69, "again": [16, 87], "against": [17, 74, 78, 83, 85], "ai": 9, "ainv": 52, "al": [3, 69, 70, 75, 82], "al_descript": [], "alc": 60, "alg": 58, "algorithm": [52, 55, 58, 60, 65], "alia": [24, 25, 26, 52, 55], "all": [3, 5, 13, 16, 17, 24, 25, 26, 29, 36, 39, 47, 52, 55, 60, 65, 67, 69, 72, 77, 78, 81, 83, 85, 87], "all_candid": 42, "all_just_data": 5, "all_output": 16, "allow": [16, 24, 25, 26, 52, 55, 80, 85, 87], "alm": 60, "almost": 82, "along": [36, 60, 65, 87], "alpha": 25, "alpha_": [25, 26, 55, 58], "alphabet": [39, 60], "alreadi": [52, 55, 58, 65], "also": [29, 39, 65, 69, 72, 74, 77, 80, 86, 87], "altern": [29, 86], "alwai": [24, 25, 26, 45, 52, 55], "amazaspshumik": 55, "an": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 42, 47, 50, 52, 55, 60, 65, 69, 72, 73, 74, 77, 78, 80, 81, 83, 84, 85, 86], "analysi": [3, 5, 13, 16, 33, 52, 55, 65, 66, 75, 79, 82, 83, 86, 87], "analyt": [76, 87], "analytical_funct": 87, "analyticfunc": 87, "anaylsi": 13, "angl": [52, 65, 66, 86], "ani": [3, 52, 65, 69, 75, 79, 80, 84, 87], "anneal": [39, 69], "anoth": [16, 42, 74, 77, 87], "apc": [22, 64, 65, 70, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87], "api": 77, "apoly_coeff": 36, "app": 39, "appear": 72, "appli": [9, 60, 65, 78, 86], "applic": [13, 37, 52, 85], "apply_constraint": 65, "approach": [10, 60, 82], "approxim": [3, 9, 26, 42, 52, 85, 86, 87], "approximate_voronoi": 42, "ar": [3, 5, 7, 9, 10, 13, 16, 17, 24, 25, 26, 29, 34, 35, 39, 44, 45, 52, 55, 65, 69, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87], "arang": [80, 87], "arbitrari": [22, 65, 77, 86, 87], "arbitrarili": [24, 25, 26, 52, 55], "ard": [55, 65, 86], "area": 42, "arg": [3, 44, 45], "argument": [3, 16, 67, 80, 87], "around": 87, "arrai": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 42, 44, 45, 47, 50, 52, 55, 58, 60, 61, 62, 65, 66, 67, 68, 72, 80], "array_lik": [31, 62], "asilomar": 52, "ask": 72, "askei": 37, "aspect": 83, "assembl": [67, 69], "asset": 10, "assign": [3, 30, 39, 61, 74], "assist": [70, 84], "associ": [38, 42, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 86, 87], "assum": [16, 26, 45, 75, 79, 84, 87], "astronom": 9, "asumpt": 5, "attribut": 78, "aug": 19, "author": [19, 22, 33, 51, 54, 75, 79, 84], "auto": 72, "auto_vivif": 65, "automat": [55, 78, 87], "autoselect": 68, "autovivif": 65, "aux_fil": 16, "auxiliari": 16, "avail": [3, 7, 16, 39, 47, 50, 65, 69, 73, 77, 83, 86, 87], "avali": 49, "averag": 5, "avoid": 87, "axi": [13, 45, 80], "b": [3, 7, 10, 13, 26, 27, 33, 52, 65, 66, 80, 82, 85], "b_i": 44, "babacan": 58, "bal": [60, 70], "bar": 13, "barro": 13, "base": [3, 5, 7, 9, 13, 16, 22, 24, 25, 26, 29, 31, 33, 35, 36, 39, 42, 47, 49, 50, 52, 55, 56, 58, 60, 62, 65, 66, 69, 72, 74, 78, 81, 83, 84, 86, 87], "basi": [22, 67], "basic": 87, "basis_indic": [65, 67], "bay": [3, 5, 9, 24, 25, 55, 74, 83], "bayes_": 87, "bayes_env": 83, "bayes_inf": [], "bayes_infer": [72, 74, 87], "bayes_loocv": 3, "bayes_model_comparison": 74, "bayes_pc": 87, "bayesactdesign": [39, 60, 87], "bayesfactor": 5, "bayesian": [3, 5, 7, 9, 13, 16, 24, 25, 26, 55, 58, 60, 65, 69, 70, 79, 82, 83, 84, 86], "bayesian3": [60, 69], "bayesianlinearregress": [25, 26], "bayesinfer": [5, 72, 74, 87], "bayesmodelcomparison": 74, "bayesobj": 72, "bayesopt": [9, 74, 87], "bayesoptdesign": [39, 60], "bayesvalidrox": [69, 71, 72, 73, 74, 76, 77, 78, 80, 83, 85, 86, 87], "bc": [58, 79, 84], "beam": [76, 80], "beam9point": 73, "becaus": [24, 25, 26, 52, 55], "beck": 60, "becom": 87, "been": [16, 39], "befor": [16, 29, 60, 65, 86, 87], "beforehand": 39, "behaviour": 86, "being": [3, 9, 16, 69], "below": [55, 58], "best": [24, 25, 26, 52, 55, 65, 68, 83], "beta": [55, 78], "beta_": [25, 26], "better": 25, "between": [10, 17, 30, 61, 65, 69, 72, 87], "bia": [25, 26], "bias_input": [9, 87], "bias_term": 58, "biasinput": 9, "bin": 83, "binder": 16, "bingham": [75, 79, 84], "bishop": [55, 58], "bit": 87, "blatman": [52, 66, 87], "blob": [10, 43, 55], "blockwise_invers": 52, "bm": 5, "bmc": 3, "bme": [3, 5, 13, 87], "bme_dict": 5, "bonu": [], "bool": [3, 5, 16, 17, 24, 25, 26, 29, 39, 40, 45, 47, 49, 52, 55, 58, 60, 65, 68], "boolean": [25, 44, 52, 55, 58], "bootstrap": [3, 5, 65, 70, 72, 74, 84, 86], "bootstrap_method": 65, "bootstrap_nois": [3, 72], "borehol": 76, "both": [10, 44, 45, 85, 87], "bound": [17, 32, 39, 44, 45, 47, 60, 63], "bound_tupl": [39, 47], "boundari": 60, "bridg": 80, "brief": 83, "broad": [25, 80, 86], "brr": [65, 86], "bug": [], "build": [29, 65, 74, 77, 78, 83, 86], "build_metamodel": 65, "build_polytyp": [39, 47], "built": [46, 86], "burn": [3, 72], "bvr": [], "c": [24, 26, 40, 52, 55, 58], "c_point": 16, "ca": [75, 79, 84], "cai": 60, "cal_model_weight": 5, "calc_bayes_factor": 5, "calc_justifiability_analysi": 5, "calc_model_weight": 5, "calcul": [3, 5, 9, 24, 25, 26, 39, 47, 52, 55, 58, 60, 66, 78, 83, 85, 87], "calib": [3, 13, 16], "calibr": [3, 7, 13, 16, 70, 84, 87], "call": [10, 15, 16, 24, 25, 26, 52, 55, 60, 69, 72, 74, 77, 86, 87], "calss": 16, "cambridg": 42, "can": [3, 7, 13, 16, 24, 25, 26, 29, 44, 49, 52, 55, 65, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 86, 87], "candid": [39, 42, 60], "captur": 86, "carlo": [3, 9, 16, 42, 87], "case": [3, 7, 13, 16, 25, 42, 65, 80], "cd": 83, "cell": 42, "center": [42, 52, 55, 58], "central": 77, "chain": [3, 9, 10, 72], "chair": 33, "chang": [13, 24, 25, 26, 52, 55, 58, 69, 72], "chao": [13, 22, 33, 52, 60, 65, 66, 77, 85, 86, 87], "chaospi": [39, 47], "characteris": [25, 26, 55, 58], "characterist": [70, 73], "chart": 13, "cheap": 87, "chebyshev": [39, 78], "check": [3, 13, 16, 17, 24, 25, 26, 39, 40, 47, 52, 55, 75, 77, 78, 79, 82, 83, 85, 87], "check_accuraci": [13, 85], "check_reg_qu": 13, "check_valid_input": [39, 47], "chemic": 60, "choic": 69, "choos": [29, 60, 69, 83, 87], "choose_next_sampl": 60, "chosen": [3, 69, 72, 82, 86, 87], "cite": [], "class": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 23, 24, 25, 26, 28, 29, 38, 39, 41, 42, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 64, 65, 69, 72, 74, 77, 78, 80, 83, 85, 86, 87], "classic": 37, "clear": 65, "clearli": [75, 79, 84], "clermont": [52, 66], "clf": 66, "clf_bia": 56, "clone": 83, "code": [16, 74, 87], "coef_": [25, 26, 52, 55, 58], "coeff": [52, 66], "coeffic": 65, "coeffici": [22, 24, 25, 26, 35, 36, 37, 52, 55, 58, 65, 66, 82, 87], "coffici": [52, 66], "cohn": 60, "collaps": 42, "collect": 74, "colloc": [16, 39], "column": [16, 72, 87], "com": [10, 13, 43, 55, 58, 65], "combin": [10, 52, 65, 77, 86, 87], "come": 69, "command": [16, 42, 73, 80], "comment": [75, 79, 84], "common": 49, "commun": 9, "compar": [3, 9, 16, 65, 74, 83, 85], "comparison": [5, 39, 76, 77, 83, 85, 87], "compet": 74, "complet": 80, "complex": 82, "compon": [13, 24, 25, 26, 52, 55, 65, 86], "compress": [58, 79, 84], "comput": [9, 13, 25, 26, 27, 31, 35, 36, 37, 42, 52, 55, 58, 60, 62, 65, 66, 83, 85, 87], "compute_pce_mo": 13, "compute_scor": 55, "computed_scor": 55, "condit": 69, "conf": 33, "confer": 52, "confus": [5, 74], "confusion_matrix": 5, "consecut": 74, "consid": [7, 45, 78, 86, 87], "consist": [24, 25, 26, 52, 55, 86], "consol": [72, 85], "constant": [24, 25, 26, 52, 55], "constraint": 65, "construct": [22, 78], "contact": 77, "contain": [3, 5, 9, 16, 24, 25, 26, 39, 47, 50, 52, 55, 60, 65, 72, 74, 77, 78, 80, 83, 84, 87], "context": 7, "contibut": 77, "continu": [30, 61], "contribut": 82, "converg": [10, 25, 26, 87], "convini": 65, "coordin": [16, 65], "copi": [16, 25, 52, 55, 58, 65], "copy_meta_model_opt": 65, "copy_x": [24, 25, 26, 52, 55, 58], "copyright": [75, 79, 84], "core": 87, "corner": 3, "corner_title_fmt": 3, "correct": [52, 66], "correl": [72, 81], "correspond": [13, 16, 24, 25, 26, 34, 42, 50, 60, 65, 78, 83, 85, 86], "cosin": 81, "cost": 86, "couckuyt": 42, "count": 45, "cov": [31, 62], "covari": [3, 7, 9, 25, 26, 31, 55, 58, 62], "cpu": 16, "creat": [3, 5, 16, 19, 33, 39, 42, 47, 51, 54, 65, 73, 74, 77, 78, 80, 83, 86, 87], "create_error_model": 3, "create_infer": [3, 72, 87], "create_metamodel": [], "create_model_error": 65, "credit": 43, "crieterion": 42, "criteria": 44, "criterion": 60, "crombecq": 42, "cross": [3, 39, 45, 65, 69], "cross_trunc": 45, "csv": 16, "currecnt": 16, "current": [16, 22, 69, 83], "d": [9, 26, 39, 42, 52, 58, 60, 65, 84, 86], "data": [3, 5, 9, 16, 17, 22, 24, 25, 26, 31, 39, 47, 49, 50, 52, 55, 58, 62, 65, 69, 72, 78, 81, 83, 86], "data_noise_level": 5, "datafram": [3, 7, 9, 16, 72, 87], "dataset": 86, "dbingham": [75, 79, 84], "de": [13, 22, 33, 77, 83], "deafault": 25, "deal": [75, 79, 82], "decai": 60, "decomposit": 52, "decreas": [60, 69, 84], "dedic": [72, 87], "deep": [24, 25, 26, 52, 55], "def": [74, 77, 80], "default": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 50, 52, 55, 58, 60, 65, 68], "defin": [3, 5, 7, 10, 16, 24, 25, 26, 32, 34, 39, 42, 49, 52, 55, 63, 65, 69, 72, 74, 77, 78, 80, 83, 86], "definit": [7, 22, 77, 78, 87], "deflect": 73, "degre": [22, 34, 35, 36, 37, 39, 47, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "degthre": 74, "delet": 56, "demeest": 42, "denot": 80, "depart": [22, 33], "depend": [25, 26, 49, 70, 72, 73, 75, 77, 79, 81, 82, 84, 86], "deprec": 87, "depth": 77, "derek": [75, 79, 84], "deriv": [75, 79, 84], "describ": [9, 58, 77, 78, 83, 87], "descrip": 7, "descript": [3, 5, 9, 16, 31, 60, 62, 65, 77], "design": [13, 16, 29, 38, 39, 42, 60, 65, 67, 69, 70, 77, 80, 83, 84, 86], "detail": [13, 70, 75, 77, 78, 79, 81, 84], "determin": [24, 25, 26, 52, 55], "deviat": [13, 16, 65, 69, 86, 87], "deviatioon": [29, 65], "dhaen": 42, "diagnost": [72, 85], "diagon": [3, 7, 9], "dict": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 35, 36, 37, 52, 55, 60, 65], "dictionari": [3, 5, 9, 13, 16, 60, 65, 72, 74, 80, 87], "differ": [30, 61, 65, 77, 81, 87], "dim": 65, "dim_red_method": 65, "dimens": [45, 52], "dimension": [25, 26, 55, 58, 65, 80, 86], "dir_nam": 16, "direct": [36, 65, 86], "directi": 87, "directli": [72, 78, 86, 87], "directori": [9, 13, 16, 72, 87], "disc_typ": 7, "discoutputopt": 87, "discrep": [3, 9, 72, 74, 87], "discrepancyopt": [72, 74, 87], "discuss": 87, "displai": [13, 87], "disregard": [24, 25, 26, 52, 55], "disrep": 7, "dissert": [52, 66], "dist": [3, 39, 47], "dist_typ": [49, 50, 77, 78, 87], "distanc": [30, 61], "distibut": 5, "distinct": 74, "distribut": [3, 7, 9, 24, 25, 26, 27, 30, 31, 39, 46, 47, 48, 50, 52, 55, 58, 61, 62, 65, 70, 72, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87], "diverg": [3, 13, 39], "divid": [32, 63], "dkl": [39, 60, 70, 87], "do": [13, 29, 60, 67, 69, 75, 77, 79, 83, 84, 87], "doc": [], "doctor": [52, 66], "document": 77, "doe": [16, 65, 72], "doi": [13, 22, 42], "domain": [32, 42, 63], "done": [16, 29, 39, 65, 72, 87], "doostan": 60, "dot": 86, "dpp": 39, "dr": 22, "drainag": 13, "drawn": [3, 87], "driven": 22, "dtype": [52, 55, 58], "dual": [39, 69], "dual_ann": 60, "due": [], "dump": 87, "dure": [65, 72, 85], "e": [3, 7, 9, 16, 22, 24, 25, 26, 33, 39, 42, 45, 47, 52, 55, 58, 65, 68, 72, 77, 80], "each": [3, 5, 7, 9, 13, 16, 24, 25, 26, 32, 39, 42, 44, 45, 50, 52, 55, 58, 63, 65, 69, 72, 74, 76, 80, 83, 87], "earlier": 87, "easi": 80, "easili": 87, "ebl": [65, 86], "ed_i": 65, "effect": [7, 24, 25, 26, 52, 55, 56, 82], "effici": [13, 42], "eigenvalu": [25, 26], "eigenvector": [25, 26], "eigf": [39, 69], "eigvals_": [25, 26], "eigvecs_": [25, 26], "either": [3, 16, 25, 39, 47, 64, 65, 70, 78, 87], "ejor": 42, "els": [39, 40, 47, 52, 55, 58, 65, 72], "elsevi": 22, "em": 25, "email": [75, 79, 84], "emce": [3, 9, 10, 72, 87], "emper": [65, 86], "empir": [24, 25], "empti": 65, "emul": [3, 5, 9, 60, 68, 72, 74, 87], "en": 9, "enable_metadata_rout": [24, 25, 26, 52, 55], "encapsul": [24, 25, 26, 52, 55], "end": 16, "engin": [3, 9, 13, 22, 59, 60, 69, 72, 74, 77, 85], "engine_": [69, 72, 74, 85, 86], "engine_2": 74, "enrich": 60, "ensampl": 10, "ensembl": 9, "entri": [3, 7, 9], "entropi": [3, 39, 60, 84], "environ": 83, "environment": [22, 33, 84], "epsilon": [7, 60, 69, 84, 87], "eq": 13, "equal": [5, 7, 60, 69], "erro": 66, "error": [3, 7, 9, 13, 24, 25, 26, 52, 55, 60, 65, 66, 85, 87], "error_metamodel": 9, "error_model": 9, "especi": [25, 87], "ess": 10, "estim": [3, 10, 16, 24, 25, 26, 30, 52, 55, 58, 61, 65, 66, 68, 69, 72, 83, 85, 87], "eth": 33, "european": 42, "eval_metamodel": [29, 65, 86], "eval_model": 9, "eval_model_error": 65, "evalu": [5, 9, 13, 15, 29, 34, 35, 36, 52, 65, 67, 72, 80, 83, 85, 86, 87], "evaul": 39, "even": [75, 79, 84], "evereyth": 29, "everi": [30, 61], "evid": [3, 13], "exact": 86, "exampl": [13, 16, 44, 45, 77, 83, 87], "except": [13, 24, 25, 26, 52, 55, 65], "exe_path": 16, "execut": [16, 73, 80], "exist": [24, 25, 26, 52, 55], "exlor": 60, "exp_design": [69, 78], "expand": [83, 85, 86], "expans": [13, 22, 33, 45, 52, 60, 65, 66, 77, 85, 86, 87], "expd": [29, 60, 77], "expdesign": [9, 42, 60, 69, 74, 77, 78, 86, 87], "expdesign2": 74, "expect": [7, 13, 16, 24, 25, 26, 39, 52, 55, 58, 60, 72, 77, 85], "experi": 60, "experiment": [29, 38, 39, 42, 60, 65, 69, 77, 80, 83, 86], "explain": [65, 87], "explan": [70, 81], "explanatori": [25, 26, 52, 55, 58], "explicitli": 65, "exploit": [39, 60, 70, 75, 82, 87], "exploit_method": [39, 69, 87], "exploitaiton": [75, 82, 87], "exploitation_weight": 60, "explor": [39, 60, 70, 75, 82, 87], "exploration_scor": 42, "exploration_weight": 60, "explore_method": [39, 69, 87], "expon": [43, 45, 78], "exponenti": [60, 81], "express": [75, 79, 84], "extens": [16, 80, 87], "extra": 81, "extract": [16, 65], "f": [13, 65, 87], "fa61759ff685": 13, "factor": [5, 10, 74, 83], "fals": [3, 5, 10, 20, 24, 25, 26, 29, 39, 40, 45, 52, 55, 58, 60, 65, 68, 72, 74, 87], "far": 7, "farid": [19, 33, 51, 54, 60], "fast": [55, 58, 65, 84, 86], "fast_rvm": 55, "fastard": [65, 70, 73, 74, 77, 82, 86, 87], "faster": [25, 87], "fastsbl": [55, 58], "faul": [55, 58], "featur": [24, 25, 26, 52, 55, 56, 65, 77], "feinberg": 43, "ferrand": [52, 66], "field": 26, "file": [16, 29, 39, 73, 74, 77, 80, 81, 84, 87], "file_nam": 16, "filenam": 80, "fill": [39, 42, 69, 75, 82], "final": 86, "final_out_dict": 65, "find": [16, 60, 65, 71], "first": [13, 16, 29, 45, 65, 72, 74, 86, 87], "fit": [24, 25, 26, 39, 52, 55, 58, 65, 66, 68, 75, 79, 84, 86], "fit_intercept": [24, 25, 26, 52, 55, 58], "fix": [25, 58], "flag": [39, 47], "flat": 72, "flexibl": 13, "float": [3, 5, 9, 10, 24, 25, 26, 27, 30, 31, 39, 44, 45, 52, 55, 58, 60, 61, 62, 65, 66, 68], "flow": [75, 79], "folder": [72, 74, 77, 78, 83, 85, 87], "follow": [3, 7, 22, 39, 44, 49, 60, 65, 72, 74, 76, 78, 87], "followin": 7, "forc": 65, "foreman": 9, "form": [24, 25, 26, 52, 55, 77, 87], "format": [3, 7, 13, 72, 77], "formul": 78, "formula": 58, "forward": 16, "found": [65, 76, 77, 80, 87], "foundat": [75, 79, 84], "four": 78, "fp": 25, "frac": [9, 24, 25, 26, 52, 55], "fraction": 72, "framework": [13, 33], "fraser": [75, 79, 84], "free": [75, 79, 84], "fri": [33, 51], "from": [3, 5, 13, 16, 24, 25, 26, 29, 34, 39, 46, 47, 52, 55, 58, 65, 67, 69, 72, 74, 77, 78, 80, 83, 85, 86, 87], "fromkei": 65, "ft": [39, 78], "full": [74, 85, 86, 87], "fulli": 10, "func": 16, "func_arg": [16, 74, 80], "function": [3, 8, 13, 15, 16, 19, 21, 23, 33, 38, 39, 40, 42, 43, 44, 51, 52, 54, 59, 60, 64, 65, 67, 69, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87], "functtion": [], "further": [39, 47], "futur": 81, "g": [16, 24, 25, 26, 45, 52, 55, 58, 66, 72, 77, 80], "gain": [85, 87], "gamma": [26, 27, 39, 47, 78], "gaussian": [7, 9, 24, 25, 26, 55, 58, 60, 65, 68, 70, 72, 73, 82, 86, 87], "gaussian_kd": [39, 47], "gelman": [10, 72], "gener": [5, 7, 16, 24, 25, 26, 29, 39, 42, 45, 47, 52, 55, 65, 66, 75, 78, 79, 80, 84, 86, 87], "generate_": 39, "generate_dataset": 5, "generate_polynomi": 65, "generate_sampl": [39, 78], "get": [3, 24, 25, 26, 52, 55, 65, 77, 85], "get_exploration_sampl": 42, "get_mc_sampl": 42, "get_metadata_rout": [24, 25, 26, 52, 55], "get_param": [24, 25, 26, 52, 55], "get_sampl": 7, "get_vornoi_sampl": 42, "git": [76, 77, 83], "github": [10, 43, 55, 77], "gitlab": 77, "give": [80, 83, 86, 87], "given": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 40, 47, 49, 52, 55, 60, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "global": [13, 39, 42, 87], "gnu": [75, 79, 84], "go": 3, "goal": 86, "goe": 77, "goodman": 9, "gorissen": 42, "gp": [68, 86], "gpe": [64, 65], "grade": 45, "greater": 10, "grid": [39, 78], "group": [7, 39], "guid": [24, 25, 26, 52, 55, 77, 87], "guidelin": 77, "guilla": 60, "gull": 25, "h5py": 39, "h_l": 75, "h_u": 75, "ha": [9, 24, 25, 26, 39, 45, 47, 52, 55, 60, 65, 72, 86, 87], "habil": 22, "hadigol": 60, "hagan": 82, "haitao": 60, "halton": [39, 78], "hammer": 9, "hammerslei": [39, 78], "handi": 87, "happi": 77, "have": [7, 10, 16, 24, 25, 26, 39, 47, 52, 55, 56, 72, 80, 82, 87], "hdf5": [29, 39], "hdf5_file": 39, "head": 77, "height": 73, "helling": [30, 61], "help": [72, 87], "helper": 13, "here": [3, 16, 65, 69, 71, 76, 77, 80, 83, 84, 86, 87], "hermit": 78, "highest": [65, 87], "histogram": 87, "hogg": 9, "hold": 44, "holder": 16, "hope": [75, 79, 84], "how": [13, 24, 25, 26, 52, 55, 65, 72, 73, 75, 79, 81, 82, 87], "howev": [], "htm": 55, "html": [10, 75, 79], "http": [9, 10, 13, 22, 42, 43, 55, 58, 65, 75, 77, 79, 83, 84], "hydraul": [22, 33], "hydrogeologi": 13, "hydromechan": 33, "hydrosystem": [22, 33], "hyperbol": [45, 65], "hypercub": [69, 70, 73, 75, 78, 79, 81, 82, 84], "i": [3, 5, 7, 9, 10, 13, 16, 22, 24, 25, 26, 29, 30, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 58, 60, 61, 65, 68, 69, 70, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "icvram2014": 33, "id": 16, "ident": [30, 61], "ieee": 58, "ifram": 87, "ignor": [24, 25, 26, 52, 55], "ii": [25, 87], "iii": 87, "ilja": 60, "illustr": 73, "imag": 58, "implement": [24, 26, 33, 42, 64, 65, 87], "impli": [75, 79, 84], "implment": 87, "import": [13, 72, 74, 77, 78, 80, 85, 86], "importantli": [], "improv": 39, "inaccuraci": 7, "includ": [5, 16, 25, 26, 44, 45, 69, 72, 77, 78, 80, 83, 85, 86, 87], "increas": [60, 69], "independ": 7, "index": [44, 45, 60, 65, 67, 68, 77, 85], "indic": [3, 10, 13, 43, 44, 45, 65, 67, 75, 79, 80, 82, 83, 85, 87], "induc": [65, 87], "inf": 45, "inf_entropi": 3, "infer": [3, 7, 9, 13, 16, 73, 77, 83, 84], "inference_method": [3, 72, 87], "influenc": [24, 25, 26, 52, 55, 60], "inform": [3, 24, 25, 26, 52, 55, 60, 65, 75, 79, 84, 87], "ing": 22, "init_param_spac": [39, 47], "init_sampl": [3, 9, 72], "initi": [3, 5, 25, 39, 47, 55, 69, 72, 87], "input": [3, 7, 13, 16, 24, 25, 26, 36, 39, 42, 46, 47, 52, 55, 60, 65, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 86], "input0": 77, "input1": 77, "input_data": [49, 50, 78, 87], "input_descript": [], "input_fil": 16, "input_obj": 65, "input_object": [39, 47], "input_spac": 78, "input_templ": 16, "inputdisc": 7, "inputobj": [39, 47], "inputparam": [70, 78, 87], "inputparameters_2": 87, "inputspac": [39, 65, 77, 78], "insert": 65, "insid": [17, 24, 25, 26, 52, 55, 83], "insight": [], "instanc": [24, 25, 26, 52, 55, 65], "instanci": 65, "instanti": 87, "instead": [24, 25, 26, 45, 52, 55], "institut": [22, 33], "instruct": [65, 87], "int": [3, 5, 7, 13, 16, 17, 22, 25, 26, 29, 32, 33, 34, 35, 36, 37, 39, 42, 44, 45, 47, 55, 58, 60, 63, 65, 68], "intec": 42, "intercept": [52, 55, 58], "intercept_": [25, 26], "interconnect": [], "interest": 80, "interfac": [77, 80, 83], "intersit": 42, "intro": [], "introduc": [], "introduct": 76, "introductori": [77, 87], "inv_inf_matrix": 52, "invari": 9, "invers": [7, 52, 87], "inversemodel": [77, 83], "io": [9, 10], "ipython": 87, "ishigami": [75, 76], "isoprobabilist": [39, 47, 78], "issu": [72, 77], "item": [3, 16, 65], "iter": [3, 5, 25, 26, 29, 55, 58, 60, 65, 70, 75, 78, 82, 83, 85, 86, 87], "its": [16, 72, 77, 80, 83, 85, 86, 87], "itself": 86, "iw": [22, 33, 77, 83], "j": [9, 13, 22, 42, 82], "jacobi": 34, "jan": 33, "jdist": [39, 47], "jianfei": 60, "jobe": 16, "joblib": 87, "joergdietrich": 10, "jointli": [3, 7, 9, 84, 86], "jonathan": 43, "jonathf": 43, "journal": [42, 52, 66], "jul": 51, "just": [39, 47, 87], "just_analysi": 3, "justifi": [3, 5, 83], "jwalton3141": 10, "k": [3, 9, 39, 42, 58, 65], "k_w": 75, "karniadaki": 87, "katsaggelo": 58, "kdemov": [72, 87], "keep": [24, 25, 26, 52, 55, 87], "kei": [16, 39, 65, 72, 80], "kernel": [24, 25, 26, 52, 55, 68, 86], "key_str": 16, "keyerror": 65, "keyword": 16, "kingdom": 33, "kl": 26, "kld": [3, 13], "known": [3, 7, 9, 39, 87], "krige": 60, "krishnaprasad": 52, "kroeker": 60, "kullback": [3, 13, 39], "l": [75, 84], "l_0": 44, "l_inf": 44, "l_p": 44, "label": [13, 80], "lack": 65, "laerman": 42, "laguerr": [37, 39, 47], "lai": 72, "lambda": 87, "lambda_": [55, 58], "lang": 9, "laplac": 58, "lar": [65, 86], "larg": 87, "larger": [44, 45, 72], "largest": 45, "last": 65, "lastli": 80, "later": 87, "latest": 83, "latin": [69, 70, 73, 75, 78, 79, 81, 82, 84], "latin_hypercub": [39, 78, 87], "latter": [24, 25, 26, 45, 52, 55, 87], "lead": 83, "learn": [39, 42, 55, 58, 60, 65, 73, 79, 83, 84, 85, 86, 87], "least": [52, 60, 65, 66, 78, 86], "leav": [3, 39, 65, 69], "leibler": [3, 13, 39], "length": [3, 25, 26, 55, 58, 72, 80], "leq": 44, "less": 87, "let": 87, "level": [3, 5], "lexicograph": 45, "lh2": 33, "li": 40, "liabil": [75, 79, 84], "lib": 58, "librari": [], "licens": [75, 79, 84], "lie": 17, "lifo": 65, "like": [3, 24, 25, 26, 52, 55, 58, 65, 66, 86, 87], "likelihood": [3, 7, 9, 25, 30, 31, 55, 56, 58, 61, 62, 72, 87], "line": 13, "linear": [24, 25, 26, 74, 77, 81], "linearmodel": [24, 52, 55], "link": [73, 80, 83, 87], "link_typ": [16, 74, 77, 80, 87], "list": [3, 16, 17, 24, 25, 26, 32, 36, 37, 39, 40, 42, 45, 47, 50, 52, 55, 58, 60, 63, 65, 77, 80, 81, 87], "littl": 87, "liu": 60, "liverpool": 33, "load": [73, 87], "locat": [39, 60], "log": [9, 31, 55, 56, 62], "log_bm": 3, "log_lik": [9, 31, 62], "log_likelihood": 9, "log_marginal_lik": 55, "log_posterior": 9, "log_prior": 9, "logarithm": 3, "loglik": [3, 9], "lognorm": [73, 75, 78], "logprior": 9, "loo": [52, 65, 66], "loo_error": 52, "loocv": [3, 39, 52, 66], "loocvscor": 65, "loop": 68, "low": 45, "lower": [17, 32, 39, 45, 47, 60, 63], "lowest": 65, "ls3": 22, "l\u00fcthen": 33, "m": [7, 33, 52, 55, 58, 60, 73, 75, 79, 83, 84, 86], "machin": [42, 55, 58], "mackai": [25, 60], "mackei": 9, "mai": [24, 25, 26, 52, 55, 58], "mail": [22, 33], "main": [77, 80, 86], "mainli": [69, 78], "make": [9, 69, 86, 87], "manag": 33, "mani": 13, "manner": [29, 69, 78, 83], "manual": 33, "manuscript": 22, "map": [24, 25, 26, 52, 55, 65, 80], "mar": 54, "marelli": 33, "margin": [7, 39, 42, 47, 48, 49, 55, 56, 58, 77, 78, 83, 87], "mark": [75, 79, 84], "markov": [3, 9], "mass": 42, "master": [10, 43, 55, 77, 83], "match": [52, 67, 75, 81, 86, 87], "math": 44, "mathcal": [7, 9, 86], "mathemat": 9, "matlab": [33, 42], "matric": 74, "matrix": [3, 5, 7, 24, 25, 26, 31, 34, 52, 55, 58, 62, 66, 67], "max": [70, 73, 75, 79, 82, 84], "max_a_post": [39, 87], "max_a_posteriori": 3, "max_deg": [34, 35, 36, 39, 47, 65], "max_func_itr": 39, "max_pce_deg": 39, "maxdepth": [], "maxim": [25, 30, 55, 60, 61, 86], "maximis": [55, 58], "maximum": [3, 22, 25, 26, 30, 34, 35, 36, 37, 39, 45, 47, 55, 58, 61, 65], "maxout": 17, "mc": [42, 70, 73, 75, 79, 80, 81, 82, 84, 87], "mc_criterion": 42, "mc_ref": 16, "mc_ref_dict": 16, "mc_ref_fil": 16, "mc_refer": 87, "mcmc": [3, 72, 83, 87], "mcmc_param": [3, 9, 72, 87], "md": [], "mean": [3, 7, 9, 13, 16, 24, 25, 26, 27, 29, 31, 45, 52, 55, 58, 62, 65, 72, 86, 87], "mean_2": 87, "mean_pr": [9, 29, 65], "meas_fil": 16, "meas_file_valid": 16, "measur": [3, 7, 13, 16, 60, 87], "measured_data": 3, "measureddata": 65, "measurement_error": 87, "mechan": [24, 25, 26, 52, 55, 60], "merchant": [75, 79, 84], "messag": [], "met": [55, 58], "meta": [3, 9, 13, 16, 24, 25, 26, 29, 52, 55, 65], "meta_model": 74, "meta_model_engin": [], "meta_model_typ": [39, 47, 65, 74, 77, 86, 87], "metadata": [24, 25, 26, 52, 55], "metadata_rout": [24, 25, 26, 52, 55], "metadatarequest": [24, 25, 26, 52, 55], "metamod": [29, 60, 69, 77, 86], "metamod2": 74, "metamodel": [3, 5, 13, 29, 39, 41, 47, 60, 64, 74, 77, 78, 85, 87], "metamodel_train": 87, "metamodelengin": [], "metamodelopt": [65, 87], "method": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 38, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65, 69, 70, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87], "metric": [3, 87], "mgrid": 44, "mice": 60, "might": [], "miketip": [55, 58], "minim": [26, 77], "minout": 17, "mit": 77, "mix": 78, "mmse": 39, "mod_loo_threshold": [39, 69, 87], "mode": [3, 52, 55, 58], "model": [3, 5, 7, 9, 13, 15, 16, 22, 24, 25, 26, 29, 33, 39, 42, 52, 55, 56, 58, 60, 65, 69, 72, 76, 78, 83, 85], "model2": 74, "model_comparison_al": [5, 74], "model_dict": 5, "model_out_dict": 13, "model_weight": 5, "model_weights_dict": 5, "modelnam": 87, "modifi": [39, 52, 75, 79, 84], "modul": [0, 1, 11, 14, 18, 77], "modulu": 73, "mohammadi": [33, 60], "molina": 58, "moment": [13, 16, 35, 36, 50, 83, 85, 87], "monomi": [43, 45], "mont": [3, 9, 16, 42, 87], "more": [13, 29, 60, 65, 75, 77, 79, 84, 87], "most": 87, "move": [3, 9, 72, 87], "mp": 16, "mu_pr": [24, 25, 26], "much": 82, "multi": [43, 45, 65, 67, 81, 83], "multi_process": 16, "multioutput": [24, 25, 26, 52, 55], "multioutputregressor": [24, 25, 26, 52, 55], "multipl": [7, 83, 86, 87], "multipli": 7, "multiplrocess": 9, "multiprocess": [3, 16, 72, 87], "multivar": 3, "multivari": [3, 7, 31, 62, 65, 66, 67], "must": [16, 72], "mutual": 60, "n": [7, 33], "n_": 7, "n_bootstrap": 5, "n_bootstrap_itr": [3, 5, 65, 72], "n_burn": [3, 9, 72], "n_cand_group": [39, 69, 70, 75, 82, 87], "n_canddid": [39, 69, 87], "n_candid": [42, 60, 70, 75, 82], "n_cpu": 16, "n_featu": [25, 26], "n_featur": [24, 25, 26, 52, 55, 58, 65, 66], "n_init_sampl": [65, 74, 77, 86, 87], "n_input": 65, "n_iter": [24, 25, 26, 55, 58], "n_iter_": 55, "n_kfold": 58, "n_m": 5, "n_max": [37, 65, 67], "n_max_sampl": [39, 69, 87], "n_measur": [3, 9], "n_new_sampl": [32, 39, 63, 69, 87], "n_ob": [3, 5, 16], "n_out": 65, "n_output": [16, 24, 25, 26, 52, 55, 65], "n_param": [3, 7, 9, 10, 13, 16, 29, 36, 39, 42, 47, 60, 65, 67, 68], "n_pca_compon": 65, "n_prior_sampl": 3, "n_replic": 39, "n_sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 34, 35, 36, 39, 47, 52, 55, 56, 60, 65, 66, 67, 68, 74, 85, 87], "n_samples_fit": [24, 25, 26, 52, 55], "n_samples_test": [25, 26, 52, 55, 58], "n_step": [3, 9, 10, 72, 87], "n_term": [65, 67], "n_test_sampl": [24, 25, 26], "n_walker": [3, 9, 10, 72, 87], "nagel": 13, "name": [3, 5, 7, 9, 13, 16, 24, 25, 26, 39, 47, 49, 50, 52, 55, 72, 74, 77, 78, 80, 83, 87], "nameerror": 60, "ndarrai": 45, "ndim": 87, "necessari": [16, 83], "need": [3, 5, 7, 16, 29, 60, 65, 69, 72, 74, 77, 86, 87], "neg": [24, 25, 26, 52, 55], "neither": 13, "nest": [24, 25, 26, 40, 52, 55], "new": [16, 39, 42, 49, 52, 60, 65, 69, 77, 80, 87], "new_c_point": 16, "new_input_fil": 16, "new_metamodelopt": 65, "new_sampl": 42, "next": [16, 60, 72, 83], "nips01": 55, "nnme": 87, "nois": [3, 5, 7, 25, 26, 55, 58, 84], "non": [42, 52, 55, 58], "none": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 45, 47, 49, 50, 52, 55, 60, 65, 68, 69, 70, 75, 77, 82, 87], "nonlinear": 81, "nor": 13, "norm": [44, 65, 70, 73, 75, 78, 79, 81, 82, 84, 86, 87], "normal": [3, 5, 7, 25, 31, 52, 55, 62, 65], "normpdf": [3, 9], "notat": [], "note": [7, 16, 87], "now": [39, 72, 74, 77, 80, 86, 87], "nowak": [13, 22, 60, 87], "np": [16, 52, 55, 58, 65, 74, 78, 80, 87], "npy": 87, "nsampl": [29, 65, 86, 87], "nu": 58, "nug_term": 68, "nugget": 68, "number": [3, 5, 7, 13, 16, 24, 25, 26, 29, 32, 39, 42, 45, 52, 55, 58, 60, 63, 65, 68, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 86], "numer": [25, 72], "numpi": [24, 25, 26, 44, 45, 52, 55, 58, 87], "numpoli": [43, 45], "o": 82, "oaklei": 82, "obj": [3, 7, 9, 13, 39, 42, 47, 49, 65], "object": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 39, 42, 47, 49, 50, 52, 55, 58, 60, 65, 66, 68, 72, 74, 77, 78, 80, 85, 86, 87], "obs_data": [3, 9], "obs_dict": 16, "obs_dict_valid": 16, "obsdata": [72, 87], "observ": [3, 5, 7, 9, 16, 31, 62, 72, 74, 80, 87], "obtain": [10, 65, 87], "off": [39, 60], "ohagan": 76, "ol": [65, 86], "oladyshkin": [13, 22, 60, 87], "old": [42, 60], "old_edi": 60, "old_edx": 60, "omit": 45, "omp": [75, 81], "onc": [69, 87], "one": [3, 9, 10, 16, 25, 26, 32, 39, 45, 55, 56, 58, 63, 65, 69, 74, 77, 78, 87], "ong": 60, "onli": [3, 7, 9, 16, 24, 25, 26, 29, 39, 45, 52, 55, 58, 65, 72, 78, 81, 87], "open": [77, 87], "oper": 42, "opposit": 45, "opt": [39, 60], "opt_col_point": 39, "opt_sigma": 3, "optim": [25, 39, 55, 60, 84], "optimi": 60, "optimum": 60, "option": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 36, 37, 39, 42, 47, 52, 55, 58, 60, 65, 68, 77, 78, 80, 83, 87], "opts_bootstrap": 74, "opts_dict": 5, "order": [45, 65, 72, 83], "ordinari": [65, 86], "org": [13, 42, 77], "orig_space_dist": [39, 47], "origin": [24, 25, 26, 52, 55, 65, 80, 85], "origmodeloutput_": 87, "orthogon": [37, 52, 66, 75, 81], "orthonorm": 22, "other": [3, 24, 25, 26, 52, 55, 74, 80, 83, 86], "otherwis": [9, 16, 24, 25, 26, 52, 55, 58, 65, 72], "our": [72, 77, 80, 86, 87], "out": [3, 7, 17, 25, 26, 39, 60, 65, 69, 72, 77, 85], "out_dict": 65, "out_dir": [3, 5, 9, 16, 39, 72], "out_nam": 39, "outpust": 13, "output": [3, 7, 9, 13, 16, 39, 60, 65, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87], "output_bayes_": 87, "output_dict": 74, "output_file_nam": 16, "output_nam": 16, "output_pars": 16, "outputdata": 16, "outputmatrix": 65, "outputs_bayes_model_calib": 72, "outputs_comparison": [5, 74], "outputs_postprocess": 13, "outputs_postprocessing_": 87, "outputs_postprocessing_calib": 85, "outputs_prior": 78, "outsid": 80, "over": [39, 68, 78], "overal": 77, "overfit": 87, "overflow": 25, "overview": [], "overwritten": [52, 55, 58], "own": [], "p": [7, 9, 13, 22, 30, 42, 44, 52, 61], "pacif": 9, "packag": [3, 9, 71, 72, 73, 76, 77, 83], "page": [77, 83, 87], "pair": [5, 65], "pairwis": 83, "panda": [7, 87], "paper": [55, 58, 60], "parallel": [16, 29, 39, 60, 65], "param": [16, 24, 25, 26, 37, 39, 47, 52, 55], "param_set": 16, "paramet": [49, 50, 69, 70, 72, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87], "parameterset": 9, "paramethr": 7, "paramt": 25, "paras": 16, "parmet": 3, "parser": [16, 73, 80], "part": [32, 63, 65, 81, 82, 87], "parti": 16, "particular": [75, 79, 84], "pass": [3, 16, 24, 25, 26, 39, 47, 52, 55, 87], "path": 16, "pati": 52, "pattern": [16, 55, 58], "pc": 64, "pca": [65, 86], "pca_transform": 65, "pce": [13, 39, 47, 65, 73, 85, 86, 87], "pce_deg": [65, 74, 77, 86, 87], "pce_mean": 13, "pce_q_norm": [65, 74, 77, 86, 87], "pce_reg_method": [65, 74, 77, 86, 87], "pceengine_": 87, "pcemodel": [13, 20], "pcemodel_": [], "pcm_sampler": 39, "pd": [72, 87], "pdf": [13, 55, 58], "peopl": [], "per": [70, 75, 82], "percentag": 65, "percis": 39, "perfect": 25, "perfect_fit_tol": 25, "perform": [3, 5, 9, 13, 69, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87], "perform_bootstrap": 3, "perl": 65, "perturb": [3, 5], "perturbed_data": [3, 5], "pfaffenwaldr": [22, 33], "physic": [52, 66], "pip": [77, 83], "pipelin": [24, 25, 26, 52, 55], "pkl": 87, "place": 16, "pleas": [24, 25, 26, 52, 55, 75, 79, 84], "plot": [3, 5, 13, 39, 74, 87], "plot_bayes_factor": 5, "plot_just_analysi": 5, "plot_log_bm": 3, "plot_map_pr": 3, "plot_model_weight": 5, "plot_moment": [13, 85, 87], "plot_nam": 5, "plot_post_param": 3, "plot_post_pr": [3, 72, 74, 87], "plot_sampl": [39, 78], "plot_seq_design_diagnost": [13, 85], "plot_typ": 13, "plote": 20, "plotmoment": [], "point": [3, 7, 16, 24, 25, 26, 29, 34, 35, 39, 42, 55, 58, 60, 68, 72, 78, 87], "poli": [37, 74], "pollut": 76, "poly_coeff": 35, "poly_typ": [34, 36, 37, 39, 47], "polynom": 65, "polynomi": [13, 22, 33, 34, 35, 36, 37, 39, 47, 52, 60, 65, 66, 67, 77, 78, 85, 86, 87], "pop": 65, "popitem": 65, "posit": [30, 61], "possibl": [24, 25, 26, 52, 55, 78], "post": [10, 13, 16, 83], "post_descript": [], "post_plot_pr": 72, "post_process": [85, 87], "post_snapshot": [39, 87], "posterior": [3, 9, 25, 26, 39, 52, 55, 58, 72, 87], "posterior_df": 9, "posteriori": [3, 39], "postpc": 87, "postproc": 85, "postprocess": [77, 80, 83, 87], "potenti": 10, "power": [74, 80], "pp": [9, 42, 52, 66, 82], "practic": [78, 83], "precis": [25, 26, 55, 58], "precomput": [24, 25, 26, 52, 55], "predict": [3, 9, 24, 25, 26, 29, 52, 55, 58, 60, 65, 66, 72, 87], "predict_dist": [24, 25, 26], "predit": 65, "prefer": [83, 87], "prepar": [16, 29, 60, 86], "prescrib": 39, "prescript": 65, "present": [22, 65, 86], "prevent": 25, "previou": [16, 87], "previous": 86, "prevrun_no": 16, "princip": [13, 65, 86], "print": [25, 26, 60, 65], "prior": [3, 5, 7, 9, 26, 39, 46, 47, 58, 72, 80, 83, 86, 87], "prior_": 87, "prior_output": 87, "prior_sampl": 3, "probabilist": 82, "probabl": [30, 61, 78], "probablist": 3, "proc": 33, "procedur": 3, "proceed": 52, "process": [9, 13, 16, 58, 60, 65, 68, 83, 86], "produc": [75, 79, 84], "program": [75, 79, 84], "progress": [25, 26], "proj": 42, "project": 77, "propag": [52, 66], "properti": [69, 70, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87], "propos": [9, 40, 69, 77], "provid": [13, 24, 25, 26, 29, 39, 45, 47, 52, 55, 65, 70, 72, 74, 76, 77, 81, 83, 86, 87], "psi": [52, 66, 67], "psrf": 10, "public": [9, 75, 79, 84], "publish": [75, 79, 84], "purpos": [75, 79, 84], "pursuit": [52, 75, 81], "py": [10, 16, 43, 55, 74, 77, 80, 87], "py_fil": [16, 74, 77, 80, 87], "pylink": [80, 83, 87], "pylinkforwardmodel": [74, 77, 80], "pypi": 77, "python": [3, 13, 16, 72, 77, 80, 83, 87], "python3": 83, "q": [30, 56, 61, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "qualiti": [13, 75, 79, 82, 85], "qualt": 3, "quantif": [22, 33], "question": [72, 75, 79, 84], "quit": [], "r": [7, 24, 25, 26, 52, 55, 58, 75, 82], "r2_score": [24, 25, 26, 52, 55], "r_2": 66, "r_hat": 10, "r_w": 75, "rais": [24, 25, 26, 52, 55, 65], "random": [29, 39, 42, 69, 70, 74, 77, 78, 87], "random_sampl": 39, "randomli": [39, 87], "rang": [17, 37, 40, 80, 86, 87], "rate": [26, 27, 75, 79], "ratio": 10, "raw": [16, 22, 39, 47], "raw_data": [39, 47], "read": [16, 29, 39, 80, 87], "read_from_fil": 39, "read_observ": 16, "read_output": 16, "readthedoc": 9, "realiti": 7, "realiz": [7, 69, 78, 80], "realli": 3, "recalcul": 65, "recheck": 78, "reciev": 16, "recognit": [55, 58], "recomput": 56, "recurr": 37, "recurs": [37, 52], "redidu": 7, "redistribut": [75, 79, 84], "reduc": [45, 86], "reduct": [10, 65, 86], "ref": [55, 58, 60], "ref_bme_kld": 13, "ref_typ": 77, "refer": [7, 13, 16, 30, 33, 61, 65, 70, 73, 75, 79, 80, 81, 82, 84, 85, 87], "refin": 29, "refit": 29, "reg_method": 65, "regress": [9, 13, 24, 25, 26, 52, 55, 58, 65, 66, 70, 73, 75, 79, 81, 82, 84, 86, 87], "regressor": [24, 25, 26, 36, 52, 55, 65, 66, 67], "regressormixin": [24, 52, 55], "regresssor": 52, "reject": [3, 72, 83, 87], "relat": [48, 78], "releas": 83, "relev": [24, 25, 26, 52, 55, 78], "reli": 87, "reliabl": [13, 22], "remain": 82, "remov": [16, 65], "renam": 16, "repeat": 87, "replac": [16, 83, 86], "replic": 39, "report": [25, 26, 33, 77], "repositori": [76, 83], "repres": 7, "represent": 86, "reproduc": 9, "req_output": [3, 9], "request": [3, 16, 24, 25, 26, 29, 39, 52, 55, 60, 65], "requir": [3, 9, 16, 37, 49], "research": [22, 42], "reshap": [44, 87], "residu": [7, 24, 25, 26, 52, 55, 66], "resolv": 72, "respect": [5, 65, 74, 87], "respons": [24, 25, 26, 39, 60, 65], "ress": 22, "rest": 16, "result": [5, 16, 39, 65, 69, 72, 78, 80, 85, 86, 87], "retain": [24, 25, 26, 52, 55], "retrain": 87, "retun": 29, "return": [44, 45, 74, 77, 80, 86, 87], "return_out_dict": 65, "return_sampl": 29, "return_std": [25, 26, 55, 58], "return_var": 10, "returnvar": 65, "revers": 45, "review": 60, "rework": 69, "rezaiifar": 52, "ridg": [65, 86], "rieckermann": 13, "risk": 33, "rmse": [13, 85, 87], "robin": 10, "root": [3, 9, 10, 13, 39, 87], "root_sampl": 86, "rosenblatt": [39, 47, 49, 78], "rossenblatt": 49, "rout": [24, 25, 26, 52, 55], "row": [9, 16], "rss": 25, "rst": [], "rubin": 72, "run": [9, 13, 16, 29, 39, 60, 65, 72, 73, 74, 77, 80, 83, 84, 85, 87], "run_command": 16, "run_forwardmodel": 16, "run_model_parallel": [16, 72, 80], "run_no": 60, "run_sampl": 9, "run_util_func": 60, "runtim": 65, "rvm_ard_model": 55, "rwmh": 10, "safeti": [13, 22, 33], "same": [16, 39, 47, 60, 74, 77, 78, 80, 81], "sampel": 78, "sampl": [3, 7, 9, 13, 16, 24, 25, 26, 29, 32, 35, 36, 38, 39, 42, 47, 52, 55, 60, 63, 65, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "sample_weight": [24, 25, 26, 52, 55], "sampler": [3, 9], "sampling_method": [29, 39, 74, 77, 78, 86, 87], "save": [29, 39, 74, 78, 85, 87], "savefig": 20, "sc": 33, "scalar": 7, "scale": 10, "scheme": [39, 45, 60, 65, 69, 70, 75, 82, 84, 86], "scienc": 9, "scope": 16, "score": [24, 25, 26, 39, 42, 52, 55, 60, 65, 66], "scores_": 55, "script": [16, 22, 87], "search": [16, 60, 77], "second": [16, 78, 87], "section": [39, 55, 58, 87], "see": [13, 24, 25, 26, 39, 49, 52, 55, 75, 77, 79, 81, 82, 84], "select": [3, 9, 13, 16, 29, 42, 52, 55, 56, 60, 65, 68], "selected_indic": [3, 9], "self": [24, 25, 26, 52, 55, 65], "sens": [58, 79, 84], "sensit": [13, 52, 66, 75, 79, 82, 87], "separ": [16, 39, 87], "sequenc": 44, "sequenti": [13, 16, 29, 39, 41, 42, 55, 60, 65, 69, 75, 82, 85], "sergei": [22, 60], "serv": 16, "set": [3, 5, 7, 9, 13, 16, 24, 25, 26, 29, 30, 32, 39, 40, 42, 45, 46, 52, 55, 58, 60, 61, 63, 65, 67, 72, 74, 76, 77, 78, 80, 83, 85, 86], "set_config": [24, 25, 26, 52, 55], "set_param": [24, 25, 26, 52, 55], "set_predict_request": [25, 26, 55], "set_score_request": [24, 25, 26, 52, 55], "setdefault": 65, "setup": [5, 81], "setup_infer": 3, "sfu": [75, 79, 84], "shall": 65, "shallow": 65, "shape": [3, 5, 7, 9, 13, 16, 24, 25, 26, 27, 29, 34, 35, 36, 39, 42, 45, 47, 52, 55, 58, 60, 65, 66, 67, 68, 72], "share": 81, "shceme": 87, "shell": [16, 73, 80], "shell_command": 16, "short": 76, "shot": 65, "should": [3, 10, 16, 24, 25, 26, 29, 44, 52, 55, 65, 69, 72, 74, 75, 78, 79, 80, 84, 86, 87], "show": [70, 73, 77, 81, 84, 87], "shown": 3, "sigma": [3, 7, 9, 58, 60, 87], "sigma2": [3, 9, 58, 60], "sigma2_prior": 7, "sigma2dict": 60, "sigma_": [55, 58], "sigma_f": 87, "signal": 52, "significantli": 82, "sim": 7, "simillar": 16, "simon": [75, 79, 84], "simpl": [24, 25, 26, 52, 55, 77, 80, 86], "simpli": 3, "simplic": 7, "simul": [3, 9, 13, 16, 22, 42, 65, 87], "simulation_output": 16, "sinc": 87, "singl": [7, 9, 13, 72, 80, 87], "singular": 52, "size": [24, 25, 26, 52, 55, 58, 87], "skbay": 55, "sklearn": [24, 25, 26, 52, 55], "sklearnpca": 65, "slightli": 72, "small": 72, "smaller": [25, 45, 72, 82, 87], "smallest": 25, "so": [7, 24, 25, 26, 52, 55, 82, 83, 87], "sobol": [13, 39, 75, 78, 79, 82, 83, 85, 87], "sobol_cel": 13, "sobol_indic": [13, 85], "sobolindicespc": 87, "soc": 82, "societi": 9, "softwar": [16, 75, 79, 84], "solut": 87, "solver": 16, "some": [24, 25, 26, 39, 47, 52, 55, 68, 72, 74, 85, 87], "sonja": [75, 79, 84], "soon": 60, "sort": 45, "sourc": [10, 65, 77, 83], "space": [39, 42, 46, 47, 60, 65, 69, 70, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87], "sparemulti": 65, "spars": [13, 24, 25, 26, 52, 55, 58, 66, 86], "sparsex": 65, "sparsiti": [65, 87], "specif": [50, 65, 72, 85], "specifi": [17, 29, 39, 65, 77, 78, 86], "sphinx_new": [], "split": [69, 83, 87], "springer": [55, 58], "squar": [3, 9, 10, 13, 24, 25, 26, 52, 55, 60, 65, 80, 86, 87], "ssurjano": [75, 79, 84], "stabl": 9, "stackoverflow": 65, "stand": 3, "standard": [13, 16, 29, 65, 69, 86, 87], "start": [3, 16, 29, 45, 55, 60, 69, 77, 86, 87], "start_engin": [29, 69, 77, 86, 87], "start_seqdesign": 60, "stat": [75, 79, 84], "static": [29, 70, 73, 75, 78, 79, 81, 82, 84, 87], "statist": 82, "std": [3, 9, 16, 60, 87], "std_2": 87, "std_pred": [9, 29, 65], "stdev": [9, 86], "step": [3, 16, 39, 70, 72, 86], "step_snapshot": [39, 87], "still": 69, "stochast": [13, 22], "stop": [39, 45, 69], "store": [16, 74, 87], "str": [3, 5, 7, 13, 16, 24, 25, 26, 29, 39, 42, 47, 52, 55, 65], "straightforward": 83, "strategi": [42, 60, 87], "string": [3, 9, 13, 16, 34, 36, 37, 39, 47, 50, 60, 87], "structur": [69, 83], "stuttgart": [22, 33, 77, 83], "sub": [24, 25, 26, 52, 55], "subdirectori": 16, "submatrix": 52, "subobject": [24, 25, 26, 52, 55], "successfulli": 16, "sudret": [13, 33, 52, 66, 87], "sum": [10, 24, 25, 26, 45, 52, 55], "sum_i": 44, "summari": [60, 65], "sumo": 42, "superclass": 24, "support": [3, 7, 39, 44, 65, 77, 78], "surjanov": [75, 79, 84], "surrog": [9, 16, 28, 29, 42, 59, 65, 69, 72, 74, 78, 83, 85], "surrogate_descript": [], "surrogate_model": [69, 78, 83, 86, 87], "switzerland": 33, "sy": 87, "system": [13, 22, 33, 52], "t": [24, 25, 26, 42, 44, 52, 55], "t_l": 75, "t_u": 75, "tag": 87, "take": [69, 72, 80, 83, 87], "taken": [29, 72], "target": [25, 26, 52, 55, 58, 60, 65, 66, 68], "task": 72, "tau": 84, "teach": 76, "tell": 86, "templat": 16, "term": [7, 25, 26, 37, 45, 68, 75, 79, 84, 87], "termin": [55, 58], "test": [24, 25, 26, 52, 55, 58, 72, 75, 84], "test_": 84, "test_analytical_funct": 87, "text": [7, 16], "textbf": 7, "th": 42, "than": [10, 44, 45, 72], "thei": [78, 83, 87], "them": [16, 29, 69, 72, 74, 77, 83], "themselv": 87, "theorem": 9, "theori": 60, "therefor": [24, 25, 26, 45, 55, 58], "theta": [7, 9, 10, 40], "theta_": 7, "thi": [3, 7, 9, 10, 13, 16, 24, 25, 26, 39, 40, 42, 47, 52, 55, 58, 60, 65, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], "thin": 72, "thing": 86, "third": 16, "though": [73, 87], "three": [5, 65, 74, 81, 86, 87], "threshold": [25, 26, 39, 55, 58, 65], "through": [83, 87], "thu": 19, "time": [5, 13, 16, 69, 70, 72, 73, 74, 75, 79, 81, 82, 84, 87], "timestep": [65, 80], "tip": [55, 58], "titl": 3, "toctre": [], "todo": [3, 60, 78], "tol": [24, 25, 26, 55, 56, 58], "tolist": 45, "tom": [3, 87], "toolbox": 42, "topic": 83, "total": [3, 13, 24, 25, 26, 45, 52, 55, 70, 73, 75, 79, 81, 82, 84, 85, 87], "total_sigma2": [3, 9], "total_sobol": [13, 87], "towardsdatasci": 13, "tpl": 16, "tr_x": [39, 47], "trade": [39, 60], "tradeoff": [70, 75, 82, 84, 87], "tradeoff_schem": [39, 60, 69, 87], "tradeoff_weight": 60, "train": [3, 9, 13, 16, 28, 29, 36, 39, 41, 42, 52, 55, 59, 60, 65, 68, 74, 77, 78, 83, 85], "train_error_model": 9, "train_norm": [29, 74, 77, 86, 87], "train_seq_design": 29, "train_sequenti": [29, 69, 85, 87], "transact": 58, "transform": [16, 39, 47, 49, 65, 78], "transpos": 52, "tree": 77, "trine": 39, "true": [3, 5, 16, 17, 20, 24, 25, 26, 29, 39, 40, 44, 52, 55, 58, 65, 72, 74, 78, 87], "true_sampl": 72, "truncat": [44, 45, 65, 70, 73, 75, 79, 81, 82, 84, 86, 87], "try": 25, "tsunami": 60, "tue": 54, "tupl": [16, 32, 39, 45, 47, 60, 63, 65], "tutori": [70, 77, 81], "two": [13, 24, 25, 26, 30, 45, 55, 58, 61, 65, 77, 80, 84, 86, 87], "type": [3, 5, 7, 9, 13, 16, 25, 29, 31, 34, 36, 37, 39, 47, 50, 60, 62, 65, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87], "type_": 3, "typic": [10, 87], "u": [24, 25, 26, 52, 55, 77, 86, 87], "ugent": 42, "um": 80, "umbridg": 16, "umbridge_model": 16, "uncertain": [7, 49, 50, 65, 72, 78, 80, 83, 86], "uncertainti": [3, 9, 22, 33, 52, 66, 72, 78, 83], "unchang": [24, 25, 26, 52, 55], "under": [75, 77, 79, 80, 83, 84], "underli": [], "understand": [72, 85], "uni": [22, 33, 77, 83], "unif": [77, 78, 87], "uniform": [49, 70, 73, 75, 78, 79, 84, 87], "uniform_averag": [24, 25, 26, 52, 55], "union": 45, "uniqu": [24, 25, 26], "unit": 33, "univ_basi": 65, "univ_basis_v": [39, 47, 65], "univ_p_v": 67, "univ_v": 36, "univari": [22, 35, 36, 65, 67], "univers": [33, 75, 79, 84], "universitaet": 22, "unknown": [3, 7, 9, 60], "unstabl": 25, "until": 39, "up": [3, 65, 67, 86], "updat": [16, 24, 25, 26, 52, 55, 58, 65, 72], "update_input_param": 16, "update_pce_coeff": 65, "upper": [17, 32, 39, 45, 47, 60, 63], "uq_bsc": 58, "uq_regress": 58, "uqlab": [33, 58], "urban": 13, "us": [3, 7, 9, 13, 16, 22, 24, 25, 26, 39, 42, 44, 45, 47, 52, 55, 58, 60, 65, 69, 72, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87], "use_bayes_set": 5, "useag": 86, "user": [3, 5, 16, 24, 25, 26, 33, 39, 47, 52, 55, 77, 78, 86, 87], "util": [24, 25, 26, 39, 43, 52, 55, 60], "util_alphoptdesign": 60, "util_bayesianactivedesign": 60, "util_bayesiandesign": 60, "util_func": [39, 60, 69, 87], "util_varbaseddesign": 60, "utilii": 39, "v": [3, 22, 24, 25, 26, 39, 47, 52, 55, 65], "v1": 33, "valid": [3, 13, 16, 39, 47, 65, 66, 69, 78, 83, 85, 87], "valid_error": 13, "valid_metamodel": [13, 85, 87], "valid_metr": 3, "valid_model_run": 87, "valid_sampl": 87, "validlikelihoods_": 87, "valu": [3, 5, 7, 9, 10, 16, 17, 24, 25, 26, 34, 35, 45, 52, 55, 56, 58, 65, 66, 68, 70, 72, 73, 78, 80, 86, 87], "valueerror": 67, "var": 60, "var_hat": [25, 26, 55, 58], "var_pca_threshold": 65, "var_pr": [24, 25, 26], "varbasedoptdesign": 39, "variabl": [25, 26, 52, 55, 58, 82, 87], "varianc": [3, 7, 10, 24, 25, 26, 55, 58, 65, 68, 69, 70, 72, 73, 82, 84], "variant": 86, "variat": [24, 26, 65, 86], "varidx": [65, 68], "varieti": 80, "variou": [65, 87], "varoptdesign": [39, 60, 69], "vbl": [65, 86], "vector": [25, 26, 65], "venv": 83, "verbos": [3, 9, 16, 24, 25, 26, 29, 52, 55, 58, 60, 65, 72, 87], "veri": [25, 80], "versa": [30, 61], "version": [24, 25, 26, 42, 52, 55, 65, 75, 77, 79, 83, 84], "via": [5, 7, 9, 39, 47, 65, 72, 73, 75, 78, 79, 80, 82, 83, 86, 87], "vice": [30, 61], "view": 65, "virtual": 83, "visual": [5, 39, 72, 78, 83, 85, 87], "voronoi": [39, 42, 69, 87], "vulner": 33, "w": [9, 10, 13, 22, 24, 25, 26, 42, 52, 55], "wa": 65, "wai": [60, 65, 86, 87], "walker": [3, 72], "want": [72, 77, 78, 80, 85, 86, 87], "warranti": [75, 79, 84], "wavelet": 52, "wb": 87, "we": [7, 25, 69, 72, 74, 75, 76, 77, 79, 80, 84, 85, 86, 87], "wear": 9, "websit": [], "weibul": 78, "weight": [5, 10, 24, 25, 26, 39, 52, 55, 58, 60, 69, 74, 83], "well": [10, 24, 25, 26, 52, 55, 72, 74], "were": 85, "what": [3, 7, 76, 86], "when": [3, 7, 9, 13, 16, 24, 25, 26, 30, 39, 52, 55, 58, 61, 72, 78, 87], "where": [5, 7, 24, 25, 26, 34, 35, 39, 44, 52, 55, 65, 78, 87], "whether": [5, 16, 39, 52, 55, 58], "which": [3, 16, 22, 24, 25, 26, 30, 58, 61, 72, 87], "while": [45, 69, 83, 85, 86, 87], "width": 73, "wiener": 37, "wight": 5, "wish": 16, "witch": 44, "within": [10, 16, 74, 76], "without": [16, 69, 73, 75, 77, 79, 84, 87], "wolfgang": 60, "word": 16, "work": [16, 24, 25, 26, 52, 55, 75, 77, 79, 84, 87], "workflow": [77, 87], "wors": [24, 25, 26, 52, 55], "would": [24, 25, 26, 52, 55, 77], "wrapper": 16, "write": 9, "written": [16, 72], "wrong": 60, "www": [22, 33, 55, 58, 75, 79, 84], "x": [13, 16, 24, 25, 26, 31, 34, 35, 36, 39, 44, 47, 52, 53, 55, 58, 62, 65, 68, 78, 80, 86, 87], "x1": 16, "x_1": [49, 50, 79, 87], "x_2": [79, 87], "x_3": 79, "x_axi": 13, "x_can": 60, "x_i": [44, 86], "x_mc": 60, "x_new": 60, "x_valu": [16, 20, 72, 74, 77, 80, 86], "xi": 16, "xiu": 87, "xlabel": 13, "xnew": 60, "xx": 16, "xxa": 55, "xya": 55, "y": [7, 9, 24, 25, 26, 39, 52, 53, 55, 65, 66, 68], "y_hat": [25, 26, 52, 55, 58, 60], "y_i": 86, "y_pc_val": 20, "y_pc_val_std": 20, "y_pred": [24, 25, 26, 52, 55, 65], "y_true": [24, 25, 26, 52, 55], "y_val": 20, "ye": [16, 70, 73, 84], "yet": 10, "yew": 60, "you": [7, 13, 16, 24, 25, 26, 52, 55, 71, 75, 77, 79, 81, 82, 84], "young": 73, "your": [13, 75, 79, 82, 83], "yr": [75, 79], "z": [77, 87], "zero": [30, 52, 55, 58, 61, 72], "zeromean": 7, "zip": 16, "zip_subdir": 16, "zurich": 33}, "titles": ["bayesvalidrox", "bayesvalidrox.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference", "bayesvalidrox.bayes_inference.bayes_inference.BayesInference", "bayesvalidrox.bayes_inference.bayes_model_comparison", "bayesvalidrox.bayes_inference.bayes_model_comparison.BayesModelComparison", "bayesvalidrox.bayes_inference.discrepancy", "bayesvalidrox.bayes_inference.discrepancy.Discrepancy", "bayesvalidrox.bayes_inference.mcmc", "bayesvalidrox.bayes_inference.mcmc.MCMC", "bayesvalidrox.bayes_inference.mcmc.gelman_rubin", "bayesvalidrox.post_processing", "bayesvalidrox.post_processing.post_processing", "bayesvalidrox.post_processing.post_processing.PostProcessing", "bayesvalidrox.pylink", "bayesvalidrox.pylink.pylink", "bayesvalidrox.pylink.pylink.PyLinkForwardModel", "bayesvalidrox.pylink.pylink.within_range", "bayesvalidrox.surrogate_models", "bayesvalidrox.surrogate_models.adaptPlot", "bayesvalidrox.surrogate_models.adaptPlot.adaptPlot", "bayesvalidrox.surrogate_models.apoly_construction", "bayesvalidrox.surrogate_models.apoly_construction.apoly_construction", "bayesvalidrox.surrogate_models.bayes_linear", "bayesvalidrox.surrogate_models.bayes_linear.BayesianLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.EBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.VBLinearRegression", "bayesvalidrox.surrogate_models.bayes_linear.gamma_mean", "bayesvalidrox.surrogate_models.engine", "bayesvalidrox.surrogate_models.engine.Engine", "bayesvalidrox.surrogate_models.engine.hellinger_distance", "bayesvalidrox.surrogate_models.engine.logpdf", "bayesvalidrox.surrogate_models.engine.subdomain", "bayesvalidrox.surrogate_models.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_rec_rule_arbitrary", "bayesvalidrox.surrogate_models.eval_rec_rule.eval_univ_basis", "bayesvalidrox.surrogate_models.eval_rec_rule.poly_rec_coeffs", "bayesvalidrox.surrogate_models.exp_designs", "bayesvalidrox.surrogate_models.exp_designs.ExpDesigns", "bayesvalidrox.surrogate_models.exp_designs.check_ranges", "bayesvalidrox.surrogate_models.exploration", "bayesvalidrox.surrogate_models.exploration.Exploration", "bayesvalidrox.surrogate_models.glexindex", "bayesvalidrox.surrogate_models.glexindex.cross_truncate", "bayesvalidrox.surrogate_models.glexindex.glexindex", "bayesvalidrox.surrogate_models.input_space", "bayesvalidrox.surrogate_models.input_space.InputSpace", "bayesvalidrox.surrogate_models.inputs", "bayesvalidrox.surrogate_models.inputs.Input", "bayesvalidrox.surrogate_models.inputs.Marginal", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.OrthogonalMatchingPursuit", "bayesvalidrox.surrogate_models.orthogonal_matching_pursuit.corr", "bayesvalidrox.surrogate_models.reg_fast_ard", "bayesvalidrox.surrogate_models.reg_fast_ard.RegressionFastARD", "bayesvalidrox.surrogate_models.reg_fast_ard.update_precisions", "bayesvalidrox.surrogate_models.reg_fast_laplace", "bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace", "bayesvalidrox.surrogate_models.sequential_design", "bayesvalidrox.surrogate_models.sequential_design.SequentialDesign", "bayesvalidrox.surrogate_models.sequential_design.hellinger_distance", "bayesvalidrox.surrogate_models.sequential_design.logpdf", "bayesvalidrox.surrogate_models.sequential_design.subdomain", "bayesvalidrox.surrogate_models.surrogate_models", "bayesvalidrox.surrogate_models.surrogate_models.MetaModel", "bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error", "bayesvalidrox.surrogate_models.surrogate_models.create_psi", "bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator", "Active learning: iteratively expanding the training set", "Example: Analytical function", "API", "Bayesian inference", "Example: beam", "Bayesian multi-model comparison", "Example: borehole", "EXAMPLES", "Surrogate-assisted\u00a0Bayesian validation of computational models", "Priors, input space and experimental design", "Example: ishigami", "Models", "Example: model comparison", "Example: OHagan-function", "USER GUIDE", "Example: pollution", "Postprocessing", "Training surrogate models", "TUTORIAL"], "titleterms": {"1": 81, "3": 81, "activ": 69, "adaptplot": [19, 20], "also": [], "an": 87, "analyt": 70, "api": 71, "apoly_construct": [21, 22], "argument": [42, 60], "assist": 77, "attribut": [3, 5, 7, 9, 13, 16, 25, 26, 39, 42, 47, 49, 50, 52, 55, 58, 65], "bay": [], "bayes_infer": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "bayes_linear": [23, 24, 25, 26, 27], "bayes_model_comparison": [4, 5], "bayesian": [72, 74, 77, 87], "bayesianlinearregress": 24, "bayesinfer": 3, "bayesmodelcomparison": 5, "bayesvalidrox": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "beam": 73, "borehol": 75, "check_rang": 40, "choic": [70, 73, 75, 79, 81, 82, 84], "class": [], "comparison": [74, 81], "comput": 77, "contact": [], "content": 77, "contribut": 77, "corr": 53, "corr_loocv_error": 66, "create_psi": 67, "cross_trunc": 44, "data": [70, 73, 75, 79, 82, 84, 87], "defin": 87, "descript": [], "design": [78, 87], "discrep": [6, 7, 70, 73], "eblinearregress": 25, "engin": [28, 29, 30, 31, 32, 86, 87], "eval_rec_rul": [33, 34, 35, 36, 37], "eval_rec_rule_arbitrari": 35, "eval_univ_basi": 36, "exampl": [49, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86], "exp_design": [38, 39, 40], "expand": 69, "expdesign": 39, "experiment": [78, 87], "exploit": 69, "explor": [41, 42, 69], "function": [70, 82], "further": 77, "gamma_mean": 27, "gaussian_process_emul": 68, "gelman_rubin": 10, "glexindex": [43, 44, 45], "guid": 83, "hellinger_dist": [30, 61], "import": 87, "indic": 77, "infer": [72, 87], "input": [48, 49, 50, 78, 87], "input_spac": [46, 47], "inputspac": 47, "instal": [77, 83], "introductori": [], "ishigami": 79, "iter": 69, "l2_model": 81, "learn": 69, "librari": 87, "licens": 77, "link": 77, "logpdf": [31, 62], "margin": 50, "mcmc": [8, 9, 10], "meta": 87, "meta_model_engin": [], "metamodel": [65, 70, 73, 75, 79, 81, 82, 84, 86], "model": [70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87], "model1": 81, "multi": 74, "necessari": 87, "nl2_model": 81, "nl4_model": 81, "note": [24, 25, 26, 39, 52, 55, 65], "ohagan": 82, "option": 86, "orthogonal_matching_pursuit": [51, 52, 53], "orthogonalmatchingpursuit": 52, "overview": 83, "packag": [], "paramet": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 47, 52, 55, 58, 60, 61, 62, 63, 65, 66, 67, 68], "pollut": 84, "poly_rec_coeff": 37, "post": 87, "post_process": [11, 12, 13], "postprocess": [13, 85], "prior": [70, 73, 75, 78, 79, 82, 84], "priors1": 81, "probabilist": 87, "process": 87, "pylink": [14, 15, 16, 17, 70, 73, 75, 79, 81, 82, 84], "pylinkforwardmodel": [16, 87], "quickstart": 77, "rais": [13, 60, 67], "refer": [52, 55, 58], "reg_fast_ard": [54, 55, 56], "reg_fast_laplac": [57, 58], "regressionfastard": 55, "regressionfastlaplac": 58, "return": [3, 5, 7, 9, 10, 13, 16, 17, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 42, 47, 49, 52, 55, 58, 60, 61, 62, 63, 65, 66, 67, 68], "see": [], "sequenti": 87, "sequential_design": [59, 60, 61, 62, 63], "sequentialdesign": 60, "set": [69, 70, 73, 75, 79, 81, 82, 84, 87], "space": 78, "subdomain": [32, 63], "surrog": [70, 73, 75, 77, 79, 81, 82, 84, 86, 87], "surrogate_model": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], "tabl": 77, "theori": [], "tradeoff": 69, "train": [69, 70, 73, 75, 79, 81, 82, 84, 86, 87], "tutori": 87, "uncertainti": 87, "update_precis": 56, "user": 83, "valid": 77, "vblinearregress": 26, "within_rang": 17}})
\ No newline at end of file
diff --git a/public/surrogate_description.html b/public/surrogate_description.html
index c48db82a4773b839e34ca20dce1c610bb97ffb3a..ddf24bbc7c9879049baf77a0bd8a1076185ddb05 100644
--- a/public/surrogate_description.html
+++ b/public/surrogate_description.html
@@ -170,7 +170,8 @@
 <li class="toctree-l2 current current-page"><a class="current reference internal" href="#">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1"><a class="reference internal" href="tutorial.html">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
diff --git a/public/tutorial.html b/public/tutorial.html
index 820f6d348870c77e961ce0e23f2158a2279322da..c8714239fc868abb78e5deca42c3e7086262f1e5 100644
--- a/public/tutorial.html
+++ b/public/tutorial.html
@@ -3,7 +3,7 @@
   <head><meta charset="utf-8"/>
     <meta name="viewport" content="width=device-width,initial-scale=1"/>
     <meta name="color-scheme" content="light dark"><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="EXAMPLES" href="examples.html" /><link rel="prev" title="Bayesian inference and multi-model comparison" href="bayes_description.html" />
+<link rel="index" title="Index" href="genindex.html" /><link rel="search" title="Search" href="search.html" /><link rel="next" title="EXAMPLES" href="examples.html" /><link rel="prev" title="Bayesian multi-model comparison" href="bmc_description.html" />
 
     <!-- Generated with Sphinx 7.3.7 and Furo 2023.09.10 -->
         <title>TUTORIAL - bayesvalidrox 1.0.0 documentation</title>
@@ -170,7 +170,8 @@
 <li class="toctree-l2"><a class="reference internal" href="surrogate_description.html">Training surrogate models</a></li>
 <li class="toctree-l2"><a class="reference internal" href="al_description.html">Active learning: iteratively expanding the training set</a></li>
 <li class="toctree-l2"><a class="reference internal" href="post_description.html">Postprocessing</a></li>
-<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference and multi-model comparison</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bayes_description.html">Bayesian inference</a></li>
+<li class="toctree-l2"><a class="reference internal" href="bmc_description.html">Bayesian multi-model comparison</a></li>
 </ul>
 </li>
 <li class="toctree-l1 current current-page"><a class="current reference internal" href="#">TUTORIAL</a></li>
@@ -238,9 +239,6 @@
 </ul>
 </li>
 <li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.html">bayesvalidrox.surrogate_models.engine</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" role="switch" type="checkbox"/><label for="toctree-checkbox-18"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.engine</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.hellinger_distance.html">bayesvalidrox.surrogate_models.engine.hellinger_distance</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.logpdf.html">bayesvalidrox.surrogate_models.engine.logpdf</a></li>
-<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.subdomain.html">bayesvalidrox.surrogate_models.engine.subdomain</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.engine.Engine.html">bayesvalidrox.surrogate_models.engine.Engine</a></li>
 </ul>
 </li>
@@ -288,7 +286,14 @@
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace.html">bayesvalidrox.surrogate_models.reg_fast_laplace.RegressionFastLaplace</a></li>
 </ul>
 </li>
-<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.html">bayesvalidrox.surrogate_models.sequential_design</a><input class="toctree-checkbox" id="toctree-checkbox-28" name="toctree-checkbox-28" role="switch" type="checkbox"/><label for="toctree-checkbox-28"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.sequential_design</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.hellinger_distance.html">bayesvalidrox.surrogate_models.sequential_design.hellinger_distance</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.logpdf.html">bayesvalidrox.surrogate_models.sequential_design.logpdf</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.subdomain.html">bayesvalidrox.surrogate_models.sequential_design.subdomain</a></li>
+<li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.sequential_design.SequentialDesign.html">bayesvalidrox.surrogate_models.sequential_design.SequentialDesign</a></li>
+</ul>
+</li>
+<li class="toctree-l4 has-children"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.html">bayesvalidrox.surrogate_models.surrogate_models</a><input class="toctree-checkbox" id="toctree-checkbox-29" name="toctree-checkbox-29" role="switch" type="checkbox"/><label for="toctree-checkbox-29"><div class="visually-hidden">Toggle navigation of bayesvalidrox.surrogate_models.surrogate_models</div><i class="icon"><svg><use href="#svg-arrow-right"></use></svg></i></label><ul>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error.html">bayesvalidrox.surrogate_models.surrogate_models.corr_loocv_error</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.create_psi.html">bayesvalidrox.surrogate_models.surrogate_models.create_psi</a></li>
 <li class="toctree-l5"><a class="reference internal" href="_autosummary/bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator.html">bayesvalidrox.surrogate_models.surrogate_models.gaussian_process_emulator</a></li>
@@ -596,7 +601,7 @@ The method <code class="docutils literal notranslate"><span class="pre">sobolInd
 </div>
 <p>If we set <code class="docutils literal notranslate"><span class="pre">emulator</span></code> to be true the Bayesian Inference will be performed based on the emulator.
 Some posterior predictions will be plotted by setting <code class="docutils literal notranslate"><span class="pre">plot_post_pred</span></code>.
-More options for Bayesian inference are listed at <a class="reference internal" href="bayes_description.html"><span class="doc">Bayesian inference and multi-model comparison</span></a>.</p>
+More options for Bayesian inference are listed at <a class="reference internal" href="bayes_description.html"><span class="doc">Bayesian inference</span></a>.</p>
 <div class="admonition note">
 <p class="admonition-title">Note</p>
 <p>Setting <code class="docutils literal notranslate"><span class="pre">emulator</span> <span class="pre">=</span> <span class="pre">False</span></code> means that the inference is based on actual model runs and not the surrogate.
@@ -694,14 +699,14 @@ plots of posterior predictions if wanted.</p>
               </div>
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
             </a>
-          <a class="prev-page" href="bayes_description.html">
+          <a class="prev-page" href="bmc_description.html">
               <svg class="furo-related-icon"><use href="#svg-arrow-right"></use></svg>
               <div class="page-info">
                 <div class="context">
                   <span>Previous</span>
                 </div>
                 
-                <div class="title">Bayesian inference and multi-model comparison</div>
+                <div class="title">Bayesian multi-model comparison</div>
                 
               </div>
             </a>
diff --git a/src/bayesvalidrox/__init__.py b/src/bayesvalidrox/__init__.py
index 6c11bd3730d31b602b1b4538de1856de04ffc909..84b052ef04c04dcf9747be048ab0cbc7dc73d484 100644
--- a/src/bayesvalidrox/__init__.py
+++ b/src/bayesvalidrox/__init__.py
@@ -1,9 +1,8 @@
 # -*- coding: utf-8 -*-
-__version__ = "1.0.0"
+__version__ = "1.1.0"
 
 from .pylink.pylink import PyLinkForwardModel
 from .surrogate_models.surrogate_models import MetaModel
-#from .surrogate_models.meta_model_engine import MetaModelEngine
 from .surrogate_models.engine import Engine
 from .surrogate_models.inputs import Input
 from .surrogate_models.exp_designs import ExpDesigns
@@ -18,7 +17,6 @@ __all__ = [
     "Input",
     "Discrepancy",
     "MetaModel",
-    #"MetaModelEngine",
     "Engine",
     "ExpDesigns",
     "PostProcessing",
diff --git a/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py b/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py
index dc66e1cf5322928c6f7cc16392b96f302bd6d04a..6374cdc01db0535bd255c88e8b6b8065eaba9112 100644
--- a/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py
+++ b/src/bayesvalidrox/bayes_inference/bayes_model_comparison.py
@@ -484,7 +484,6 @@ class BayesModelComparison:
         for name in names:
             fig, ax = plt.subplots()
             for i, model in enumerate(model_names[1:]):
-                #print(model, i)
                 plt.plot(list(range(1, self.n_meas+1)),
                          model_weights_dict[name][i],
                          color=Color[i], marker='o',
diff --git a/src/bayesvalidrox/bayes_inference/mcmc.py b/src/bayesvalidrox/bayes_inference/mcmc.py
index ad7c9f1e5e6c073f0d80746091e5ba3f70c4bc38..a9914826a955da4506eb364df833a9f2327f4c41 100755
--- a/src/bayesvalidrox/bayes_inference/mcmc.py
+++ b/src/bayesvalidrox/bayes_inference/mcmc.py
@@ -319,6 +319,11 @@ class MCMC:
                     )
                 initsamples = inputSamples[random_indices]
 
+            # Check if ndim == 1, change to 2D vector (nwalkers, ndim)
+            # ToDo: Check if it is better to change this in how the samples are taken (line 309)
+            if initsamples.ndim == 1:
+                initsamples = initsamples.reshape(-1, 1)
+
         else:
             if self.initsamples.ndim == 1:
                 # When MAL is given.
diff --git a/src/bayesvalidrox/post_processing/post_processing.py b/src/bayesvalidrox/post_processing/post_processing.py
index 50b32dbea7effb358a5e47835a9002efa97587c8..020695c7668a66f8073c76ea8a5fc43cf7b5f189 100644
--- a/src/bayesvalidrox/post_processing/post_processing.py
+++ b/src/bayesvalidrox/post_processing/post_processing.py
@@ -321,7 +321,6 @@ class PostProcessing:
 
             if len(name_util) == 0:
                 continue
-            print(seq_dict)
 
             # Box plot when Replications have been detected.
             if any(int(name.split("rep_", 1)[1]) > 1 for name in name_util):
@@ -437,7 +436,7 @@ class PostProcessing:
                     bbox_inches='tight'
                     )
                 # Destroy the current plot
-                plt.clf()
+                plt.close()
                 # Save arrays into files
                 f = open(f'./{newpath}/seq_{plot_name}.txt', 'w')
                 f.write(str(sorted_seq_opt))
@@ -494,8 +493,8 @@ class PostProcessing:
                         seq_values = np.nan_to_num(seq_values)
 
                         # Plot the error evolution for each output
-                        print(x_idx.shape)
-                        print(seq_values.mean(axis=1).shape)
+                        #print(x_idx.shape)
+                        #print(seq_values.mean(axis=1).shape)
                         plt.semilogy(x_idx, seq_values.mean(axis=1),
                                      marker=markers[idx], ls='--', lw=2,
                                      color=colors[idx],
@@ -523,7 +522,7 @@ class PostProcessing:
                     bbox_inches='tight'
                     )
                 # Destroy the current plot
-                plt.clf()
+                plt.close()
 
                 # ---------------- Saving arrays into files ---------------
                 np.save(f'./{newpath}/seq_{plot_name}.npy', seq_values)
@@ -830,7 +829,7 @@ class PostProcessing:
                 )
 
             # Destroy the current plot
-            plt.clf()
+            plt.close()
 
         return self.total_sobol
 
@@ -890,13 +889,12 @@ class PostProcessing:
                            lw=3, linestyle='--')
                 plt.xlabel(par)
                 plt.ylabel('Residuals')
-                plt.show()
 
                 # save the current figure
                 fig1.savefig(f'./{newpath}/Residuals_vs_Par_{i+1}.pdf',
                              bbox_inches='tight')
                 # Destroy the current plot
-                plt.clf()
+                plt.close()
 
             # ------ Fitted vs. residuals ------
             # Check the assumptions of linearity and independence
@@ -909,13 +907,12 @@ class PostProcessing:
                        linestyle='--')
             plt.xlabel(key)
             plt.ylabel('Residuals')
-            plt.show()
 
             # save the current figure
             fig2.savefig(f'./{newpath}/Fitted_vs_Residuals.pdf',
                          bbox_inches='tight')
             # Destroy the current plot
-            plt.clf()
+            plt.close()
 
             # ------ Histogram of normalized residuals ------
             fig3 = plt.figure()
@@ -937,13 +934,11 @@ class PostProcessing:
             at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
             ax.add_artist(at)
 
-            plt.show()
-
             # save the current figure
             fig3.savefig(f'./{newpath}/Hist_NormResiduals.pdf',
                          bbox_inches='tight')
             # Destroy the current plot
-            plt.clf()
+            plt.close()
 
             # ------ Q-Q plot of the normalized residuals ------
             plt.figure()
@@ -954,13 +949,12 @@ class PostProcessing:
             plt.ylabel("Sample quantiles")
             plt.title(f"{key}: Q-Q plot of normalized residuals")
             plt.grid(True)
-            plt.show()
 
             # save the current figure
             plt.savefig(f'./{newpath}/QQPlot_NormResiduals.pdf',
                         bbox_inches='tight')
             # Destroy the current plot
-            plt.clf()
+            plt.close()
 
     # -------------------------------------------------------------------------
     def eval_pce_model_3d(self):
@@ -1023,7 +1017,6 @@ class PostProcessing:
         ax.set_zlabel('$f(x_1,x_2)$')
 
         plt.grid()
-        plt.show()
 
         #  Saving the figure
         newpath = f'Outputs_PostProcessing_{self.name}/'
@@ -1044,10 +1037,8 @@ class PostProcessing:
         ax.set_xlabel('$x_1$')
         ax.set_ylabel('$x_2$')
         ax.set_zlabel('$f(x_1,x_2)$')
-
         plt.grid()
-        plt.show()
-
+        
         # Save the figure
         fig_Model.savefig(f'./{newpath}/3DPlot_Model.pdf',
                           bbox_inches='tight')
@@ -1252,15 +1243,14 @@ class PostProcessing:
             plt.ylabel("Original Model")
             plt.xlabel("PCE Model")
             plt.grid()
-            plt.show()
-
+            
             # save the current figure
             plot_name = key.replace(' ', '_')
             fig.savefig(f'./{newpath}/Model_vs_PCEModel_{plot_name}.pdf',
                         bbox_inches='tight')
 
             # Destroy the current plot
-            plt.clf()
+            plt.close()
 
     # -------------------------------------------------------------------------
     def _plot_validation_multi(self, x_values=[], x_axis="x [m]"):
@@ -1335,7 +1325,7 @@ class PostProcessing:
                         bbox_inches='tight')
 
             # Destroy the current plot
-            plt.clf()
+            plt.close()
 
         # Zip the subdirectories
         Model.zip_subdirs(f'{Model.name}valid', f'{Model.name}valid_')
diff --git a/src/bayesvalidrox/pylink/pylink.py b/src/bayesvalidrox/pylink/pylink.py
index 64ad87b7b35fe948b1c68221be12ebbe3ca8f91a..1f12df8a1001381970772faffa895f6e46b2960e 100644
--- a/src/bayesvalidrox/pylink/pylink.py
+++ b/src/bayesvalidrox/pylink/pylink.py
@@ -394,7 +394,6 @@ class PyLinkForwardModel(object):
             os.makedirs(newpath)
 
         # Copy the necessary files to the directories
-        print(self.input_template)
         for in_temp in self.input_template:
             # Input file(s) of the model
             shutil.copy2(in_temp, newpath)
@@ -426,7 +425,6 @@ class PyLinkForwardModel(object):
             self.exe_path = os.getcwd()
 
         # Run the model
-        print(new_command)
         output = self.run_command(new_command, self.Output.file_names)
 
         return output
diff --git a/src/bayesvalidrox/surrogate_models/engine.py b/src/bayesvalidrox/surrogate_models/engine.py
index ab0aaeea564c95f169fac2a0e47428bbd43c7491..330ac293884516f2eaa107c11d4e661bccfc6ba3 100644
--- a/src/bayesvalidrox/surrogate_models/engine.py
+++ b/src/bayesvalidrox/surrogate_models/engine.py
@@ -97,7 +97,6 @@ class Engine:
 
         # Read ExpDesign (training and targets) from the provided hdf5
         if ExpDesign.hdf5_file is not None:
-            # TODO: need to run 'generate_ED' as well after this or not?
             ExpDesign.read_from_file(self.out_names)
         else:
             # Check if an old hdf5 file exists: if yes, rename it
@@ -266,8 +265,9 @@ class Engine:
         else:
             pce = False
         #mc_ref = True if bool(self.Model.mc_reference) else False
-        mc_ref = True if (self.Model.mc_reference is not None) else False
-        if mc_ref:
+        mc_ref = False
+        if self.Model.mc_reference != {}:
+            mc_ref = True
             self.Model.read_observation('mc_ref')
 
         # Get the parameters
@@ -598,7 +598,6 @@ class Engine:
                     self.seqRMSEMean[strKey] = seqRMSEMean
                     self.seqRMSEStd[strKey] = seqRMSEStd
 
-        # return self.MetaModel
 
     # -------------------------------------------------------------------------
     def _normpdf(self, y_hat_pce, std_pce, obs_data, total_sigma2s,
@@ -1015,12 +1014,15 @@ class Engine:
             RMSE of the standard deviations
 
         """
+        if self.Model.mc_reference == {}:
+            raise AttributeError('Model.mc_reference needs to be given to calculate the surrogate error!')
         # Compute the mean and std based on the MetaModel
         pce_means, pce_stds = self.MetaModel._compute_pce_moments()
 
         # Compute the root mean squared error
         for output in self.out_names:
             # Compute the error between mean and std of MetaModel and OrigModel
+            # TODO: write test that checks if mc_reference exists
             RMSE_Mean = mean_squared_error(
                 self.Model.mc_reference['mean'], pce_means[output], squared=False
             )
diff --git a/src/bayesvalidrox/surrogate_models/sequential_design.py b/src/bayesvalidrox/surrogate_models/sequential_design.py
index d4004b8b8c60ce4ffa957f4855d462566630f8f5..878ac740214de987f5fea9e1389e01305d2d044b 100644
--- a/src/bayesvalidrox/surrogate_models/sequential_design.py
+++ b/src/bayesvalidrox/surrogate_models/sequential_design.py
@@ -533,8 +533,6 @@ class SequentialDesign:
             temp = totalScore.copy()
             temp[np.isnan(totalScore)] = -np.inf                # Since we are maximizing
             sorted_idxtotalScore = np.argsort(temp)[::-1]
-            print(sorted_idxtotalScore)
-            print(n_new_samples)
             bestIdx = sorted_idxtotalScore[:n_new_samples]
             if type(bestIdx) is int:
                 bestIdx = [bestIdx]
@@ -543,7 +541,6 @@ class SequentialDesign:
             if explore_method.lower() == 'voronoi':
                 Xnew = np.zeros((n_new_samples, ndim))
                 for i, idx in enumerate(bestIdx):
-                    print(explore.closestPoints)
                     X_can = explore.closestPoints[idx]
 
                     # Calculate the maxmin score for the region of interest
@@ -708,8 +705,6 @@ class SequentialDesign:
                 y_hat = {key: items[idx] for key, items in y_can.items()}
                 std = {key: items[idx] for key, items in std_can.items()}
 
-                # print(y_hat)
-                # print(std)
                 U_J_d[idx] = self.util_BayesianActiveDesign(
                     y_hat, std, sigma2Dict, var)
 
@@ -830,8 +825,7 @@ class SequentialDesign:
         logPriorLikelihoods = np.zeros(mc_size)
         for key in list(y_hat):
             cov = np.diag(std[key] ** 2)
-            print(key, y_hat[key], std[key])
-            # TODO: added the allow_singular = True here
+            # Allow for singular matrices
             rv = stats.multivariate_normal(mean=y_hat[key], cov=cov, allow_singular=True)
             Y_MC[key] = rv.rvs(size=mc_size)
             logPriorLikelihoods += rv.logpdf(Y_MC[key])
@@ -1284,7 +1278,6 @@ class SequentialDesign:
                 Phi[idx] = np.linalg.cond(M)
 
             else:
-                # print(var.lower())
                 raise Exception('The optimality criterion you requested has '
                                 'not been implemented yet!')
 
@@ -1325,7 +1318,6 @@ class SequentialDesign:
         for idx, out in enumerate(self.out_names):
 
             # (Meta)Model Output
-            # print(y_hat_pce[out])
             nsamples, nout = y_hat_pce[out].shape
 
             # Prepare data and remove NaN
diff --git a/src/bayesvalidrox/surrogate_models/surrogate_models.py b/src/bayesvalidrox/surrogate_models/surrogate_models.py
index 157260d4b5432f847670a6804deac7dbfa8eb4bd..e56cfe40f1592b6d2389b9faf2cf160af0da0fad 100644
--- a/src/bayesvalidrox/surrogate_models/surrogate_models.py
+++ b/src/bayesvalidrox/surrogate_models/surrogate_models.py
@@ -1005,7 +1005,6 @@ class MetaModel:
                     break
 
             # Store the score in the scores list
-            print(qNormScores)
             best_q = np.nanargmax(qNormScores)
             scores[degIdx] = qNormScores[best_q]
 
@@ -1082,6 +1081,7 @@ class MetaModel:
                     text = f"$\\alpha={clf_poly.alpha_:.1f}$\n$"
                     f"\\L={clf_poly.scores_[-1]:.1f}$"
 
+                # TODO: save this figure and close it, do not show
                 plt.text(0.75, 0.5, text, fontsize=18, transform=ax.transAxes)
                 plt.show()
             print('=' * 80)
@@ -1230,7 +1230,6 @@ class MetaModel:
                 mean = np.empty((len(samples), len(values)))
                 std = np.empty((len(samples), len(values)))
                 idx = 0
-                #print('Looping over ??')
                 for in_key, InIdxValues in values.items():
 
                     # Prediction with GPE
diff --git a/tests/test_engine.py b/tests/test_engine.py
index 780d64417f888a8d94e8fcce145f60d55561b437..f51bc6afc7c93b7803d9da7366e79e8c81b14a8b 100644
--- a/tests/test_engine.py
+++ b/tests/test_engine.py
@@ -31,9 +31,10 @@ Engine:
 import math
 import numpy as np
 import pandas as pd
+import pytest
 import sys
 
-sys.path.append("src/")
+sys.path.append("../src/")
 
 from bayesvalidrox.surrogate_models.inputs import Input
 from bayesvalidrox.surrogate_models.exp_designs import ExpDesigns
@@ -84,9 +85,9 @@ def test_start_engine() -> None:
 
 #%% Test Engine._error_Mean_Std
 
-def test__error_Mean_Std() -> None:
+def test__error_Mean_Std_nomc() -> None:
     """
-    Compare moments of surrogate and reference
+    Compare moments of surrogate and reference without mc-reference
     """
     inp = Input()
     inp.add_marginals()
@@ -103,7 +104,17 @@ def test__error_Mean_Std() -> None:
     engine.start_engine()
     mean, std = engine._error_Mean_Std()
     assert mean < 0.01 and std < 0.01
-
+    
+#def test__error_Mean_Std() -> None:
+#    """
+#    Compare moments of surrogate and reference
+#    """
+#    mod = PL()
+#    engine = Engine(None, mod, None)
+#    engine.start_engine()
+#    with pytest.raises(AttributeError) as excinfo:
+#        engine._error_Mean_Std()
+#    assert str(excinfo.value) == ('Model.mc_reference needs to be given to calculate the surrogate error!')
 
 #%% Test Engine._validError