Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
* \ingroup BoundaryTests
* \brief A simple Stokes test problem for the staggered grid (Navier-)Stokes model.
*/
#ifndef DUMUX_STOKES_BJS_SUBPROBLEM_HH
#define DUMUX_STOKES_BJS_SUBPROBLEM_HH
#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/numeqvector.hh>
#include <dumux/discretization/staggered/freeflow/properties.hh>
#include <dumux/freeflow/navierstokes/boundarytypes.hh>
#include <dumux/freeflow/navierstokes/model.hh>
#include <dumux/freeflow/navierstokes/problem.hh>
#include <dumux/multidomain/boundary/stokesdarcy/couplingdata.hh>
namespace Dumux {
/*!
* \brief The rans subproblem
*/
template <class TypeTag>
class StokesSubProblem : public NavierStokesProblem<TypeTag>
{
using ParentType = NavierStokesProblem<TypeTag>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using FluidState = GetPropType<TypeTag, Properties::FluidState>;
using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using NumEqVector = Dumux::NumEqVector<PrimaryVariables>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
using BoundaryTypes = Dumux::NavierStokesBoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>;
using Element = typename GridGeometry::GridView::template Codim<0>::Entity;
using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView;
using SubControlVolume = typename FVElementGeometry::SubControlVolume;
using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
static constexpr auto dimWorld = GridGeometry::GridView::dimensionworld;
public:
StokesSubProblem(std::shared_ptr<const GridGeometry> gridGeometry,
std::shared_ptr<CouplingManager> couplingManager)
: ParentType(gridGeometry, "NavierStokes")
, eps_(1e-8)
, couplingManager_(couplingManager)
{
problemName_ = getParam<std::string>("Vtk.OutputName") + "_" + getParamFromGroup<std::string>(this->paramGroup(), "Problem.Name");
pressureDifference_ = getParam<Scalar>("Problem.PressureDifference");
porousMediaBoxMin_ = getParam<GlobalPosition>("Problem.PorousMediaBoxMin");
porousMediaBoxMax_ = getParam<GlobalPosition>("Problem.PorousMediaBoxMax");
}
const std::string& name() const
{ return problemName_; }
/*!
* \brief Returns the temperature [K] within the domain for the isothermal model.
*/
Scalar temperature() const
{ return 298.15; }
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary segment.
*
* \param element The finite element
* \param scvf The sub control volume face
*/
BoundaryTypes boundaryTypes(const Element& element,
const SubControlVolumeFace& scvf) const
{
BoundaryTypes values;
const auto& globalPos = scvf.ipGlobal();
if (onLeftBoundary_(globalPos) || onRightBoundary_(globalPos))
values.setDirichlet(Indices::pressureIdx);
else if (isOnCouplingWall_(scvf))
{
values.setCouplingNeumann(Indices::conti0EqIdx);
values.setCouplingNeumann(scvf.directionIndex());
values.setNavierSlip(1 - scvf.directionIndex());
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
}
else
values.setAllSymmetry();
return values;
}
/*!
* \brief Evaluate the boundary conditions for a dirichlet
* control volume.
*
* \param globalPos The center of the finite volume which ought to be set.
*/
PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
{
PrimaryVariables values(0.0);
if(onLeftBoundary_(globalPos))
values[Indices::pressureIdx] = pressureDifference_;
return values;
}
/*!
* \brief Evaluates the boundary conditions for a Neumann control volume.
*
* \param element The element for which the Neumann boundary condition is set
* \param fvGeometry The fvGeometry
* \param elemVolVars The element volume variables
* \param elemFaceVars The element face variables
* \param scvf The boundary sub control volume face
*/
template<class ElementVolumeVariables, class ElementFaceVariables>
NumEqVector neumann(const Element& element,
const FVElementGeometry& fvGeometry,
const ElementVolumeVariables& elemVolVars,
const ElementFaceVariables& elemFaceVars,
const SubControlVolumeFace& scvf) const
{
NumEqVector values(0.0);
if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
{
values[Indices::conti0EqIdx] = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
}
return values;
}
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The global position
*/
PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
{ return PrimaryVariables(0.0); }
//! Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
{ return couplingManager().couplingData().darcyPermeability(element, scvf); }
//! Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
Scalar alphaBJ(const SubControlVolumeFace& scvf) const
{ return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); }
//! Returns the slip length value required as a parameter for the Navier-Slip boundary condition
Scalar navierSlipLength(const SubControlVolumeFace& scvf) const
{ return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().navierSlipLengthAtPos(scvf.center()); }
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! Set the coupling manager
void setCouplingManager(std::shared_ptr<CouplingManager> cm)
{ couplingManager_ = cm; }
//! Get the coupling manager
const CouplingManager& couplingManager() const
{ return *couplingManager_; }
private:
bool onLeftBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
bool isOnCouplingWall_(const SubControlVolumeFace& scvf) const
{ return couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf); }
// the height of the free-flow domain
const Scalar height_() const
{ return this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1]; }
Scalar pressureDifference_;
GlobalPosition porousMediaBoxMin_;
GlobalPosition porousMediaBoxMax_;
Scalar eps_;
std::string problemName_;
std::shared_ptr<CouplingManager> couplingManager_;
};
} // end namespace Dumux
#endif